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We compute the vacuum energy density as a function of the quark condensate in the interacting instanton
liquid model (IILM) and examine the pattern of dynamical chiral symmetry breaking from its behavior
around the origin. This evaluation is performed by using simulation results of the IILM. We find that chiral
symmetry is broken in the Uð1ÞA anomaly assisted way in the IILMwith three-flavor dynamical quarks. We
call such a symmetry breaking the anomaly-driven breaking, which is one of the scenarios of chiral
symmetry breaking proposed in the context of the chiral effective theories. We also find that the instanton-
quark interaction included in the IILM plays a crucial role for the anomaly-driven breaking by comparing
the full and the quenched IILM calculations.
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I. INTRODUCTION

Strong interaction among quarks and gluons causes the
nontrivial vacuum structure of QCD. One of the final goals
of QCD studies is to elucidate hadronic phenomena in
terms of quark and gluon degrees of freedom. Because of
the strong interaction, the QCD grand state is no longer
empty but a nonperturbative object fulfilled by the con-
densations of quarks and gluons. Furthermore, the QCD
vacuum structure affects the properties of its elementary
excitations, i.e., hadrons.
One of the important nonperturbative natures of the QCD

vacuum is the dynamical breaking of chiral symmetry
(DχSB). The condensation of quark-antiquark pair hq̄qi
breaks the chiral symmetry. For the SUð2ÞL × SUð2ÞR case,
its breaking generates the three Nambu–Goldstone bosons
that are identified as the pions. If the chiral symmetry
illustrates the world well, the pion’s chiral partner σ with
JP ¼ 0þ and I ¼ 0 should also exist somewhere. Although
a light scalar meson with I ¼ 0 is observed as f0ð500Þ, the
relationship between the chiral partner σ and the f0ð500Þ
meson has not been established yet [1,2].
The Uð1ÞA anomaly is also widely known as a significant

aspect of the QCD vacuum structure. The large η0 mass and
the η decay into 3π are explained by the Uð1ÞA symmetry
breaking induced by quantum effect [3–5]. This explicit
breaking relates to the topological nature of the QCD
vacuum. A topological configuration of the QCD gauge

fields was initially found by Belavin et al. and is currently
called “instanton” [6]. Instantons induce the Uð1ÞA
anomaly as their collective effect [7,8]. In addition, under
these multiple instanton configurations, the spectrum of the
Dirac operator spreads near zero modes. Consequently, one
finds the quark condensates to be finite through the Banks-
Casher relation, and chiral symmetry is dynamically broken
in the vacuum [9]. To treat such instanton dynamics, a
framework has been proposed by Shuryak, which is called
an “interacting instanton liquid model” [10,11].
Recently, it has been pointed out that chiral symmetry

can be dynamically broken due to a sufficiently strong
Uð1ÞA anomaly effect in the chiral effective theories, and
this mechanism may be observed using a mass of the pion’s
chiral partner σ [12]. We call DχSB caused by a strong
enough Uð1ÞA anomaly effect “anomaly-driven symmetry
breaking.” In this case, the effective potential given as a
function of the quark condensate shows that its second
derivative at the origin is positive. Although such a sign of
the curvature is not directly observable, the previous work
suggested important insight that the σ acquires lighter mass
than about 800 MeV under the anomaly-driven breaking.
Namely, the chiral symmetry breaking driven by the Uð1ÞA
anomaly could be verified through the σ mass.
In this paper, we examine the possibility to realize the

anomaly-driven breaking of chiral symmetry in another
model. In the chiral effective theories, the anomaly-driven
breaking is brought about by strong enough Uð1ÞA anomaly
term. Nevertheless, whether it takes place or not in nature is
dependent on the model parameters. Taking the importance
of the Uð1ÞA anomaly effect, we consider it natural to treat
directly dynamics of instantons for investigation of the
anomaly-driven breaking. In this work, we use the inter-
acting instanton liquid model (IILM), because it enables us
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to treat the instanton dynamics as the statistical mechanics
of instantons and reproduces the QCD properties well
except for the confinement [9]. We discuss the possibility
of the anomaly-driven symmetry breaking in IILM without
free parameters.
This paper is organized as follows. In Sec. II, we extend

the definition of anomaly-driven breaking of chiral sym-
metry. In Sec. III, we describe the formulation of the IILM
that is used in this study and details the numerical
simulations. In Sec. IV, we present the simulation results
of the IILM and discuss their interpretations. In Sec. V, we
conclude this paper.

II. ANOMALY-DRIVEN BREAKING
OF CHIRAL SYMMETRY

In this section, we introduce the definition of the
anomaly-driven chiral symmetry breaking in the
Nambu–Jona-Lasinio (NJL) model and other models.

A. Anomaly-driven breaking in the NJL model

We briefly explain the anomaly-driven breaking of chiral
symmetry, which was proposed by the previous work [12]
based on the three-flavor NJL model with the axial
anomaly term. In Ref. [12], the following Lagrangian is
considered,

LNJL ¼ ψ̄ðiγμ∂μ −MÞψ

þ gS
X8
a¼0

��
ψ̄
λa
2
ψ

�
2

þ
�
ψ̄iγ5

λa
2
ψ

�
2
�

þ gD
2

n
det
i;j
½ψ̄ ið1 − γ5Þψ j� þ H:c:

o
; ð1Þ

for the quark fields ψ ¼ ðu; d; sÞT , where M is the quark
mass matrix given by M ¼ diagðmq;mq;msÞ with assum-
ing isospin symmetry mq ¼ mu ¼ md; λaða ¼ 0; 1;…; 8Þ
represent the Gell-Mann matrices in the flavor space
with λ0 ¼

ffiffiffiffiffiffiffiffi
2=3

p
1; deti;j is understood as determinant

operation over the flavor indices of the quark fields
ψ i; ψ̄ jði; j ¼ u; d; sÞ; and gS, gD are the coupling constants
for the four-point vertex interaction and the determinant-
type Uð1ÞA breaking interaction, respectively. It is known
that the gD term is identified as the instanton-induced
interaction [13] and thus carries the instanton effect. In the
mean field approximation, the effective potential is
obtained from the Lagrangian (1) as a function of the
dynamical quark mass M as

VeffðMÞ¼ iNc

X
f¼q;q;s

Z
d4p
ð2πÞ4Tr

�
lnðγ ·p−MfÞþ

γ ·p−mf

γ ·p−Mf

�

−
gS
2
ð2hq̄qi2þhs̄siÞ−gDhq̄qi2hs̄si; ð2Þ

where hq̄qi ¼ hūui ¼ hd̄di is the quark condensate with
isospin symmetry and is given as a function of M. Their
specific forms are given by Eqs. (A.1) and (A.2)
in Ref. [12].
Following Ref. [12], we start with the case of the chiral

limit and no anomaly term, i.e., mq ¼ ms ¼ 0 and gD ¼ 0

in Eq. (1). In this situation, chiral symmetry is dynamically
broken at the vacuum with a finite dynamical quark mass
when the dimensionless coupling constant GS ≡ gS=gcritS is
larger than 1. Here, gcritS is the critical coupling constant
defined by gcritS ¼ 2π2=ð3Λ2

3Þ with a three-momentum
cutoff Λ3 for the quark loop function. In other words, if
there exists sufficiently strong four-quark interaction, chiral
symmetry is dynamically broken in the vacuum. This is the
well-known scenario of the dynamical chiral symmetry
breaking in the NJL model.
Next, let us take the anomaly term into account with

gD ≠ 0 in Eq. (1) while keeping the chiral limit. In this
situation, even though GS is less than 1, chiral symmetry
can be broken dynamically in the vacuum due to the
existence of the axial anomaly term. The previous work
[12] demonstrated that such a situation is realized with a
sufficiently large contribution from the anomaly term. We
refer to such chiral symmetry breaking as the “anomaly-
driven breaking of chiral symmetry” or shortly the
“anomaly-driven breaking” in this paper.
The above patterns of the chiral symmetry breaking are

related to the hadronic properties, such as the mass of the σ
meson [12]. In the literature, in order to study the relation-
ship more quantitatively, the explicit chiral symmetry
breaking by finite current quark mass is introduced, and
the σ meson is assumed to be the chiral partner of the pion.
The authors calculated the σ meson mass with varying
values of the dimensionless couplings GS and GD ≡
Λ3gD=ðgcritS Þ2 so as to reproduce the η0 mass. As a result,
they found that the σ mass is smaller than about 800 MeV
when the anomaly-driven breaking is realized, i.e., GS < 1,
and larger than about 800 MeV if the normal breaking is
done, i.e., GS > 1.
According to the previous work [12], the definition of the

anomaly-driven breaking in the NJL model is that the chiral
symmetry is dynamically broken even though the dimen-
sionless coupling constant GS is less than 1. However, the
definition of this determination procedure relies on the
model-specific parameter GS, which makes its application
to other models nontrivial. To discuss the anomaly-driven
breaking in other models and systems, in the next section,
we generalize the definition of the determination procedure
for the anomaly-driven breaking.

B. Anomaly-driven breaking in other models

In this subsection, we generalize the definition of the
determination procedure for anomaly-driven breaking
based on arguments in the NJL model. The anomaly-driven
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breaking of chiral symmetry was initially introduced in the
chiral effective models using the model-specific coupling
constants. Here, we present a key quantity that links the
model-specific and the model-independent determination
procedures for the anomaly-driven breaking. That is the
sign of the curvature of the effective potential at the point
with zero quark condensate. We use the latter as the
definition of determination procedure for the anomaly-
driven breaking in this paper.
We first consider the NJL model with no anomaly term

in the vanishing quark mass limit (m → 0). In this case, as
we have mentioned in the last section, chiral symmetry is
dynamically broken in the vacuum when a dimension-
less four-quark coupling GS is greater than 1. Here, the
evaluation of the second derivative of the effective poten-
tial (2) with respect to the quark condensate at the point
hq̄qi ¼ 0 yields the result

∂
2Veff

∂hq̄qi2
����
hq̄qi¼0

¼ gcritS − gS ¼ gcritS ð1 −GSÞ; ð3Þ

where we use GS ¼ gS=gcritS . From Eq. (3), we find that the
parameter region where chiral symmetry is dynamically
broken is linked to the negativity of the curvature of the
effective potential at the origin. We refer to such chiral
symmetry breaking as the normal breaking in contrast to
the anomaly-driven one.
Next, let us turn on the anomaly term by gD ≠ 0 while

keeping the chiral limit. Again, chiral symmetry can be
dynamically broken and that leads to the nonzero quark
condensate in the vacuum. The main difference compared
to the case without the anomaly term is that chiral sym-
metry can be broken dynamically even though the dimen-
sionless coupling GS is less than 1. Calculating the second
derivative of the effective potential (2) with the anomaly
term, we obtain the same result as in Eq. (3). Thus, the
pattern of dynamical chiral symmetry breaking which is
distinguished whether GS is greater than 1 or not corre-
sponds directly to the sign of the curvature (3).
In Fig. 1, we show the effective potentials as a function

of the absolute value of quark condensate for four para-
meter sets in the chiral limit. To set the origin to zero,
irrelevant constants are subtracted from the effective
potentials. We can see that when the dimensionless
coupling GS is greater than 1 the curvature of effective
potential at the origin is negative (red dotted line). On the
other hand, when chiral symmetry is dynamically broken
even though GS is less than 1 (green solid line), the
curvature is positive at the origin. For the remaining two
parameter sets (magenta dot-dashed and blue dashed line),
the effective potential has a minimum value at the origin,
and thus chiral symmetry is not broken in the vacuum. In
this way, when the chiral symmetry is dynamically broken,
the dimensionless coupling constant GS and the curvature

of the effective potential at the origin are linked in the NJL
model including the anomaly term for the chiral limit.
We also confirm that such a relationship between the

dimensionless couplingGS and the curvature of the effective
potential remains unchanged even if small current quark
masses are introduced. The current quark mass dependence
appears in the effective potential as a product with the linear
term of the quark condensate for small quark masses. That
term vanishes by performing the second derivative with
respect to the quark condensate. Equation (3) thus remains
the same in the presence of small current quark masses.
Based on the arguments in the NJL model, we use the

curvature of the effective potential to determine whether
the anomaly-driven breaking takes place or not, instead of
the model specific coupling constant. Since the effective
potential is proportional to the vacuum energy density ϵ
except for a constant in field theory, we take the inequality

∂
2ϵ

∂hq̄qi2
����
hq̄qi¼0

> 0 ð4Þ

to be the definition of the determination procedure for the
anomaly-driven breaking also for finite quark masses. We
apply this definition to the instanton liquid model and
discuss the feasibility of the anomaly-driven chiral sym-
metry breaking.

III. FORMULATION

In the present section, we describe the model and
numerical calculation method we used.

A. Interacting instanton liquid model

The QCD Euclid partition function is approximated by
the superposition of instantons [14]. The partition function

FIG. 1. The effective potentials as a function of the quark
condensate normalized by the cutoff scale Λ3

3. The mean field
approximation is used, and the chiral limit is assumed. For the
effective potential, the irrelevant constant is subtracted from that.
The different coupling constants are plotted: ðGS;GDÞ ¼
ð0.96; 0.0Þ (dot-dashed, magenta), ð0.96;−0.65Þ (dashed, blue),
ð0.96;−0.70Þ (solid, green), and ð1.01;−0.40Þ (dotted, red).
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is given as

Z ¼ 1

Nþ!N−!

Z YNþþN−

i¼1

½dΩifðρiÞ� expð−SintÞ

×
YNf

f¼1

Detð =DþmfÞ: ð5Þ

Here, Nþ and N− are the numbers of instantons and anti-
instantons, respectively; dΩi ¼ dUidρid4zi is the measure
of the path integral over the collective coordinate space for
the color orientation in the color SUðNcÞ group, size, and
position associated with the ith instanton; and fðρÞ is
semiclassical instanton amplitude. The interactions
between instanton-instanton and instanton-quark are
included in Sint and Detð =DþmfÞ, respectively. Dμ and
mf represent the covariant derivative for the quark fields
and the current quark mass of flavor f, respectively.
The explicit expression of the semiclassical instanton

amplitude calculated by ’t Hooft [8] reads

fðρÞ ¼ CNc

�
8π2

g2ðρÞ
�
2Nc

exp

�
−

8π2

g2ðρÞ
�
1

ρ5

¼ CNc

1

ρ5
β1ðρÞ2Nc exp

�
−β2ðρÞ þ

�
2Nc −

b0

2b

�

×
b0

2b
1

β1ðρÞ
ln β1ðρÞ

�
þOð3-loopÞ; ð6Þ

CNc
¼ 0.466e−1.679Nc

ðNc − 1Þ!ðNc − 2Þ! ; ð7Þ

where the gauge coupling g2 is given as a function of the
instanton size ρ; the beta functions β1, β2 include up to two-
loop order; and the Gell-Mann–Low coefficients are given
as follows:

β1ðρÞ ¼ −b lnðρΛÞ; β2ðρÞ ¼ β1ðρÞ þ
b0

2b
ln

�
2

b
β1ðρÞ

�
;

ð8Þ

b ¼ 11

3
Nc −

2

3
Nf; b0 ¼ 34

3
N2

c −
13

3
NcNf þ

Nf

Nc
:

ð9Þ

Here, Nc and Nf denote the number of colors and of the
dynamical quark flavors, respectively, and Λ is the scale
parameter which is introduced for calculating β function by
using the Pauli-Villars regularization scheme [14].
The instanton-instanton interaction Sint in Eq. (5) is

expressed by the sum of all possible pairs of instantons

Sint ¼
XNþþN−

l<m;l≠m
Sð2Þint ðl; mÞ; ð10Þ

where l, m refer to each instanton or anti-instanton in the
ensemble. The two-body interaction between instantons (or

anti-instantons) Sð2Þint ðl; mÞ is defined as the difference
between the action of two-instanton configuration and
twice of the single instanton action S0ðρÞ ¼ 8π=g2ðρÞ:

Sð2Þint ðl; mÞ ¼ S½Aμðl; mÞ� − 2S0: ð11Þ

A two-instanton configuration is no longer an exact
solution to the classical Yang-Mills equations. To calculate
the two-body interaction, one uses an ansatz for the gauge
configurations. This idea was developed by Schäfer and
Shuryak [9,14]. We use the streamline ansatz [15,16], and
its form of Sint is given by Eq. (A5) in Ref. [14].
The instanton-quark interaction represented by the

determinant in Eq. (5) is evaluated by factorizing it into
two parts, a high-momentum part and a low-momentum
part as

Detð =DþmfÞ ¼ Dethighð =DþmfÞDetlowð =DþmfÞ: ð12Þ

The high-momentum part is evaluated as the product of
contributions of each instanton calculated by using the
Gaussian approximation. The low-momentum part is
evaluated by using the quark zero-mode wave functions
in the instanton and anti-instanton backgrounds [14]. As
a result, the instanton-quark interaction takes the follow-
ing form:

Detð =DþmfÞ ¼
 YNþþN−

i¼1

1.34ρi

!
DetI;Īð−iT þmf1Þ;

T ¼
 

0Nþ×Nþ ðT ÞNþ×N−

ðT †ÞN−×Nþ 0N−×N−

!
; ð13Þ

ðT ÞIJ ¼
Z

d4xψ�
0;Iðx;U; ρ; zÞiγμDμψ0;Jðx;U; ρ; zÞ: ð14Þ

Here, T is called the “overlap matrix” with a size of
ðNþ þ N−Þ × ðNþ þ N−Þ. This matrix is spanned by the
quark zero-mode wave functions ψ0;Iðx;U; ρ; zÞ in the
instanton (I) and anti-instanton Ī backgrounds which are
labeled by the collective coordinate fU; ρ; zg. The specific
forms of the quark zero-mode wave functions are summa-
rized in Appendix 2 of Ref. [9]. The determinant operation
DetI;Ī is taken over the space represented in Eq. (13), and
mf1 is understood as a diagonal matrix of ðNþ þ N−Þ×
ðNþ þ N−Þ. The explicit expression of T is given by
Eq. (B2) in Ref. [14].
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In this paper, we work on the SU(3) flavor symmetric
limit, where the number of quark flavors is set to Nf ¼ 3

and the current quark masses are equally set to m ¼ mf

(f ¼ 1; 2; 3). The quark condensate hq̄qi represents the
one-flavor amount for our calculations.

B. Free energy in instanton ensemble

The vacuum energy density is identified as the free
energy density at zero temperature, ϵ ¼ F, and we simply
call it the “free energy” denoted as F in what follows. This
relationship is derived from the standard thermodynamics
relation. The free energy is expressed as

F ¼ −
1

V
lnZ; ð15Þ

with the four-dimensional space-time volume V ¼ L4 and
the partition function Z of the system considered.
We explain the method to compute the value of the

partition function Z. The method that we use is well known
as the “thermodynamics integration method,”: and it has
been applied to the IILM calculation in the previous
work [14]. In this method, one writes the effective action as

SeffðαÞ ¼ Seffð0Þ þ αS1; ð16Þ

with the partition function ZðαÞ ¼ R dΩ exp ½−SeffðαÞ�.
The desired partition function Z is reproduced as
Zðα ¼ 1Þ. This form of the effective action (16) interpolates
between a known solvable action Seffð0Þ≡ S0eff and the full
action Seffð1Þ ¼ S0eff þ S1. One obtains the partition func-
tion Zðα ¼ 1Þ straightforwardly as

ln ½Zðα ¼ 1Þ� ¼ ln ½Zðα ¼ 0Þ� −
Z

1

0

dαh0jS1j0iα; ð17Þ

where the expectation value h0jOj0iα is defined by

h0jOj0iα ≡ 1

ZðαÞ
Z

dΩOðΩÞe−SeffðαÞ; ð18Þ

with configurations according to pðΩiÞ ∝ exp ½−SeffðαÞ�.
Therefore, if we know the decomposition (16) and the
values of S0eff and Zðα ¼ 0Þ, we can compute the partition
function Zðα ¼ 1Þ from Eq. (17).
For our computation of the partition function in the

instanton liquid model, we use the following decomposi-
tion of the effective action Seff as in Ref. [14]:

SeffðαÞ ¼
XNþþN−

i¼1

�
ln ½fðρiÞ� þ ð1 − αÞν ρ

2
i

ρ̄2

	

þ α

"
Sint −

XNf

f¼1

ln Detð =DþmfÞ
#
; ð19Þ

where ν ¼ ðb − 4Þ=2 with the Gell-Mann–Low coefficient
b given by Eq. (9) and ρ̄2 is the average size squared of
instantons in the full ensembles including the instanton-
instanton and instanton-quark interactions. The variational
single instanton distribution is used as Zðα ¼ 0Þ≡ Z0. Its
form is given by

Z0 ¼
1

Nþ!N−!
ðVμ0ÞNþþN− ; ð20Þ

with

μ0 ¼
Z

∞

0

dρfðρÞ exp
�
−ν

ρ2

ρ̄2

�
: ð21Þ

C. Quark condensate in instanton ensemble

In the instanton liquid model, the quark condensate is
evaluated as the expectation value of the traced quark
propagator at the same space-time coordinate as follows:

hq̄qi¼
X
A;α

hq†ðxÞAαqðxÞAαi

¼−lim
y→x

X
A;α

hqðxÞAαq†ðyÞAαi

¼−lim
y→x

1

Z

Z
DΩTr½Sðx;y;mÞ�e−SintDetð =DþmÞ: ð22Þ

Here, we write the measure of the path integral as DΩ in
short that is given in the partition function (5); A ¼
1;…; Nc and α ¼ 1;…; 4 represent the color and the
Dirac indices, respectively; and Tr is taken for the both
indices. The quark propagator is approximated as a sum of
contributions from the free and the zero-mode propagators
by inverting the Dirac operator in the basis spanned by
the quark zero-mode wave functions in instantons back-
ground as [9]

Sðx; y;mÞ ≈ S0ðx; yÞ þ SZMðx; y;mÞ;

S0ðx; yÞ ¼
i

2π2
γ · ðx − yÞ
ðx − yÞ4 ;

SZMðx; y;mÞ ¼
X
I;J



ψ0;IðxÞ½ð−iT þmÞ−1�IJψ†

0;JðyÞ
�
; ð23Þ

where the matrix T is the overlap matrix given in Eq. (13).
Here, we omit writing the collective coordinates of instan-
tons fU; ρ; zg from the argument of the quark zero-mode
wave functions. We obtain the quark condensate by
averaging it over the configurations.

D. Monte Carlo simulation

The simplest way to simulate the instanton liquid model
described by the Euclid partition function (5) is to use the
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Monte Carlo method with a weight function Seff given by

Seff ¼ −
XNþþN−

i¼1

ln½fðρiÞ� þ Sint −
XNf

f¼1

ln Detð =DþmfÞ:

ð24Þ

To perform Monte Carlo simulations using the Markov
chain Monte Carlo (MCMC) method, it is crucial to under-
stand the weight function Seff . This function represents
the probability density pðΩiÞ as pðΩiÞ ∝ exp½−SeffðΩiÞ�,
where Ωi denotes a configuration within the considered
ensemble. Once the partition function is established, we
derive the weight function, as illustrated in Eq. (24).
Employing algorithms such as the Metropolis algorithm
or Hybrid Monte Carlo algorithm, we generate a series of
configurations fΩg ¼ ðΩ1;Ω2;…;ΩNconf

Þ that converge
to the given probability density function because of the
detailed balance condition of the algorithms. Here, Nconf
represents the number of configurations.
The expectation value hOi of an operator O that is

expressed as a function of a configuration Ωi is computed
from these configurations using the formula

hOi ¼ lim
Nconf→∞

1

Nconf

XNconf

i¼1

OðΩiÞ: ð25Þ

For more details on the Monte Carlo simulations using the
MCMC, we referred to some textbooks and an introductory
article [17–19].

IV. RESULTS

In this section, we will show our numerical results. In
Sec. IVA, we explain the computational setup and numeri-
cal method used for our calculations. In Sec. IV B, we show
our results of the free energy as a function of the instanton
density. In Sec. IV C, we present the results of the quark
condensate as a function of the instanton density.
Combining these results, in Sec. IV D, we obtain the free
energies as a function of the quark condensate and analyze
them near the origin.

A. Computational setup

In our simulations, each configuration Ωi consists of Nþ
instantons and N− anti-instantons labeled by their collec-
tive coordinate fU; ρ; zg, and the partition function for each
instanton density is determined by generating 5000 con-
figurations after 1000 initial sweeps with N ¼ Nþ þ N− ¼
16þ 16 instantons and anti-instantons. The simulations
with different instanton density n ¼ N=V are achieved by
changing the simulation box size V ¼ L4 with the fixed
number of instantons N. Whole simulations are performed
under the periodic boundary condition for the coordinates
of instantons and anti-instantons. All quantities in this

calculation are nondimensionalized by Λ, which has been
introduced through the β functions (8). The value of the
scale parameter Λ is determined so that the free energy has
a minimum value at the instanton density n ¼ 1 fm−4 [14].
This density with the minimum free energy is the vacuum
instanton density. We are interested in the quark condensate
dependence of the free energy in the small quark mass
regime, so we set the current quark massesm to be as small
as possible within a stable run of the simulations. The
calculations below are performed with the current quark
masses m ¼ 0.1Λ; 0.15Λ; 0.2Λ.
In Table I, we show the bulk parameters, such as the

current quark mass m, the instanton density in the vacuum
n, the scale parameter Λ, and the instanton average size
ρ̄ in our simulations. These values are consistent with the
previous work [14]. By fixing the unit such that n ¼ 1 fm−4

at the vacuum, the values of the scale parameter are
determined as Λ ¼ 373; 360; 351 MeV for each current
quark mass. With these values, the average instanton sizes
in our calculations are evaluated as ρ̄ ¼ 0.35 to 0.37 fm
compared to ρ̄ ¼ 0.42 fm in Ref. [14].
To calculate the free energy by Eq. (15), we need the

value of the partition function. The partition function is
obtained through Eq. (17), so we first calculate Z0 with
the variational single instanton distribution (21). The
single instanton distribution can be evaluated from initial
1000 sweeps with full interaction α ¼ 1. We calculate the
average size squared of instantons ρ̄2 appearing in Eq. (21)
using the initial sweeps. The ρ integral over an infinite
interval ½0;∞� appearing in Eq. (21) is practically per-
formed over a finite interval ½0;Λ−1�. The remaining task
for the calculation of the partition function is to perform the
integral by summing the integrands. This integral is done at
10 different coupling values α.
In the computation of the quark condensate, only the

quark zero-mode propagator SZMðx; y;mÞ in Eq. (23) is
evaluated to subtract the infinite contribution initiated by
the free propagator S0ðx; xÞ at the same space-time coor-
dinate. In the actual calculations, for each instanton density,
the trace of the quark zero-mode propagator is averaged
over the 5000 configurations and also averaged over 10,000
different space-time coordinates to reduce the effect of
incomplete equilibration of the configurations.

TABLE I. The bulk parameters at the vacuum instanton density.
The values of the current quark mass m, the vacuum instanton
density n, the scale parameter Λ, and the instanton average size ρ̄
are given. All quantities are given in both the physical unit and Λ.
The numbers in square brackets represent the unit of Λ. The
superscript � represents the input parameter.

m (MeV) 37.3½0.1�� 54.1½0.15�� 70.2½0.2��
nðfm−4Þ 1.00�½0.079� 1.00�½0.090� 1.00�½0.10�
Λ (MeV) 373 [1] 360 [1] 351 [1]
ρ̄ (fm) 0.35 [0.66] 0.36 [0.66] 0.37 [0.66]
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B. Free energy

In Fig. 2, we show our numerical results of the free
energies (in the unit of MeV=fm3) versus the instanton
density (in the unit of fm−4) for three values of the current
quark mass. Our results are consistent with the previous
work [14]. The free energy is monotonically decreasing
toward a minimum value and then rapidly increasing at
higher instanton density. This shows that attractive inter-
action is dominant in lower instanton density regions, while
repulsive interaction becomes important at higher instanton
density.
In Table II, we summarize our numerical results of the

free energy and the quark condensate at the vacuum for
three different current quark masses m ¼ 37; 54; 70 MeV.
By using the values of the scale parameter in Table I,
the free energies are evaluated as F ¼ −149;−187;
−228 MeV=fm3. For reference, we perform further calcu-
lations for the current quark masses with values close to
those in the previous work, such as m ¼ 96 MeV [14].
That shows good agreement with the previous work, and
we conclude that our simulations work well.

C. Quark condensate

In Fig. 3, we show the instanton density dependence of
the cubic root of the quark condensate ð−hq̄qiÞ1=3 in the
unit of MeV. We find that the absolute values of the quark
condensate increase monotonically as the instanton density

increases. We also find that the value of the quark
condensates at the vacuum is insensitive to the value of
the current quark masses. This means that the contribution
from the explicit breaking of chiral symmetry due to the
current quark mass is not so large for the value of the quark
condensate.
In Table II, we show the values of the quark condensate

at the vacuum instanton density. Our results almost repro-
duce the empirical values obtained by various previous
works [20–34]. We obtain the values of the quark condensate
as jhq̄qij1=3 ¼ 188; 196; 200 MeV at the vacuum with the
current quark masses m ¼ 37; 54; 70 MeV, respectively.
These values give a good estimate of the quark condensates
although they are slightly smaller in the absolute value.

D. Free energy vs quark condensate

Combining the results of the free energy and the quark
condensate, we obtain the quark condensate dependence of
the free energy as shown in Fig. 4. The free energies
monotonically decrease toward the minimum values as the
quark condensate increases in magnitude. Once the free
energies have the minimum value, they start to increase as
expected from the instanton density dependence of them
(also see Fig. 2). From this, we observe that the free energy
has its minimum value at the point with the finite value of
the quark condensate. This shows that chiral symmetry is
dynamically broken in the vacuum of the IILM.
The behavior of the free energy near the origin appears to

be decreasing in a downward convex trend. This trend is
crucial for the sign of the curvature of the free energy at
the origin. In other words, it provides one of the hints for
discriminating patterns of chiral symmetry breaking
through our definition of the determination procedure for
the anomaly-driven breaking discussed in Sec. II B. So, we
study the quark condensate dependence of the free energy
more quantitatively.

FIG. 2. The free energies as a function of the instanton density
for different current quark masses.

TABLE II. The free energy and the quark condensate at the
vacuum instanton density with different current quark masses.
The notation is the same as in Table I.

m (MeV) 37½0.1�� 54½0.15�� 70½0.2��
F (MeV=fm3) −149½−0.060� −187½−0.085� −228½−0.116�
−hq̄qi1=3 (MeV) −188½−0.12� −196½−0.16� −200½−0.18�

FIG. 3. The quark condensates as a function of the instanton
density. Details about the different quark masses are explained in
the main text.
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We aim to evaluate the curvature of the free energy at the
origin from our simulation results of the IILM. For that, we
perform polynomial fits for our three datasets with different
current quark masses. Each dataset consists of Ndata pairs of
hq̄qi and F, i.e., ðjhq̄qiji; FiÞ; i ¼ 1;…; Ndata arranged in
ascending order, where Ndata is the number of data of the
free energy and the quark condensate and it is equal to
the number of the grid points of the instanton density,
Ndata ¼ 71 in our calculations.
We use a polynomial function given by

Fðhq̄qiÞ ¼
XK
j¼0

Cjhq̄qij; ð26Þ

for the fitting model in this analysis. We perform the fits for
four orders K ¼ 1;…; 4. For each order K, we optimize the
parameters fCjgðj ¼ 0;…; KÞ so that they minimize the
reduced chi-square including errors of both axes as given in
Ref. [35] by

χ2d:o:f: ¼
1

Nd:o:f:

XM
i¼1

ðyi − fðxiÞÞ2
σ2yi þ σ2xi ½f0ðxiÞ�2

; ð27Þ

where ðxi; yiÞ with their errors ðσxi ; σyiÞ correspond to our
dataset ðjhq̄qiji; FiÞ with their errors, fðxÞ and f0ðxÞ
represent the fit model (26) and its first derivative,
Nd:o:f . is the number of degrees of freedom which is
defined by Nd:o:f: ≡M − ðK þ 1Þ, and M is the number
of data used in the fit. We use the data from i ¼ 1 to i ¼ M
rather than all data because we want to know the behavior
of the free energy around the origin.
We determine an upper limit of fit range, M, as follows.

We calculate the reduced chi-square (27) as we increase the
number of data that we use and obtain the reduced chi-
square as a function of the number of data. We then find the

number of data for which the reduced chi-square has a local
minimum value. We finally use this number of data as the
value ofM for fitting. Here, we skip a trivial local minimum
obtained with a small number of data. The specific values
of M used in each fit, the corresponding quark condensate
values, and the reduced chi-square are summarized in
Table III.
In Table IV, we show the fit results ofC0. We find that the

value of the coefficient C0 is close to zero. For different fit
orders and quark masses, the values ofC0 range from−1.52
to −0.47 in the unit of MeV=fm3. These values are
sufficiently small compared to the typical value of the free
energy F, and we conclude that the coefficient C0 is
consistent with zero.
In Table V, we show the fit results of C1. We find that the

value of C1 is insensitive to the fitting order K. This implies
that the value of C1 is well determined around the origin.
We find also that C1 has no clear quark mass dependence.

TABLE III. Values ofM, the cubic root of the absolute value of
the quark condensate in the unit of MeV and the reduced chi-
square for each fit with the current quark mass m. The values of
current quark mass are given in the unit of MeV.

m 37 54 70

K ðM; jhq̄qij1=3; χ2d:o:f:Þ
1 (41,125,3.87) (25,79,3.84) (40,131,4.22)
2 (39,123,3.88) (48,189,3.61) (48,187,3.48)
3 (47,178,4.01) (56,263,3.16) (58,278,3.06)
4 (48,187,4.01) (62,353,3.05) (58,278,3.11)

TABLE IV. Fit results of C0 for each order K and current quark
mass m. Current quark mass m is given in the unit of MeV, and
the coefficient C0 is given in the unit of MeV=fm3.

m 37 54 70

K C0 (MeV=fm3)
1 −0.64þ0.07

−0.07 −1.47þ0.04
−0.04 −1.51þ0.06

−0.06
2 −0.51þ0.08

−0.08 −1.48þ0.04
−0.04 −1.44þ0.06

−0.06
3 −0.47þ0.08

−0.08 −1.51þ0.04
−0.04 −1.48þ0.06

−0.06
4 −0.52þ0.07

−0.07 −1.52þ0.04
−0.04 −1.47þ0.06

−0.06

FIG. 4. The free energy densities as a function of the quark
condensate for three quark masses. The free energy and the quark
condensate are given in the units of MeV=fm3 and MeV3,
respectively.

TABLE V. Fit results of C1 for each order K and current quark
mass m. The coefficient C1 is given in the unit of MeV.

m 37 54 70

K C1 (MeV)
1 364.0þ5.6

−5.6 332.5þ9.1
−9.7 349.3þ4.5

−4.6
2 395.8þ5.7

−6.0 326.2þ1.4
−1.4 371.8þ1.7

−1.8
3 403.9þ0.6

−0.6 312.6þ0.4
−0.4 358.1þ0.7

−0.7
4 391.9þ0.6

−0.6 307.9þ0.6
−0.4 361.8þ0.7

−0.7
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The averaged values of C1 over the different orders are 389,
320, and 360 MeV for m ¼ 37; 54, and 70 MeV.
In Table VI, we show the fit results of C2. We find that

the coefficients C2 appear to be positive. For each quark
mass, the averaged values of C2 over the different fit orders
are C2 ¼ ð2.94; 0.98; 1.17Þ × 10−5 MeV−2 for m ¼ 37; 54,
and 70 MeV. These values of C2 are located at the positive
region for all orders and current quark masses. This
suggests that the curvature of the free energy at the origin
is positive for the IILM.
In Fig. 5, we show the current quark mass dependence of

the coefficient C2. The value of C2 is not very sensitive to
the value of the current quark mass. For the fit with the
smallest quark mass, the values of C2 are evaluated as
slightly larger than the results of other two quark masses.
These results suggest that the value of C2 and the curvature
of the free energy at the origin is positive for wide current
quark mass region, and thus we conclude that the anomaly-
driven breaking of chiral symmetry is realized in the IILM
by our definition (4).
Here, we do not show the values of the coefficients C3

and C4 because these coefficients are introduced to confirm

the stability of fits of C0, C1, and C2 with and without these
higher-order terms. Furthermore, since we use the part of
full data near the origin for fits, the values of C3 and C4 are
not determined well and irrelevant to our discussion.
Interestingly, we find the opposite sign of C2 in the

quenched calculations where the quark determinant part in
the partition function (5) is set as

Q
f Detð =DþmfÞ ¼ 1 in

generating the configurations. The details of the quenched
calculation are shown in the Appendix. As we show in
Table VII, the quenched calculations suggest the negative
values of coefficient C2. By our definition of the anomaly-
driven breaking (4), this concludes that the normal breaking
is realized in the quenched IILM. The opposite signs of C2

obtained by the full and quenched calculations mean that
the different scenarios of chiral symmetry breaking are
possible depending on the presence of the quark determi-
nant part in the IILM partition function. Since the quark
determinant contributes to the instanton-quark interaction
in the ensemble, this implies that the quarks play a crucial
role in the anomaly-driven breaking for the IILM.

V. CONCLUSIONS

We have examined the possibility of the chiral symmetry
breaking scenario that can be realized when the Uð1ÞA
anomaly contribution is sufficiently large using the IILM.
Following the NJL model, we have generalized the deter-
mination procedure for the pattern of chiral symmetry
breaking. We use the second-order differential coefficient
of the vacuum energy density with respect to the quark
condensate at the origin, e.g., the curvature. We have
defined that the pattern of chiral symmetry breaking is
the normal or the anomaly-driven one if the curvature is
negative or positive, respectively.
We have found that the curvature appears to be positive

in the IILM. This means that the anomaly-driven breaking
is feasible in the IILM by our definition. In contrast to that,
the quenched calculations show the negative curvature and
support the realization of the normal chiral symmetry
breaking. These results indicate that the instanton-quark
interaction is crucial to realize the anomaly-driven breaking
because the difference between the full and quenched IILM

TABLE VI. Fit results of C2 for each order K and current quark
mass m. The coefficient C2 is given in the unit of MeV−2.

m 37 54 70

K C2 × 105 (MeV−2)
2 3.46þ0.52

−0.58 1.71þ0.03
−0.03 1.74þ0.03

−0.04
3 3.51þ0.01

−0.01 0.78þ0.01
−0.01 0.79þ0.01

−0.01
4 1.84þ0.01

−0.01 0.44þ0.01
−0.01 0.99þ0.01

−0.01

FIG. 5. Current quark mass dependence of the coefficient C2.
Fit results of different orders are shown with different types of
markers. Error bars are omitted because they are small.

TABLE VII. Fit results of C2 in the quenched calculations for
each order K and current quark mass m. The coefficient C2 is
given in the unit of MeV−2.

Quenched

m 2.8 14 28

K C2 × 105 (MeV−2)
2 −3.97þ0.08

−0.08 −3.48þ0.11
−0.11 −2.40þ0.11

−0.11
3 −3.32þ0.10

−0.10 −4.39þ0.07
−0.07 −3.22þ0.08

−0.08
4 −2.72þ0.26

−0.23 −3.61þ0.01
−0.01 −2.11þ0.01

−0.01
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is the presence or absence of the quark determinant that
contributes to the interaction among instantons and the
dynamical quarks.
One important direction for future development is to

investigate the mass of mesons, such as the σ that is the chiral
partner of the pions and η0. As discussed in the previous
work [12], chiral effective theories concluded that the σ mass
could be lighter than 800 MeV in the anomaly-driven
symmetry breaking. We expect the same conclusions to
be drawn in the IILM. Even if such conclusions cannot be
reached, it is interesting to clarify the differences between the
chiral effective theories and the IILM. Computation with
different flavors, e.g., Nf ¼ 2, using the IILM may provide
further insights into the anomaly-driven breaking in QCD.
These are subjects to be investigated in future studies.
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APPENDIX: RESULTS OF THE QUENCHED
CALCULATIONS

We show the numerical results for the quenched calcu-
lations. The quenched calculations can be performed in the
same way as in the full calculations except for setting
the quark determinant in the partition function to unity. The
following numerical results of the quenched calculations
are obtained by the same setup as the full calculations, that
is, 5000 configurations after 1000 initial sweeps with
N ¼ Nþ þ N− ¼ 16þ 16 instantons and anti-instantons.
In the quenched calculations, the current quark mass enters
only the calculation of the quark condensate through the
quark zero-mode propagator (23).
In Table VIII, we show the bulk parameters of the

quenched ensemble. These values are consistent with the

quenched calculation in the previous work [14]. We obtain
the scale parameter Λ ¼ 281 MeV and the average instan-
ton size ρ̄ ¼ 0.42, which are compared to Λ ¼ 270 MeV
and ρ̄ ¼ 0.43 fm in the previous work [14], respectively.
Our result of the free energy F ¼ −532 MeV=fm3 shows
good agreement with F ¼ −526 MeV=fm3 for the
quenched calculation in Ref. [14]. Our result also shows
good agreement with the estimation from the trace anomaly
F ¼ −543 MeV=fm4 as discussed in Ref. [14].
In Table IX, we show the quark condensate at the

vacuum for three current quark masses. Our results of
the quark condensate jhq̄qij1=3 ¼ 246; 244; 233 MeV for
the current quark masses m ¼ 2.8; 14; 28 MeV almost
reproduce the empirical values obtained by various pre-
vious works [20–34]. We conclude that our simulations
also work well in the quenched calculations.
In Fig. 6, we show the free energy versus the quark

condensate for the quenched calculations. This shows
globally almost same behavior with the results of the
unquenched calculations, but the trend of the free energy
near the origin appears to be slightly different from the
unquenched results. We perform the same analysis to the
unquenched calculations using the polynomial fitting and
show the fit results following.
In Table X, we show the fit results ofC0 for the quenched

calculations. We find that the value of the coefficient C0 is
also close to zero. The value of C0 averaged over different
orders and quark masses is C0 ¼ −0.77 MeV=fm3. This
value is sufficiently small compared to the typical value of

TABLE VIII. The bulk parameters at the vacuum instanton
density for the quenched calculation. The asterisk represents the
value of the input fix parameter.

Quenched

nðfm−4Þ 1.00� [0.24]
Λ (MeV) 281 [1]
ρ̄ (fm) 0.42 [0.60]
FðMeV=fm3Þ −532½−0.657�

TABLE IX. The quark condensates at the vacuum for the
quenched calculations with different quark masses. The asterisk
represents the value of the input fix parameter.

m (MeV) 2.8 ½0.01�� 14 ½0.05�� 28 ½0.1��
−hq̄qi1=3 (MeV) −246½−0.67� −244½−0.65� −233½−0.57�

FIG. 6. The free energies as a function of the quark condensate
in the quenched calculations.
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the free energy F, and we conclude that the coefficient C0 is
also consistent with zero in the quenched calculation.
In Table XI, we show the fit results of C1 for the

quenched calculations. We find that the coefficient C1

increases monotonically as the current quark mass

increases. For each quark mass, we average the values
of C1 over the different orders and obtain C1 ¼ 48; 169,
and 312 MeV for m ¼ 2.8; 14, and 28 MeV, respectively.
We conclude that the value of C1 increases monotonically
as the quark mass increases for the quenched calculations.
In Fig. 7, we show the current quark mass dependence of

the coefficient C2 for the quenched calculations. For all
quark masses, the value of C2 appears to be negative in
different fit orders. As we have discussed in Sec. IVD, these
results suggest that the chiral symmetry is broken in the
normal way for the quenched IILM by our definition (4).
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