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We study the single-inclusive production of prompt photons in electron-proton collisions, ep → γX, for
kinematics relevant at the Electron-Ion Collider (EIC). We perform a perturbative calculation of the
differential cross section to next-to-leading order in QCD and to lowest order in QED. We consider
unpolarized collisions as well as scattering of longitudinally polarized incident electrons and protons. We
show that the cross sections are sensitive to the parton distribution functions of photons inside the proton,
which we find to generate the dominant contributions in certain kinematical regions at the EIC. We also
investigate the effects of photon isolation on the unpolarized and polarized cross sections.
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I. INTRODUCTION

Production of photons with large transverse momentum
in hadronic scattering serves as an important probe of the
partonic structure of hadrons, especially of their gluon
distributions. Compared to hadronic final states, photons
offer the advantage that a substantial—and often strongly
dominant—part of the production mechanism comes from
“pointlike” contributions for which the produced photon
couples directly to a partonic hard-scattering process. In the
present paper, we study photon production in a different
and somewhat simpler setting, in electron-proton colli-
sions. Previous studies in this area have considered the
process ep → eγX, with detected final-state electron. Here
we will address its truly “single-inclusive” counterpart,
ep → γX, for which the scattered electron is not explicitly
observed. Our motivation for investigating ep → γX is
twofold. First, as we will show, the process may offer
access to the proton’s photon parton distribution function
(PDF). Second, the process is also interesting from a
theoretical point of view, especially when the proton is
transversely polarized. Although we do not consider this
particular case here, our calculation provides an important
basis for future dedicated studies. We will now describe our
two motivations in a little more detail.

There is a long history of interest in the proton’s photon
PDF, starting from discussions of its possible relevance for
new-physics searches at hadron colliders [1–5]. As part of
the QED corrections to proton structure, the distribution
soon became part of the global analysis of PDFs [6–8].
Important progress was made by Refs. [9,10] which
showed that the photon PDF may in fact be computed
from first principles, although the result relies on elastic
contributions as well as on understanding of the proton
structure functions down to low scales. The formalism
of [9,10] has become the paradigm for modern studies of
the photon content of the proton when incorporated in
global analyses of proton structure [11–13].
The usefulness of electron-proton scattering in obtaining

information on the proton’s photon PDF has been estab-
lished in numerous studies, primarily in the context of the
HERA collider [14–33]. The photon PDF is also central to
studies of QED radiative corrections to the deep inelastic
scattering (DIS) and semi-inclusive DIS cross sections
[34–36]. However, to our knowledge, single-inclusive
production of photons has not been considered so far in
the literature, and it is useful to explore its potential ability
to put further constraints on the photon PDF, especially so
in view of the future Electron-Ion Collider (EIC) now under
construction [37–43]. Here our focus will also be on
the polarized (helicity) photon PDF, whose presence in
ep → eγX has been discussed in Refs. [24–28,44]. Most of
the previous studies did not take into account the contri-
butions arising from production of photons in jet fragmen-
tation, which we will develop here to full next-to-leading
order (NLO).
Single-inclusive processes have also been of more

general interest in the context of achieving a better under-
standing of single-transverse spin asymmetries (TSSAs) in
hadronic scattering. The theoretical description of TSSAs
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in reactions of the type p↑p → hX in terms of collinear
factorization has turned out to be remarkably complex
[45–52], even at the leading order (LO) of QCD perturba-
tion theory. The main reason for this is that the asymmetry
is power suppressed in the hard scale of the reaction, the
transverse momentum of the produced hadron, and hence
involves twist-3 hadronic matrix elements and correspond-
ingly hard-scattering diagrams with three partons connect-
ing to these matrix elements. As the leading-power
unpolarized cross section shows, NLO QCD corrections
are vital for a successful phenomenology of pp → hX [53].
For the TSSA, the computation of NLO corrections is
extremely complicated and, although essential for phe-
nomenology, is currently not on the horizon. As a first step
in this direction, it is useful to consider reactions with
similar kinematics, but less complexity. One possibility is
to go from purely hadronic scattering to ep reactions,
essentially replacing one initial proton by the simpler
electron. References [54–60] proposed the process
ep → πX in this context, which—as it turns out—by itself
could offer promising opportunities to gain new informa-
tion on twist-3 correlation functions in the proton at the
EIC. NLO corrections to the spin-averaged cross section for
ep → πX were presented in [61].
The process ep → γX which we consider in the present

paper is an equally valuable (and in some ways simpler)
testing ground for QCD calculations. One may consider it a
less complex version of the analogous single-inclusive
photon production in proton collisions, pp → γX.
Historically, the latter reaction with transverse polarization,
p↑p → γX, played an important role in finding explan-
ations for transverse spin asymmetries [45,46]. We stress
again that the process we investigate differs from the semi-
inclusive production of photons in electron-proton colli-
sions, ep → eγX, for which the final-state electron is
detected. The TSSA for the latter has been proposed in
Ref. [62] as an observable well suited to obtain insights into
higher-twist quark-gluon-quark correlation functions.
In order to set the stage for future work on the TSSA for

single-inclusive photon production ep → γX, we present in
this paper a full NLO calculation of the unpolarized and the
longitudinally polarized (helicity-dependent) cross sections
for this reaction, which are both of leading twist. Focusing
on inelastic contributions, we carefully discuss the various
production channels. We present phenomenological studies
for the EIC, identifying kinematical regions that are
favorable with respect to obtaining information on the
photonic distributions and fragmentation functions. We
hope that establishing the basic NLO leading-twist theo-
retical framework for ep → γX will prove useful for future
NLO studies of the TSSA for the process.
Our paper is organized as follows. In Sec. II, we first

discuss the various LO and NLO contributions to
the differential unpolarized cross section for ep → γX
and introduce the contributing PDFs and fragmentation

functions, especially the photonic ones. We then present the
analytic calculation of the full unpolarized cross section.
Section III addresses the corresponding spin-dependent
cross section e⃗ p⃗ → γX. Based on these results, in Sec. IV
we present our numerical predictions for the cross sections
and longitudinal double-spin asymmetries at the EIC. We
conclude in Sec. V.

II. THE UNPOLARIZED CROSS SECTION

A. LO and NLO contributions

The process we consider is the single-inclusive produc-
tion of prompt photons in electron-proton collisions,
eðlÞ þ pðPÞ → γðPγÞ þ X, where we have denoted the
relevant four-momenta. In contrast to the reactions usually
considered in electron-proton scattering, X denotes an
unobserved multiparticle final state that consists not only
of the hadronic remnants of the initial proton, but also of the
final-state electron. At large c.m. energies

ffiffiffi
s

p
and reason-

ably large transverse momenta of the detected photons, we
may assume that collinear factorization may be used to
write the cross section in terms of short-distance partonic
hard-scattering cross sections and long-distance hadronic
matrix elements.
We will work to the lowest order in the QED coupling

αem, but will derive the cross section for the process to NLO
in QCD. The counting of perturbative orders in the strong
coupling αs for the process is somewhat special, but
familiar from other hadronic processes with identified
photons. At LO, the process can proceed in two ways:
(i) a photon plays the role of a parton inside the proton and
participates in a QED Compton reaction; (ii) a QED
electron-quark scattering process is followed by fragmen-
tation of the quark to a photon. The two types of
contributions are depicted in Fig. 1. Both the photon
PDF of the proton and the quark-to-photon fragmentation
functions are of perturbative order Oðαem=αsÞ, owing to an
explicit logarithm arising in the calculation of higher-order

FIG. 1. LO contributions to eðlÞ þ pðPÞ → γðPγÞ þ X. We
show sketches of factorized amplitudes where photons play
the role of a parton in the proton (upper) and where photons
are produced in a quark fragmentation process (lower).
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diagrams. Thus, when combined with the overall factor α2em
arising from the Compton or the eq scattering process,
respectively, the lowest order for the process eðlÞ þ
pðPÞ → γðPγÞ þ X becomes α3em=αs. We note that the
photon PDF also includes an elastic part for which the
proton remains intact and that gives rise to an exclusive
final state [9,10,21,26,63]. Such elastic contributions are
thus included in our analysis.
NLO contributions arise at order αs × α3em=αs ¼ α3em.

They again come in two classes. The first class consists
of all 2 → 3 diagrams for eq → γeq, as shown in Fig. 2. In
the context of semi-inclusive photon production, ep → eγX,
contributions associated with these diagrams are often
referred to as “virtual Compton scattering” contributions
in the literature [26–28]. For the single-inclusive process we
consider, the outgoing electron and quark are not observed,
so that their momenta need to be integrated over their full
phase space. The corresponding calculations will be pre-
sented below. Treating quarks asmassless, the diagramswill
exhibit collinear singularities when the incoming quark
splits into a quarkþ photon pair or when the outgoing quark
radiates the observed photon collinearly. These singularities
are absorbed into the photon PDF of the proton and the
quark-to-photon fragmentation function, respectively, giv-
ing rise to the “inhomogeneous” part of the evolution
equations for these functions in the LO contribution.
An interesting issue concerns the treatment of the

electron. Clearly, at the energies we consider, the electron
mass me is expected to be negligible. However, for
vanishing me one encounters additional singularities in
the 2 → 3 diagrams for eq → γeq, arising when the initial
or final electron is accompanied by collinear emission. One
option is to keep a finite electron mass throughout the full
calculation, neglecting it wherever possible. The collinear
singularities mentioned above would then be replaced by
finite (but, potentially large) logarithms of the form
logðme=QÞ, with Q a hard scale in the problem. Using
this approach, the phase-space integrations with nonzero
electron mass become slightly more involved. Alternatively
—and this is the approach we will show here—one may
introduce “Weizsäcker-Williams (WW)” type distributions
that correspond to a “photon-in-electron” PDF or an
“electron-to-photon” fragmentation function, respectively,

as shown in Fig. 3. The calculation may then be performed
with me ¼ 0, regularizing collinear divergences associated
with the electron by dimensional regularization and absorb-
ing them into the electron distributions. As explained in
Ref. [61], both approaches, i.e., with or without a finite
electron mass, will yield equivalent results. Indeed, in
addition to the WW approach, we have carried out the
nonzero electron mass calculation and found complete
agreement between the two methods. We also refer the
reader to Refs. [35,64] for a discussion of radiative
corrections in lepton scattering using similar concepts.
The second class of NLO contributions involves the

hard-scattering functions for the processes eq → eqg and
eg → eqq̄, followed by fragmentation of a final-state
parton to the photon. Using again that the photon frag-
mentation functions are of order αem=αs, the net contribu-
tion by these processes is of order α2emαs × αem=αs ¼ α3em,
making them indeed NLO. The corresponding calculations
for eq → eqg and eg → eqq̄ were already carried out in
Refs. [61,65], where inclusive-hadron production in ep
scattering was considered. The collinear singularities
encountered in the phase-space integration for these reac-
tions give rise to the homogeneous part of the evolution of
the photon fragmentation functions. Technically, this con-
tribution can be obtained simply by replacing the parton-to-
hadron fragmentation functions in the calculation of
Refs. [61,65] with the corresponding parton-to-photon

FIG. 2. NLO contributions to eðlÞ þ pðPÞ → γðPγÞ þ X. The hard-scattering amplitude consists of four diagrams where the detected
photon is radiated off the electron line or off the quark line.

FIG. 3. Contributions with a photon-in-electron PDF (upper)
and an electron-to-photon fragmentation function (lower).
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ones. In the following, we will therefore not further discuss
this contribution which will, however, be included in our
numerical results below.
We close this discussion with a note of caution. As we

have described, we count the photon-in-proton PDF and the
quark-to-photon fragmentation functions as LO, that is,
Oðαem=αsÞ. In contrast to this, we regard the corresponding
photon-in-electron PDF and electron-to-photon fragmenta-
tion function (FF) asOðαemÞ, despite the fact that they enter
with an additional large logarithm logðme=QÞ. Although
this way of counting is arguably sensible from the point of
view of QCD, it is clear that one should expect the
contributions coming with the leptonic PDF and FF to
be numerically as important as the ones entering with the
photon-in-proton PDF and the quark-to-photon fragmen-
tation functions. Furthermore, the evolution of the latter
resums large logarithms in the hard scale, while the
logarithm logðme=QÞ in the leptonic functions is only
kept at fixed order. It would be possible to resum these
logarithms as well to all orders in αem, but this is beyond the
scope of the present work.

B. Parton distribution functions and fragmentation
functions

Before proceeding to the actual calculation of the cross
section to order Oðα3emÞ, we collect all of the relevant
hadronic/leptonic matrix elements and their parametriza-
tions in terms of PDFs and FFs that we need for a factorized
description of the cross section.
The most commonmatrix elements that we encounter are

those for the distribution functions for unpolarized or
longitudinally polarized quarks in protons, fq=p1 ðx; μÞ and
gq=p1 ðx; μÞ, respectively. It is well known that the two PDFs
parametrize the following bilocal matrix element:

Z
∞

−∞

dλ
2π

eiλxhpðP; SÞjq̄jð0ÞW½0; λn�qiðλnÞjpðP; SÞi

¼ 1

2

�
=Pfq=p1 ðx; μÞ − SL=Pγ5g

q=p
1 ðx; μÞ�ij þ � � � : ð1Þ

Note that this matrix element (1) incorporates a light-cone
vectornμ that satisfiesn2 ¼ 0 andP · n ¼ 1, but is otherwise
arbitrary. In particular, theWilson lineW½0; λn� that renders
the bilocal quark operator color-gauge invariant is along a
straight line in the light-cone direction nμ. We explicitly
keep chiral-even leading-twist structures in the second line
of (1), but neglect chiral-odd and/or subleading-twist struc-
tures (indicated by the dots). We note that the apparent
dependence on the explicit choice of the light-conevector nμ

cancels out for the leading-twist observables inwhichwe are
interested in this paper.1 We also see that the first term in (1)

is independent of the proton spin vector Sμ (with S2 ¼ −1
and P · S ¼ 0), while the second is proportional to the
longitudinal projection of Sμ on nμ, i.e., SL ¼ Mðn · SÞ. In
the approximation of a massless proton, SL may be con-
sidered as the proton’s helicity. Finally, we note that the
matrix element (1) is to be considered a subtracted matrix
element in which ultraviolet divergences are MS subtracted.

Then, the PDFs are to be read as fq=p;MS
1 ðx; μÞ and

gq=p;MS
1 ðx; μÞ, functions of the renormalization scale μ.
As discussed in the previous subsection, the process eþ

p → γ þ X is also sensitive to the photon-in-proton dis-
tribution function fγ=p1 (and its polarized companion gγ=p1 ),
which enters the factorized description of the cross section
already at LO. It is in fact the appearance of these lesser-
known distribution functions that makes the process espe-
cially interesting. The definition of the photon-in-proton
distribution functions shares some similarities with that for
the proton’s gluon distribution function fg=p1 ðx; μÞ. To be

specific, the unpolarized (fγ=p1 ) and polarized (gγ=p1 ) photon
PDFs parametrize the following matrix element:

Z
∞

−∞

dλ
2π

eiλxhpðP; SÞjFnνð0ÞFnμðλnÞjpðP; SÞi

¼ x
2

�
−

gμν⊥
1 − ε

fγ=p1 ðx; μÞ þ SLiϵPnνμg
γ=p
1 ðx; μÞ

�
: ð2Þ

This matrix element (2) incorporates the photonic gauge-
invariant field-strength tensor Fμν ¼ ∂

μAν − ∂
νAμ, with

shorthand notations of the form Fnν ¼ nμFμν, etc. The
photon field itself is represented by AμðxÞ. The transverse
projector gμν⊥ is given by gμν⊥ ¼ gμν − Pμnν − Pνnμ, and
the antisymmetric tensor ϵμνρσ follows the convention
ϵ0123 ¼ þ1. We have anticipated the later use of dimen-
sional regularization with d ¼ 4 − 2ε space-time dimen-
sions. We note again that the photon PDFs in Eq. (2) can be
related to the usual quark and gluon PDFs via the use of
DIS structure functions [9,10,66].
Furthermore, at orderOðα3em=αsÞ, the photon can also be

produced within a fragmentation process of a quark in the
final state. This process is described by a quark-to-photon
fragmentation matrix element,

1

Nc

XZ
X

Z
∞

−∞

dλ
2π

ei
λ
zh0jW½∞n; λn�qiðλnÞjγðPγÞ;Xi

× hγðPγÞ;Xjq̄jð0ÞW½0;∞n�j0i
¼ z−1þ2εð=PγÞijDγ=q

1 ðz; μÞ: ð3Þ

The quark-to-photon fragmentation functionsDγ=q
1 , like the

photonic PDF counterparts, are only poorly known, despite
their relevance for direct-photon production at hadron
colliders. Hence, measurements of eþ p → γ þ X cross

1The situation is more complicated for subleading-twist
observables [56].
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sections could potentially further constrain these fragmen-
tation functions.
Like the quark PDFs (1) and any collinear matrix

element, also the photon PDFs/FFs (2) and (3) contain
ultraviolet divergences that need to be regularized and
subtracted, thereby introducing scale dependence. This is a
standard procedure, and a convenient way is to consider
perturbative corrections to the collinear functions and to
introduce “renormalized” MS-PDFs/FFs. To the order we
consider, we have

fγ=p1 ðx; μÞ ¼ fγ=p;MS
1 ðx; μÞ þ αem

2π

Sε
ε

×
Z

1

x

dw
w

PγqðwÞ
X
q

e2qf
ðqþq̄Þ=p;MS
1 ðx=w; μÞ;

ð4Þ

gγ=p1 ðx; μÞ ¼ gγ=p;MS
1 ðx; μÞ þ αem

2π

Sε
ε

×
Z

1

x

dw
w

ΔPγqðwÞ
X
q

e2qg
ðqþq̄Þ=p;MS
1 ðx=w; μÞ;

ð5Þ

Dγ=q
1 ðz; μÞ ¼ Dγ=q;MS

1 ðz; μÞ þ αem
2π

Sε
ε
e2qPγqðzÞ: ð6Þ

The kernels in these equations are the LO QED splitting

functions PγqðwÞ ¼ 1þð1−wÞ2
w and ΔPγqðwÞ ¼ 2 − w. The

customary factor Sε ¼ ð4πÞε=Γð1 − εÞ facilitates the cor-
rect MS subtraction at this order. In (4) and (5) the sum is
over quark flavors, eq are the fractional quark charges, and
fðqþq̄Þ=p indicates a sum of quark and antiquark distribu-
tions. Finally, the last term in (6) indicates the perturbative
radiation of a collinear photon that is part of the quark-to-
photon fragmentation.
As described earlier, it turns out to be convenient to

similarly introduce photon PDFs for an electron rather than
a proton and, likewise, electron-to-photon FFs. To be
specific, we may define photon-in-electron distributions
fγ=e1 ðx; μÞ, gγ=e1 ðx; μÞ in the same way as the photon-in-
proton distributions by replacing the proton state pðP; SÞ
by an electron state eðl; sÞ. The main difference is that the
fγ=e1 ðx; μÞ, gγ=e1 ðx; μÞ (sometimes referred to as Weizsäcker-
Williams distributions [67,68]) can be calculated perturba-
tively for a nonzero electron mass me and that they do not
couple to the quark distributions. The corresponding
calculations to order OðαemÞ have been performed in
Refs. [61,65], and we simply quote the results,

fγ=e1 ðx;μÞ¼fγ=e;MS
1 ðx;μÞþαem

2π

Sε
ε
PγqðxÞþOðα2emÞ; ð7Þ

gγ=e1 ðx;μÞ¼gγ=e;MS
1 ðx;μÞþαem

2π

Sε
ε
ΔPγqðxÞþOðα2emÞ; ð8Þ

with

fγ=e;MS
1 ðx; μÞ ¼ αem

2π
PγqðxÞ

�
ln

�
μ2

x2m2
e

�
− 1

�
; ð9Þ

gγ=e;MS
1 ðx; μÞ ¼ αem

2π
ΔPγqðxÞ ln

�
μ2

x2m2
e

�
: ð10Þ

We note that detailed studies on the evolution of the
photon-in-lepton distributions have been presented recently
in Refs. [69–71].
In similar fashion, we also introduce an electron-to-

photon fragmentation function Dγ=e
1 ðzÞ by replacing the

quark fields in (3) by electron fields. As for the electron
PDFs, we can calculate all involved quantities in QED
perturbation theory and obtain

Dγ=e
1 ðz;μÞ¼Dγ=e;MS

1 ðz;μÞþαem
2π

Sε
ε
PγqðzÞþOðα2emÞ; ð11Þ

with

Dγ=e;MS
1 ðz; μÞ ¼ αem

2π
PγqðzÞ

�
ln

�
μ2

z2m2
e

�
− 1

�
: ð12Þ

We note that leptonic PDFs have also been introduced in
more general terms in the context of factorized expressions
for QED radiative corrections to the DIS and semi-inclusive
DIS cross sections [35].

C. LO partonic cross sections

We introduce the Mandelstam variables s¼ðPþ lÞ2>0,
t ¼ ðP − PγÞ2 < 0 and u ¼ ðl − PγÞ2 < 0, which satisfy
sþ tþ u ≥ 0. We further define

x0 ¼
−u
sþ t

; v ¼ sþ t
s

< 1: ð13Þ

We start by analyzing the contribution to the cross
section associated with the photon PDF. As indicated in
the upper panel of Fig. 1, we factorize this contribution into
fγ=p1 and the hard-scattering function for QED Compton
scattering γe → γe, which may computed from the dia-
grams shown in the figure. Although the result is finite at
this order, we compute it in dimensional regularization with
d ¼ 4 − 2ε space-time dimensions. The reason is that we
need the d-dimensional cross section later in the factori-
zation of the 2 → 3 scattering contributions. A straightfor-
ward calculation gives

Eγ
dd−1σγPDF

dd−1Pγ
¼ α2em

sð−uÞ σ̂
γPDFðv; εÞfγ=p1 ðx0; μÞ; ð14Þ
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with

σ̂γPDFðv; εÞ ¼ 2
1þ v2

v
− 2ε

ð1 − vÞ2
v

: ð15Þ

Here Pγ denotes the three-momentum of the produced
photon. If (14) were the only contribution to eN → γX, the
process would be ideally suited to constrain the photon-in-
proton PDF fγ=p1 .
However, as already discussed in Sec. II A, there are also

LO contributions associated with quark-to-photon frag-
mentation. The corresponding factorization is sketched in
the lower part of Fig. 1. We find

Eγ
dd−1σγFF

dd−1Pγ
¼ α2em
sð−uÞ

Z
1

x0

dw
w
σ̂γFFðv;w;εÞ

×
X
q

e2qf
ðqþq̄Þ=p
1

�
x0
w
;μ

�
Dγ=q

1 ð1−vþvw;μÞ;

ð16Þ
where

σ̂γFFðv;w;εÞ¼ 2vwð1−vþvwÞ2ε
ð1−vÞ2ð1−vþvwÞ
× ½1þv2−2vð1−wÞð1þvwÞ−εð1−vÞ2�:

ð17Þ

As indicated in (16), quarks and antiquarks have identical
fragmentation functions to photons.

D. Contributions at Oðα3
emÞ

In this subsection we discuss the contributions sketched
in Figs. 2 and 3. We first address the 2 → 3 diagrams shown
in Fig. 2, for which the observed photon can be radiated
either from the electron or from the quark line. Radiation
purely off the electron is known as the Bethe-Heitler (BH)
contribution [62,72], while the diagrams with radiation off
quarks may be regarded as a quark-photon Compton
(C) contribution. Finally, there is also an “interference”
(I) contribution of the two types of radiation.
The three types of contributions, BH, C, and I, can be

distinguished by theweightings with different quark charges.
Furthermore, the Bethe-Heitler and Compton contributions
come with the sums of quark and antiquark distributions,
while the interference contribution is generated by thevalence
quark distributions. To be specific, we encounter the follow-
ing generic combinations of quark PDFs [62]:

fBHðx; μÞ ¼
X
q

e2qðfq=pðx; μÞ þ fq̄=pðx; μÞÞ; ð18Þ

fCðx; μÞ ¼
X
q

e4qðfq=pðx; μÞ þ fq̄=pðx; μÞÞ; ð19Þ

fIðx; μÞ ¼
X
q

e3qðfq=pðx; μÞ − fq̄=pðx; μÞÞ: ð20Þ

In order to obtain the hard-scattering cross section for
qe → qeγ we need to integrate its squared amplitude over
thephase space of themomenta of theundetected electron and
quark (r1 and r2 in Fig. 2), which is done in d ¼ 4 − 2ε
dimensions.Asmentioned earlier,weuseavanishing electron
massme ¼ 0 to simplify the calculation. Although the phase-
space integrations become quite standard then, we found the
recent paper [73] particularly helpful in this context. After
performing the phase-space integrations, we encounter vari-
ous types of 1=ε poles associated with the Bethe-Heitler and
Compton contributions, arising when the radiated photon
becomes either collinear to the quark or the electron momen-
tum. In contrast to the Bethe-Heitler and Compton contribu-
tions, the interference contributions are finite.
The collinear divergences in the Bethe-Heitler and

Compton contributions can be systematically absorbed
into the hadronic and leptonic PDFs and FFs. For initial-
state radiation off the quark, the collinear pole is canceled
by that in the perturbative photon PDF in (4), inserted into
the LO cross section in (14). Likewise, the final-state
collinear singularity cancels against the quark-to-photon
fragmentation contribution (6), which appears via the LO
term (17). In both cases, we perform the subtraction in the
MS scheme.
For collinear radiation off the electron line, the situation

is slightly less standard. As discussed in Sec. II A, our
approach is to set me ¼ 0, in which case collinear initial-
and final-state divergences will occur. We subsequently add
perturbative Weizsäcker-Williams contributions associated
with a photon-in-electron PDF and an electron-to-photon
FF, which cancel the divergences and “reinstate” the
explicit logarithms logðme=QÞ that would arise in a
calculation that keeps a finite electron mass. Expressions
for the relevant PDF and FF were given in Eqs. (7) and (11),
respectively. They need to be convoluted with the appro-
priate Born processes which are γq → γq in the PDF case
and eq → eq in the FF one. We obtain

Eγ
d3σγPDFWW

dd−1Pγ
¼ α2em

sð−uÞ
Z

1

x0

dw
w

σ̂γPDFWW ðv; w; εÞ

× fγ=e1

�
1 − v
1 − vw

; μ

�X
q

e4qf
ðqþq̄Þ=p
1

�
x0
w
; μ

�
;

ð21Þ

where

σ̂γPDFWW ðv; w; εÞ ¼ 2vwð2 − vwð2 − vwð1 − εÞÞÞ
ð1 − vÞð1 − vwÞ ; ð22Þ

and
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Eγ
d3σγFFWW

dd−1Pγ
¼ α2em

sð−uÞ
Z

1

x0

dw
w

σ̂γFFWWðv; w; εÞ

×Dγ=e
1 ð1 − vþ vw; μÞ

X
q

e2qf
ðqþq̄Þ=p
1

�
x0
w
; μ

�
;

ð23Þ

with

σ̂γFFWWðv; w; εÞ ¼
2ð1 − vþ vwÞ2ε
vwð1 − vþ vwÞ
× ½2ð1 − vÞð1 − vþ vwÞ þ ð1 − εÞv2w2�:

ð24Þ
As mentioned before, resummation of the logarithm
logðme=QÞ may eventually be necessary.

E. Final result for the unpolarized cross section

We separate the invariant cross section for eðlÞ þ
pðPÞ → γðPγÞ þ X into five pieces: the contributions
associated with (1) the photon-in-proton PDF and (2) the
quark-to-photon FF [which both start at Oðα2em=αsÞ] and
the ones by the (3) Bethe-Heitler, (4) Compton, and
(5) interference channels, which all arise only at Oðα3emÞ
and are hence NLO,

Eγ
d3σep→γX

d3Pγ
≡ σγPDF þ σγFF þ σBH þ σC þ σI: ð25Þ

We emphasize again that the first contribution in (25) is
associated with the photon-in-proton PDF fγ=p1 , while the
second term is generated by the quark-to-photon fragmen-
tation functions Dγ=q

1 . We find

σγPDF ¼ 2α2em
sð−uÞ σ̂

γPDFðvÞfγ=p;MS
1 ðx0; μÞ; ð26Þ

σγFF¼ 2α2em
sð−uÞ

Z
1

x0

dw
w
σ̂γFFðv;wÞ

×
X
q

e2qf
ðqþq̄Þ=p;MS
1

�
x0
w
;μ

�
Dγ=q;MS

1 ð1−vþvw;μÞ;

ð27Þ

σBH¼ α3em
πsð−uÞ

Z
1

x0

dw
w
σ̂BH

�
v;w;

−u
m2

e
;
−u
μ2

�
fBH;MS
1

�
x0
w
;μ

�
;

ð28Þ

σC ¼ α3em
πsð−uÞ

Z
1

x0

dw
w

σ̂C
�
v; w;

−u
m2

e
;
−u
μ2

�
fC;MS
1

�
x0
w
; μ
�
;

ð29Þ

σI ¼ α3em
πsð−uÞ

Z
1

x0

dw
w

σ̂Iðv; wÞfI;MS
1

�
x0
w
; μ

�
: ð30Þ

The various partonic hard-scattering functions σ̂ appearing
in these equations are collected in Appendix A.

F. Photon isolation

In collider experiments, in order to cope with the
large photon background arising from neutral-pion decay,
one usually introduces an isolation of the photon, for
which one imposes a limit on the hadronic activity in the
vicinity of the photon. Typically one defines a cone in
azimuthal-pseudorapidity space (as defined in the electron-
proton c.m. frame) around the photon candidate, i.e.,

coneγðRÞ ¼
n
ðη;ϕÞj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðη − ηγÞ2 þ ðϕ − ϕγÞ2

q
≤ R

o
: ð31Þ

Inside this cone one then requires that the energy of any
hadrons accompanying the photon is smaller than a fixed
fraction of the photon energy, i.e.,

Ehad ≤ ξEγ; ð32Þ

where ξ ∼ 0.1 is a typical value. Anticipating that isolation
would also be imposed in photon measurements at the EIC,
wewill extend our calculation to the isolated case. Actually,
a benefit of isolation is that it also reduces the contribution
of photons that were generated in fragmentation of quarks
or gluons. The reason is that for the fragmentation
component photons will indeed always be accompanied
by hadronic energy, so that the isolation condition (32) puts
restrictions on the size of the contributions, although it
obviously does not eliminate it completely. To be more
specific, one can see that criterion (32) translates to a
condition on the light-cone fraction z ¼ 1 − vþ vw that
appears in the fragmentation contribution (27) [74],

Ehad ≤ ξEγ ⇔ z ≥
1

1þ ξ

⇔ w ≥ max

�
x0; 1 −

ξ

vð1þ ξÞ
�
≡ w0: ð33Þ

Thus the integration domain over the variable w in (27) is
reduced, and the smaller the fraction ξ, the stronger is the
suppression of the parton-to-photon fragmentation.
Beyond LO, partons can also be radiated into the

photon isolation cone, rather than just enter it via
fragmentation. This effect must be taken into account
in the Oðα3emÞ contribution. In order to do this, we adopt
the “small cone approximation” (SCA), see Ref. [75]. The
basic idea is to use the results obtained for the fully
inclusive (i.e., nonisolated) prompt photon cross section,
Eqs. (28)–(30), and subtract the NLO contribution where
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partons have entered the isolation cone with energy in
excess of what is allowed by the condition (32). For small
cone radii R the subtraction contribution defined in this
way may be computed analytically. More specifically, for
the case of interest here it can be shown to have the form

σsub ¼ lnðRÞAþ BþOðR2Þ: ð34Þ

The two leading terms associated with A and B can only
arise from configurations where the photon is radiated by
an outgoing quark or antiquark. For nearly collinear
emission, the quark propagator before emission goes
nearly on shell, so that phase-space integration leads to
the structure of logarithm plus constant shown in (34). The

coefficients A and B contain a Born cross section, which in
this case is the one for the Compton process eq → eq. The
explicit calculation of the full subtraction term in the SCA
is straightforward, and for details we refer the reader to
Ref. [75]. In the end we obtain

σCsub ¼ θðw0 − x0Þ
α3em

πsð−uÞ
Z

w0

x0

dw
w

× σ̂Csub

�
v; w; x0; R;

−u
μ2

�
fC;MS
1

�
x0
w
; μ

�
; ð35Þ

where

σ̂Csub

�
v; w; x0; R;

−u
μ2

�
¼ −

vw
ð1 − vÞ2ð1 − vþ vwÞ2 ð1þ v2 − 2vð1 − wÞð1þ vwÞÞ

×

�
ð1 − vþ vwÞ2 þ ð1þ v2ð1 − wÞ2Þ ln

�
−
R2uvð1 − vÞð1 − wÞð1 − vþ vwÞ2x0

μ2wð1 − vþ vx0Þ2
��

: ð36Þ

The term in (35) is to be subtracted from the Compton
contribution in (25). Empirically, the SCA is known to
work well for values of R up to R ∼ 0.7 [75]. Note that for
larger values of R terms of order OðR2Þ in Eq. (34) are
expected to become relevant. Such terms are beyond the
scope of the SCA. On the other hand, if very small cone
radii R are considered, a resummation of the logðRÞ-term in
Eq. (34) may be required [76].
As we discussed earlier, there is a second class of NLO

contributions to eðlÞ þ pðPÞ → γðPγÞ þ X, which is gen-
erated by the hard-scattering processes eq → eqg and
eg → eqq̄, followed by fragmentation of a final-state
parton to the photon. In principle, we would need to
introduce appropriate subtraction terms also for this con-
tribution. However, in our numerical studies to be presented
below, we found that this contribution is strongly reduced
already by the condition (33), so that it becomes irrelevant.
We therefore refrain from deriving the subtraction piece for
this part.
We finally note that the Bethe-Heitler and interference

contributions only contribute to the terms of order R2 in
(34). The reason for this is that we only impose isolation
in terms of hadronic energy. In principle, one could
introduce also an “electromagnetic isolation,” restricting
the amount of energy of additional electromagnetic
particles around the photon. Such an isolation would
affect especially the size of the Bethe-Heitler contribution,
where it would then also generate logarithms of the
cone size. Whether or not such a constraint would be
desirable (or even feasible experimentally) remains to be
studied.

III. THE POLARIZED CROSS SECTION

In this section, we extend our calculation to photon
production in collisions of longitudinally polarized elec-
trons and protons. To be specific, we consider the following
spin dependent cross section:

Δσep→γX ≡ 1

4

�
Eγ

d3σe
þpþ→γX

d3Pγ
− Eγ

d3σe
−pþ→γX

d3Pγ

−Eγ
d3σe

þp−→γX

d3Pγ
þ Eγ

d3σe
−p−→γX

d3Pγ

�
; ð37Þ

where the superscripts refer to the electron and proton
helicities. Since—like the unpolarized cross section—also
Δσ is a leading-power observable, the discussions of
Secs. II B–II D will hold for Δσ as well, and the calcu-
lations can be performed in the same fashion. A slight
complication compared to the unpolarized cross section is
the treatment of the Dirac matrix γ5 in dimensional
regularization which arises from projecting on longitudinal
polarization of the electron and the proton. In this work, we
choose to work within the ‘t Hooft-Veltman-Breitenlohner-
Maison scheme for γ5 [77,78].
As before, we split the spin-dependent cross section into

five pieces [cf. Eq. (25)],

Δσep→γX ¼ ΔσγPDF þ ΔσγFF þ ΔσBH þ ΔσC þ ΔσI: ð38Þ

The individual contributions are as follows:
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ΔσγPDF ¼ 2α2em
sð−uÞΔσ̂

γPDFðvÞgγ=p;MS
1 ðx0; μÞ; ð39Þ

ΔσγFF¼ 2α2em
sð−uÞ

Z
1

x0

dw
w

Δσ̂γFFðv;wÞ

×
X
q

e2qg
ðqþq̄Þ=p;MS
1

�
x0
w
;μ

�
Dγ=q;MS

1 ð1−vþvw;μÞ;

ð40Þ

ΔσBH ¼ α3em
πsð−uÞ

Z
1

x0

dw
w

Δσ̂BH
�
v; w;

−u
m2

e
;
−u
μ2

�

× gBH;MS
1

�
x0
w
; μ

�
; ð41Þ

ΔσC ¼ α3em
πsð−uÞ

Z
1

x0

dw
w

Δσ̂C
�
v; w;

−u
m2

e
;
−u
μ2

�

× gC;MS
1

�
x0
w
; μ

�
; ð42Þ

ΔσI ¼ α3em
πsð−uÞ

Z
1

x0

dw
w

Δσ̂Iðv; wÞgI;MS
1

�
x0
w
; μ

�
: ð43Þ

We observe that the helicity distributions gq=p1 , gγ=p1 , gγ=e1

[see Eqs. (1) and (2)] appear in these expressions. The
explicit analytic forms of the polarized hard-scattering
functions Δσ̂ in Eqs. (39)–(43) are presented in
Appendix B.
In order to construct the spin-dependent cross section for

isolated-photon production we repeat the steps described in
the previous section and again compute the relevant sub-
traction term for the polarized Compton contribution (42),

ΔσCsub ¼ θðw0 − x0Þ
α3em

πsð−uÞ
Z

w0

x0

dw
w

× Δσ̂Csub

�
v; w; x0; R;

−u
μ2

�
gC;MS
1

�
x0
w
; μ

�
; ð44Þ

with

Δσ̂Csub

�
v; w; x0; R;

−u
μ2

�
¼ −

vwð1 − vþ 2vwÞ
ð1 − vÞð1 − vþ vwÞ2

�
ð1 − vþ vwÞ2 þ ð1þ v2ð1 − wÞ2Þ

× ln

�
−
R2uvð1 − vÞð1 − wÞð1 − vþ vwÞ2x0

μ2wð1 − vþ vx0Þ2
��

: ð45Þ

IV. NUMERICAL PREDICTIONS

In this section we estimate the size of the various
contributions to the unpolarized and polarized cross sec-
tions at the EIC. Our main goal is to investigate how far the
future EIC experiments could help to probe the proton’s
photon PDF.
Throughout our calculations, we use the NLO unpolarized

parton distributions of Ref. [79]. For the helicity parton
distributions, we use the latest NLO set of Ref. [80]. For the
parton-to-photon fragmentation functions we adopt the NLO
set of Ref. [81]. The photon-in-proton PDF is implemented
using a recent NLO fit performed by the LuxQED
Collaboration [11] and included in the NNPDF3.1
parametrizations.
To the best of our knowledge no parametrization is

available for the polarized photon-in-proton PDF. In order
to obtain an estimate for the longitudinal double-spin
asymmetry, we adopt a simple model that relates the
photon PDF to the gluon one,

gγ=p1 ðx; μÞ ¼ αemg
g=p
1 ðx; μÞ; ð46Þ

where gg=p1 denotes the proton’s gluon helicity PDF. Of
course, this can at best be a crude model. Future data may

very well shed further light on gγ=p1 and falsify this ansatz.
Note that somewhat similar model scenarios for the
polarized photon helicity PDF have been used in
Refs. [66,82] as input for studies about QED corrections
affecting the QCD evolution of parton distributions.
We anticipate a center-of-mass energy of

ffiffiffi
s

p ¼ 100 GeV
for electron-proton collisions at the EIC. We translate the
invariant cross section to

d2σ
dηγdx

γ
T
¼ π

2
xγTsEγ

d3σ
d3Pγ

; ð47Þ

where ηγ is the photon’s pseudorapidity in the c.m. frame,
where we count positive rapidity in the forward proton
direction. Furthermore, xγT ¼ 2pγ

T=
ffiffiffi
s

p
with the photon’s

transverse momentum pγ
T . Our plots will show results

always for d2σ=dηγdx
γ
T.

A. Unpolarized cross section

The dependence of the differential unpolarized cross
section (47) on the photon’s pseudorapidity ηγ is shown in
Fig. 4 along with the various individual contributions of the
channels defined in Eq. (25). We observe that the con-
tributions σγPDF and σBH tend to dominate in the backward
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region (electron direction). Hence, this region offers the
best opportunity to experimentally learn about the photon-
in-proton PDF fγ=p1 ðxÞ and to further constrain this func-
tion. On the other hand, in the forward region (proton
direction) σγFF dominates, along with the Compton chan-
nel, possibly allowing access to the quark-to-photon
fragmentation functions Dγ=q

1 ðzÞ. This appears to be the
case especially at lower pγ

T. We further observe that the
interference contribution σI is overall small.
We also study in Fig. 4 the effect of photon isolation on

the cross section at the EIC. Here we assume a cone radius
of R ¼ 0.7 and an isolation parameter ξ ¼ 0.1. It is
interesting to see that photon isolation indeed strongly
suppresses the photon fragmentation channel, which
improves the overall sensitivity to the photon PDF fγ=p1 .
On the other hand, the overall results do not strongly
depend on the choice of R as long as R is not too small. We
checked explicitly for R ¼ 0.4 that the plots in Figs. 4 and 5
are (almost) unaffected.
The dependence of the unpolarized cross section on the

transverse photon momentum is shown in Fig. 5 in the
backward, central, and forward regions. Again we observe
a clear hierarchy of the various contributions, in particular,
in the backward and forward regions. The photon PDF
contribution σγPDF is dominant in the backward region over
a large range of transverse photon momenta, in particular,
for the isolated case. Hence, the backward region may be

the preferred region for further constraining fγ=p1 , and the
transverse photon momentum dependence appears well
suited for that purpose.
By contrast, the Compton channel and photon fragmen-

tation contributions dominate the transverse photon
momentum dependence in the forward region. In the
midrapidity region, the hierarchy of channels is not that
strict, and the various channels are approximately of similar
size for larger transverse photon momenta. However, for
smaller transverse momenta of about 2.5–10 GeV, the
Compton channel and the photon fragmentation contribu-
tion dominate as well.

B. Polarized cross section

Next we discuss our numerical estimates for the polar-
ized cross section (38) at the EIC and the sizes of the
various contributions. We focus, in particular, on the
sensitivity to the polarized photon-in-proton PDF gγ=p1

via the channel ΔσγPDF. We remind the reader that our
results are based on our ad hoc model ansatz (46). For the
polarized case, we will only consider the isolated cross
section in order to suppress the photon fragmentation
contribution. Clearly, for the purpose of studying quark-
to-photon fragmentation, the unpolarized cross section is
the preferred observable.
Figure 6 shows the dependence of the polarized cross

section on the photon’s pseudorapidity ηγ, again for three

FIG. 4. The unpolarized cross section at the EIC for c.m. energy
ffiffiffi
s

p ¼ 100 GeV, plotted as function of the photon’s pseudorapidity ηγ
for fixed transverse momenta. Left: pγ

T ¼ 5 GeV; center: pγ
T ¼ 15 GeV; right: pγ

T ¼ 30 GeV. We show the five contributions to the
cross section as defined in Eq. (25), as well as their sum. We show results both for the nonisolated and for the isolated case.

FIG. 5. Same as Fig. 4, but for the dependence on xγT for fixed pseudorapidities ηγ ¼ −1.5 (left), ηγ ¼ 0 (center), ηγ ¼ 1.5 (right).
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different transverse momenta. The largest contributions of
the polarized photon-in-proton PDF to the polarized cross
section can be found in the backward region for small to
medium transverse photon momenta. The large transverse
momentum region is not suitable to constrain gγ=p1 . In Fig. 7
we also show the pγ

T distributions for the various individual
channels. Again, we see that the backward region is the
preferred region for obtaining information on gγ=p1 .
In experiment, one typically does not directly access the

polarized cross section, but rather measures the longi-
tudinal double-spin asymmetry ALL, defined by

ALL ¼ Δσ
σ

: ð48Þ

Figure 8 shows the dependence of the double-spin asym-
metry ALL on the photon’s pseudorapidity ηγ as well as on
the photon’s transverse momentum. Overall, large asym-
metries of about 20%–40% could be possible. However, in
the main region of interest, i.e., the backward region at
moderate transverse momenta, which shows the best
sensitivity to the polarized photon-in-proton PDF gγ=p1 ,
the size of the asymmetry ALL is only about a few percent.
However, this might still be sufficient to obtain valuable
information on gγ=p1 .

V. CONCLUSIONS

We have analyzed the single-inclusive production of
prompt photons in electron-proton scattering at the EIC,

FIG. 6. Same as Fig. 4, but for the polarized case. We only consider the isolated cross section here.

FIG. 7. Same as Fig. 5, but for the polarized case. We only consider the isolated cross section here.

FIG. 8. The longitudinal double-spin asymmetry ALL at the EIC for c.m. energy of
ffiffiffi
s

p ¼ 100 GeV, plotted as function of the photon’s
pseudorapidity ηγ for fixed transverse momenta (left) and as function of xγT for fixed values of pseudorapidity (right).
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computing the spin averaged as well as the longitudinally
polarized cross section of this reaction to NLO in QCD. At
NLO, there are several production channels that contribute
to both the cross sections. We have presented analytical
results for the partonic cross sections for each of the
channels. We have also discussed the implementation of
a photon isolation cut and its effect on the cross sections.
The purpose of our computation was to investigate the

accessibility of the proton’s photonic parton distributions at
the EIC, the unpolarized photon-in-proton PDF fγ=p1 , and
its polarized counterpart gγ=p1 . In particular, gγ=p1 is only
poorly known, but could potentially provide (albeit likely
small) contributions to the proton spin.
Our numerical studies for the Electron-Ion Collider with

a center-of-mass energy of
ffiffiffi
s

p ¼ 100 GeV suggest that the
future data should very well help to constrain the photonic
functions mentioned above, and possibly even the quark-to-
photon fragmentation functions, provided a careful selec-
tion of kinematical regions.
Future extensions of our work will address the transverse

single-spin asymmetry for the process ep → γX, which
could be of great interest for understanding power-
suppressed phenomena in QCD and for accessing the
proton’s quark and gluon structure at twist-3.
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APPENDIX A: UNPOLARIZED PARTONIC
CROSS SECTIONS

Here we list the unpolarized partonic hard-scattering
functions that appear in Eqs. (26)–(30). For the LO terms,
we have

σ̂γPDFðvÞ ¼ 1þ v2

v
; ðA1Þ

σ̂γFFðv; wÞ ¼ vw½1þ v2 − 2vð1 − wÞð1þ vwÞ�
ð1 − vÞ2ð1 − vþ vwÞ : ðA2Þ

We note (see Sec. II A) that the photon fragmentation
channel receives OðαsÞ corrections that are known from
Refs. [61,65] and will not be recalled here. They are,
however, included in our numerical results.
For the Bethe-Heitler contribution, we find

σ̂BH
�
v; w;

−u
m2

e
;
−u
μ2

�
¼ CBH

1 ðv; wÞ ln
�
−u
μ2

�
þ CBH

2 ðv; wÞ ln
�
−u
m2

e

�
þ CBH

3 ðv; wÞ lnð1 − vþ vwÞ

þ CBH
4 ðv; wÞ lnð1 − wÞ þ CBH

5 ðv; wÞ lnðwÞ þ CBH
6 ðv; wÞ; ðA3Þ

with the coefficient functions

CBH
1 ðv; wÞ ¼ 1þ v2

v
1þ ð1 − wÞ2

w
;

CBH
2 ðv; wÞ ¼ 1þ v2ð1 − wÞ2

vwð1 − vþ vwÞ2 ð2þ 2v2 − vð2 − wÞð2þ vwÞÞ;

CBH
3 ðv; wÞ ¼ −

2

vw
ð2þ v2ð1þ ð1 − wÞ2ÞÞ;

CBH
4 ðv; wÞ ¼ 4ð1þ v2Þ − wð2 − wÞð1þ 2v2Þ

vw
þ 2v2ð1 − wÞ − 2

ð1 − vþ vwÞ2 ;

CBH
5 ðv; wÞ ¼ 2ð1 − v2ð1 − wÞÞ

ð1 − vþ vwÞ2 þ 2 − w
v

;

CBH
6 ðv; wÞ ¼ 2ð1 − vÞð1þ 2vð1 − wÞÞ

ð1 − vþ vwÞ2 − 4
1 − w
w

þ 1 − v
v

ð1 − wÞ þ vw: ðA4Þ

In the Compton channel, we have

σ̂C
�
v; w;

−u
m2

e
;
−u
μ2

�
¼ CC

1 ðv; wÞ ln
�
−u
μ2

�
þ CC

2 ðv; wÞ ln
�
−u
m2

e

�
þ CC

3 ðv; wÞ ln
�

1 − v
1 − vw

�

þ CC
4 ðv; wÞ lnð1 − vþ vwÞ þ CC

5 ðv; wÞ ln
�
1 − w
w

�
þ CC

6 ðv; wÞ; ðA5Þ
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with

CC
1 ðv;wÞ ¼

vwð1þ v2ð1−wÞ2Þ
ð1− vÞ2ð1− vþ vwÞ2 ð1þ v2 − 2vð1−wÞð1þ vwÞÞ;

CC
2 ðv;wÞ ¼

vwð2− vwð2− vwÞÞ
ð1− vÞ2ð1− vwÞ2 ð1þ v2 − 2vwð1þ v− vwÞÞ;

CC
3 ðv;wÞ ¼

2vwð1þ v− 2vwÞ
ð1− vÞð1− vwÞ2 ;

CC
4 ðv;wÞ ¼ −

4vwð1− vð1−wÞð1− vwÞÞ
ð1− vÞð1− vþ vwÞ2 ;

CC
5 ðv;wÞ ¼

4vwð2− vw− v2wþ v2w2Þ
ð1− vÞ2 −

2ð2− vþ v2wÞ
1− v

þ 8− 2v
1− vþ vw

−
3− v

ð1− vÞð1− vwÞ−
2ð1− vÞ

ð1− vþ vwÞ2 þ
1

ð1− vwÞ2 ;

CC
6 ðv;wÞ ¼

−vwð2þ 3v− v2 − 4vwÞ
ð1− vÞ2 −

v
1− v

−
2ð4− vÞ

1− vþ vw
þ 3ð2− vÞ
ð1− vÞð1− vwÞ þ

4ð1− vÞ
ð1− vþ vwÞ2 −

2

ð1− vwÞ2 : ðA6Þ

Finally, our results for the interference contribution are

σ̂Iðv; wÞ ¼ CI
1ðv; wÞ lnð1 − vÞ þ CI

2ðv; wÞ lnðvÞ þ CI
3ðv; wÞ lnð1 − wÞ þ CI

4ðv; wÞ lnðwÞ
þ CI

5ðv; wÞ lnðð1 − vwÞð1 − vþ vwÞ2Þ þ CI
6ðv; wÞ; ðA7Þ

where

CI
1ðv; wÞ ¼

8

1 − vþ vw
− 4;

CI
2ðv; wÞ ¼ −

4v2ðwð3w − 4Þ þ 2Þ − 8vwþ 8

ð1 − vÞð1 − vþ vwÞ ;

CI
3ðv; wÞ ¼ −

2v2ðwð5w − 8Þ þ 5Þ − 4vwþ 6

ð1 − vÞð1 − vþ vwÞ ;

CI
4ðv; wÞ ¼

4vwð1þ v − vwÞ
ð1 − vÞð1 − vþ vwÞ ;

CI
5ðv; wÞ ¼ −

2ð1þ v − vwÞ
1 − v

;

CI
6ðv; wÞ ¼ −

2wð1þ v − vwÞ
ð1 − vþ vwÞ2ð1 − vwÞ ð1þ v2 − vð4 − 2w − vw2ÞÞ: ðA8Þ

APPENDIX B: LONGITUDINALLY POLARIZED PARTONIC CROSS SECTIONS

Here we list the polarized partonic hard cross sections that appear in Eqs. (39)–(43). To LO,

Δσ̂γPDFðvÞ ¼ 1 − v2

v
; ðB1Þ

Δσ̂γFFðv; wÞ ¼ vwð1 − vþ 2vwÞ
ð1 − vÞð1 − vþ vwÞ ; ðB2Þ

again with NLO corrections in the fragmentation channel that are known [61,65].
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For the Bethe-Heitler process,

Δσ̂BH
�
v; w;

−u
m2

e
;
−u
μ2

�
¼ DBH

1 ðv; wÞ ln
�
−u
μ2

�
þDBH

2 ðv; wÞ ln
�
−u
m2

e

�
þDBH

3 ðv; wÞ lnð1 − vþ vwÞ

þDBH
4 ðv; wÞ lnð1 − wÞ þDBH

5 ðv; wÞ lnðwÞ þDBH
6 ðv; wÞ; ðB3Þ

with the coefficient functions

DBH
1 ðv; wÞ ¼ 1 − v2

v
ð2 − wÞ;

DBH
2 ðv; wÞ ¼ ð2 − 2vþ vwÞð1þ v2ð1 − wÞ2Þ

ð1 − vþ vwÞ2 ;

DBH
3 ðv; wÞ ¼ 2vð2 − wÞ;

DBH
4 ðv; wÞ ¼ 2ð1 − vÞ

ð1 − vþ vwÞ2 − 2vð2 − wÞ þ 2v
1 − vþ vw

þ 2 − w
v

;

DBH
5 ðv; wÞ ¼ −

2 − 2v2ð1 − wÞ
ð1 − vþ vwÞ2 −

2 − w
v

;

DBH
6 ðv; wÞ ¼ 4ð1 − vÞ

1 − vþ vw
þ 1 − w −

3 − 4w
v

−
6ð1 − vÞ

ð1 − vþ vwÞ2 þ 2vð1 − wÞ: ðB4Þ

The results for the Compton channel are

Δσ̂C
�
v; w;

−u
m2

e
;
−u
μ2

�
¼ DC

1 ðv; wÞ ln
�
−u
μ2

�
þDC

2 ðv; wÞ ln
�
−u
m2

e

�
þDC

3 ðv; wÞ ln
�

1 − v
1 − vw

�

þDC
4 ðv; wÞ lnð1 − vþ vwÞ þDC

5 ðv; wÞ ln
�
1 − w
w

�
þDC

6 ðv; wÞ; ðB5Þ

with

DC
1 ðv; wÞ ¼

vwð1þ v2ð1 − wÞ2Þð1 − vþ 2vwÞ
ð1 − vÞð1 − vþ vwÞ2 ;

DC
2 ðv; wÞ ¼

v2w2ð2 − vwÞð1þ v − 2vwÞ
ð1 − vÞð1 − vwÞ2 ;

DC
3 ðv; wÞ ¼ −

2vwð1þ v − 2vwÞ
ð1 − vÞð1 − vwÞ2 ;

DC
4 ðv; wÞ ¼

4vwð1 − vð1 − wÞð1 − vwÞÞ
ð1 − vÞð1 − vþ vwÞ2 ;

DC
5 ðv; wÞ ¼

vw
ð1 − vÞð1 − vþ vwÞ2ð1 − vwÞ2 ½1 − vþ 2vwþ v2ð1 − 2w − 3w2Þ − 2v4wð1 − wÞð2w − 1Þ

× ð2 − w − vwð1 − wÞÞ þ v3ðð7 − 4wÞw2 − 1Þ�;

DC
6 ðv; wÞ ¼

8 − 2v
1 − vþ vw

þ vð1þ 2wþ vwÞ
1 − v

þ 5v − 8

ð1 − vÞð1 − vwÞ þ
4ðv − 1Þ

ð1 − vþ vwÞ2 þ
4

ð1 − vwÞ2 : ðB6Þ

The interference contribution reads

Δσ̂Iðv; wÞ ¼ DI
1ðv; wÞ lnð1 − vÞ þDI

2ðv; wÞ lnðvÞ þDI
3ðv; wÞ lnð1 − wÞ þDI

4ðv; wÞ lnðwÞ
þDI

5ðv; wÞ lnðð1 − vwÞð1 − vþ vwÞ2Þ þDI
6ðv; wÞ; ðB7Þ
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with the coefficients

DI
1ðv; wÞ ¼ 4 −

8

1 − vþ vw
;

DI
2ðv; wÞ ¼ −

4vwð2 − vwÞ
ð1 − vÞð1 − vþ vwÞ ;

DI
3ðv; wÞ ¼

−2 − 4vwþ 2v2ð1þ w2Þ
ð1 − vÞð1 − vþ vwÞ ;

DI
4ðv; wÞ ¼ −

4vwð1þ v − vwÞ
ð1 − vÞð1 − vþ vwÞ ;

DI
5ðv; wÞ ¼

2þ 2vð1 − wÞ
1 − v

;

DI
6ðv; wÞ ¼

2wð1þ v − vwÞ
ð1 − vþ vwÞ2ð1 − vwÞ ½1 − 4vþ v2 þ vwð2þ vwÞ�: ðB8Þ
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