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The leptonic and semileptonic decays of mesons are investigated within the domain model of quantum
chromodynamics (QCD) vacuum and hadronization. The domain model is the mean-field approach based
on the statistical ensemble of almost everywhere homogeneous Abelian (anti-)self-dual gluon fields which
reproduces main features of low-energy QCD and allows one to deduce a nonlocal effective meson action.
Using this meson action, the leptonic decay constants, form factors and branching ratios of semileptonic
decays are evaluated simultaneously with masses of mesons. The results are compared to experimental data
or other approaches.
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I. INTRODUCTION

The leptonic and semileptonic decays are most easily
accessed processes, both theoretically and experimentally,
which involve quark flavor transformation due to weak
interaction. This makes them ideal for extracting the
magnitudes of elements of Cabibbo-Kobayashi-Maskawa
(CKM) matrix V from available experimental data. While
the CKM matrix V concerns mixing of quarks, the exper-
imental data are given for hadrons, which poses difficulties
in extracting CKM elements, from the theoretical point of
view. A multitude of methods can be employed in order to
address this problem (see, e.g., [1–5] and references therein).
Among them are lattice QCD, heavy quark effective theory,
Dyson-Schwinger equations, sum rules and various quark
models.
In this work, leptonic and semileptonic decays of

mesons are investigated within the domain model of
QCD vacuum and hadronization [6–12] which describes
the composite nature of mesons with nonlocal meson-
quark interaction. The domain model of QCD vacuum and
hadronization consistently describes main features of low-
energy QCD. The translation-invariant parts of gluon and
quark propagators are entire analytical functions of com-
plex momentum which can be interpreted as confinement
of dynamical quarks [6]. It was shown in Ref. [13] that the
vacuum ensemble also provides the area law for the Wilson
loop, that is the confinement of static quarks. The vacuum

also provides chiral symmetry breaking and resolution of
UAð1Þ problem [8]. The mean-field model of hadroniza-
tion in the presence of Abelian (anti-)self-dual vacuum
gluon fields developed in Refs. [6,7,9] allows to deduce an
effective meson action via hadronization of one-gluon
exchange of quark currents. The resulting collective color-
less excitations describe extended (non-pointlike) mesons.
It was shown that masses of mesons in the model exhibit
Regge character at large orbital and radial quantum
numbers [6]. The model describes masses of light,
heavy-light mesons and heavy quarkonia [7], leptonic
decay constants of pseudoscalar mesons and electromag-
netic transition constants of vector mesons [9], decay
constants of vector mesons into a couple of pseudoscalar
ones [10], electromagnetic transition form factors of
pseudoscalar mesons [10], dipole polarizabilities of pseu-
doscalar mesons [14]. The model was also applied to the
anomalous magnetic moment of muon, in particular to
dominating contributions due to strong interactions [15].
The present work adds leptonic decay constants of vector
mesons and semileptonic form factors to the list of
phenomena investigated with the domain model of QCD
vacuum and hadronization. See also Refs. [16,17] sum-
marizing results concerning weak interactions of mesons
which were obtained within a related nonlocal model.
The paper is organized as follows. Section II contains

description of the model. The leptonic decays of mesons
are considered in Sec. III, and semileptonic decays in
Sec. IV. The results are summarized in Sec. V.

II. DESCRIPTION OF THE DOMAIN MODEL

The effective meson action of the domain model of QCD
vacuum and hadronization [6–12] is given by the following
formulas in Euclidean space-time
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9
: ð2Þ

Here the indexQ≡ faJLng stands for all quantum number
of a meson. Λ is the strength of background gluon field
related to the condensate hg2F2i. Auxiliary fields ΦQ
introduced during hadronization are transformed into
physical meson fields ϕQ by an orthogonal matrix OQQ0 ,
so the quadratic term W2½ϕ� in Eq. (2) becomes diagonal.
Inverting the quadratic part of the effective action, one

finds corresponding propagators of meson fields ϕQ

DQðp2Þ ¼ h−2Q

�
Λ2

g2C2
Q

þ Γ̃ð2Þ
Q ðp2Þ

�−1
; ð3Þ

where Γ̃ð2Þ
Q is the two-point correlation function diagonal-

ized with respect to all quantum numbers and g is strong
coupling constant. The constants hQ defined by the formula

1 ¼ h2Q
d

dp2
Γ̃ð2Þ
Q ðp2Þ

����
p2¼−M2

Q

provide that the residue at the pole of meson propagator (3)
is equal to unity.

The general function ΓðkÞ
Q1…Qk

ðx1;…; xkÞ includes “con-
nected” and “disconnected” terms correlated by back-

ground gluon field. For example, Γ̃ð2Þ
QQ0 ðpÞ is given by

Γð2Þ
Q1Q2

¼ Gð2Þ
Q1Q2

ðx1; x2Þ − Ξ2ðx1 − x2ÞGð1Þ
Q1
Gð1Þ

Q2
: ð4Þ

Here Ξ is correlation function of the background field
which characterizes the statistical ensemble of the almost
everywhere homogeneous Abelian (anti-)self-dual fields.

GðkÞ
Q1…Qk

are quark loops averaged over background field
with measure dσB

GðkÞ
Q1…Qk

ðx1;…; xkÞ ¼
Z

dσBTrVQ1
ðx1ÞSðx1; x2Þ…VQk

ðxkÞSðxk; x1Þ;

×GðlÞ
Q1…Ql

ðx1;…; xlÞGðkÞ
Qlþ1…Qlþk

ðxlþ1;…; xlþkÞ

¼
Z

dσBTrfVQ1
ðx1ÞSðx1; x2Þ…VQk

ðxlÞSðxl; x1Þg

× TrfVQlþ1
ðxlþ1ÞSðxlþ1; xlþ2Þ…VQlþk

ðxlþkÞSðxlþk; xlþ1Þg: ð5Þ

Here Sðx; yÞ is a quark propagator in background gluon
field, and VQ is a nonlocal meson-quark vertex.
It is possible to find analytical expressions for propa-

gators and vertices if one approximates the ensemble of
almost everywhere homogeneous (anti-)self-dual Abelian
background gluon field with just homogeneous field. The
averaging over the ensemble is then implemented by
averaging the quark loops (5) over configurations of
homogeneous gluon field. These include self-dual and
anti-self-dual fields with different directions in Euclidean

and color spaces. The averaging over spatial directions can
be found with the help of generating formula

Z
dσB expðifμνJμνÞ ¼

sin
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðJμνJμν � JμνJ̃μνÞ

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðJμνJμν � JμνJ̃μνÞ

q ; ð6Þ

where Jμν is an arbitrary antisymmetric tensor. Tensor fμν
stands for an Abelian (anti-)self-dual background field with
strength Λ:
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The upper sign in “�” should be taken for self-dual field, and the lower for anti-self-dual field.
Nonlocal vertices VaJln

μ1…μl are given by the following formulas:

VaJln
μ1…μl ¼ ClnMaΓJFnl

�
D
↔2ðxÞ
Λ2

�
TðlÞ
μ1…μl

�
1

i
D
↔
ðxÞ
Λ

�
;

C2ln ¼
lþ 1

2ln!ðnþ lÞ! ; FnlðsÞ ¼ sn
Z

1

0

dttnþl expðstÞ;

D
↔ff0

μ ¼ ξfD⃖μ − ξf0D⃗μ; D⃖μðxÞ ¼ ∂⃖μ þ iB̂μðxÞ; D⃗μðxÞ ¼ ∂⃗μ − iB̂μðxÞ;
ξf ¼ mf0

mf þmf0
; ξf0 ¼

mf

mf þmf0
: ð8Þ

Here Ma is a flavor matrix for a given meson, ΓJ is a
corresponding Dirac matrix

ΓS ¼ 1; ΓP ¼ iγ5; ΓV
μ ¼ γμ; ΓA

μ ¼ γ5γμ;

constants ξf, ξf0 provide that x is a center of mass for quarks
with flavors f and f0, and n, l are radial and orbital quantum
numbers, correspondingly. Function Fnl is defined by the
propagator of gluons charged with respect to the back-
ground field, TðlÞ are irreducible tensors of four-dimensional
rotation group. Propagator of the quark with mass mf in the
presence of the homogeneous Abelian (anti-)self-dual gluon
field has the form

Sfðx; yÞ ¼ exp

�
−
i
2
n̂xμBμνyν

�
Hfðx − yÞ;

H̃fðpÞ ¼
1

2υΛ2

Z
1

0

dseð−p2=2υΛ2Þs
�
1 − s
1þ s

�
m2

f=4υΛ
2

×

�
pαγα � isγ5γαfαβpβ þmf

�
P� þ P∓

1þ s2

1 − s2

−
i
2
γαfαβγβ

s
1 − s2

�	
; ð9Þ

where anti-Hermitian representation of Dirac matrices is
used, and “�” is the same as in formula (7), P� ¼ ð1�
γ5Þ=2 is the chirality projector. The translation-invariant part
Hf of the propagator is an analytical function in finite
momentum plane which is interpreted as confinement.
A common way of extracting matrix V from exper-

imental data is via matrix elements of quark currents.

For example, leptonic decay constants of mesons are found
from matrix element

h0jq̄0γμγ5qjHi: ð10Þ

The formula (10) is known as impulse approximation which
is often taken as a definition for corresponding amplitudes
(see, e.g., review [2]). It is known that besides an ordinary
boson-current interaction, in bound-state problems there is
also an additional interaction with a gauge field which
appears when the gauge invariance and current conservation
are introduced in a consistent way [18–21]. The diagram-
matical representation of these additional terms is shown in
Fig. 1. When one includes photons and weak gauge bosons
into the domain model, the interactions shown in Fig. 1
emerge, and their contributions to the amplitudes can be
explicitly calculated, as well as those given by the impulse
approximation.
Electromagnetic and weak interactions are introduced

into the meson action in Eq. (2) in a gauge-invariant way
with the prescription outlined in Ref. [18]. After this
procedure and hadronization, the meson action includes
local interactions contained in the Lagrangian of the

FIG. 1. Nonlocal meson-quark interaction with gauge bosons.
The vertex with one gauge boson is of the first order in the gauge
coupling constant, the vertex with two bosons is of the second
order, and so on.
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Standard Model and additional terms due to nonlocality (see Refs. [9,15]). The term relevant for the present paper yields a
nonlocal meson-quark vertex with one charged gauge boson Wþ,

VaJln;μ
f1f2

ðx; qÞ ¼ −
gffiffiffi
2

p
Z

1

0

dτ
1

τ

∂

∂qμ

×

�
PR

�
0 VCKM

0 0

�
f1f

VaJln
ff0 ðD

↔
ðxÞ − iqτξÞδf0f2 − δf1fV

aJln
ff0 ðD

↔
ðxÞ þ iqτξ0Þ

�
0 VCKM

0 0

�
f0f2

PL

�
; ð11Þ

and its analog for W−. Here VCKM is CKM matrix, q is the
momentum of Wþ, PR ¼ ð1þ γ5Þ=2 and PL ¼ ð1 − γ5Þ=2
are chirality projectors, g ¼ e=sin θW, e is electric charge
and θW is weak mixing angle. Note that vertices (11) do not
appear if one introduces weak interactions via Fermi four-
fermion interaction.
Technically, the evaluation of one-loop diagrams reduces

to Gaussian integrals over coordinates or momenta, averag-
ing over background field using Eq. (6), analytical con-
tinuation to Minkowski space-time, and numerical
integration over remaining proper times which appear in
Eqs. (8), (9), and (11). The representation of vertex operator
Fnl given in the Appendix helps reduce the complexity of
Gaussian integrations within the computer algebra systems
such as FORM [22] which was extensively used for evalu-
ation of the amplitudes investigated in the present work.
The masses of mesons can be found from poles of

corresponding propagators (1). The masses of π, ρ, K, K�,
D, B are used to extract the parameters of the model (see
Ref. [9] for details): scale Λ related to gluon condensate
hg2F2i, quark masses and strong constant αs. The param-
eters and evaluated masses are given in Table I. In practice,
the matrixOQQ0 is truncated to some finite order, and in the
present paper it is the matrix OQQ0 ¼ Onn0 which mixes
seven radial states. The masses of charmed and bottom
quarks are extracted fromD0 and B0 mesons instead of J=ψ
and ϒ in previous papers, e.g., [9]. This helps reduce the
errors due to phase space of semileptonic decays which

depends on masses of mesons rather sharply. The leptonic
decay constants of pseudoscalar mesons are recalculated in
Sec. III for consistency.
The energies of decays considered below are far less than

the mass of the weak gauge bosonW�, so it is sufficient to
approximate the exchange of gauge boson with Fermi
constant GF. The values of GF and CKM matrix elements
Vqq0 are taken from PDG [23].

III. LEPTONIC DECAYS OF MESONS

The amplitude of leptonic decays of pseudoscalar
mesons can be parametrized as

AðHðpÞ → lðkÞν̄lðk0ÞÞ ¼
GFffiffiffi
2

p Vqq0lγμð1 − γ5ÞνlMμ
H

¼ i
GFffiffiffi
2

p Vqq0lγμð1 − γ5ÞνlfHpμ

ð12Þ

and for vector mesons as

AðHðpÞ→ lðkÞν̄lðk0ÞÞ ¼
GFffiffiffi
2

p Vqq0lγμð1− γ5ÞνlMμν
H e⃗νðpÞ

¼ GFffiffiffi
2

p Vqq0lγμð1− γ5ÞνlMfHe⃗μðpÞ;

TABLE I. Values of parameters fitted to masses of π, ρ, K, K�, D0, B0, and masses of other mesons evaluated with these parameters
and used in calculations in the paper. Mexp for all mesons except B�

c are taken from Ref. [23].

mu=d, MeV ms, MeV mc, MeV mb, MeV Λ, MeV αs

145 376 1715 5115 416 3.45

π K ρ K� D0 B0

M ¼ Mexp;MeV 139.57 493.67 775.26 891.66 1864.86 5279

ω ϕ D� Ds D�
s B� Bs B�

s Bc B�
c

Mexp;MeV 782 1019.46 2010.28 1968.35 2112.3 5325 5366.7 5415.4 6274.47 6328 [24]
M, MeV 775.26 1039 2088 1975 2235 5452 5373 5591 6312 6678
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where p2 ¼ M2, k2 ¼ m2, k02 ¼ 0. Here Vqq0 is the
element of CKM matrix corresponding to a given
decay, M is the mass of decaying meson, m is the

mass of final lepton, and fH is the constant which
parametrizes hadronic part MH of the corresponding
amplitude. The diagrams contributing to the hadronic
part of these decays are shown in Fig. 2. The gray
background in the diagrams indicates that the back-
ground gluon field is taken into account nonperturba-
tively. The contribution of these diagrams for ground-
state pseudoscalar mesons is

ð2πÞ4δð4Þðp − qÞ 1
2
Vqq0M

μ
H ¼

X
n

OaP
n0

�Z
dσB

Z
d4x

Z
d4y eipx−iqyð−1ÞTrVaP0nðxÞSðx; yÞγμ 1 − γ5

2
VCKMSðy; xÞ

þ
Z

dσB

Z
d4x eipx−iqxð−1Þ

X
n

TrVaP0n;μðx;−qÞSðx; xÞ
	
; ð13Þ

where q ¼ kþ k0 is momentum of virtual W boson, and a is the flavor index corresponding to the meson H. The
trace is with respect to color, flavor and spinor indices. The matrix OaJ

nn0 is found from location of the pole of
propagator (3) for each meson. Analogous expression for the vector mesons is

ð2πÞ4δð4Þðp − qÞ 1
2
Vqq0M

μν
H ¼

X
n

OaV
n0

�Z
dσB

Z
d4x

Z
d4y eipx−iqyð−1ÞTrVaV0n

ν ðxÞSðx; yÞγμ 1 − γ5
2

VCKMSðy; xÞ

þ
Z

dσB

Z
d4x eipx−iqxð−1Þ

X
n

TrVaV0n;μ
ν ðx;−qÞSðx; xÞ

	
: ð14Þ

The first term in these expressions corresponds to the
matrix element of current given by formula

h0jq̄0γμð1 − γ5ÞqjHi: ð15Þ
It can be noted that at large Euclidean momenta p the

meson-quark vertex (8) behaves as 1=p2 if l ¼ 0, and the
vertex with gauge boson (11) behaves as 1=p3. Therefore
the diagrams in Fig. 2 should logarithmically diverge.

In order to regularize the divergences, one introduces a
small positive shift ε into the lower boundary of integration
with respect to t in Eqs. (8) and (11). Explicit calculation
shows the sum of diagrams is finite after the regularization
is removed, ε → 0. Moreover, for pseudoscalar mesons
each diagram in Fig. 2 is finite on their own, so it is possible
to evaluate them separately. The results of calculations for
pseudoscalar mesons are given in Table II, and for vector
mesons in Table III.

FIG. 2. Diagrams contributing to leptonic decay of mesons. The
gray background denotes averaging over vacuum gluon field.

TABLE II. Leptonic decay constants of pseudoscalar mesons
compared to available data. The term in formula (13) correspond-
ing to impulse approximation and matrix element (15) is given in
column “impulse approximation,” the column “full” includes all
contributions given in Eq. (13).

Meson Decay constant fP, MeV

fP, MeV, this work

Impulse approximation Full

π 131.7 [23] 131.2 140.4
K 157.3 [23] 161.2 178.6
D 208.5 [23] 187.8 231.1
Ds 251.8 [23] 245.6 286.8
B 205.7 [23] 164.7 203
Bs 230.7 [25] 220.7 262.8
Bc 427� 6� 2 [26] 403.8 450.2

TABLE III. Leptonic decay constants of vector mesons. The
calculated values are extracted from Eq. (14).

Meson Decay constant fV , MeV fV , MeV, this work

ρ 208.5� 5.5� 0.9 [27] 225.9
ϕ 241� 18 [28] 222.8
K� 202.5 [23] 219
D� 223.5� 8.7 [29] 174.3
D�

s 268.8� 6.5 [29] 202.8
B� 186.4� 7.1 [29] 133.4
B�
s 223.1� 5.6 [29] 165.8

B�
c 422� 13 [30] 299.8
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IV. SEMILEPTONIC DECAYS OF MESONS

The amplitude of semileptonic decay P → P0lν̄l with a
pseudoscalar meson in the final state

AðHðpÞ → H0ðp0Þlν̄lÞ ¼
GFffiffiffi
2

p Vqq0lγμð1 − γ5ÞνlMμ
HH0

can be parametrized as

Mμ
HH0 ¼ Fþðq2ÞPμ þ F−ðq2Þqμ; ð16Þ

where P ¼ pþ p0; q ¼ p − p0. The hadronic part of the
amplitude P → Vlν̄l with a vector meson in the final state

AðHðpÞ → H0ðp0Þlν̄lÞ ¼ e⃗†α
GFffiffiffi
2

p Vqq0lγμð1 − γ5ÞνlMμα
HH0 ;

where e⃗†α is polarization of vector meson, can be repre-
sented in the form suggested in Ref. [31]:

e⃗†αM
μα
HH0 ¼ −ðM þM0Þe⃗†αgμαA1ðq2Þ þ

e⃗†αqα

M þM0 P
μA2ðq2Þ

þ 2M0 e⃗
†
αqα

q2
qμ½A3ðq2Þ − A0ðq2Þ�

þ 2iεμαρσe⃗†αp0
ρpσ

M þM0 Vðq2Þ;

A3ðq2Þ ¼
M þM0

2M2

A1ðq2Þ −
M −M0

2M2

A2ðq2Þ: ð17Þ

Here A0ð0Þ ¼ A3ð0Þ.
The diagrams for semileptonic decay are shown in Fig. 3,

and their contribution is given by the formula

ð2πÞ4δð4Þðp − p0 − qÞ 1
2
Vqq0M

μ
HH0

¼
X
nn0

OaP
n0O

a0P
n00

�Z
dσB

Z
d4x

Z
d4y

Z
d4z eipx−ip

0y−iqzð−1ÞTrVaP0nðxÞSðx; yÞVa0P0n0 ðyÞSðy; zÞγμ 1 − γ5
2

VCKMSðz; xÞ

þ
Z

dσB

Z
d4x

Z
d4y eipx−iqx−ip

0yð−1ÞTrVaP0n;μðx;−qÞSðx; yÞVa0P0n0 ðyÞSðy; xÞ

þ
Z

dσB

Z
d4x

Z
d4y eipx−ip

0x−iqyð−1ÞTrVaP0nðxÞSðx; yÞVa0P0n0;μðy;−qÞSðy; xÞ
	

ð18Þ

for final-state pseudoscalar mesons and

ð2πÞ4δð4Þðp − p0 − qÞ 1
2
Vqq0M

μν
HH0

¼
X
nn0

OaP
n0O

a0V
n00

�Z
dσB

Z
d4x

Z
d4y

Z
d4z eipx−ip

0y−iqzð−1ÞTrVaP0nðxÞSðx; yÞVa0V0n0
ν ðyÞSðy; zÞγμ 1 − γ5

2
VCKMSðz; xÞ

þ
Z

dσB

Z
d4x

Z
d4y eipx−iqx−ip

0yð−1ÞTrVaP0n;μðx;−qÞSðx; yÞVa0V0n0
ν ðyÞSðy; xÞ

þ
Z

dσB

Z
d4x

Z
d4yeipx−ip

0x−iqyð−1ÞTrVaP0nðxÞSðx; yÞVa0V0n0;μ
ν ðy;−qÞSðy; xÞ

	
ð19Þ

for vector mesons. Each term is finite, and no regularization
is needed. Only the first term in Eq. (19) contributes to the
form factor V defined by Eq. (17). Analogously to Eqs. (13)
and (14), the first term in the above formulas corresponds to
the matrix element

hH0jq0γμð1 − γ5ÞqjHi:

Formulas (18) and (19) allow to extract form factors
defined with formulas (16) and (17), and hence phenom-
enology of semileptonic decays. The differential decay rate
is given by

dΓ
dq2d cos θ

¼ p�

ð2πÞ332M2

�
1 −

m2

q2

�X
pol

jAj2:

FIG. 3. Diagrams contributing to semileptonic decay.
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Here p� is the absolute value of final meson momentum in
the rest frame of decaying meson

p�2 ¼


M2 −



M0 −

ffiffiffiffiffi
q2

p �
2
�


M2 −


M0 þ

ffiffiffiffiffi
q2

p �
2
�

4M2
;

and π − θ is the angle between the momenta of final lepton
and final meson in the center of mass of final lepton-

neutrino pair q ¼ ð
ffiffiffiffiffi
q2

p
; 0Þ. In this reference frame inte-

gration over angle θ is trivial, and one easily finds the total
semileptonic decay rate

Γ ¼
Z ðM−M0Þ2

m2

dq2
Z

1

−1
d cos θ

dΓ
dq2d cos θ

: ð20Þ

The results of calculations are presented in Tables IVand V.
Branching ratios are found by dividing decay width (20) by
the total decay width taken from Ref. [23]. These tables
also contain some parameters of form factors: Fþð0Þ for
final-state pseudoscalar mesons (16), and

r2 ¼
A2ð0Þ
A1ð0Þ

; rV ¼ Vð0Þ
A1ð0Þ

for vector meson in the final state (17).
The isospin symmetry mu ¼ md in the present frame-

work is exact, so the following relations for calculated form
factors of semileptonic decays hold:

TABLE IV. Decays P → P0lν̄l or their charge conjugates. Unless indicated otherwise, the data for comparison
are taken from PDG [23]. The width of KL is the sum of the charge states. The value for FK−π0

0 is found by dividing
FK0π−þ ð0Þ taken from Ref. [32] by

ffiffiffi
2

p
.

Decay

Available data This work

Fþð0Þ Branching ratio Fþð0Þ Branching ratio

K− → π0e−ν̄e ð5.07� 0.04Þ × 10−2 0.699 4.68 × 10−2

K− → π0μ−ν̄μ ð3.352� 0.033Þ × 10−2 3.05 × 10−2

KL → π�e∓νe 0.6856� 0.0010 [32] ð4.055� 0.011Þ × 10−1 0.699 3.86 × 10−1

KL → π�μ∓νμ ð2.704� 0.001Þ × 10−1 2.52 × 10−1

D0 → K−eþνe 0.7368� 0.0044 [33] ð3.549� 0.026Þ × 10−2 0.813 3.68 × 10−2

D0 → K−μþνμ ð3.41� 0.04Þ × 10−2 3.57 × 10−2

D0 → π−eþνe 0.6372� 0.0091 [33] ð2.91� 0.04Þ × 10−3 0.745 2.91 × 10−3

D0 → π−μþνμ ð2.67� 0.12Þ × 10−3 2.85 × 10−3

Dþ → K̄0eþνe 0.725� 0.013 [34] ð8.72� 0.09Þ × 10−2 0.813 9.27 × 10−2

Dþ → K̄0μþνμ ð8.76� 0.19Þ × 10−2 8.99 × 10−2

Dþ → π0eþνe 0.440� 0.009 [34] ð3.72� 0.17Þ × 10−3 0.527 3.66 × 10−3

Dþ → π0μþνμ ð3.50� 0.15Þ × 10−3 3.59 × 10−3

Dþ
s → K0eþνe 0.720� 0.085 [35] ð3.4� 0.4Þ × 10−3 0.611 2.18 × 10−3

B0 → D−lþνl 0.717� 0.05 [36] ð2.24� 0.09Þ × 10−2 0.839 2.99 × 10−2

B0 → D−τþντ ð1.05� 0.23Þ × 10−2 7.73 × 10−3

B0 → π−lþνl 0.297� 0.030 [37] ð1.50� 0.06Þ × 10−4 0.348 1.83 × 10−4

Bþ → D̄0lν̄l ð2.30� 0.09Þ × 10−2 0.839 3.23 × 10−2

Bþ → D̄0τν̄τ ð7.7� 2.5Þ × 10−3 8.33 × 10−3

Bþ → π0lþνl ð7.8� 0.27Þ × 10−5 0.246 9.85 × 10−5

B0
s → K−μþνμ 0.336� 0.023 [38] ð1.06� 0.09Þ × 10−4 0.270 1.34 × 10−4

B0
s → D−

s μ
þνμ 0.665� 0.012 [39] ð2.44� 0.23Þ × 10−2 0.801 2.87 × 10−2
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FD0→π−
� ¼

ffiffiffi
2

p
FDþ→π0
� ; FD0→ρ−

i ¼
ffiffiffi
2

p
FDþ→ρ0

i ¼
ffiffiffi
2

p
FDþ→ω
i ;

FD0→K−

� ¼ FDþ→K̄0

� ; FD0→K�−
i ¼ FDþ→K̄�0

i ;

FB0→π−
� ¼

ffiffiffi
2

p
FBþ→π0
� ; FB0→ρ−

i ¼
ffiffiffi
2

p
FBþ→ρ0

i ¼
ffiffiffi
2

p
FBþ→ω
i ;

FB0→D−

� ¼ FBþ→D0

� ; FB0→D�−
i ¼ FBþ→D�0

i ;

where Fi ¼ A0; A1; A2; V. For the purposes of the
present paper it also suffices to neglect CP-violation, so
additionally

FK−→π0
� ¼ FKL→πþ

� ¼ FKL→π−

� :

The vertex (8), and consequently (11), results from the
expansion of a bilocal quark current in terms of basis
functions around its “center of mass” [6]. The vertex withW
boson (11) changes quark flavor and hence mass, and this
might lead to exponential growth of individual terms in the

sum over radial number n in formulas (18) and (19), which
is typical of nonlocal theories. The sums over n then appear
as a result of large number cancellation which makes them
difficult to evaluate numerically. Among the considered
semileptonic decays, this happens with the decays of Ds

into K;K�, B into π, ρ, ω, and Bs into K. The impulse
approximation is unaffected by this numerical instability,
while additional “nonlocal” contributions are neglected for
these decays as they are expected to be smaller. The latter is
mentioned in Ref. [43] and can be observed in semileptonic
decays where there is no numerical instability.

TABLE V. Decays P → Vlν̄l or their charge conjugates. The data for comparison are taken from PDG [23] if not
indicated otherwise.

Decay

Available data This work

rV r2 Branching ratio rV r2 Branching ratio

D0 → ρ−eþνe 1.64� 0.10 0.84� 0.06 ð1.50� 0.12Þ × 10−3 1.37 0.819 3.35 × 10−3

D0 → ρ−μþνμ ð1.35� 0.13Þ × 10−3 3.20 × 10−3

D0 → K�−eþνe 1.46� 0.07 0.68� 0.06 ð2.15� 0.16Þ × 10−2 1.24 0.788 4.07 × 10−2

D0 → K�−μþνμ ð1.89� 0.24Þ × 10−2 3.84 × 10−2

Dþ → ρ0eþνe 1.64� 0.10 0.84� 0.06 ð2.18 þ0.17
−0.25Þ × 10−3 1.37 0.819 4.22 × 10−3

Dþ → ρ0μþνμ ð2.4� 0.4Þ × 10−3 4.03 × 10−3

Dþ → ωeþνe 1.24� 0.11 1.06� 0.16 ð1.69� 0.11Þ × 10−3 1.37 0.819 4.22 × 10−3

Dþ → ωμþνμ ð1.77� 0.21Þ × 10−3 4.03 × 10−3

Dþ → K̄�0eþνe 1.49� 0.05 0.802� 0.021 ð5.40� 0.10Þ × 10−2 1.24 0.788 1.02 × 10−1

Dþ → K̄�0μþνμ ð5.27� 0.15Þ × 10−2 9.66 × 10−2

Dþ
s → ϕeþνe 1.80� 0.08 0.84� 0.11 ð2.39� 0.16Þ × 10−2 1.36 0.879 3.54 × 10−2

Dþ
s → ϕμþνμ ð1.9� 0.5Þ × 10−2 3.34 × 10−2

Dþ
s → K�0eþνe 1.7� 0.4 0.77� 0.29 ð2.15� 0.28Þ × 10−3 1.46 0.689 2.82 × 10−3

B0 → ρ−lþνl 1.270� 0.240 [40] 0.874� 0.192 [40] ð2.94� 0.21Þ × 10−4 1.17 0.928 8.14 × 10−4

B0 → D�−lþνl 1.151� 0.114 [40] 0.856� 0.076 [40] ð4.97� 0.12Þ × 10−2 1.06 0.926 6.82 × 10−2

B0 → D�−τþντ ð1.58� 0.09Þ × 10−2 1.47 × 10−2

Bþ → ρ0lþνl ð1.58� 0.44Þ × 10−4 1.17 0.928 4.39 × 10−4

Bþ → ωlþνl 1.254� 0.056 [41] 0.878� 0.081 [41] ð1.19� 0.09Þ × 10−4 1.17 0.928 4.39 × 10−4

Bþ → D̄�0lþνl ð5.58� 0.22Þ × 10−2 1.06 0.926 7.36 × 10−2

Bþ → D̄�0τþντ ð1.88� 0.20Þ × 10−2 1.58 × 10−2

B0
s → D�−

s μþνμ 1.64� 0.278 [42] 0.958� 0.146 [42] ð5.3� 0.5Þ × 10−2 1.10 0.959 5.75 × 10−2
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One notices that the branching ratios of semileptonic
decays with light final-state vector mesons such as D0 →
ρ−eþνe (see Table V) are in poor agreement with exper-
imental data. However, the experimental values given in
Table Vare not measured directly, but rather extracted from
semileptonic decays with a couple of final-state pseudo-
scalar mesons

P → P0P00lνl: ð21Þ

In doing so, these decays are considered to take place via
resonances and the Breit-Wigner function is employed for
the description of their shape (see e.g. Ref. [44]). In the
domain model, the meson propagator (3) resembles the
free particle propagator only in the vicinity of the meson
pole. If one includes finite width in propagator (1), it is
expected to be adequately approximated by Breit-Wigner
form only for narrow resonances. Assumedly, this is
why decay width for B0

ðsÞ → D�−
ðsÞμ

þνμ is in much better

TABLE VI. Parameters of double-pole parametrization (22) fitted to form factors of P → P0lν̄l extracted from
the amplitude (18). Rows with label “full” include all terms in Eq. (18), while in “imp. approx.” only the term
corresponding to the impulse approximation is retained.

Fþ F−

Fþð0Þ a b F−ð0Þ a b

K− → π0lν̄l Full 0.699 0.279 0.00537 −0.0964 0.210 0.00703
Imp. approx. 0.697 0.280 0.00606 −0.0876 0.224 0.00962

D0 → π−lνl Full 0.745 0.657 −0.0364 −0.375 0.813 0.0830
Imp. approx. 0.648 0.772 0.0490 −0.382 0.790 0.0641

D0 → K−lνl Full 0.813 0.614 0.0137 −0.388 0.642 0.0282
Imp. approx. 0.803 0.624 0.0205 −0.386 0.644 0.0287

Ds → K0lνl Imp. approx. 0.611 1.02 0.185 −0.388 1.05 0.197

B0 → π−lνl Imp. approx. 0.348 1.08 0.170 −0.285 1.09 0.181

B0
s → K−lνl Imp. approx. 0.270 1.39 0.434 −0.230 1.40 0.434

B0 → D−lνl Full 0.839 0.629 0.0227 −0.382 0.635 0.0237
Imp. approx. 0.840 0.629 0.0231 −0.382 0.635 0.0233

B0
s → D−

s lνl Full 0.801 0.807 0.115 −0.360 0.840 0.142
Imp. approx. 0.785 0.828 0.135 −0.363 0.832 0.135

TABLE VII. Parameters of double-pole parametrization (22) fitted to form factors of P → Vlν̄l extracted from the amplitude (19).
Rows with label “full” include all terms in Eq. (19), while in “imp. approx.” only the term corresponding to the impulse approximation is
retained.

A0 A1 A2 V

A0ð0Þ a b A1ð0Þ a b A2ð0Þ a b Vð0Þ a b

D0 → ρ−lνl Full 1.07 0.972 0.248 0.948 0.113 0.0258 0.777 0.316 0.196 1.30 0.785 0.0908
Imp. approx. 1.14 0.894 0.168 0.953 0.110 0.0249 0.688 0.370 0.237 1.30 0.785 0.0908

D0 → K�−lνl Full 1.03 0.779 0.130 0.922 0.118 −0.00706 0.726 0.433 0.0543 1.14 0.683 0.0613
Imp. approx. 1.03 0.762 0.112 0.921 0.118 −0.00715 0.715 0.441 0.0584 1.14 0.683 0.0613

Ds → ϕlνl Full 0.856 1.08 0.352 0.811 0.349 −0.00735 0.713 0.569 0.0943 1.10 0.936 0.191
Imp. approx. 0.889 1.00 0.256 0.809 0.347 −0.00883 0.633 0.645 0.154 1.10 0.936 0.191

Dþ
s → K�0lνl Imp. approx. 0.855 1.18 0.361 0.719 0.397 0.00367 0.495 0.580 0.343 1.05 1.09 0.267

B0 → ρ−lνl Imp. approx. 0.670 1.30 0.373 0.559 0.294 0.00389 0.519 1.02 0.296 0.656 1.18 0.265

B0 → D�−lνl Full 0.891 0.769 0.110 0.843 0.190 −0.0316 0.780 0.679 0.0733 0.890 0.733 0.0817
Imp. approx. 0.893 0.762 0.103 0.844 0.190 −0.0316 0.780 0.680 0.0738 0.890 0.733 0.0817

B0
s → D−

s lνl Full 0.788 1.03 0.278 0.766 0.414 −0.0237 0.734 0.871 0.160 0.843 0.957 0.204
Imp. approx. 0.805 0.989 0.235 0.768 0.412 −0.0246 0.716 0.894 0.182 0.843 0.957 0.204
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agreement with experiment (see Table V) because the
widths of D� and D�

s are relatively small. Another
source of uncertainty is nonresonant contribution to the
decay (21) which would interfere with the resonant one.
Overall, the comparison of model result with experimental
data for four-body decay (21) would be more conclusive,
but this requires evaluation of both resonant and nonreso-
nant contributions, which is beyond the scope of the
present paper. The ratios r2, rV are not sensitive to the total
decay width.
In order to conveniently represent the calculated

form factors, they are fitted with the double-pole
parametrization

Fi ¼ Fið0Þ
�
1 − a

q2

M2
P
þ b

�
q2

M2
P

�
2
	−1

ð22Þ

in the physical region of q2. The results of the fits are
given in Tables VI and VII, and the fitting error is
negligible for the present framework. The Tables VI
and VII allow to compare the contribution of all
diagrams in Fig. 3 with the impulse approximation
where the former is accessible.

V. SUMMARY AND OUTLOOK

The domain model of QCD vacuum and hadronization is
a mean-field approach that allows unified description of
basic low-energy properties of QCD and meson physics. In
the present work, the model was applied to the leptonic and
semileptonic decays of mesons. The numerical results for
leptonic decay constants, semileptonic form factors and
branching ratios are presented. The phenomenological
description is reasonable with the exception of branching
ratios BðP → Vlν̄lÞ for large-width mesons V.
When one consistently introduces the electroweak inter-

actions into the model, the corresponding amplitudes of
these decays get contributions due to vertices in Fig. 1 in
addition to the impulse approximation. Among the decays
considered in the present paper, the vertices in Fig. 1 give
the most prominent numerical contribution to the leptonic
decays of pseudoscalar mesons (Table II), while the effect
on semileptonic decays is much smaller numerically, with
the exception of D → π and D → ρ (Tables VI and VII).
The impulse approximation for leptonic decays of vector
mesons in not even meaningful on its own. The domain
model is obviously an effective model with limited pre-
cision, but the findings of the present work indicate that
vertices in Fig. 1 should be taken into account when
extracting CKM matrix from the experimental data. It is
plausible that the tension between determination of CKM
matrix elements from inclusive and exclusive semileptonic
decays, leptonic decays and semileptonic decays can be
related to contributions in Fig. 1, as well as deviation from
unitarity of CKM matrix (see, e.g., review [4]).

For example, consider the tension in the values of jVcsj
extracted from leptonic or semileptonic decays with Lattice
QCD, which is reported to be ∼2σ (see Ref. [4], Sec. XI.B.3
and Ref. [2], Sec. 7.5). One may find the product [Ref. [4],
Eq. (316)]

jVcsjfDs
¼ ð245.4� 2.4Þ MeV ð23Þ

from experimentally measured branching ratios of leptonic
decays of Ds, masses of Ds and leptons, and Ds lifetime.
Now, if one uses either the “imp. approx.” or “full” values
for fDS

in Table II, the extracted central values of jVcsj
would differ by approximately 15%. At the same time, the
values of jVcsj extracted from the world average of
experimentally measured value (Ref. [4], Table 288)

jVcsjFD→Kþ ð0Þ ¼ 0.7180ð33Þ ð24Þ

and either the “imp. approx.” or “full” values of FD→Kþ ð0Þ in
Table VI would differ by 1%. It is more illuminating to
consider the ratio

jVcsjfDs

jVcsjFD→Kþ ð0Þ ¼
fDs

FD→Kþ ð0Þ ð25Þ

which is given in Table VIII for several cases. The
contribution of diagrams in Fig. 1 brings the ratio (25)
closer to the experimental value and hence improves the
description of meson dynamics within the model and
decreases the tension between the values of jVcsj extracted
from leptonic or semileptonic decays. The overall effect,
however, is comparable with the precision of the model.
The actual extraction of CKMmatrix elements with proper
assessment of uncertainties and standard model constraints

TABLE VIII. The central value for ratio (25) calculated from
experimental data [Eqs. (23) and (24)], Lattice QCD (Ref. [2],
Eq. (178) and Ref. [4], Table 291) and Tables II and VI. The
closer this ratio to the experimental value, the more consistent
thus extracted elements jVcsj would be.

jVcsjfDs
jVcsjFD→K

þ ð0Þ, MeV fDs
FD→K
þ ð0Þ, MeV

Experimental LQCD Imp. approx. Full
341.8 328.8 305.9 352.8

FIG. 4. Additional diagrams contributing to the amplitude of
P → ηð0Þlν̄l in the domain model. The dark gray denotes
correlation of quark loops by the vacuum field analogous to
the second term in Eq. (4).

VLADIMIR VORONIN PHYS. REV. D 110, 014040 (2024)

014040-10



is based on the most precise available data, both exper-
imentally and theoretically, see Refs. [45–48] and minire-
view in PDG (Section 12 in Ref. [23]).
The decays involving η and η0 mesons were not con-

sidered in the present work because there are additional

contributions to corresponding amplitudes. The diagrams
for these contributions are shown in Fig. 4, their origin is
analogous to the second term of Eq. (4). These decays
require a separate thorough analysis and will be considered
elsewhere.
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APPENDIX: VERTEX FUNCTION

FnlðsÞ ¼ sn
Z

1

0

dttnþl expðstÞ ¼
Z

1

0

dttnþl ∂
n

∂tn
expðstÞ

¼ tnþl ∂
n−1

∂tn−1
expðstÞ

����
1

t¼0

−
Z

1

0

dtðnþ lÞtn−1þl ∂
n−1

∂tn−1
expðstÞ ¼ …

¼ ð−1Þnðnþ lÞ!
�Xn
m¼1

ð−1Þm 1

ðmþ lÞ! s
m−1 expðsÞ þ 1

l!

Z
1

0

dttl expðstÞ
	
: ðA1Þ

The terms sn containing kinematic variables make formulas significantly larger. In order to avoid this difficulty,
formula (A1) for vertex function Fnl can be transformed further with the help of the identity

sn ¼ n!
2πi

I
Γ

dz
znþ1

exp sz; n ¼ 0; 1; 2;… ðA2Þ

where the closed contour Γ encircles zero. After substituting Eq. (A2) into Eq. (A1) and using several identities one finds

Fnl ¼ ð−1Þnðnþ lÞ!
Z

1

0

dt

�
expðsðr expði2πtÞ þ 1ÞÞ

×

�Xn
m¼2

ð−1Þm
ðmþ lÞ!

ðm − 1Þ!
rm−1 expði2πð1 −mÞtÞ

�
−

exp s
ðlþ 1Þ!þ

tl

l!
expðstÞ

	

¼ ð−1Þnðnþ lÞ!
Z

1

0

dt

�
tl

l!
expðstÞ − exp s

ðlþ 1Þ!þ
Xn
m¼2

ð−1Þm
ðmþ lÞ!

ðm − 1Þ!
rm−1

−i
m − 1

×
Xm−2

j¼0

fexp ½sfðt=2 − j; m; rÞ� − exp ½sfð−t=2þ j; m; rÞ�g sin πt
	

where

fðt; m; rÞ ¼ r exp

�
i2π

t
m − 1

�
þ 1

and 0 < r ≤ 1 is an arbitrary parameter.
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