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We study the potential of the axion, a, of Quantum Chromodynamics, in the two-flavor color
superconducting phase of cold and dense quark matter. We adopt a Nambu-Jona-Lasinio-like model.
Our interaction contains two terms, one preserving and one breaking the Uð1ÞA symmetry: the latter is
responsible of the coupling of axions to quarks. We introduce two quark condensates, hL and hR, describing
condensation for left-handed and right-handed quarks respectively; we then study the loci of the minima of
the thermodynamic potential,Ω, in the ðhL; hRÞ plane, noticing how the instanton-induced interaction favors
condensation in the scalar channel when the θ angle, θ ¼ a=fa, vanishes. Increasing θ we find a phase
transition where the scalar condensate rotates into a pseudoscalar one. We present an analytical result for the
topological susceptibility, χ, in the superconductive phase, which stands both at zero and at finite
temperature. Finally, we compute the axion mass and its self-coupling. In particular, the axion mass ma is
related to the full topological susceptibility via χ ¼ m2

af2a; hence our result for χ gives an analytical result for
ma in the superconductive phase of high-density Quantum Chromodynamics.

DOI: 10.1103/PhysRevD.110.014042

I. INTRODUCTION

Axions, originally proposed by Peccei and Quinn in
1977 as a possible solution to the strong CP problem in
Quantum Chromodynamics (QCD) [1–9], have since then
become prime candidates for dark matter [3,10–19]. The
quest to understand the nature of dark matter, which
constitutes a significant portion of the mass of the
Universe, has led to extensive theoretical and experimen-
tal efforts, with axions emerging as particularly compel-
ling candidates due to their unique properties. Theoretical

models and experiments constrain the axion mass to be
very light, on the order of 10−6 to 10−3 eV [20]. This range
arises from considerations such as the possible violation of
the CP symmetry of QCD and the consequent electric
dipole moment for the neutron [21–28], astrophysical and
cosmological observations, and experimental searches for
axions using techniques like cavity haloscopes and axion
helioscopes. In addition to their potential role as dark
matter candidates, axions, behaving as scalar fields, may
also serve as the constituents of boson stars [29] and
arrange into axion stars [30–44] and form Bose-Einstein
condensates [45,46]; see also [47,48] for further astro-
physical applications.
Furthermore, not only axions but axionlike particles have

been proposed to play the role of dark matter in order to
account for missing matter at cosmological scales. It has
been speculated that axions may exist in compact star
interiors, and can be buried deep in their cores, giving rise to
interaction with quark matter, as we investigate in this study.
In the assumption that axions may be able to escape
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compact star interiors, they would be prone to interact with
magnetic fields via the so called Primakov effect, i.e., the
axion resonantly converting into a radio photon [49,50],
which would provide a feasible way to detect them. The
emission of axions could also cool compact stars, deviating
their thermal evolution from standard scenarios [51–54].
Macroscopic properties of compact stars bearing axions

have been presented in [55,56], where particular modeling
has resulted in unstable compact stars that would collapse
due to radial oscillations if vector repulsive interactions in
quark matter are not taken into account. Furthermore,
axions have been investigated within astrophysical con-
texts, particularly in relation to supernova explosions and
the formation of protoneutron stars [57,58]. Previous
works on the coupling of the QCD axion to quarks can
be found in [55,59–69], where in particular the effect of the
QCD chiral phase transition on the low-energy properties
of the axion itself has been investigated, both at finite
temperature and at finite quark chemical potential, μ. The
axions enter the model similarly to the θ angle of QCD; in
fact, formally one can pass from QCD at finite θ to QCD
with a finite axion background by identifying θ ¼ a=fa,
where a denotes the axion field and fa is the axion decay
constant. Therefore, studies of the QCD interaction with
axions at finite chemical potential serve as studies of quark
matter at finite θ and finite μ as well. Hence, within our
work we will interchangeably use θ in place of a=fa.
Deep within the dense cores of compact stars, where

matter is subjected to extreme pressures and temperatures,
exotic phases of strongly interacting matter come into play,
as the 2SC color superconductive phase [60,70–73]. This
phase is characterized by a nonvanishing quark-quark
condensate: as such, it is not a color singlet, transforming
as a color antitriplet under color rotations. In most previous
calculations, in particular in those related to the QCD
phase diagram, only the scalar condensate was considered,
as it is the one that is favored by the one-instanton
exchange. Within the present work, we introduce both a
scalar and a pseudoscalar condensate, since both of them
are relevant when the coupling to the axions is considered.
In agreement with the common lore, we show that our
model is consistent with favoring the scalar condensate
when the axion is not included in the model. On the other
hand, changing θ can result in a phase transition to a new
ground state where the condensate is a pseudoscalar one, in
qualitative agreement with previous studies in normal
quark matter [55,65–68]. Therefore, in principle both
condensates need to be introduced.
In the low-energy regime, where nonperturbative effects

dominate, effective models become indispensable tools for
describing strongly interacting matter. Chiral Perturbation
Theory (χPT) stands out as a frequently employed effective
framework, significantly contributing to the understanding
of the vacuum structure of QCD and the properties of axions
at low temperatures [74–79]. χPT demonstrates notable

advantages in low-energy scenarios; for instance, its pre-
diction of topological susceptibility at zero temperature
aligns well with lattice QCD findings [80–82]. However, its
applicability diminishes at high temperatures and/or large
densities, as it lacks information about QCD phase tran-
sitions. Hence, there is a need for a QCD-like model capable
of accommodating axions and capturing the QCD phase
transition dynamics. One of the most popular is the Nambu-
Jona-Lasinio (NJL) model, which describes the dynamics of
fermions and their interactions through effective four-
fermion interactions [59,69]. In the formulation of the
model used in the present work it includes an instanton-
induced interaction, which breaks the Uð1ÞA symmetry, and
it can describe both the spontaneous breaking of chiral
symmetry and how quarks interact with axions.
The interaction of quark matter with axions has been

already explored in [55,65–68,83,84], in the framework of
the NJL model, where the effect of the chiral phase
transition on the properties of the QCD axion was
explored. Furthermore, the axion potential was studied
at finite quark chemical potential, and the behavior of
axion domain walls [13,85–89] (see also [90,91] for a
pedagogical introduction to walls) in bulk quark matter
was also investigated. It was found that the axion potential
is very sensitive to the chiral phase transition, particularly
when quark matter is near criticality, where the axion mass
decreases and the self-coupling is enhanced. In this study,
we aim to extend our previous work [83] considering the
coupling of axions to diquarks, in order to take into
account the effects of the presence of axions in a color-
superconducting medium. Our model is based on a four-
fermion effective interaction that contains a Uð1ÞA-pre-
serving term, that can be interpreted as an effective way to
describe one-gluon exchange, as well as a Uð1ÞA-breaking
term, describing the instanton-mediated effective interac-
tion. The relative strength of the two terms is regulated by a
dimensionless, free parameter of the model, ζ, while the
overall strength of the effective coupling, GD, is chosen in
order to reproduce a given value of the superconductive
gap when ζ is varied. A previous study of the coupling of
the axion to a color-supreconductive phase, based on chiral
effective theories, can be found in [92].
Our main results are related to the study of the

full topological susceptibility, χ ¼ ∂
2Ω=∂θ2, in the color-

superconductive phase. Here, Ω denotes the full thermo-
dynamic potential of superconductive quark matter, while
the derivative is understood at θ ¼ 0. We derive, within the
model at hand, an exact analytical relation between χ
and the physical value of the superconductive gap. χ is
related to the axion mass, ma, and decay constant, fa, via
χ ¼ m2

af2a; therefore the knowledge of χ allows us to extract
an explicit, analytical formula for ma in the 2SC phase.
Moreover, we compute the full axion potential, and extract
from it the low-energy parameters of this potential: besides
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ma, we compute the axion self-coupling, λ. Within this
work, we limit ourselves to a one-loop approximation
(usually called the mean field approximation), leaving the
study of the role of quantum fluctuations to future works.
The plan of the article is as follows. In Sec. II we

describe the model we adopt in our work. In Sec. III we
present our results regarding the superconductive gap at
finite θ as well as the axion potential in the two-flavor
superconductive phase. Finally, in Sec. IV we draw our
conclusions and discuss possible future works. We use
natural units ℏ ¼ c ¼ kB ¼ 1 throughout this paper.

II. THE MODEL

In this section, we present in some detail the model we
use in our work. We firstly present the Lagrangian density,
describing how we couple the axion to quarks in the
superconductive phase of QCD. Next we turn to write
the thermodynamic potential, computed at one loop. We
then show the shape of this potential in the gaps space,
discussing the location of its minima: this discussion is
useful to understand the results we show in the next section.
Finally, we present an approximated solution to the gap
equation, valid for small θ ¼ a=fa, that allows us to
qualitatively understand the behavior of the superconductive
gap versus θ.

A. Lagrangian density

To begin with, we consider the Lagrangian density

Lint ¼ g1ðqTCiγ5εεqÞðq̄iγ5Cεεq̄TÞ
þ g2ðqTCεεqÞðq̄Cεεq̄TÞ: ð1Þ

This has been used in many works on the superconductive
phases of QCD; see for example [63,64]. In those refer-
ences, it is assumed that g1 ¼ g2, so the Uð1ÞA symmetry is
preserved at the Lagrangian level. In this work, we assume
g1 ≠ g2 from the very beginning, in order to break the
Uð1ÞA symmetry at the level of the Lagrangian mimicking
the instanton-mediated interaction. In the Lagrangian den-
sity (1) we used C ¼ −iγ2γ0, satisfying C2 ¼ C†C ¼ −1.
Moreover, we adopted a condensed notation that suppresses
the color and flavor indices carried by the fields and the
antisymmetric symbols in every bilinear. For example,

qTCiγ5εεq ¼ qTαiCiγ5εαβ3εij3qβj; ð2Þ

here α, β denote color indices, while i, j stand for flavor
indices.
Starting from (1), we isolate a term that is invariant under

Uð1ÞA and a term that explicitly breaks this symmetry. This
can be easily achieved by adding and subtracting the terms
g2ðqTCiγ5εεqÞðq̄iγ5Cεεq̄TÞ and g1ðqTCεεqÞðq̄Cεεq̄TÞ; we
then get

Lint ¼
ðg1 þ g2Þ

2
½ðqTCiγ5εεqÞðq̄iγ5Cεεq̄TÞ

þ ðqTCεεqÞðq̄Cεεq̄TÞ�

þ ðg1 − g2Þ
2

½ðqTCiγ5εεqÞðq̄iγ5Cεεq̄TÞ
− ðqTCεεqÞðq̄Cεεq̄TÞ�: ð3Þ

The first line in the above Lagrangian density is nowUð1ÞA
preserving, so we confined the breaking of Uð1ÞA to the
second line of (3). Writing q ¼ ðPL þ PRÞq, where

PR ¼ 1þ γ5
2

; PL ¼ 1 − γ5
2

; ð4Þ

we can easily rewrite the second line of (3) as

ðg1 − g2Þ½ðqTCiγ5PLεεqÞðq̄iγ5PLCεεq̄TÞ
þ ðqTCiγ5PRεεqÞðq̄iγ5PRCεεq̄TÞ�; ð5Þ

where we used γ5PLq ¼ −PLq ¼ −qL and γ5PRq ¼
PRq ¼ qR. Finally, defining GD ¼ ðg1 þ g2Þ=2 and
ζGD ¼ ðg1 − g2Þ, we can rewrite the interaction (1) as

Lint¼GD½ðqTCiγ5εεqÞðq̄iγ5Cεεq̄TÞþðqTCεεqÞðq̄Cεεq̄TÞ�
þζGD½ðqTCiγ5PLεεqÞðq̄iγ5PLCεεq̄TÞ
þðqTCiγ5PRεεqÞðq̄iγ5PRCεεq̄TÞ�: ð6Þ

The second line in (6) breaks Uð1ÞA: we consider it as an
effective way to model the quark-quark interaction arising
from the one-instanton exchange.
In order to couple the axions to the quarks, we note that

the former can only couple to the Uð1ÞA-breaking term in
Eq. (6) (in fact, the QCD axion couples to instantonlike
gluon configurations). In agreement with what has been
done for the coupling to quarks in the vacuum [83], we
write this coupling as

Lint¼GD½ðqTCiγ5εεqÞðq̄iγ5Cεεq̄TÞþðqTCεεqÞðq̄Cεεq̄TÞ�
þζGD½ei

a
faðqTCiγ5PLεεqÞðq̄iγ5PLCεεq̄TÞ

þe−i
a
faðqTCiγ5PRεεqÞðq̄iγ5PRCεεq̄TÞ�: ð7Þ

The Lagrangian density (7) specifies the interaction we
adopt in our model. As emphasized above, the first line in
the right-hand side of (7) preserves the Uð1ÞA symmetry,
representing an effective way of writing the attractive
channel of the quark-quark interaction arising from one-
gluon exchange. The axial symmetry instead is broken by
the terms in the second line [93,94]. We note that in [64],
authors included both terms in the first line of (7); however,
they usually neglect the second addendum in the first line
of (7), since in the mean field, it gives rise to a pseudoscalar
condensate that is usually neglected: as a matter of fact the

TOPOLOGICAL SUSCEPTIBILITY AND AXION POTENTIAL IN … PHYS. REV. D 110, 014042 (2024)

014042-3



instanton-induced interaction, namely the second line of (7),
favors condensation in the scalar channel when a ¼ 0 (we
explicitly verified this statement within our model; see
below). However, when a ≠ 0 condensation can happen in
the pseudoscalar channel as well; therefore we need to
consider the whole interaction (7).
In this work, we treat the interaction (7) within the mean-

field approximation. In order to implement this, we
introduce the condensates

hqTCiγ5PLεεqi ¼ −hL; ð8Þ

hq̄iγ5PLCεεq̄Ti ¼ h�R; ð9Þ

hqTCiγ5PRεεqi ¼ hR; ð10Þ

hq̄iγ5PRCεεq̄Ti ¼ −h�L; ð11Þ

as well as their combinations

hqTCiγ5εεqi ¼ hR − hL; ð12Þ

hq̄iγ5Cεεq̄Ti ¼ h�R − h�L: ð13Þ

Using these, as well as the assumptions hL ¼ h�L, hR ¼ h�R,
we get, within the mean-field approximation,

Lint ¼ GDεεðhR − hLÞ½ðq̄iγ5Cεεq̄TÞ þ ðqTCiγ5εεqÞ� − GDðhR − hLÞ2
−GDεε½ðhR þ hLÞðq̄iCεεq̄TÞ − ðhR þ hLÞðqTCεεqÞ� −GDðhR þ hLÞ2
þ ζGDεεe

i afa ½−hLðq̄iγ5PLCεεq̄TÞ þ hRðqTCiγ5PLεεqÞ� þ ζGDe
i afahLhR

þ ζGDεεe
−i afa ½hRðq̄iγ5PRCεεq̄TÞ − hLðqTCiγ5PRεεqÞ� þ ζGDe

−i afahLhR: ð14Þ

Note that Lint ¼ L†
int.

In order to simplify the notation we introduce the
Nambu-Gorkov bispinors

Ψ ¼
�

q

Cq̄T

�
; Ψ̄ ¼ ðq̄; qTCÞ: ð15Þ

In terms of these, we then can rewrite the interaction
Lagrangian density as

Lint ¼ V þ Ψ̄ΔΨ; ð16Þ

where

V ¼ −2GDðh2R þ h2LÞ þ 2ζGDhLhR cos

�
a
fa

�
; ð17Þ

and

Δ ¼

0
B@

0 Φ−

Φþ 0

1
CA; ð18Þ

with

Φ− ¼ GD½2hRPL − 2hLPR − eia=fahLζPL

þ e−ia=fahRζPR�iγ5εijεαβ3 ð19Þ

Φþ ¼ GD½2hRPR − 2hLPL þ eia=fahRζPL

− e−ia=fahLζPR�iγ5εijεαβ3: ð20Þ

In the above equations, the first two terms arise from the
one-gluon exchange interaction, while those proportional
to ζ arise from the one-instanton exchange. The matrix Δ
has a similar structure to that of [63]: indeed, it satis-
fies Φþ ¼ γ0ðΦ−Þ†γ0.
To the interaction (16) we need to add the kinetic term of

quarks at finite chemical potential μ. This contribution is
well known [63,64] and leads to the full Lagrangian, that in
momentum space reads as

L ¼ V þ Ψ̄S−1Ψ: ð21Þ

Here, the inverse quark propagator is given by

S−1ðpÞ ¼

0
B@

ð=pþ μγ0Þ1C1F Φ−

Φþ ð=p − μγ0Þ1C1F

1
CA; ð22Þ

where 1C and 1F correspond to the identities in color and
flavor spaces respectively. We note that these matrices have
dimension 4 × 3 × 2 × 2 ¼ 48, due to Dirac, color, flavor,
and Gorkov indices, respectively.

B. Thermodynamic potential

The thermodynamic potential is obtained via the stan-
dard integration over the fermion fields in the partition
function [63,64], which leads at

Ω ¼ −V þ Ω1-loop; ð23Þ

MURGANA, CASTILLO, GRUNFELD, and RUGGIERI PHYS. REV. D 110, 014042 (2024)

014042-4



where V denotes the mean-field contribution (17), and
Ω1-loop corresponds to the 1-loop contribution of the quarks,
namely

Ω1-loop ¼ −T
X
n

Z
d3p
ð2πÞ3

1

2
Tr log ðβS−1ðiωn; p⃗ÞÞ: ð24Þ

In getting Eq. (24) we performed the functional integral
over fermions at fixed a: in fact, in this work the axion field
is treated as a classical background. Consequently, the
thermodynamic potential is a function of a, and physical
quantities have to be computed at a given value of a.
Moreover, we used the imaginary time formalism of finite
temperature field theory, and ωn ¼ ð2nþ 1ÞπT are the
relevant fermionic Matsubara frequencies. The overall 1=2
in (24) takes into account the artificial doubling of degrees
of freedom introduced by shifting to the Nambu-Gorkov
bispinors. Finally, the trace is understood in Nambu-
Gorkov, Dirac, color and flavor spaces.
In order to evaluate the sum over ωn in Eq. (24), we

follow the well-known strategy of computing the eigen-
values of the matrix [63,64]

T ¼

0
B@

ð−γ0p⃗ · γ⃗þ μÞ1C1F γ0Φ−

γ0Φþ ð−γ0p⃗ · γ⃗ − μÞ1C1F

1
CA: ð25Þ

These are given by

ε1;� ¼ �jp − μj; ð26Þ

ε2;� ¼ �jpþ μj; ð27Þ

ε3;� ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp − μÞ2 þ Δ2

3

q
; ð28Þ

ε4;� ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpþ μÞ2 þ Δ2

3

q
; ð29Þ

ε5;� ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp − μÞ2 þ Δ2

5

q
; ð30Þ

ε6;� ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpþ μÞ2 þ Δ2

5

q
; ð31Þ

where p≡ jpj denotes the magnitude of the 3-momentum
p; each of the eigenvalues above has a multiplicity equal to
4. The eigenvalues (26) and (27) correspond to those of the
blue quarks, which do not participate to the pairing and
remain ungapped. Moreover, we put

Δ2
3 ¼ ζ2G2

Dh
2
L þ 4G2

Dh
2
R − 4ζG2

DhLhR cosða=faÞ; ð32Þ

Δ2
5 ¼ ζ2G2

Dh
2
R þ 4G2

Dh
2
L − 4ζG2

DhLhR cosða=faÞ; ð33Þ

that represent the (squared) gaps in the quark spectrum.

Putting εkðp⃗Þ ¼ εk;þðp⃗Þ, k ¼ 1;…; 6, we use ln det
βS−1 ¼ Tr ln βS−1 and write

ln det βS−1L ðiωn; p⃗Þ ¼ 4
X6
k¼1

ln

�
ω2
n þ εkðp⃗Þ2

T2

�
; ð34Þ

where we made explicit the degeneracy, equal to 4, of the
eigenvalues and matched the ones with opposite signs.
Now the Matsubara sum can be easily evaluated, since

T
X
n

ln

�
ω2
n þ εkðp⃗Þ2

T2

�
¼ jεkðp⃗Þj þ 2T ln ð1þ e−jεkðp⃗Þj=TÞ;

ð35Þ

so the 1-loop contribution finally results in

ΩL
1-loop ¼ −2

X6
k¼1

Z
d3p
ð2πÞ3 ½εkðp⃗Þ þ 2T ln ð1þ e−εkðp⃗Þ=TÞ�;

ð36Þ

where we took into account that according to our defi-
nitions the εk are always positive. Therefore, the thermo-
dynamic potential is given by

Ω¼ 2GDðh2R þ h2LÞ− 2ζGDhLhR cos

�
a
fa

�

− 2
X6
k¼1

Z
d3p
ð2πÞ3 ½εkðp⃗Þ þ 2T lnð1þ e−εkðp⃗Þ=TÞ�: ð37Þ

The first addendum in the right-hand side of (36)
corresponds to the T ¼ 0 contribution to the thermody-
namic potential, which is divergent in the ultraviolet. In
order to regulate this divergence, we introduce a sharp 3D
momentum cutoff, Λ, and rewrite that term as

Z
d3p
ð2πÞ3 εkðpÞ ¼

4π

8π3

Z
Λ

0

p2dpεkðpÞ: ð38Þ

The cutoff roughly represents the momentum scale above
which the contact interaction used in the present work
should replaced by a nonlocal term directly borrowed from
QCD. We treat Λ as a free parameter of the model, and from
previous studies based on the NJL model, we assume
Λ ¼ Oð1 GeVÞ. We also notice that we inserted no cutoff
in the thermal part because it is finite; however in previous
studies, based on NJL models at zero baryon density, this
cutoff was introduced, and it was shown to mildly affect
thermodynamic quantities, particularly near the critical
temperature for chiral-symmetry restoration [95–97]. In fact,
the cut of high momenta in the loop could be interpreted as a
very rough implementation of a momentum-dependent mass
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function. The analysis of this occurrence, although very
interesting, is beyond the scope of the present study;
therefore we leave it to a future work.
We notice that although in (36) we sum over the six

positive eigenvalues of T , the ones corresponding to the
blue quarks, which do not participate in the pairing, do not
contribute to the value of the condensates.
It is useful to stress that both V and the quark spectrum

are invariant under the set of transformations hL ↔ hR and
hL ↔ −hR; moreover, if ζ ¼ 0 then Ω depends on h2L and
h2R only: as a consequence, in this limit we expect Ω to
develop a set of four degenerate minima along the lines
hL ¼ �hR. This degeneracy is removed by ζ ≠ 0. This
picture is confirmed by the direct evaluation ofΩ; see Fig. 1
in the next section.

C. Thermodynamic potential at finite θ= a=f a:
The lines hL = � hR

In this subsection, we analyze the shape of Ω in the
ðhL; hRÞ plane: this is preparatory to the results on the gap
that we present in the next section. In Fig. 1 we plot
the thermodynamic potential at T ¼ 0, computed for
θ≡ a=fa ¼ 0, and for ζ ¼ 0 (left panel) and for ζ ¼
0.2 (right panel). In the plots, x and y axes denote ΔL and
ΔR respectively (measured in MeV), which are defined as

ΔL ¼ 2GDhL; ΔR ¼ 2GDhR: ð39Þ

It is more convenient to use ΔL;R instead of hL;R since the
former correspond to the gaps in the quark spectrum when
ζ ¼ 0. From these, we can introduce the following scalar
and pseudoscalar combinations as

ΔS ¼ ΔR − ΔL; ΔPS ¼ ΔR þ ΔL: ð40Þ

We notice in Fig. 1 that for ζ ¼ 0, namely when we only
consider the one-gluon-exchange interaction, there are
four loci of degenerate minima. Two of these correspond
to ΔL ¼ ΔR and therefore to finite pseudoscalar conden-
sate and vanishing scalar condensate whereas the other two
correspond to ΔL ¼ ΔR and consequently to finite scalar
condensate and vanishing pseudoscalar condensate.
On the other hand, when the instanton-induced inter-

action is switched on (ζ ≠ 0) this degeneracy is removed,
and the condensation in the scalar channel ΔL ¼ −ΔR is
favored.
In Fig. 2 we plot the thermodynamic potential at T ¼ 0,

computed for ζ ¼ 0.2, and several values of θ≡ a=fa. In
each plot, x and y axes denote ΔL and ΔR respectively
(measured in MeV). In the figure, the top left plot
corresponds to θ ¼ 0, top right to θ ¼ π=2 − ε, center left
to θ ¼ π=2, center right to θ ¼ π=2þ ε, with ε ¼ 0.25,
bottom left to θ ¼ 3π=2, and finally bottom right to θ ¼ 2π.
For all the cases shown in the figure, the minima of Ω sit on
the lines ΔL ¼ �ΔR: this is the obvious consequence of the
fact that Ω is invariant under the transformations
hL ↔ �hR. For a=fa in the range ½0; π=2Þ, the global
minima correspond to ΔL ¼ −ΔR; hence, in this range of
a=fa only the scalar condensate exists. The minima become
less shallow as a=fa is increased: indeed, for a=fa in the
range ðπ=2; 3π=2Þ the global minima are located along the
lineΔL ¼ ΔR, implying a phase transition from the scalar to
the pseudoscalar condensate. Finally, increasing a=fa up to
2π the location of the minima changes again, resulting in
another phase transition from the pseudoscalar to the scalar
condensate. Along the lines ΔL ¼ �ΔR we have Δ3 ¼ Δ5

for any a and ζ: hence, there is only one gap in the quark
spectrum; see (32) and (33).
We notice that the results on the minima of Ω discussed

above stand for ζ > 0: we checked that for ζ < 0 the role of

FIG. 1. Thermodynamic potential at T ¼ 0, computed for θ≡ a=fa ¼ 0, and for ζ ¼ 0 (left panel) and for ζ ¼ 0.2 (right panel) In the
plots, x and y axes denote ΔL and ΔR respectively (measured in MeV).
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the scalar and the pseudoscalar condensates invert; besides
this, there is no major difference between the system with
positive and negative ζ. Consequently, from now on we
limit ourselves to show results for ζ > 0 only.

Before going ahead, we determine the allowed values of
ζ that lead to the nontrivial solution of the gap equation. To
this end, it is enough to limit ourselves to the gap equation
at T ¼ 0 and small θ. Imposing the stationarity condition of

FIG. 2. Thermodynamic potential at T ¼ 0, computed for ζ ¼ 0.2, and several values of θ≡ a=fa. In each plot, x and y axes denote
ΔL and ΔR respectively (measured in MeV). Top left plot corresponds to θ ¼ 0, top right to θ ¼ π=2 − ε, center left to θ ¼ π=2, center
right to θ ¼ π=2þ ε, with ε ¼ 0.25, bottom left to θ ¼ π, and finally bottom right to θ ¼ 2π.
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Ω with respect to hL, namely ∂Ω=∂hL ¼ 0 with Ω given by
Eq. (37), and then applying this condition along the line
hL ¼ −hR, which is the one along which Ω develops
minima for small θ as discussed above, gives

2þ ζ cosða=faÞ

¼ GD

2π2

Z
Λ

0

p2dp

 
Aða;ζÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðp−μÞ2þG2
Dh

2
LAða;ζÞ

p þμ→−μ

!
;

ð41Þ

where we removed the trivial solution hL ¼ 0, and we
defined

Aða; ζÞ ¼ 4þ 4ζ cosða=faÞ þ ζ2: ð42Þ

The above equation shows that the condition ζ < 2must be
satisfied in order to have a nontrivial solution of the gap
equation. In fact, the right-hand side of (41) is always
positive, and so the left-hand side must be positive as well:
this can be obtained for all values of a if and only if ζ < 2.
For ζ ≥ 2 there is a range of a in which the gap equation has
only the trivial solution hL ¼ 0: hence, in what follows we
limit ourselves to ζ < 2.

III. RESULTS

A. Gaps versus a=f a
In this subsection, we present our results for the gap

parameters. For ΔL ¼ �ΔR, which correspond to the
directions along which the minima develop at finite a,
we get from Eqs. (32) and (33) that Δ3 ¼ Δ5. Therefore we
limit ourselves to show results for Δ3 only. We fix μ ¼
400 MeV and Λ ¼ 1 GeV as representative values of the
quark chemical potential and the UV cutoff. For each ζ, we
fix GD in order to have a desired value of ΔL at a ¼ 0.

In Fig. 3 we plot ΔL and ΔR versus a=fa at T ¼ 0 and
μ ¼ 400 MeV; we consider several values of ζ, whileGD is
fixed for each ζ so that ΔL ¼ 50 MeV at a ¼ 0. We firstly
focus on the results for ζ ¼ 0.2, 0.5 and 1. For these values
of ζ, we notice that for a=fa in the range ð0; π=2Þ,
ΔR ¼ −ΔL; hence only the scalar condensate forms. On
the other hand, for a=fa in the range ðπ=2; 3π=2Þ,
ΔR ¼ ΔL. In this case, only the pseudoscalar condensate
forms. Finally, for a=fa in the range ð3π=2; 2πÞ we find
again ΔR ¼ −ΔL; hence there is a phase transition from the
pseudoscalar to the scalar condensate. We also notice that
for ζ ¼ 1.6 and ζ ¼ 1.75 the magnitude of ΔL increases
with a for a=fa in the range ð0; π=2Þ.
The results in Fig. 3 show several interesting features. In

fact, as we already pointed out, there is a noticeable
qualitative difference in dependency of ΔL when compar-
ing the three lowest values of ζ with the higher ones. In
particular,ΔL decreases close to a=fa ¼ 0 for ζ ¼ 0.2, ζ ¼
0.5 and ζ ¼ 1.0, and it exhibits a local minimum at
a=fa ¼ π=2 and 3π=2. Furthermore one can observe a
discontinuity in its derivative at the aforementioned mini-
mum points, for the three lowest values of ζ, where the
derivative changes sign. In contrast, for the highest value
of ζ, i.e. ζ ¼ 1.75, we observe that ΔL increases in the
proximity of a=fa ¼ 0. This suggests the presence of a
critical value of ζ where the change from positive to
negative curvature at a=fa ¼ 0 occurs. This is indeed the
case, and its value is derived in Eq. (49). The change in the
behavior ofΔL can already be observed for an intermediate
value of ζ, i.e., ζ ¼ 1.6. In this case one can see that the
curve in the proximity of a=fa is still increasing but almost
flat, signaling the proximity to the aforementioned critical
point. Furthermore we continue to observe local minima
and cusps at a=fa ¼ π=2 and 3π=2. This signals the
emergence of two local maxima in the ranges a=fa ¼
½0; π=2� and a=fa ¼ ½π=2; π� (and the corresponding ones
in the ranges a=fa ¼ ½0; π=2� and a=fa ¼ ½π=2; π�

FIG. 3. Gaps ΔL and ΔR at T ¼ 0 and μ ¼ 400 MeV, versus a=fa, and for several values of ζ. GD is fixed in order to have
ΔL ¼ 50 MeV for a ¼ 0 at μ ¼ 400 MeV.
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considering the periodicity of π). Although less evident,
the same behavior is also present for ζ ¼ 1.75. According
to our line of reasoning then, we also conclude that a=fa ¼
nπ (n integer) turn from being local maxima in the case of
lower values of ζ, to local minima for the higher ones.
From our previous discussion on the transition between
scalar and pseudoscalar condensates, the behavior of ΔR,
shown in the left panel of Fig. 3, can be straightforwardly
understood from the corresponding one of ΔL.
The behavior of ΔL near a ¼ 0 can be semiquantita-

tively understood by the approximate solution of the gap
equation (41), namely

ΔL ¼ 4δffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aða; ζÞp exp

�
−

π2

μ2GDΘða; ζÞ
�
; ð43Þ

where A is given by Eq. (42) and

Θða; ζÞ ¼ Aða; ζÞ
2þ ζ cosða=faÞ

: ð44Þ

The approximated solution (43) can be obtained within the
High Density Effective Theory (HDET) of QCD (see [98]
and references therein), as well as Appendix A; it has the
standard form of the Bardeen-Cooper-Schrieffer (BCS)
gap in the theory of superconductivity [99,100]: in fact, μ2

is proportional to the density of states of the pairing quarks
at the Fermi surface, and δ in (43) plays the role of the
Debye frequency, ωD, of the BCS theory, which cuts high
momentum modes out of the pairing. The solution (43) is
strictly valid only in the weak coupling; hence it cannot
quantitatively reproduce the results in Fig. 3; however, it is
still helpful to grasp the behavior of ΔL near a ¼ 0. In fact,
from (43) we notice that for a fixed value of ζ, the
coupling of the superconductive quarks to the axion field
effectively affects the pairing in two ways. Firstly, it
changes the width of the shell around the Fermi surface
that contributes to the pairing, namely

2δffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Að0; ζÞp →

2δffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aða; ζÞp : ð45Þ

Secondly, it effectively changes the chemical potential of
the quarks, that is

μ2Θð0; ζÞ → μ2Θða; ζÞ: ð46Þ

Both Aða; ζÞ and Θða; ζÞ are decreasing functions of a at
fixed ζ. Consequently, the response of ΔL to the coupling
with the axion has two competing effects: on the one hand,
it leads to the opening of the shell around the Fermi
surface, thus increasing the portion of phase space
involved in the pairing; on the other hand, it effectively
lowers the chemical potential of the paired quarks,
implying the decrease of the volume of phase space

available for pairing. Which of the two effects wins
depends, at a given GD, on the value of ζ. This can be
seen by inspecting the curvature of ΔL for small θ ¼ a=fa.
To this end, it is enough to expand Eq. (43) near θ ¼ 0,
getting

ΔL ¼ ΔL;0

�
1þ κ

2
θ2
�
; ð47Þ

where ΔL;0 denotes the gap (43) at θ ¼ 0, and the
curvature is

κ ¼ ζ
π2ðζ − 2Þ þ 2GDμ

2ð2þ ζÞ
GDμ

2ð2þ ζÞ4 : ð48Þ

The curvature is trivially zero for ζ ¼ 0, as well as for

ζ ¼ ζcrit ¼
2ðπ2 −GDμ

2Þ
π2 þ GDμ

2
; ð49Þ

it is negative for ζ in the range ð0; ζcritÞ, and positive
otherwise. Hence, the response of ΔL to θ around θ ¼ 0
depends on the specific value of ζ, and the turning point of
ζ, namely ζcrit, depends on the value of GD.
The gap in the quark spectrum, along the global minima

lines, is given by Δ3 in (32). We show Δ3 versus a=fa in
Fig. 4. We notice that Δ3 is a periodic function of a=fa,
with a period equal to π, as expected from the results on ΔL
and ΔR shown Fig. 3. We find that although the response of
ΔL and ΔR on a=fa depends on ζ, hence on the weight of
the Uð1ÞA-breaking interaction term, the qualitative behav-
ior of Δ3 does not depend on ζ.

B. Axion potential

One of the main results of our work is the computation of
the axion potential, Vða=faÞ, in a superconductive phase of

FIG. 4. Gap in the quark spectrum, Δ3, at T ¼ 0 and
μ ¼ 400 MeV, versus a=fa, and for several values of ζ. GD is
fixed in order to have ΔL ¼ 50 MeV for a ¼ 0 at μ ¼ 400 MeV.
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QCD. In Fig. 5 we plot the Vða=faÞ≡Ωða=faÞ −
Ωða=fa ¼ 0Þ versus a=fa, at T ¼ 0 and μ ¼ 400 MeV.
For each value of a=fa, the potential has been computed at
the global minimum in the ðΔL;ΔRÞ space. The behavior of
V is in agreement with that of the quark spectrum shown in
Fig. 4, particularly for what concerns the periodicity. We
notice that a ¼ 0 is a global minimum of Vða=faÞ for the
whole range of parameters studied here. Other degenerate
minima are located at a=fa ¼ nπ=2 with n ¼ �1;�2;….
It is useful to stress the difference with respect to the

axion potential computed in the presence of the chiral and
the η condensate [83] at zero barion density: indeed, in that
case, the periodicity of Vða=faÞ is equal to 2π, while in the
case of superconductive matter, we find a periodicity equal
to π. This can be understood easily. In fact, in the present
case at a ¼ 0 only the scalar condensate forms, then
increasing the value of a the global minima become less
shallow and at a=fa ¼ π=2 the thermodynamic potential
develops four degenerate minima, see Fig. 2. Further
increasing a=fa in the range ðπ=2; 3π=2Þ results in the
rotation of the global minima of Ω and in the consequent
formation of the pseudo-scalar condensate. The ground
states at a ¼ 0 and a=fa ¼ π are degenerate, hence the
periodicity of the potential, but the two adjacent minima
correspond to two different condensation channels: in
particular, the ground state at a ¼ 0 is characterized by
scalar condensation, while the minimum at θ ¼ π=2 cor-
responds to condensation in the pseudoscalar channel.

C. Topological susceptibility

In this section, we analyze the full topological suscep-
tibility, χ, which measures the fluctuations of the topo-
logical charge and is defined as

χ ¼ d2Ω
dθ2

����
θ¼0

; θ ¼ a
fa

: ð50Þ

In the numerical calculation, we treat the above derivative
as a total derivative, that in principle takes into account also
the dependence of the condensates on θ at θ ¼ 0.
In Fig. 6 we plot the fourth root of χ versus ζ, at T ¼ 0

and for several values of ΔL. We used μ ¼ 400 MeV,
Λ ¼ 1000 MeV. The value of ΔL in the legend has been
used to fix the value of GD, so that for each line ΔL is kept
fixed while ζ is changed. χ is an interesting quantity by
itself, since it encodes information about the fluctuations of
the topological charge in the dense and superconductive
QCD medium. Moreover, it is directly related to the
squared axion mass; see the next subsection. Previous
studies performed within lattice QCD in the isospin-
symmetric case, as well as within chiral perturbation theory

FIG. 6. Topological susceptibility, χ1=4, versus ζ, at T ¼ 0 and
for several values ofΔL. We used μ ¼ 400 MeV,Λ ¼ 1000 MeV.
The value ofΔL in the legend has been used to fix the value ofGD,
so that for each line ΔL is kept fixed while ζ is changed. The
horizontal blue line corresponds to the reference value expected
for the topological susceptibility in the vacuum; see, e.g., [65,80].
The analytical curve corresponds to Eq. (52) computed for
ΔL ¼ 50 MeV and GDΛ2 ¼ 4.69.

FIG. 5. Axion potential, VðθÞ ¼ ΩðθÞ − Ωð0Þ with θ ¼ a=fa,
versus a=fa, computed at T ¼ 0 and μ ¼ 400 MeV and for
several values of ζ. The potential is measured in units of Λ4 with
Λ ¼ 1 GeV. GD is fixed to have ΔL ¼ 50 MeV at a ¼ 0.
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and NJL models, agree on the value χ1=4 ≈ 78 MeV at
T ¼ 0 and μ ¼ 0 [9,65,80,101], as well as with the
Di Vecchia-Crewther-Leutwyler-Smilga-Veneziano for-
mula [102–105], that for two flavors reads as

χ ¼ jhq̄qij mumd

mu þmd
; ð51Þ

where hq̄qi is the chiral condensate in the vacuum. χ then
decreases at high T where the smooth crossover to the
quark-gluon plasma phase takes place [9,65,80,101].
The results in Fig. 6 show that for a given value of ζ, the

topological susceptibility increases with the strength of the
coupling, as expected. Moreover, if the coupling is tuned
in order to give a value of ΔL, changing ζ within the range
(0.5,1.5) does not substantially affect χ1=4. We also note
that keeping ζ in the aforementioned range keeps χ1=4 in
the superconductive phase in the same ballpark of the value
it takes in the vacuum, unless we take a very large
superconductive gap as in the case of ΔL ¼ 100 MeV
shown in Fig. 6.
Within our model we were able to obtain an analytical

result for χ. In fact, taking into account that at the global
minimum ∂Ω=∂ΔL ¼ ∂Ω=∂ΔR ¼ 0, and according to the
results in Fig. 3 we have ∂ΔL=∂θ ¼ ∂ΔR=∂θ ¼ 0 at θ ¼ 0
[see also Eq. (47)], it is straightforward to prove that (see
Appendix B)

χ ¼ Δ2
L

2GD
ζ
2 − ζ

2þ ζ
; ð52Þ

where ΔL corresponds to the solution of the gap equation at
θ ¼ 0; Eq. (52) stands both at zero and at finite temperature.
In the bottom panel of Fig. 6 we plot the fourth root of the
topological susceptibility versus ζ, obtained by Eq. (52)
using ΔL ¼ 50 MeV and GDΛ2 ¼ 4.69. The agreement
between the analytical result and the numerical one is self-
explanatory (we checked the agreement also for other values
of the parameters).

D. Axion mass and self-coupling

The low-energy Lagrangian density of the axion field
can be written as

La ¼
1

2
∂
μ
∂μa −

m2
a

2
a2 −

λa
4!

a4; ð53Þ

where the axion mass and the quartic coupling are defined
in terms of the potential VðθÞ ¼ ΩðθÞ −Ωð0Þ as

m2
a ¼

1

f2a

d2Ω
dθ2

����
θ¼0

; λa ¼
1

f4a

d4VðθÞ
dθ4

����
θ¼0

; ð54Þ

and θ ¼ a=fa. Within our model, we can compute how the
axion mass and coupling behave in the superconductive
phase of QCD, as well as study their response to the phase
transition to the normal phase.
From (B8) we get an analytical formula for the axion-

squared mass in the color-superconductive phase, which is

m2
a ¼

Δ2
L

2GDf2a
jζj 2 − jζj

2þ jζj ; ð55Þ

where ΔL corresponds to the solution of the gap equation.
To our knowledge, Eq. (55) is a new result in the literature.
We have not been able to find an analytical expression

for λa; hence we computed it numerically. In Fig. 7 we plot
the rescaled axion self-coupling, versus ζ, for several
values of ΔL. The parameters are the same as used in
Fig. 6. For the sake of comparison, we note that studies
based on the NJL model find λaf4a ¼ −ð55.64 MeVÞ4 at
T ¼ μ ¼ 0 [65]. We find that λa is negative in a range of ζ
that partly depends on ΔL, hence on the strength of the
coupling. This sign of λa is in agreement with what was
found within NJL models at zero as well as finite μ [65,83].
However, we find also a range of ζ where λa is positive. The
value ζ̄ of ζ ≠ 0 such that λa ¼ 0 depends on the strength of
the coupling; however, comparing with the results shown in
Fig. 3, we find that ζ̄ is in agreement with the value at which
ΔL and ΔR invert their tendency to change as a=fa is
increased [see Eq. (49)].

E. Finite temperature

In this section, we briefly investigate the axion potential
in dense superconductive quark matter at a small, albeit
finite, temperature. Increasing the temperature we expect a
critical value, depending on the chemical potential, for
which a phase transition occurs from the color-supercon-
ducting phase to normal-quark matter. In particular, when
the critical temperature Tc is reached, the gaps ΔL and ΔR

FIG. 7. Axion self-coupling, λaf4a, versus ζ for several values
of ΔL.
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vanish, and a second-order phase transition occurs. We do
not push this investigation too much, because we neglected
quark masses in this work, that contribute to obtain nonzero
values of χ and λa above the critical temperature: we limit
ourselves to compute how Tc depends on ζ, as well as to
show the behavior of χ and λa around Tc obtained within
our model.
In Fig. 8 we plot Tc versus ζ for several values ofΔL;GD

is varied as a function of ζ, such that along each line the
value of ΔL at T ¼ 0 is kept constant. We find that Tc
increases linearly as a function of ζ; moreover, Tc increases
upon increasing ΔL as expected. This is in agreement with
the analytic result that can be found within the framework
of the HDET,

Tc ¼ Δ0
L
eγð2þ ζÞ

2π
; ð56Þ

where Δ0
L is the value of the gap at vanishing temperature

and γ ≈ 0.577 is the Euler-Mascheroni constant. See
Appendix C for a derivation of (56).
It is also interesting to check the behavior of χ1=4 and λa

versus T near the transition to normal quark matter. In
particular, we verified that Eq. (52) is also valid in the
finite-temperature case (see Appendix B), and the temper-
ature dependence enters only via ΔL. In the upper panel of
Fig. 9 we show the topological susceptibility, χ1=4 (upper
panel) and axion self-coupling, λaf4a (lower panel), versus
T for ζ ¼ 1. We used μ ¼ 400 MeV and ΔL ¼ 25 MeV.
The trend we find is in agreement with Eq. (52), with a
vanishing χ and λa in the normal phase. However, we
remark that the vanishing of these two quantities in the
normal phase is an artifact of our one-loop approximation
to the thermodynamic potential, as well as neglecting the
quark masses: including quark masses would lead to
nonzero axion mass and self-coupling also in the normal
phase, similarly to what happens in the high temperature/
low density region of the QCD phase diagram [9,65,83].

IV. CONCLUSIONS AND OUTLOOK

We analyzed the QCD axion potential in dense, super-
conductive quark matter at finite quark chemical potential,
μ, and finite temperature, T. We assumed that both scalar,
ΔR − ΔL, and pseudoscalar,ΔR þ ΔL, diquark condensates
can form: the color-flavor structure that we assume is that
of the standard 2SC phase. We used a two-flavor model
based on an interaction that contains a Uð1ÞA-preserving
and a Uð1ÞA-breaking term: the former has coupling
strength GD and is assumed to be derived from one-gluon
exchange, while the latter arises from the one-instanton
exchange; it has coupling strength ζGD, and contains the
coupling of the QCD axion, a, to the quarks. We treatedGD
and ζ as free parameters: in particular, we tuned GD for a
given ζ in order to reproduce a value of the superconductive
gap without axions; we then switch on the axion field and
study the response of the diquark condensate, as well as of
the thermodynamic potential, to a. This allowed us to
compute the axion potential in dense quark matter.
We found that for a ¼ 0 and ζ > 0 the scalar condensate

is favored; however, increasing a=fa in the range ð0; π=2Þ
results in the global minima of Ω to become less shallow
along the direction of the scalar condensate and in the

FIG. 8. Critical temperature, Tc, as a function of ζ, for different
values of ΔL. Calculations correspond to a ¼ 0.

FIG. 9. Topological susceptibility, χ1=4 (upper panel) and axion
self-coupling, λaf4a (lower panel), versus T for ζ ¼ 1. We used
μ ¼ 400 MeV, Λ ¼ 1000 MeV, and ΔL ¼ 25 MeV.
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formation of new global minima around the direction of
the pseudoscalar. Consequently, for a=fa in the range
ðπ=2; 3π=2Þ the pseudoscalar condensate replaces the
scalar one. Increasing further a=fa up to 2π the location
of the global minima of Ω change again and the system
turns to condensate in the scalar channel.
We computed the full topological susceptibility, χ, of the

2SC phase, finding an analytical formula that connects χ to
the quark condensate; this relation holds both at zero and at
finite temperature. Our formula (52) explicitly contains
information relative to the specific model used in our work,
in particular, the effective coupling GD and ζ. It is likely
that in a more refined framework, in which one uses a
momentum-dependent one-gluon exchange term and an
instanton kernel instead of our effective 4-fermion inter-
actions, both GD and ζ will be replaced by quantities
directly related to QCD, namely the QCD coupling, a
dressed gluon mass as well as the instanton size. This
interesting improvement will be the subject of a near future
work. The introduction of the momentum-dependent gluon
term would also allow us to explore the effect of cutting
high momenta in the temperature dependent contribution to
the thermodynamic potential, as we mentioned in Sec. II B.
We then computed the axion mass, ma, which is related

to χ by the relation χ ¼ m2
af2a: as a consequence of our

result (52), we were able to obtain an analytical formula for
ma in the 2SC phase of QCD. Also, in this case, it is our
hope that the dependence of ma on the parameters of our
model can be replaced by a dependence on quantities of
QCD by using more refined interactions instead of the 4-
fermion terms we adopted here. We completed this part of
the study by computing the axion self-coupling, λa.
Interestingly, we found a range of ζ where λa > 0, differ-
ently from what was found in cases of normal quark matter;
see for example [9,55,65–67,83]: hence the interaction
among axions becomes repulsive in this range of ζ. This
might have some impact on the pressure of axions trapped
in the core of compact stellar objects. It will be interesting
to explore this scenario in detail in the future.
A possible improvement of the present work is the

inclusion of the strange quark, and the opening to
the three-flavor color superconductor with massive quarks.
This would potentially make the picture more complicated,
because in this work we neglected the current quark masses,
as well as light quark chiral condensate: previous studies
based on NJL-like interactions show that this can be a fairly
good approximation, as long as the light-quarks sector is
considered. However, this might be no longer true for the
strange quark, at least for the values of μ which are relevant
for compact stars. Along this line, studying the axions in
gapless phases is also worth more investigation: works in
this direction are already ongoing, and we plan to report on
them soon. Secondly, it would be interesting to use the
results obtained here to compute the cooling of compact
stellar objects via axion emission. It would also be important

to check how the picture we drew in our work changes when
the local interaction kernels we used are replaced by
nonlocal ones, with a more direct link to QCD, as well
as when other interaction channels, in primis the vector and
axial-vector channels are included in the game. Even more, it
is of a certain interest to allow for chiral condensate besides
the diquark one, in order to study, within a single model, the
axion potential in proximity of the phase transition between
the chiral and the superconductive phases: this would allow
for the exploration of the properties of the axion in the whole
QCD phase diagram. We leave all these interesting improve-
ments to future works.
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APPENDIX A: HDET GAP EQUATION

In this section, we derive the HDET solution to the gap
equation (41). To this end, we put

Θða; ζÞ ¼ Aða; ζÞ
2þ ζ cosða=faÞ

: ðA1Þ

Then, Eq. (41) gives

1 ¼ GD

2π2
Θða; ζÞ

Z
Λ

0

p2dp

 
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðp − μÞ2 þG2
Dh

2
LAða; ζÞ

p
þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðpþ μÞ2 þG2
Dh

2
LAða; ζÞ

p
!
: ðA2Þ

We then adopt the approximations of HDET [98]. Firstly,
we note that the first integral on the right-hand side of (A2)
gets its largest contribution from the momentum space
region p ≈ μ, namely around the Fermi surface of the
quarks. Moreover, the second integral in the right-hand side
is suppressed at large μ in comparison with the first one,
since it does not receive the enhancement for p ≈ μ. Within
the spirit of HDET we can thus ignore the second integral,
and restrict the first integral to a thin shell around p ¼ μ:
we call δ the width of this shell. In the limit δ ≪ μ the
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volume of momentum space available for pairing is thus
8πμ2δ. Introducing ξ ¼ p − μ, the HDET version of (A2)
reads as1

1 ¼ GDμ
2

2π2
Θða; ζÞ

Z þδ

−δ

dξffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 þ G2

Dh
2
LAða; ζÞ

p : ðA3Þ

Integration can be done exactly; in the weak coupling limit
δ ≫ GDhL, using the definition (39), we finally get

ΔL ¼ 4δffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aða; ζÞp exp

�
−

π2

μ2GDΘða; ζÞ
�
: ðA4Þ

APPENDIX B: DERIVATION OF EQ. (52)

In this section, we derive Eq. (52) starting from Ω in (37)
and using the gap equation (41). The first step in the
calculation is to notice that all the results we found are

consistent with the conditions ∂Ω=ΔL ¼ ∂Ω=ΔR ¼ 0 at
θ ¼ 0 and at the minima of Ω. This can be easily under-
stood since Ω develops minima along the directions
ΔL ¼ �ΔR, and on these lines, it is an even function of
ΔL or ΔR. Hence we can write

χ ¼ d2Ω
dθ2

����
θ¼0

¼ ∂
2Ω
∂θ2

����
θ¼0

: ðB1Þ

From Eq. (37) we get

χ ¼ 2ζGDhLhR −
1

π2

Z
Λ

0

p2dp
∂
2

∂θ2
ðε3 þ ε5 þ μ → −μÞ:

ðB2Þ

Along the line hL ¼ −hR, which is the relevant one for
small θ, and taking into account the expressions of the
dispersion laws of the quarks, we thus get

χ ¼ 8ζGDh2L

"
−
1

4
þ GD

2π2

Z
Λ

0

p2dp

 
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðp − μÞ2 þ ð2þ ζÞ2G2
Dh

2
L

p þ μ → −μ

!#
: ðB3Þ

Now, we notice from the gap equation (41) at θ ¼ 0 that

1

2þ ζ
¼ GD

2π2

Z
Λ

0

p2dp

 
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðp − μÞ2 þ ð2þ ζÞ2G2
Dh

2
L

p þ μ → −μ

!
; ðB4Þ

where hL stands for the condensate at θ ¼ 0. Using (B4)
in (B3) we get

χ ¼ 2GDh2Lζ
2 − ζ

2þ ζ
: ðB5Þ

Finally, taking into account ΔL ¼ 2GDhL [see Eq. (39)]
we have

χ ¼ Δ2
L

2GD
ζ
2 − ζ

2þ ζ
; ðB6Þ

in agreement with Eq. (52). We remark that ΔL in (B6)
denotes the diquark condensate at θ ¼ 0. From the

derivation presented here, it is evident that Eq. (52) stands
both at zero and at finite temperature, since the momentum
integrals in Eqs. (B3) and (B4) are modified in the same
fashion at T ≠ 0.
As we remarked in the main text, for ζ < 0 the role of the

scalar and pseudoscalar condensates invert, since the
minima of Ω develop along the line hL ¼ hR in this case,
and Eq. (52) becomes

χ ¼ −
Δ2

L

2GD
ζ
2þ ζ

2 − ζ
: ðB7Þ

Hence, we can summarize the results (52) and (B7) as

χ ¼ Δ2
L

2GD
jζj 2 − jζj

2þ jζj : ðB8Þ

APPENDIX C: DERIVATION OF EQ. (56)

We consider the HDET gap equation Eq. (A3), and
evaluate the integral analytically in the case a ¼ 0 and
δ ≫ GDhL thus obtaining

1To be precise, in the HDET one introduces a sum over the
direction of the Fermi velocities, vF, of the quarks; then, for each
vF, ξ ¼ p · vF − μvF measures the fluctuation of the longitudinal
momentum around the Fermi surface. Our ξ in (A3) is slightly
different from that of HDET; nevertheless, formally the gap
equation obtained within HDET is in agreement with (A3),
because the quark condensate is homogeneous and the sum over
velocities leads to an overall 1.
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1 ¼ GDμ
2

π2
ð2þ ζÞ ln

�
4δ

GDh0Lð2þ ζÞ
�
; ðC1Þ

where h0L is the value of the gap which satisfies the 0-temperature gap equation.
In the same framework, we now consider the finite temperature gap equation for a ¼ 0, which can be written as

− 1þGDμ
2

2π2
ð2þ ζÞ

Z þδ

−δ

dξffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2þG2

Dh
2
Lð2þ ζÞ2

p ¼GDμ
2

2π2
ð2þ ζÞ

Z þδ

−δ

dξffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2þG2

Dh
2
Lð2þ ζÞ2

p
ð1þ e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GDhLð2þζÞ2þξ2

p
=TÞ

: ðC2Þ

The integral appearing on the left-hand side of the equation
above is analogous to the one in Eq. (A3). Thus, the
integration leads to the same result that appears in the rhs of
Eq. (A1), with the only difference that h0L is replaced by the
finite temperature gap hL. Inserting then Eq. (A1) into the
lhs of Eq. (A2), and noticing that the fast convergence of
the integral in the right-hand side of (C2) allows us to
extend the integration to the whole real axis, we obtain

ln

�
h0L
hL

�

¼
Z þ∞

−∞

dξffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 þG2

Dh
2
Lð2þ ζÞ2

p �
1þ e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GDhLð2þζÞ2þξ2

p
=T
�

≡ IðuÞ; ðC3Þ

where we put

IðuÞ ¼
Z þ∞

−∞

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ u2

p �
1þ e

ffiffiffiffiffiffiffiffiffi
u2þx2

p � ; ðC4Þ

with x ¼ ξ=T and u ¼ GDhLð2þ ζÞ=T. For T → Tc the
condensate hl → 0; we can thus limit ourselves to consider

the leading order expansion of Eq. (A4) for u ∼ 0, namely

IðuÞju→0 ≃ ln

�
π

eγu

�
; ðC5Þ

where γ ≈ 0.577 is the Euler-Mascheroni constant. Using
this result in Eq. (A3) we obtain

ln

�
h0L
hL

�
¼ ln

�
πTc

γGDð2þ ζÞhL

�
; ðC6Þ

where we set T ¼ Tc and discarded all the finite h2L
contributions. Finally, Eq. (A3) can be fulfilled only if

h0L ¼ πTc

γGDð2þ ζÞ ; ðC7Þ

which gives from which we derive

Tc ¼ Δ0
L
eγð2þ ζÞ

2π
; ðC8Þ

in agreement with (56).
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