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The Casimir effect is known to be induced from photon fields confined by a small volume, and also its
fermionic counterpart has been predicted in a wide range of quantum systems. Here, we investigate what
types of Casimir effects can occur from quark fields in dense and thin quark matter. In particular, in the dual
chiral density wave, which is a possible ground state of dense quark matter, we find that the Casimir energy
oscillates as a function of the thickness of matter. This oscillating Casimir effect is regarded as an analog of
that in Weyl semimetals and is attributed to the Weyl points in the momentum space of quark fields. In
addition, we show that an oscillation is also induced from the quark Fermi sea, and the total Casimir energy
is composed of multiple oscillations.
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I. INTRODUCTION

The Casimir effect, proposed by Casimir [1], is crucially
important for understanding small-volume physics in
quantum field theory (see Refs. [2–6] for reviews).
Casimir predicted that the decrease of the zero-point energy
of photon fields by two parallel plates would cause an
attractive force for the plates, which are the so-called
Casimir energy and the Casimir force. The Casimir force
was experimentally verified about fifty years later [7,8].
Beyond academic interest, the engineering application of

the Casimir effect to nanotechnology (Casimir engineering)
has recently attracted much attention [9]. The most typical
feature of the Casimir effect is an attractive force. On the
other hand, when one tunes the permittivity and/or per-
meability of plates and medium, a repulsive force can be
also realized [10–13]. In contrast to such attractive or
repulsive Casimir effects, the third type of Casimir effect
would be interesting, where “third”means that attraction or
repulsion is not fixed. For example, under a setup, the sign
of Casimir energy flips from attraction to repulsion as the
separation distance increases, which may be called the
sign-flipping Casimir effect (e.g., see Refs. [14–19]). As
another example, the value of Casimir energy can oscillate

as a function of distance, which may be called the
oscillating Casimir effect (e.g., see Refs. [20–32]).
Among them, Ref. [31] found that it occurs inside Weyl
semimetals, where the origins of the oscillation are Weyl
points (WPs) at finite momenta in the dispersion relations
ofWeyl fermions. Such new types of Casimir effects are not
only of theoretical interest but also will be important for
Casimir engineering.
The Casimir effect is also important for elucidating quark

and gluon dynamics described by quantum chromodynam-
ics (QCD) in a small volume. For example, (i) as an
ab initio method for solving QCD, numerical simulations
of lattice QCD are done in finite volume (e.g., in a box of a
few fm size), and finite-volume effects must be understood.
Since the finite-volume effect for zero-point energy is
nothing but the Casimir effect, its understanding is helpful
for interpretations of results in small-volume simulations.
(ii) In relativistic heavy-ion collision experiments, quark-
gluon plasma is produced as a fireball with a size of a few
fm. Therefore, we must well understand the contribution of
the Casimir effect to physics inside the fireball and near its
boundary. (iii) In the interiors of neutron stars, dense quark
matter as well as nuclear matter may exist. Depending on
the microscopic density profile inside stars, there may be
small regions of quark matter.
Under these motivations, this paper focuses on what

types of Casimir effects can occur in various phases of
quark matter where the thickness of z direction is extremely
short (i.e., “thin” quark matter) as illustrated in Fig. 1. In
particular, in this paper, we propose a QCD counterpart
of the oscillating Casimir effect predicted in Weyl semi-
metals. This is realized for fermion fields in the dual chiral
density wave (DCDW) phase [33] (also see Refs. [34–80]
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for related studies and Ref. [81] for a review). The DCDW
phase is a candidate for the ground state of quark/nuclear
matter in the density region of ρ=ρ0 ¼ 3 ∼ 6 with the
normal nuclear density ρ0 ¼ 0.16 fm−3 [46,47], and com-
plex dispersion relations of fermions in this phase can be an
origin of the oscillating Casimir effect.
In this paper, we aim to investigate types of Casimir

effects induced from quark fields in dense quark matter. To
accomplish this, this paper is organized as follows. In
Sec. II, we formulate the zero-point energy and the Casimir
energy within the Nambu–Jona-Lasinio (NJL) model
[82,83] as an effective model of QCD. In Sec. III, we
show our numerical results and classify the types of
Casimir effects in three density regions. Section IV is
devoted to our conclusion and outlook.

II. FORMULATION

A. Dual chiral density waves

A chiral density wave is a spatially inhomogeneous
chiral condensate, which is represented as a position-
dependent Lorentz-scalar condensate made of the Dirac
fields, ψ and ψ̄ ¼ ψ†γ0: hψ̄ψi ∝ cosðq⃗ · r⃗Þ with a wave
number vector q⃗ and a position vector r⃗. Among various
types of chiral density waves, in this study, we focus on the
DCDW, where both the scalar and pseudoscalar conden-
sates are position-dependent [33],

hψ̄ψi ¼ Δ cosðq⃗ · r⃗Þ; hψ̄ iγ5ψi ¼ Δ sinðq⃗ · r⃗Þ; ð1Þ

where Δ is the amplitude of the DCDW and is regarded as
the radius of the chiral circle, hψ̄ψi2 þ hψ̄iγ5ψi2 ¼ Δ2.

B. NJL model

To investigate the DCDW phase of quark matter, in this
work, we use the NJL model [82,83] (see Refs. [84–87] for
reviews), which was done in Refs. [41,44,46,47] for early
studies. The Lagrangian density of the two-flavor NJL
model is written as

LNJL ¼ ψ̄ði=∂þ μγ0Þψ þ G½ðψ̄ψÞ2 þ ðψ̄iγ5τ⃗ψÞ2�; ð2Þ

where μ is the quark chemical potential, G is the coupling
constant of the four-point interactions, and τ⃗ ¼ ðτ1; τ2; τ3Þ
is the Pauli matrix for the isospin. Here, we apply the mean-
field ansatz for the DCDW,

hψ̄ψi ¼ Δ cosðq⃗ · r⃗Þ; hψ̄iγ5τ3ψi ¼ Δ sinðq⃗ · r⃗Þ; ð3Þ
hψ̄iγ5τ1ψi ¼ 0; hψ̄ iγ5τ2ψi ¼ 0; ð4Þ

whereΔ is the amplitude of the DCDW, and q⃗ ¼ ð0; 0; qÞ is
the wave number of the DCDW propagating in the z
direction. Using this ansatz, the mean-field (MF)
Lagrangian density is

LMF ¼ ψ̄ ½i=∂þ μγ0 −MðcosðqzÞ þ iγ5τ3 sinðqzÞÞ�ψ −
M2

4G
;

ð5Þ
where M ¼ −2GΔ.
Using a local chiral transformation (which may be

called a Weinberg transformation), ψeiγ5τ3qz=2 → ψW,
ψ̄eiγ5τ3qz=2 → ψ̄W, the original quark field ψ is redefined
as a new field ψW, and the position dependence of the
original Lagrangian (5) is removed in the redefined quark
fields. Then, from the diagonalization of the inverse
quark propagator in momentum space, we obtain the four
eigenvalues of (quasi-)quarks, ω� (the positive-energy
modes if μ ¼ 0) and ω̃� (the negative-energy modes):

ω� ¼ Es − μ; ð6Þ
ω̃� ¼ −Es − μ; ð7Þ

where

Es ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2 þ q2=4�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqkzÞ2 þM2q2

qr
; ð8Þ

and k2 ¼ k2x þ k2y þ k2z . When q ¼ 0, the dispersion rela-
tions return to those of usual massive quarks with a mass
M, where the two modes with different spins are degen-
erate. When q ≠ 0, the two modes are split, which is
labeled by s ¼ �. In this work, we focus on the case of
M < q=2, which is a typical situation of the DCDW phase.1

Quark matter

Boundary

Boundary

Outside vacuum

Outside vacuum

FIG. 1. Schematics of the Casimir effect for quark fields inside
thin quark matter, where the quark matter is confined between
boundary conditions with a thickness Lz. The “outside vacuum”
should be regarded as an arbitrary vacuum consistent with the
boundary conditions.

1The case of M ≥ q=2 is also interesting, but the WP-induced
oscillating Casimir effect does not occur.

FUJII, NAKAYAMA, and SUZUKI PHYS. REV. D 110, 014039 (2024)

014039-2



Using these eigenvalues, the thermodynamic potential
(per a spatial volume V ¼ LxLyLz) at temperature T ¼ 1=β
is written as

ΩðTÞ
V

¼ −NfNc

Z
d3k
ð2πÞ3

X
s¼�

�
Es þ

1

β
lnð1þ e−βðEs−μÞÞ

þ 1

β
lnð1þ e−βðEsþμÞÞ

�
þM2

4G
: ð9Þ

In this work we fix the number of flavors as Nf ¼ 2 and the
number of colors as Nc ¼ 3.
By taking the zero-temperature limit T → 0 of the

thermodynamic potential (9), we obtain

ΩðT → 0Þ
V

≡ E0

Lz
¼ −NfNc

Z
d3k
ð2πÞ3

×
X
s¼�

½Es þ ðμ − EsÞθðμ − EsÞ� þ
M2

4G
: ð10Þ

Here, the first term is regarded as the contribution from the
Dirac sea, i.e., the negative zero-point energy from the
fermion fields. The second term with the step function is
the contribution from the Fermi sea of quarks. The third
term is the positive energy from the order parameter M. To
provide a Casimir-effect-like picture also for the Fermi sea
contribution (as well as the Dirac sea), we have denoted
Eq. (10) as E0=Lz where E0 is the zero-point energy per
unit area.
Note that in the traditional treatment of the NJL model,

we determine the values of the order parametersM and q by
minimizing Eq. (10) at a fixed μ. In a finite volume, the
thermodynamic potential in a fixed volume is minimized,
and the values of M and q should be determined. This type
of analysis is important for studying the phase diagram in
finite volume, but it is not the purpose of this work. The
purpose of this work is to investigate the feasibility of the
oscillating Casimir effect in dense quark matter.

C. Casimir energy with Lifshitz formula

The Casimir energy is defined as a finite-volume effect
for the zero-point energy (10). In a finite volume, the
momentum integral with respect to the three-dimensional
momentum of quarks in Eq. (10) is replaced by a discrete
sum. In this paper, we impose the periodic boundary
conditions (PBCs) on quark fields at z ¼ 0 and z ¼ Lz,
where the z component of quark momentum is discretized
as kz → 2nπ=Lz where n ¼ 0; 1;…;∞.2 Note that for the
PBC, there is no outside vacuum as in Fig. 1, but the

discretization of momentum (and corresponding eigenval-
ues) can induce a nonzero Casimir energy.
The zero-point energy (10) as the infinite integral and the

corresponding infinite sum is divergent (unless an energy or
a momentum cutoff is introduced), but the Casimir energy
should be finite after using a mathematical technique. In
this paper, we propose two approaches: (i) the Lifshitz
formula and (ii) lattice regularizations.
Using the first approach, at zero temperature T ¼ 0 and

zero chemical potential μ ¼ 0, the analytical solution for
the Casimir energy (per unit area) from quark fields in the
DCDW phase can be written as

ECas ¼ −4NfNc

X
s¼�

Z
∞

0

dξ
2π

Z
dkxdky
ð2πÞ2 ln

h
1 − e−Lzk̃

½s�
z

i
;

k̃½��
z ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2⊥ þM2 þ ξ2 −

q2

4
∓ iq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2⊥ þ ξ2

qr
; ð11Þ

where the first integral variable is the imaginary part ξ of
imaginary frequencyω≡ iξ, and k2⊥ ≡ k2x þ k2y. The overall
factor of 2NfNc means the degrees of freedom for particle-
antiparticle, flavors, and colors, and the spin degrees of
freedom are labeled as s ¼ �. The overall factor of −2 and
the factor of −e−Lzk̃

½s�
z are a property of the PBC on fermion

fields. See Appendix A for a derivation of Eq. (11) and
the case of the antiperiodic boundary condition. Also, for
discussion with the MIT bag boundary condition, see
Appendix B.
Note that Eq. (11) is one of the main findings in this

paper, which is an analog of the Lifshitz formula [88] to
calculate the Casimir effect for photon fields. When we
substitute M ¼ q ¼ 0 and q ¼ 0, Eq. (11) returns to the
known formulas for themassless andmassive quarks,ECas ¼
NfNc × 2π2=45L3

z and ECas ¼ NfNc × ð2M2=π2LzÞ×P∞
l¼1K2ðlMLzÞ=l2, respectively, where K2 is the modified

Bessel function.
Furthermore, we define a dimensionless quantity, which

we call the Casimir coefficient, by multiplying L3
z ,

C½3�
Cas ≡ L3

zECas: ð12Þ

This is a convenient quantity for checking the Lz depend-
ence of the Casimir energy.

D. Casimir energy with a lattice regularization

As another approach to calculate the Casimir energy,
we use lattice regularizations [28–32,89–96], which is
regarded as a generalization of the original definition by
Casimir [1]. Then, the Casimir energy (per unit area) on
the three-dimensional lattice with a lattice spacing a is
defined as

ELat
Cas ¼ Esum

0 − Eint
0 ; ð13Þ

2The case with boundary conditions for the x or y direction is
straightforward, but these boundaries do not induce the WP-
induced oscillating Casimir effect since now the DCDW is along
the z axis.
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Esum
0 ¼ −

NfNc

a3
X
s¼�

Z
BZ

dðakxÞdðakyÞ
ð2πÞ2

×
XBZ
n

�
1

2
ajELat

s;n − μj þ 1

2
ajELat

s;n þ μj
�
; ð14Þ

Eint
0 ¼ −

NfNc

a3
X
s¼�

Z
BZ

dðakxÞdðakyÞdðakzÞ
ð2πÞ3

× Nz

�
1

2
ajELat

s − μj þ 1

2
ajELat

s þ μj
�
; ð15Þ

where the dispersion relations ELat
� on the lattice is obtained

by replacing the original momenta k2i (i ¼ x, y, z) in
Eq. (8) as

k2i →
1

a2
ð2 − 2 cos akiÞ: ð16Þ

The first term Esum
0 in Eq. (13) is the zero-point energy in

finite volume (and at finite chemical potential) with the
momentum discretized by a finite thickness Lz ¼ aNz,
where Nz is the number of lattice cells. The second term
Eint
0 in Eq. (13) is the zero-point energy with the continuous

momentum in infinite volume. The Casimir energy ELat
Cas is

defined as the difference between these two energies. Also,
as a result of lattice regularization, the momentum integral
and the momentum sum are taken within the first Brillouin
zone (BZ). In the case of the PBC, the sum is over
n ¼ 0; 1;…; Nz − 1 (or equivalently n ¼ 1; 2;…; Nz).
Finally, we also define the dimensionless Casimir

coefficient on the lattice,

C½3�Lat
Cas ≡ L3

zELat
Cas ¼ a3N3

zELat
Cas: ð17Þ

The quantities on the lattice, ELat
Cas and C

½3�Lat
Cas , depend on the

lattice spacing a, but its continuum limit (a → 0) should
coincide with Eqs. (11) and (12) in the continuum theory
(if the lattice regularization is appropriate)

C½3�
Cas ¼ lim

a→0
C½3�Lat
Cas : ð18Þ

E. Dispersion relations

We remark on the dispersion relations (6) and (7) for
quark fields in the DCDW phase. In Fig. 2(a), we show the
four eigenmodes in the DCDW phase. Here, the parameters
are fixed as (M=Λ; q=Λ; μ=Λ; Þ ¼ ð0.1; 0.6; 0.6Þ, where
each quantity is dimensionless by dividing by a dimen-
sional parameter Λ. In this figure, the two touching points
of ω− and ω̃− are regarded as Weyl points, and in addition,
ω− intersects the Fermi level at the Fermi points (FPs).
Furthermore, ωþ also intersects the Fermi level. Now, since
we set q ¼ μ for simplicity, the momenta of theWeyl points
of ω− and the intersection between the Fermi level and ωþ
coincide.
Figure 2(b) shows each contribution from the Dirac or

Fermi sea and their sum. The Dirac-sea and Fermi-
sea contributions correspond to the absolute value of the
first and second terms of the integrand in Eq. (10),
respectively. These dispersion relations become flat bands
at low momentum and bend twice in the middle of the
dispersion relation. Such nondifferentiable points in the
dispersion relation generally lead to an oscillating Casimir
effect.
In the next section, we will show plots as shown in

Fig. 2(b) for intuitively understanding the mechanism of the
Casimir effect.

(a) (b)

FIG. 2. (a) Dispersion relations of the four eigenmodes, Eqs. (6) and (7), at ðM=Λ; q=Λ; μ=ΛÞ ¼ ð0.1; 0.6; 0; 6Þ. The green region
represents the Dirac and Fermi seas. (b) Each contribution from the Dirac sea (red line) or the Fermi sea (blue line) and their sum
(purple line).
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III. RESULTS

In this section, we show the results for the Casimir
coefficients in the zero-, intermediate-, and high-density
regions, with the PBC (see Appendix B for the discussion
with theMIT bag boundary condition). In the following,with
Λ ¼ 860 MeV and 1 ¼ ℏc ∼ 197.327 MeV · fm (ℏ is the
reduced Planck constant, and c the speed of light), we fix the
values of the order parameters, M and q, at three μ (zero-,
intermediate-, and high-density regions) as those obtained in
Ref. [46], where the authors applied the mean-field approach
in the NJL model with the proper-time regularization.3

A. Oscillating Casimir effect (virtual parameters)

We will see in the following section that the oscillating
Casimir effect is attributed to the flat band effect in the total
dispersion relation caused by the presence of Weyl points.
Therefore, in this subsection, we show how the flat band
induces the oscillating Casimir effect by using a virtual
parameter set that is not a solution to the gap equation of the
NJL model but gives a typical flat band.
As typical parameters, we consider ðM=Λ; q=ΛÞ ¼

ð0.1; 0.6Þ, as shown in Fig. 2. Then, the Casimir coefficient
defined as Eq. (12) is shown in Fig. 3. The obtained results
show the oscillating Casimir effect. The Casimir energy is
obtained from the difference between the momentum
integral of the dispersion relation and the infinite sum
of the momentum discretized by the boundary conditions.
The oscillation of Casimir energy arises from the matching
of the Weyl points and the discrete levels.

In order to intuitively understand the mechanism of
oscillations, we provide a graphical explanation. In the
following explanation, as shown in Fig. 4, we represent
Esum
0 by the sum of the blue rectangular areas Ssumn , while

the corresponding Eint
0 is the sum of the red areas Sintn . For

example, in the low-momentum region of a massive
particle, since the dispersion relation is a downward convex
function, then Sintn > Ssumn is satisfied, leading to a positive
contribution to NzðSsumn − Sintn Þ ∝ ELat

Cas.
4 On the other hand,

FIG. 3. An example of the Casimir coefficient for the oscillat-
ing Casimir effect from the Dirac-sea contribution, where we fix
ðM=Λ; q=ΛÞ ¼ ð0.1; 0.6Þ as virtual parameters.

(a)

(b)

(c)

(d)

FIG. 4. Graphical explanation for the oscillating Casimir effect.
The sum of the blue rectangles Ssumn and the integral over the red
areas Sintn correspond to the zero-point energies, Esum

0 and Eint
0 in

finite and infinite volumes, respectively. The Casimir energy is
defined as Esum

0 − Eint
0 , which corresponds to

P
n S

sum
n −

P
n S

int
n .

3Note that the values of order parameters,M and q, in the NJL
model depend on regularization schemes. The Casimir energy is a
quantity independent of regularization schemes. Therefore, once
M and q are obtained by a regularization, we can calculate the
Casimir energy equivalently by any regularization (using the
fixed M and q).

4This is a simplified situation. As a more complex case, when a
dispersion relation is inverted by a Weyl point or a Fermi point,
the function in the high-momentum side can be an upward convex
function.
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in the high-momentum region, since the dispersion relation
is an upward convex function due to the lattice regulari-
zation, Ssumn > Sintn , which leads to a negative contribution
to ELat

Cas. In a region that can be regarded as a linear
dispersion, we have Ssumn ¼ Sintn .
As a crucial situation in this paper, in the flat-band

region, it is also obvious that Ssumn ¼ Sintn . The only
exception is the case containing a Weyl point, where the
corresponding areas are denoted as SsumW and SintW . As the
thickness Nz increases, the position of the Weyl point
relative to a rectangle changes. The case where the endpoint
of a rectangle coincides with the Weyl point is shown in
Fig. 4(a). In this case, if the dispersion relation around the
Weyl point is assumed to be linear, then Ssumn ¼ Sintn is
exactly held. Precisely speaking, it deviates somewhat
from the linear dispersion and yields minor contributions
as discussed in the last paragraph. As Nz increases, the
size and positions of rectangles change and reach the
case shown in Fig. 4(b). In this case, we always have
Sintn > Ssumn , and ELat

Cas increases with Nz. As we continue
to increase Nz, we eventually reach the case shown in
Fig. 4(c), where the Weyl point coincides with the midpoint
of the rectangle’s edge. In this case, SsumW goes under the
flat band, which maximizes ELat

Cas. Furthermore, as Nz

increases, the rectangle and the Weyl point reach the
situation shown in Fig. 4(d). In this case, the excess of
SintW decreases and eventually reaches zero. Further increas-
ing Nz, the position of the Weyl point for the rectangle
returns to the case of Fig. 4(a).
Because the process from (a) to (d) occurs periodically,

so that the value of ELat
Cas oscillates with Lz. This is the origin

of the Lz-dependent oscillation of Casimir energy. Then,
the oscillation period (for the PBC) with respect to Lz is
written as [31]

Losc
z ¼ 2π

kWP
; ð19Þ

where kWP is the momentum separation between the Weyl
point and the origin. For the current parameters, the period
is estimated to be Losc

z ∼ 5.1 fm with kWP=Λ ∼ 0.283,
which is consistent with the plot in Fig. 3. In addition,
in the 3þ 1 dimensions, the minor deviation from this
naive estimate is caused by the integral over the kx ≠ 0
and ky ≠ 0.

B. Zero-density region

First, we consider the Casimir effect in the low-chemical
potential region, where we fix μ=Λ ¼ 0.46. In this region,
we find a chiral condensed phase withM=Λ ¼ 0.47, but the
DCDW phase has not yet developed (q ¼ 0).
Figure 5 shows the dispersion relation of the quark field

along the momentum kz on the lattice with aΛ ¼ 1, where
the red line represents the contribution from the Dirac sea,

the blue line from the Fermi sea, and the purple line from
their sum. In this case, there is no mode crossing
the Fermi level, which means that the total dispersion
relation has no nondifferentiable point. Therefore, the four
dispersion relations are nothing but that of a massive Dirac
fermion.
Figure 6 shows the results for the Casimir coefficient at

ðM=Λ; q=Λ; μ=ΛÞ ¼ ð0.47; 0; 0.46Þ, obtained from the two
approaches. The resultant Casimir effect occurs only from
the contribution of the Dirac sea. On the other hand, there is
no contribution to the Casimir effect from the Fermi sea, as

expected. In this figure, we find that C½3�
Cas approaches zero

in the long-thickness region. This behavior means that the
damping of the Casimir energy ECas is faster than 1=L3

z

(1=L3
z is expected for the massless fields in the three-

dimensional space). Such a faster damping is well known
for free massive fields [97–99].

FIG. 5. Dispersion relations on the lattice with aΛ ¼ 1 in the
zero-density region (μ=Λ ¼ 0.46).

FIG. 6. Casimir coefficients in the zero-density region. We
denote aΛ as a in the legends.
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We present results for the two cases of lattice spacing
aΛ ¼ 0.2, 0.4 in Fig. 6. We show analytical solutions for
only the Dirac-sea part of the Casimir coefficient, obtained
from the Lifshitz formula. We observe that in the long-
thickness region of about aNz ¼ Lz > 1.0 fm, the lattice
regularization works well even for aΛ ¼ 0.4. On the other
hand, in the short-thickness region, the results for aΛ ¼ 0.4
deviate from the analytical solution due to the enhanced
ultraviolet lattice cutoff effect. On the other hand, the
results for aΛ ¼ 0.2 reproduce the analytical solution well
up to about aNz ¼ Lz ¼ 0.5 fm. This result guarantees that
the results from our lattice regularization are accurate up to
a quite short-thickness region.
Finally, we comment on the physical scale of the vertical

axis in Fig. 6. Since now we define the Casimir energy ECas
as an energy per unit area, at Lz ¼ 1 fm in Fig. 6, ECas ¼
ℏc × C½3�

Cas=L
3
z ∼ 241 MeV=fm2 ∼ 3.86 × 104 N=fm. As a

reference, for the case of massless quarks ðM ¼ q ¼ 0Þ,
C½3�
Cas ¼ NfNc × 2π2=45 ∼ 2.63 at any Lz.

5 Then, at
Lz ¼ 1 fm, ECas ∼ 519 MeV=fm2 ∼ 8.32 × 104 N=fm.6

Note that the other interesting quantities are the Casimir
pressure PCas and the Casimir force FCas, which are defined
as PCas ≡ FCas=LxLy ≡ − d

dLz
ECas. As a reference, for the

massless quarks at Lz ¼ 1 fm, PCas ∼ 2.50 × 105 N=fm2.

C. Intermediate-density region

As the chemical potential increases, the contribution
from the quark Fermi sea causes a significant change in
the behavior of the Casimir effect. Figure 7 shows
the dispersion relation of the quark field along the
momentum kz for fixed parameters ðM=Λ; q=Λ; μ=ΛÞ ¼
ð0.46; 0; 0.485Þ and aΛ ¼ 1. In this parameter set, the
DCDW phase has not yet occurred, but the ω� with low
momentum is below the Fermi sea. Then, there is an
additional contribution to the Casimir effect from the
Fermi sea as well as from the Dirac sea. Furthermore, the
crossing points (Fermi points) of ω� and the Fermi level
lead to nondifferentiable points in the total dispersion
relation. Due to this, the oscillating Casimir effect occurs,
by a mechanism similar to that discussed in the
Sec. III A.
Figure 8 shows the results for the Casimir coefficient.

In the short-thickness region, we find that the Casimir
coefficient is dominated by the contribution from the
Dirac sea, which is qualitatively the same as the result

shown in the previous Sec. III B. On the other hand, in
the long-thickness region, the Casimir coefficient is
dominated by the contribution from the Fermi sea. As
a result, the sign of the total Casimir coefficient flips
around aNz ¼ Lz ∼ 2.3 fm and 8.8 fm. At further long
thickness, we expect an oscillation of the Casimir
coefficient. However, now we do not show the numerical
results due to the limitations of calculations with suffi-
cient accuracy. By using Eq. (19), the period of oscil-
lation is estimated to be Losc

z ¼ 2π=kFP ∼ 9.4 fm, where
kFP=Λ ∼ 0.154 is the momentum of the Fermi point.

D. High-density region

When the chemical potential is large enough, the DCDW
phase (q ≠ 0) is realized. Figure 9 shows the dispersion
relation of the quark fields along the momentum kz for
fixed parameters ðM=Λ; q=Λ; μ=ΛÞ ¼ ð0.09; 0.62; 0.52Þ

FIG. 7. Dispersion relations on the lattice with aΛ ¼ 1 in the
intermediate-density region (μ=Λ ¼ 0.485).

FIG. 8. Casimir coefficients in the intermediate-density region.
We denote aΛ as a in the legends.

5This C½3�
Cas is equal to the value at Lz ¼ 0 in Fig. 6. This is

because the effect of M is small enough in Lz → 0 due to
k2z ∝ 1=L2

z ≫ M2.
6This is −192 times larger than the well-known value ECas ¼

−ℏc π2

720L3
z
of the Casimir energy for the photon fields between

perfectly conducting parallel plates. The factor of −192 comes
from 2NfNc for the additional degrees of freedom and 16 for the
periodic boundary conditions.
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with aΛ ¼ 1. In this case, the two touching points of ω−
and ω̃− are regarded as the Weyl points. Furthermore, the
ωþ and ω− cross the Fermi level. Thus, there are six
nondifferentiable points. In the low-momentum region, the
total dispersion relation becomes a flat band due to the
cancellations between ω− and ω̃− and between ωþ and ω̃þ,
and the edges of the flat band of the total dispersion relation
are nondifferentiable. Furthermore, due to the four Fermi
points, the total dispersion relation is nondifferentiable at
the four momenta.
Figure 10 shows the results for the Casimir coefficient.

For the Dirac-sea effect, the Casimir effect shows oscillat-
ing behavior, as expected from the Weyl points.
Furthermore, we see that the Fermi-sea part of Casimir
coefficient oscillates with higher frequency than that
from the Dirac sea. The frequencies of the oscillations
are determined by the positions of the nondifferentiable
points on the dispersion relation. By using Eq. (19), the

oscillation period is estimated to be Losc
z ¼ 2π=kWP ∼

4.8 fm with kWP=Λ ∼ 0.298 for the Dirac-sea part. For
the Fermi-sea part of ω−, the period is determined by
Losc
z ¼ 2π=kFP ∼ 1.7 fm with kFP=Λ ∼ 0.851 in addition

to Losc
z ¼ 2π=kWP ∼ 4.8 fm. For the Fermi-sea part of ωþ,

Losc
z ¼ 2π=kFP ∼ 7.6 fm with kFP=Λ ∼ 0.190. In fact,

the Dirac-sea and Fermi-sea contributions shown in
Fig. 10 are dominated by the periods of Losc

z ∼ 4.8 fm
and Losc

z ∼ 1.7 fm, respectively, and the total result is their
superposition.

IV. CONCLUSION AND OUTLOOK

In this paper, we have discussed the Casimir effect from
quark fields in some phases of quark matter. In particular,
we consider the QCD counterpart of a new type of Casimir
effect i.e., the oscillating Casimir effect. We have classified
the typical behaviors of the Casimir effect by focusing on
the three types of density regions:
(1) When the quark chemical potential is small enough,

the quark-number density is zero. Then, the Casimir
effect for massive quark fields occurs, where the
damping of the Casimir energy with increasing
thickness is characterized by the dynamical masses
of quarks.

(2) As the quark chemical potential increases, the quark
number density becomes nonzero. In this region, the
contribution from the quark Fermi sea effect leads to
the oscillating Casimir effect.

(3) Further increasing the chemical potential eventually
leads to a phase transition into the DCDW phase. In
this region, in addition to the Fermi sea effect, the
Weyl-point structure of quark fields in the DCDW
phase results in the oscillating Casimir effect. The
total Casimir energy behaves as the superposition of
two types of oscillations.

To clarify terminology, one of our main findings may
be called the DCDW-induced oscillating Casimir effect,
which is a kind of the WP-induced oscillating Casimir
effect predicted in Ref. [31]. On the other hand, the FP-
induced oscillating Casimir effect would be a common
term for general fermionic systems at finite density in
finite volume.
In the following, we list some potential future studies.
(i) Solving gap equation in finite volume—In this work,

we input the values of order parameters obtained
from the gap equation in infinite volume, in order
to understand the typical behavior of the Casimir
effect for typical dispersion relations. As a more
precise analysis, one can calculate the order
parameters by minimizing the thermodynamic or
effective potential in finite volume, and then one
can understand the self-consistent relationship be-
tween thevolume-dependent order parameters and the
Casimir effect. This type of study would help eluci-
date the phase diagram of interacting fermions in

FIG. 9. Dispersion relations on the lattice with aΛ ¼ 1 in the
high-density region (μ=Λ ¼ 0.52).

FIG. 10. Casimir coefficients in the high-density region. We
denote aΛ as a in the legends.
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finite volume (e.g., see Refs. [100–107]) from the
viewpoint of the Casimir effect.7

(ii) Lattice simulations—Our predictions will be exam-
ined by future lattice NJL (and also QCD) simula-
tions. Since Monte Carlo simulations at large quark
chemical potential suffer from the sign-problem,
sign-problem-free techniques should be applied. In
particular, numerical simulations of Casimir effects
for lattice gauge fields have been vigorously studied,
such as the U(1) gauge [109–111], the compact U(1)
gauge [112–116], the SU(2) gauge [117,118], and
the SU(3) gauge fields [119,120], so that the inter-
play between quark and gluon dynamics would be
interesting.

(iii) Finite temperature—At finite temperature, thermal
fluctuations (as well as quantum fluctuations) also
induce the Casimir effect, which is the so-called
thermal Casimir effect well established theoretically
[88] and experimentally [121]. The Casimir energy
at finite temperature can be calculated by using a
straightforward modification of Eq. (11) or Eq. (13).
Although the DCDW phase disappears at suffi-
ciently high temperature, in the low-temperature
region the oscillating Casimir effect can be realized.

(iv) Axion electrodynamics—In this work, we consider
only the Casimir effect for quark fields, which is
induced by boundary conditions on quark fields. The
dynamics of photons in the DCDW phase may be
described by modified Maxell equations [63,76,122]
which is the so-called axion electrodynamics
[123,124]. The Casimir energy for such modified
photon fields can exhibit a sign-flipping behavior
[19,95,125–128] when boundary conditions on
photon fields are imposed. It will be interesting
whether or not such a photonic Casimir effect occurs
also in the DCDW phase.

(v) Models with nucleons—In this work, we consider
the Casimir effect for quark degrees of freedom
based on the NJL model. Apart from the NJL model,
in the low-density phase of QCD, relevant degrees of
freedom are hadrons, specifically nucleons. There-
fore, it will be important to examine the consistency
between the quark Casimir effect in the NJL model
and the nucleon Casimir effect in an effective model

such as the nucleon linear sigma model which can
also investigate the DCDW phase.

(vi) Other inhomogeneous chiral phases—We have
shown the WP-induced oscillating Casimir effect
in the DCDW phase, which is particular to systems
with momentum-dependent Weyl points. It would be
interesting what types of Casimir effects can occur in
other inhomogeneous chiral phases. For example,
the real-kink crystal phase is known as a possible
ground state in the 3þ 1 dimension NJL model [50].
In this phase, because kz is not a conserved quantity,
our approach formulated in spatial-momentum space
cannot be applied, but the Casimir energy should be
calculated by approaches formulated with discrete
eigenenergies. Furthermore, apart from the dense
quark matter, a magnetic field can also induce the
DCDW phase [53], which is the so-called magnetic
dual chiral density wave (MDCDW) (see Ref. [129]
for a review). The Casimir effect in such a phase is
also interesting.

(vii) Lower-dimensional models of QCD—The WP-
induced oscillating Casimir effect can occur also
in lower spatial dimensions (i.e., 1þ 1 or 2þ 1
dimensions) [31]. Therefore, investigation of the
Casimir effect in possible inhomogeneous phases of
low-dimensional QCD-like models, such as the
Gross-Neveu model [130–132], the chiral Gross-
Neveu (NJL2) model [133], and the ’t Hooft model
(QCD2) [133–135], will be also important.

ACKNOWLEDGMENTS

The authors thank Tsutomu Ishikawa for fruitful dis-
cussions. This work was supported by the Japan Society for
the Promotion of Science (JSPS) KAKENHI (Grant
No. JP20K14476).

APPENDIX A: LIFSHITZ FORMULA

In this appendix, we derive the Lifshiz formula (11) for
the dispersion relations in the DCDW phase. To calculate
Casimir energy at zero temperature and zero chemical
potential, we need to obtain the infinite sum of eigenvalues
of quarks,

X
s¼�

X∞
n¼−∞

ωPBC
s;n

2
¼

X
s¼�

X∞
n¼0

0
ωPBC
s;n ;

X
s¼�

X∞
n¼−∞

ωAPBC
s;n

2
¼

X
s¼�

X∞
n¼0

ωAPBC
s;n ; ðA1Þ

where the momentum in the z direction is discretized as
kz ¼ 2nπ=Lz and kz ¼ ð2nþ 1Þπ=Lz under the periodic
boundary conditions (PBCs) and the antiperiodic boundary
conditions (APBCs), respectively. The prime in the sum for

7As shown in Ref. [103], the phase diagram in the NJL model
at finite ðμ; LzÞ is complicated, where the phase boundary
between low-density and high-density phases oscillates as a
function of Lz. Therefore, for a more realistic prediction of the Lz
dependence of the Casimir energy, such Lz-dependent phase
transitions should be considered. In addition, a question is
whether or not the DCDW phase survives on the phase diagram.
As a preliminary result, we solved a gap equation at finite ðμ; LzÞ
and confirmed that in fact the DCDW phase appears in a
parameter region [108]. In this region, our prediction of the
Casimir effect is qualitatively reliable.
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the PBC means that the factor 1=2 is multiplied only for
n ¼ 0:

P0
n ωn ¼

P
n ωn − ωn¼0=2.

The discretized kz is given as the zero point of the
function

ΔPBC
� ðωÞ ¼ 1 − e−ik

½��
z Lz ; ðA2Þ

ΔAPBC
� ðωÞ ¼ 1þ e−ik

½��
z Lz ; ðA3Þ

ik½��
z ≡ k̃½��

z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2⊥ þM2 − ω2 −

q2

4
∓ iq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2⊥ − ω2

qr
;

where the imaginary momentum ik½��
z is obtained

by solving the DCDW dispersion relation ωs ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2⊥ þ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2z þM2

p
þ sq=2Þ2

q
with s ¼ �1. Since the

function ΔsðωÞ is a meromorphic function in a closed
path C on the complex ω plane with the mentioned zero
point but no pole, by using the generalized argument
principle [4,136,137], the infinite sum (A1) can be calcu-
lated from the following contour integral:

X
s¼�

X∞
n¼−∞

ωs;n

2

¼
X
s¼�

X∞
n¼0

0
ωs;n ¼

X
s¼�

1

2πi

I
C
ωd lnΔsðωÞ

¼
X
s¼�

1

2πi

�Z
−i∞

i∞
ωd ln ΔsðωÞ þ

Z
Cþ

ωd lnΔsðωÞ
�
;

ðA4Þ

where Cþ is the counterclockwise integral on a semicircle
with an infinite radius centered at the origin, in the right
half of the complex ω plane. More precisely, when at M ¼
q ¼ k⊥ ¼ 0 under the PBCs, the zero mode exists at the
origin, and then the contour needs to avoid the origin by
considering an infinitesimal semicircular path centered at
the origin. By introducing the imaginary frequency ω≡ iξ
with the imaginary part ξ, we obtain

X
s¼�

X∞
n¼−∞

ωs;n

2

¼
X
s¼�

1

2π

�Z
−∞

∞
ξd lnΔsðiξÞ þ

Z
Cþ

ξd lnΔsðiξÞ
�
: ðA5Þ

The second term of Eq. (A5) on a circle with an infinite
radius vanishes in the limit of ξ → ∞:

ξd lnΔsðiξÞ ¼
Lzξ

2e−ξLz

ð1 − e−ξLzÞξ ⟶
½ξ→∞�

0: ðA6Þ

Using integration by parts, the first term of Eq. (A5) is
reduced to

Z
−∞

∞
ξd lnΔsðiξÞ ¼ ½ξ lnΔðiξÞ�−∞∞ þ

Z
∞

−∞
dξ lnΔsðiξÞ

¼ 0þ 2

Z
∞

0

dξ lnΔsðiξÞ: ðA7Þ

In the last form, we used ξ lnð1� e−ξÞ → 0 in the limit of
ξ → ∞ and the fact that the integrand of the second term is
an even function of ξ.
By taking into account the k⊥ integral and multiplying

the factors 2NfNc for the particle-antiparticle, flavors, and
colors, we obtain the Lifshiz formula (11) for the PBC.
Similarly, the Lifshitz formula for the APBC is

EAPBC
Cas ¼ −4NfNc

X
s¼�

Z
∞

0

dξ
2π

Z
dkxdky
ð2πÞ2 ln

h
1þ e−Lzk̃

½s�
z

i
;

k̃½��
z ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2⊥ þM2 þ ξ2 −

q2

4
∓ iq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2⊥ þ ξ2

qr
: ðA8Þ

The overall −2 and the factor of þe−Lzk̃
½s�
z is a property

of the APBC on fermion fields. When we substitute
M ¼ q ¼ 0 and q ¼ 0, Eq. (A8) returns to the known
formulas for the massless and massive quarks, EAPBC

Cas ¼
−NfNc×7π2=180L3

z andEAPBC
Cas ¼NfNc×ð−2M2=π2LzÞ×P∞

l¼1ð−1Þlþ1K2ðlMLzÞ=l2, respectively. The discrete
momentum, kz → ð2nþ 1Þπ=Lz, for the APBCs is shifted
by a half period from kz → 2nπ=Lz for the PBCs, and hence
the sign of the Casimir energy is flipped and also its absolute
value changes slightly.

APPENDIX B: RESULTS WITH MIT
BAG BOUNDARY

In the main text, we applied the PBC to consider the
Casimir effect. In this appendix, we consider the case with
the MIT bag boundary condition, which is more realistic
when we consider quark matter in nature or experiments.
The MIT bag boundary condition [138] requires that

the quark-current flux toward normal to the boundary
is zero. For the massless Dirac field on the MIT bag
boundaries, one can obtain the discretized momentum kz →
ðnþ 1=2Þπ=Lz as an analytic solution satisfying the Dirac
equation. On the other hand, for the massive case, one
cannot obtain an analytic form of momentum, so that
one should apply an alternative approach with no analytic
form of kz (e.g., Refs. [139–141]). In this appendix, as
an approximate estimate, we show the results using the
massless solution kz → ðnþ 1=2Þπ=Lz, which may be
called “MIT bag” boundary conditions.
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In this case, the infinite sum of eigenvalues is

X
s¼�

X∞
n¼0

ω“MIT”
s;n

2
; ðB1Þ

and, the discretized kz is given as the zero point of the
function

Δ“MIT”
� ðωÞ ¼ 1þ e−2ik̃

½��
z Lz : ðB2Þ

Using the derivation in Appendix A, we obtain the Lifshitz
formula with the “MIT bag” boundaries:

E“MIT”
Cas ¼ −2NfNc

X
s¼�

Z
∞

0

dξ
2π

Z
d2k⊥
ð2πÞ2 ln

h
1þ e−2Lzk̃

½s�
z

i
;

k̃½��
z ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2⊥ þM2 þ ξ2 −

q2

4
∓ iq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2⊥ þ ξ2

qr
; ðB3Þ

where k2⊥ ≡ k2x þ k2y, and d2k⊥ ≡ dkxdky. The overall

minus sign and the factor of þe−2Lzk̃
½s�
z is a property of

the “MIT bag” boundary on fermion fields. In the lattice
regularization, we have to replace as

P
BZ
n → 1

2

P
BZ
n in

Eq. (14), and the sum is over n ¼ 0; 1;…; 2Nz − 1.
Figure 11 shows the results of the Casimir coefficients at

zero-, intermediate-, and high-density regions. In the case
of the “MIT bag” boundary, the number of discretized
levels is twice larger than that with the PBC. As a result, the
period of oscillation is half of that with the PBC: analogous
to Eq. (19),

Losc “MIT”
z ¼ π

kWP
: ðB4Þ

Furthermore, from these results, we can also discuss
the relationship between the cases with the “MIT bag”
boundary and the APBC. The discrete momenta are
kz → ðnþ 1=2Þπ=Lz and kz → ð2nþ 1Þπ=Lz, respec-
tively. For this reason, Eq. (B3) is equal to Eq. (A8)
multiplying by 1=2 and replacing as Lz → 2Lz. As a
result, the Casimir energy with “MIT bag” boundaries is
exactly 16 times smaller than that with the APBCs (the
factor of 23 is due to 3þ 1 dimensions). Therefore, using

the results in Fig. 11, by multiplying the vertical axis by 16
and the horizontal axis by 2, we can obtain the exact results
for the APBCs.
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