
QCD equation of state and thermodynamic observables from
computationally minimal Dyson-Schwinger equations

Yi Lu ,1,* Fei Gao ,2,† Yu-xin Liu,1,3,4,‡ and Jan M. Pawlowski5,6,§
1Department of Physics and State Key Laboratory of Nuclear Physics and Technology,

Peking University, Beijing 100871, China
2School of Physics, Beijing Institute of Technology, 100081 Beijing, China
3Center for High Energy Physics, Peking University, 100871 Beijing, China
4Collaborative Innovation Center of Quantum Matter, Beijing 100871, China

5Institut für Theoretische Physik, Universität Heidelberg,
Philosophenweg 16, 69120 Heidelberg, Germany

6ExtreMe Matter Institute EMMI, GSI, Planckstraße 64291 Darmstadt, Germany

(Received 4 November 2023; accepted 16 June 2024; published 22 July 2024)

We study the QCD equation of state and other thermodynamic observables including the isentropic
trajectories and the speed of sound. These observables are of eminent importance for the understanding of
experimental results in heavy ion collisions and also provide a QCD input for studies of the timeline of heavy-
ion-collisions with hydrodynamical simulations. They can be derived from the quark propagator whose gap
equation is solved within a minimal approximation to the Dyson-Schwinger equations (DSEs) of QCD at
finite temperature and density. This minimal approximation aims at a combination of computational
efficiency and simplification of the truncation scheme while maintaining quantitative precision. This minimal
DSE scheme is confronted and benchmarked with results for correlation functions and observables from
lattice QCD at vanishing density and quantitative functional approaches at finite density.
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I. INTRODUCTION

The thermodynamic properties of strong interaction
matter are of both experimental and theoretical interest.
The phase structure of strongly interacting matter is explored
in currently running and planned heavy-ion-collision facili-
ties such as the BNL Relativistic Heavy Ion Collider
(RHIC), GSI Facility for Antiproton and Ion Research
(FAIR), JINR Nuclotron-based Ion Collider facility (NICA),
and High Intensity heavy ion Accelerator Facility (HIAF).
Its thermodynamic properties in the phase structure are
governed by the QCD equation of state (EOS), i.e.,
thermodynamic functions such as pressure, entropy density,
energy density, etc., at finite temperature T and quark
chemical potential μq [1–4]. Specifically, for hydrodynamic
simulations of heavy-ion collision, the QCD EOS is a crucial
input as are further transport coefficients, see, e.g., [5,6].

Moreover, at large densities and small temperatures, the
QCD EOS is required for explaining the physics of compact
stars such as neutron stars, e.g., [7].
Accordingly, obtaining the EOSs and other thermody-

namic observables from first principles QCD is of utmost
importance for the physics phenomena discussed above.
At finite chemical potential and in particular for μB=T ≳ 3,
these results can only be obtained with functional QCD
approaches such asDyson-Schwinger equations (DSEs) and
the functional renormalization group (fRG) approach, as
lattice simulations at finite chemical potential to date suffer
from the sign problem. Investigations of the phase structure
of QCD with functional QCD approaches have made
significant progress over the past decade, see in particular
[8–12], and the reviews [13] (DSE) and [14,15] (fRG).
In turn, at vanishing μB, first principles QCD computations
on the lattice provide benchmark results for the chiral
phase transition temperature, thermodynamic observables,
and fluctuations of conserved charges of QCD, see, e.g.,
[16–18], which also can be used for extrapolations to finite
chemical potential [19–21].
By now the results for the chiral phase structure from

functional approaches are converging quantitatively at finite
density with the increasing order of the truncations used.
Moreover, these up-to-date results meet the lattice bench-
mark results at vanishing (and low) chemical potential, see
[11,12,22,23]. The convergent results include an estimate
for an onset regime of new physics, potentially a critical
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end point (CEP), at about ðT; μBÞ ∼ ð110; 600Þ MeV.
This location lies beyond the quantitative convergence
regime μB=T ≲ 4 of the current best approximations, and
hence it is only an estimate and not a fully quantitative
prediction.Still, this is excitingnewsand furthermore there is
an ongoing quest for even more elaborate truncations
that aim for full apparent convergence. However, the
present approximations already allow for quantitative com-
putation in the regime μB=T ≲ 4 and for estimates in the
regime μB=T ≳ 4.
This opens the path towards a comprehensive analysis of

the equation of state, further thermodynamic observables,
fluctuations of conserved charges, as well as timelike
observables such as transport coefficients within functional
approaches. In the present work we contribute twofold to
this endeavor.
(i) We want to make quantitative functional QCD

computations accessible to a wider audience beyond the
technical experts. To that end we set up a minimal
computational scheme for DSE computation: such a
scheme aims at the technically most simple approximation
at finite temperature and density that still reproduces the
phase structure results with the state-of-the-art approxima-
tion scheme in [11,12,22,23] and, hence, allows a relatively
simple access to many observables beyond the phase
structure itself.
(ii) We compute the equation of state and other thermo-

dynamic observables in a wide range of T and μB within
this scheme. This allows us to study further thermodynamic
observables such as the isentropic trajectories and the speed
of sound, highly relevant for hydrodynamic simulations at
finite density.
This work is organized as follows: In Sec. II, we present

the framework of the minimal scheme and its agreement
with the other studies in vacuum. In Sec. III, we apply the
framework in the plane of temperature and chemical
potential and obtain the chiral phase transition. Then in
Sec. IV, we present the results of EOS in the (μ, T) plane and
also the isentropic trajectories. In Sec. V, we summarize the
main results and make further discussions and outlook.

II. THE MINIMAL DSE SCHEME

In this section we develop the minimal truncation
scheme for the DSE approach at finite temperature and
density, which can provide quantitative and semiquantita-
tive results with minimal computational effort (miniDSE).
A central element of the system of DSEs in QCD at finite
temperature and density is the DSE or gap equation for
the quark propagator. The full quark propagator at finite
density and temperature provides access to many observ-
ables, ranging from the chiral phase boundary over the
density to fluctuations of conserved charges. We use it here
also for illustrative purposes. The quark DSE is given by

½SðpÞ�−1 ¼ ½S0ðpÞ�−1 þ Σ0ðpÞ; ð1aÞ

where S0 is the classical bare propagator,

S0ðpÞ ¼
1

i=pþm
; ð1bÞ

where m is the matrix of current quark masses with entries
mf for all flavors f ¼ 1;…; Nf. Σ0 is the bare self-energy,
which satisfies the DSE

Σ0ðpÞ ≃
4

3
gs

Z
d4q
ð2πÞ4 γμSðqÞΓνðq; pÞDμνðkÞ: ð1cÞ

In (1) we have dropped the renormalization details for the
sake of structural simplicity. We shall use a Bogoliubov-
Parasiuk-Hepp-Zimmermann (BPHZ)-type renormalization
procedure setup in [24], which features renormalization
constants, which are set to unity for a sufficiently large
renormalization group scale. More details are provided in
Sec. II B. In Eq. (1c), DμνðkÞ is the full gluon propagator
with gluon momenta k ¼ q − p, and Γν is the full quark-
gluon vertex. The diagrammatic depiction of (1) is provided
in Fig. 1 and the momentum arguments in the quark-gluon
vertex are the incoming and outgoing quark momenta. We
proceed with the detailed discussion of the miniDSE
scheme: In Sec. II A we put forward the essential elements
for such a minimal scheme in functional approaches. Then,
in Sec. II B the scheme is developed and its application is
illustrated a quantitative analysis of vacuum QCD. Finally,
in Sec. II D we demonstrate the remaining developments at
finite temperature and density, which then completes the
whole scheme used in the present work.

A. Minimal scheme for functional approaches

The minimal scheme in functional approaches (miniDSE
or miniFRG) supposedly allows for quantitative results
with a small systematic error, while minimizing or reducing
the computational costs. It builds on previous develop-
ments in [11,22] and is built on two pillars.
(i) Minimal fluctuations. It is an advantageous property

of functional approaches such as the DSE and the fRG, that
QCD correlation functions such as continuum extrapolated
lattice results or quantitative functional QCD results can be
implemented straightforwardly. Moreover, functional loop

FIG. 1. Quark DSE for the quark self-energy ΣðpÞ. Full
propagators are depicted with lines with gray blobs, the full
vertex is depicted with black blob, and the classical vertex with
small black dot. The classical quark propagator is depicted with a
straight black line.
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equations of QCD for given external parameters such as
temperature T, baryon chemical potential μB, and number
of quark flavors Nf can be expanded about QCD for
different external parameters; for more details see [12,22].
This minimizes the amount of quantum, thermal, and
density fluctuations carried by the functional equations
themselves. The benefit of such a procedure is twofold:
First, assuming a negligible or small systematic error of the
input it minimizes the systematic error as the latter only
concerns the fluctuations carried by the functional equa-
tions. This allows us to reduce the intricacy of the
approximation within the DSE or fRG considerably with-
out a significant loss of the quantitative nature of the result.
Second, it minimizes the need of renormalizing the func-
tional equations. For a given n-point correlation function
ΓðnÞ, the procedure can be expressed as follows [12]:

ΓðnÞ
v ¼ ΓðnÞ

v0
þ ΔΓðnÞ

v;v0
; ð2Þ

where v collects the external parameters, e.g.,
v ¼ ðT; μB; Nf;mfÞ. Equation (2) represents the difference
of the DSEs between v and v0 and constitutes a functional

equation for ΓðnÞ
v with the input ΓðnÞ

v0
. We emphasize that the

difference DSE in Eq. (2) depends on further ΓðnÞ
v , which

are computed from their own difference DSEs.
An instructive example is the quark gap equation at finite

temperature and chemical potential which can be expanded
about the vacuum results from other studies,

Σv ¼ Σv0
þ ΔΣv;v0

; ð3Þ

where v ¼ ðT; μB; Nf;mfÞ and v0 ¼ ð0; 0; Nf;mfÞ and
the input, e.g., is the quark propagator and vertices from the
quantitative DSE study of vacuum QCD in [24]. Then, the
gap equation Eq. (3) can be resolved for ΔΣ with the input
of the vacuum self-energy Σv0

, the vacuum quark-gluon
vertex Γμ;v0

and the vacuum gluon propagator Dμν;v0
. This

leads us to

ΔΣðpÞ ≃ 4

3
gs

�XZ
q

γμSvðqÞΓν;vðq; pÞDμν;vðkÞ

−
Z
q
γμSv0

ðqÞΓν;v0
ðq; pÞDμν;v0

ðkÞ
�
; ð4Þ

where
R
is the momentum integration in the vacuum and

PR
takes into account a Matsubara sum for T ≠ 0,

XZ
q

¼ T
X
n∈Z

Z
d3q
ð2πÞ3 ;

Z
q
¼

Z
d4q
ð2πÞ4 : ð5Þ

Note that the solution of the gap equation Eq. (4) requires
the knowledge of the vertex and the gluon propagator,

which satisfy their respective difference version of the
DSE Eq. (2).
For numerical convenience it is advisable to recast the

right-hand side of Eq. (4) such that the exponential
suppression of thermal contributions is included not by
differences of sums and integrals, for a detailed discussion
see [22]. There, this has been explained at the example of
the gluon propagator. For the quark gap equation, the sums
and integrals on the right-hand side of Eq. (4),

ΔΣðpÞ ≃ 4

3
gs

�XZ
q

�
γμSvΓν;vDμν;v − γμSv0

Γν;v0
Dμν;v0

�

þ
�XZ

q

−
Z
q

�
γμSv0

Γν;v0
Dμν;v0

�
: ð6Þ

To begin with, the DSE for ΔΣ is finite (for fixed Nf

and mf); the subtractions from the renormalization have
dropped out. Moreover, the second line only depends on
the input, both the thermal sum and the integral have the
same summand/integrand. Then, the thermal suppression is
readily extracted in a numerically safe way. Note that the
second line can be precompiled for all v and serves as an
input in the first line. Moreover, in most cases the second
line carries most of the thermal change. If solving the set
of DSEs in an iterative procedure about ΔΓðnÞ ¼ 0, the
difference of the self-energies ΔΣ in the first iteration step
is simply given by the second line. As this carries already
the correct thermal suppression, it is also present in the first
line due to the subtraction of the summands/integrands. In
conclusion, this leads us to a numerically stable and cost-
efficient procedure for solving DSEs.
(ii) Minimal correlation functions. Complete n-point

correlation functions ΓðnÞðp1;…; pnÞ carry a rapidly
increasing number of tensor structures as

ΓðnÞðp1;…; pnÞ ¼
X
i

λiðp1;…; pn−1ÞT i: ð7Þ

Their respective scalar dressing functions λi depend on
the momenta p1;…; pn−1, the remaining momentum pn is
fixed by momentum conservation. However, only few of
these dressings have a sizable impact within the system of
functional equations and higher order vertices are typically
suppressed due to space-time and momentum locality of
the vertices in gauge-fixed QCD; for more details see [14].
In our example of the difference gap equation for Eq. (3),

a respective evaluation concerns only the quark-gluon
vertex Γμ. In the vacuum it has a basis of twelve tensor
structures that come with respective dressings,

Γμðq; pÞ ¼
X12
i¼1

T ðiÞ
μ ðq; pÞλðiÞðq; pÞ; ð8Þ
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while its transverse part carries a basis of eight tensor
structures and one typically simply considers transverse
projections of eight elements; see, for example, [24]. There
it has been shown in detail, that only three of these eight
tensors are relevant, say 1, 4, and 7, and the other tensors
can be dropped completely even for quantitative purposes.
This leads us to a reduced vertex,

Γred
μ ðq; pÞ ¼

X
i¼1;4;7

T ðiÞ
μ ðq; pÞλðiÞðq; pÞ; ð9Þ

which is used in combination with the gap equation for
the quarks, Eq. (1c), and gluons as well as with the DSE for
the gluonic vertices. Similarly to Eq. (3), the vertex DSEs
are expanded about the quantitative vacuum solution,
taken, e.g., from [24],

ΔΓμ;v;v0
¼ Γμ;v − Γμ;v0

: ð10Þ

Equation (10) is expanded analogously to Eq. (8) in terms
of sums and integrals. As there this leads to numerically
stable and rapidly converging iterations in the DSE.
In summary, the above minimal scheme allows us to

obtain quantitatively reliable results for observables with a
significant reduction of the numerical costs and a sizable
improvement of the stability of the convergence of the
numerics. In combinations this can lead to a reduction of
the computation time by orders of magnitude. Moreover,
some of these reduced truncations in the miniDSE are
easily accessible technically also for nonexperts.

B. miniDSE scheme in the vacuum

In this section we develop the minimal truncation
scheme for the DSE approach (miniDSE) in the vacuum.
The key to this approach is the quantitative solution of the
quark gap equation or quark DSE for the full quark
propagator SðpÞ already discussed in the introduction of
Sec. II, see (1). Its renormalized form is given by

½SðpÞ�−1 ¼ i=pþmþ ΣðpÞ; ð11Þ

with the renormalized mass m and the renormalized self-
energy Σ. The latter satisfies the renormalization conditions

trDΣðpÞ
����
p2¼μ2

¼ 0; trD
=p
p2

ΣðpÞ
����
p2¼μ2

¼ 0; ð12Þ

with the renormalization scale μ2. The first condition
entails that the renormalized mass mq is the full mass
function at p2 ¼ μ2, while the second condition entails that
the wave function of the quark is trivial at p2 ¼ μ2. The
conditions Eq. (12) can be summarized in

ΣðpÞ��p2¼μ2 ¼ 0: ð13Þ

Similar renormalization conditions hold for the corrections
of the ghost and gluon propagators, as well as the
primitively divergent three- and four-point vertices at the
symmetric point,

p̄2 ¼ p2
i ¼ μ2; i ¼ 1;…; n; ð14Þ

with n ¼ 3, 4 for the three- and four-gluon, ghost-gluon,
and quark-gluon vertices. It is left to detail the renormal-
ization scheme used here. Instead of using the usual MOM
scheme with multiplicative renormalization, the numerical
computation will be performed with the MOM2 scheme
devised in [24], briefly recapitulated below.

1. Renormalization

Equation (11) is computed within the MOM2 scheme
developed in [12,22,24] that also underlies the fRG
computations. It is for the latter reason that this scheme
allows the direct insertion of fRG results, as well as
DSE results computed in this scheme. We refer to [24]
for a detailed analysis of this renormalization group (RG)
scheme in the vacuum: Its chiefly important property is the
fact that its renormalization factors converge towards unity
for sufficiently large renormalization scales μ=ΛQCD ≫ 1;
typically one uses μ≳Oð10Þ GeV. This convergence to
unity is a property of the RG scheme used in the fRG
approach, which is a generalized BPHZ subtraction
scheme. It is precisely this property that allows for a direct
use of fRG input, and is achieved by appropriate self-
consistent subtractions at the renormalization point μ.
We illustrate the practical implementation of the sub-

traction scheme at the example of the quark gap equa-
tion (1c), the other subtractions are implemented similarly.
The BPHZ-type subtractions in [24] are simply given by
the DSEs for a theory with a sharp infrared momentum
cutoff Λ in the propagators, leading to

GΛðp2 ≤ Λ2Þ ¼ 0; ð15Þ

for quark, gluon, and ghost propagators. For the specific
scheme used here we employ cutoffs Λ ≫ ΛQCD and set
the RG scale μ ¼ Λ. Then, the propagator GΛ shows the
standard perturbative behavior for p ≥ Λ. Accordingly, the
difference between the full propagator and the infrared
regularized one vanished approximately up to higher order
terms, namely,

½G −GΛ�ðp2 ≳ μ2Þ ≈ 0; ½G −GΛ�ðp2 < μ2Þ ¼ GðpÞ:
ð16Þ

In summary this leads us to

ΣðpÞ ¼ ΔΣΛðpÞ þ loopsΛðpÞ; ð17Þ
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where loopsΛðpÞ is simply the difference of the loop in (1c)
with the full propagators and vertices and the loop with
infrared regularized propagators GΛ and the respective
vertices. ΔΣΛ carries the renormalization condition and
renders the sum on the right-hand side of Eq. (17) Λ
independent. Effectively this reduces to the self-energy
loop in (1c) with the propagators

GðpÞθðΛ2 − p2Þ; ð18Þ

where we have dropped subleading terms that vanish with
Λ → ∞. At the renormalization point p̄2 ¼ μ2 ¼ Λ2 the
self-energy vanishes, Eq. Eq. (13), which fixes ΔΣΛðpÞ,

ΔΣΛðpÞ ¼ −
1

4
trD loopsΛðpÞ

����
p2¼μ2

− =p
1

4
trD

�
=p
p2

loopsΛðpÞ
�
p2¼μ2

; ð19Þ

where trD is the Dirac trace. This choice also removes the Λ
dependence of the self-energy up to subleading terms that
vanish for Λ → ∞. The first term in Eq. (19) is a finite mass
renormalization, while the second term constitutes a finite
wave function renormalization for the quark in the limit
Λ → ∞. This factor can be absorbed readily in the
definition of the quark field. In summary, this leaves us
with a trivial limit for all renormalization constants for
Λ=ΛQCD → ∞. The derivation of Eq. (17) and (19) from
the Wilsonian point of view including rules for its practical
implementation can be found in Appendix A in [24].
Finally, we note that the classical quark propagator S0ðpÞ

in (1b) is flavor diagonal. The full quark-gluon vertex Γν is
also taken flavor diagonal, and hence (1c) constitutes
equations for the self-energies Σf for a given flavor f,
which only depends on the classical and full quark
propagators Sf0 ; S

f or rather Σf of the same flavor f and
Γf
ν . Hence, the quark gap equation is flavor diagonal;

however, the gluon propagator depends on all flavors.

2. Approximation

In the current work we restrict ourselves to 2þ 1 flavor
QCD with f ¼ u, d, s. In the vacuum, the full quark
propagator is parametrized with a flavor diagonal Dirac
dressing A and a scalar dressing B, namely,

S−1ðpÞ ¼ i=pAðpÞ þ BðpÞ: ð20Þ

The vacuum gluon propagator is transverse in the Landau
gauge used in the current work and has the transverse
dressing Z,

DμνðkÞ ¼ GAðkÞΠ⊥
μνðkÞ; Π⊥

μνðkÞ ¼ δμν −
kμkν
k2

; ð21Þ

with the transverse projection operator Π⊥ and the scalar
propagator part,

GAðkÞ ¼
ZðkÞ
k2

; ð22Þ

with ZðkÞ the dressing function. By now, the vacuum gluon
propagator Eq. (21) can be very accurately computed, e.g.,
for the 2þ 1 flavor gluon propagator, there are consistent
results from lattice QCD simulations and functional com-
putations [11,12,22,25,26]. Therefore, we use the para-
metrization of the 2þ 1 flavor gluon put forward in [24];
see Appendix A for the details.
The last ingredient is the quark-gluon vertex. As dis-

cussed before, the quark-gluon vertex in the vacuum has a
complete basis of twelve tensor structures, fT ðiÞg with
i ¼ 1;…; 12, while its transverse part can be expanded in
eight transverse projections of these tensors with
i ¼ 1;…; 8, see, e.g., [24]. For the development of our
minimal truncation scheme we can build on many func-
tional results obtained for the quark-gluon vertex in the
vacuum, see, e.g., [24,27–33]. At finite temperature and
density these transverse projections all come with a thermal
split, which will be discussed later in Sec. II D.
The following construction of a simplified quark-gluon

vertex in the miniDSE scheme builds on results of the in-
detail analysis of the importance ordering of the vertices
in [24] in the vacuum. Moreover, we also work in the
information from DSE results at finite temperature and
density obtained in the precursor of the present minimal
scheme in [22], and its comparison with the full compu-
tation in [12]. This combined analysis showed that five of
the eight tensor structures are completely subleading, and
we only have to consider the transverse projections of the
remaining three,

T ð1Þ
μ ðq; pÞ ¼ −iγμ;

T ð4Þ
μ ðq; pÞ ¼ −iσμνkν; σμν ¼

i
2
½γμ; γν�;

T ð7Þ
μ ðq; pÞ ¼ i

3

n
σαβγμ þ σβμγα þ σμαγβ

o
lαkβ: ð23Þ

Each tensor comes with a momentum dependent dressing
function λðiÞðq; pÞ with the incoming and outgoing
quark momenta q and p, respectively, and the gluon
momentum k and the weighted sum of the quark and
antiquark momenta l,

k ¼ q − p; l ¼ 1

2
ðqþ pÞ: ð24Þ

Then, the miniDSE quark-gluon vertex takes the form

Γμðq; pÞ ¼
X
1;4;7

T ðiÞ
μ ðq; pÞλðiÞðq; pÞ: ð25Þ
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The terms in Eq. (25) have the following relevance ordering
[24]: the by far dominant component of the vertex is that
with the classical (chiral) tensor structure, T 1λ1, and the
dressing is constrained by the Slavnov-Taylor identities
(STIs). This is followed by the chiral symmetry breaking
part T 4λ4. The smallest contribution originates in the
second chirally symmetric part T 7λ7. The Dirac structures
of quark-gluon vertex are adopted from [24], except T 7

which has less overlap with the other components and
avoids kinematic singularities due to its symmetric form,
see [34].
Then, the fully quantitative miniDSE scheme would

utilize the splits Eq. (2) with v0 ¼ ðN0
f; m

0
f; T

0; μ0BÞ ¼
ðNf;mf; 0; 0Þ or even with T 0 ¼ T as well as the quanti-
tative data from [24] or finite temperature results.
Moreover, at finite temperature and density the dressings
λ1;4;7 with or without thermal split would be approximated
by combinations of the dressings of the quark propagator as
done in [22]. The latter step further reduces the numerical
costs significantly. The quantitative nature of this approxi-
mation has already been confirmed in [12,22]. This con-
cludes our discussion of the quantitative miniDSE scheme
for applications to the phase diagram of QCD.

C. Simplifications beyond the miniDSE scheme

In the present work we will further simplify the scheme
by approximating the vertex dressings also at T ¼ 0 with
combinations of the propagator dressings. Moreover, we
shall drop the least important part T 7λ7, even though it
accounts for an about 20% decrease of the mass function.
We accommodate for this decrease of the mass function by
decreasing the coupling constant with roughly 3% com-
pared with the full QCD coupling in [24]. A comparison of
the λ7 contribution on the quark mass function is shown
in Fig. 2.

In summary, this leads us to a computationally minimal
scheme only in terms of the quark dressings with the quark
gluon vertex,

Γμðq; pÞ ¼ T ð1Þ
μ ðq; pÞλð1Þðq; pÞ þ T ð4Þ

μ ðq; pÞλð4Þðq; pÞ;
ð26Þ

where the dressing of the classical tensor structure is
constrained by the STIs for the quark-gluon vertex. We
shall use

λð1Þðq; pÞ ¼ gsFðk2ÞΣAðq; pÞ; ð27Þ

with the ghost dressing function Fðk2Þ ¼ k2GcðkÞ, where
GcðkÞδab is the ghost propagator. The other factor Σ is the
sum of the quark dressings A defined in Eq. (20),

ΣAðq; pÞ ¼
AðpÞ þ AðqÞ

2
: ð28Þ

Several studies suggest that λð4Þ is proportional to
differences of the scalar quark dressing function [35–37],

ΔBðq; pÞ ¼
BðpÞ − BðqÞ

p2 − q2
: ð29Þ

The scalar dressing of the quark propagator carries the RG
scaling of the quark and antiquark leg of the quark-gluon
vertex. The RG scaling of any vertex dressing λi also has to
accommodate the RG scaling of the gluon momentum as
∝ 1=Z1=2ðkÞ, with the gluon dressing defined in Eq. (22). It
has been shown in [22,24] by comparison to the full vertex
computed in [24] (DSE) and fRG [31] (fRG), that this
factor indeed not only carries the appropriate RG scaling
but also the correct momentum dependence of λ4 in the
vacuum. For the explicit comparison, see, e.g., Fig. 15 in
Ref. [22]. Hence, in the vacuum we choose

λð4Þðq; pÞ ¼ gs
Z1=2ðkÞΔBðq; pÞ; ð30Þ

with ZðkÞ the gluon dressing function introduced in
Eq. (21), see [22]. In the deep infrared, Eq. (30) introduces
a kinematic singularity into the vertex that it absent in the
direct computation. Note however that, in our computa-
tions, the vertex is always attached to a gluon propagator
with momentum k and the factor 1=Z1=2ðkÞ is canceled.
Moreover, the loop integration introduces a further k2 at
finite temperature and k3 in the vacuum, which leads to a
very efficient suppression of this regime. This is checked
with a comparison to the results from computations with
full vertices which allows for a systematic error estimate,
which is described in detail in Appendix B. It is shown that
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FIG. 2. Quark mass function Mðp2Þ ¼ Bðp2Þ=Aðp2Þ from the
truncation scheme Eq. (26), compared to the scheme with an
additional λ7 structure from the data input of [24], and with the λ7
and a 3% enhanced coupling.
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the change of results is no more than 3%, well within the
systematic error estimate of our computation and hence
supports our procedure.
This concludes the discussion of the simplified version

of the miniDSE scheme in the quark sector used in the
present paper. The price to pay for the last simplification
steps Eq. (26)(30) beyond the miniDSE scheme is a loss
of quantitative reliability for baryon chemical potentials
with μB=T ≳ 3. This will be discussed in detail in Sec. II D.
The quantitative reliability regime for μB=T ≲ 3 has been
checked with the results from the fully quantitative finite
temperature and chemical potential computation in [12]:
the loss of quantitative reliability manifests itself, e.g., in an
increasing difference of the chiral phase transition line from
that in full QCD in Fig. 6 for these chemical potentials
including a 10% reduction of the temperature and the
chemical potential values of the location of the critical end
point from the estimated regime in full quantitative func-
tional QCD. For the first computation of thermodynamic
quantities we consider this an acceptable price to pay. Still,
we emphasize that the lack of quantitative reliability from
the simplified construction of λ7 and λ4 is highly relevant
for self-consistency checks of functional approaches: a
necessary condition for the full quantitative reliability or
small systematic error bars is the confirmation of lattice
and functional benchmarks at small chemical potentials
without the need for phenomenological parameters such as
a minor decrease of the coupling. Amongst other con-
ditions, it is this property which informs the current
quantitative reliability bound for predictions from func-
tional QCD of μB=T ≲ 4.
The vertex dressings in Eq. (26)(30) are also based on

dressings from the ghost-gluon sector. The ghost propa-
gator is almost independent of temperature and density and
we use the vacuum fRG data in two-flavor QCD [31]. See
Appendix A for the details. In turn, the gluon dressings are
computed from a difference DSE analogously to that of the
quark discussed around Eq. (5). The respective difference
DSE have been discussed in detail in [12,22]. This
procedure accommodates further intricacies that arise from
the need of a numerically optimal treatment of differences
of frequency integrals and Matsubara sums, and hence we
defer its description to the next section, Sec. IV, where the
setup at finite T; μB is described, see Eqs. (42) to (45).
With this input and simplification of the miniDSE

scheme, the quark propagators are computed in the isospin
symmetry approximation with mu ¼ md ¼ ml with the
coupling parameters αs ¼ g2s=ð4πÞ; ml; ms being fixed at
an RG scale μ ¼ 15 GeV. This is significantly lower than
the perturbative RG scale μ ¼ 40 GeV used in [24] for
precision computations in the vacuum, but suffices for the
present accuracy goals. We use

αs ¼ 0.235;

ml ¼ 3.0 MeV; ms ¼ 27ml ¼ 81 MeV; ð31Þ

at μ ¼ 15 GeV, which is compatible with the coupling
parameters in [24] within the same RG scheme, the
MOM2 scheme.
As a benchmark result we show the light quark mass

function Mðp2Þ ¼ Bðp2Þ=Aðp2Þ and the quark wave func-
tion 1=Aðp2Þ in Fig. 3 in comparison to the quantitative
fRG-DSE results in [24] and the lattice results from [38].
From this quark propagator we compute the reduced quark
condensate

Δl;s ¼ hq̄qil −
ml

ms
hq̄qis: ð32Þ

For the comparison with the lattice and functional results
for the reduced condensate, we have to map our present
results to the respective RG scales. This has been described
in detail in [24] where the precision results for the quark
condensates have been compared to the lattice results at the
lattice RG scale μlat ¼ 2 GeV. Hence, we simply map the
present result to the lattice RG scale and compare it with
the lattice and functional results. We are led to

Δl;sðμlatÞ ¼ −ð277.6 MeVÞ3: ð33Þ

Another and even more direct benchmark is provided with
the light quark condensate in the chiral limit: it relates to the
quark mass function [24,39,40], and we obtain

Δl;χðμlatÞ ¼ −ð273.9ð8Þ MeVÞ3; ð34Þ

in comparison with the functional precision result in the
vacuum Δl;χðμlatÞ ¼ ð269.3ð7Þ MeVÞ3 [24] and the lattice
result Δl;χðμlatÞ ¼ ð272ð5Þ MeVÞ3 (FLAG [41]). Δl;χ can

0 1 2 3 4 5
0.0

0.1

0.2

0.3

0.4

M
(p
2 )
[G
eV
]

p [GeV]

DSE: this work
fRG-DSE: Gao et.al.
Lattice: Oliveira et al., �=5.29
Lattice: Oliveira et al., �=5.20
Lattice: Bowman et al.

0.1 1 3 10 30

0.6

0.7

0.8

0.9

1.0

1/
A(
p2
)

p [GeV]

FIG. 3. Light (u, d) quark mass functions Mðp2Þ ¼
Bðp2Þ=Aðp2Þ and the wave function 1=Aðp2Þ calculated from
the truncation scheme Eq. (26). The results from lattice QCD
simulation [38] and previous DSE computation in the fully
coupled scheme [24] are also shown for comparison.

QCD EQUATION OF STATE AND THERMODYNAMIC … PHYS. REV. D 110, 014036 (2024)

014036-7



also be used to determine the chiral condensate at the
physical quark mass, and we find

ΔlðμlatÞ ¼ −ð274.5 MeVÞ3; ð35Þ
in comparison to the functional precision result ΔlðμlatÞ ¼
ð272.0 MeVÞ3 in [24].
Moreover, using the Pagels-Stokar formula [22] (PS),

we obtain an estimate for the pion decay constant of
fπ ¼ 94.7 MeV. Given the expected 10% deviation of
the PS result from the full results, this agrees well with
fπ ≈ 93 MeV. Moreover, the Gell-Mann–Oakes–Renner
relation yields a pion mass of mπ ¼ 140.4 MeV.
In summary, despite its relative simplicity the quark

propagator and the derived observables in the vacuum,
obtained from the present approximation, show an already
impressive agreement with the precision functional results
and those from lattice simulations. We emphasize again that
the truncation scheme with the simplifications Eq. (26)
and (30) beyond the miniDSE scheme only requires a slight
decrease of the coupling compared to the fully coupled
DSE result [24]. At finite temperature and chemical
potential, the scheme is quantitatively reliable up to
μB=T ≲ 3, which will be seen in the following sections.

D. miniDSE scheme at finite T and μB
We proceed with a discussion of the extension of the

miniDSE scheme to finite temperature and density. This
concerns, in particular, the thermal split and the treatment
of the gluon sector.
The full quark and gluon propagators SðpÞ andDμνðpÞ at

finite temperature and density are parametrized as follows:

S−1ðp̃Þ ¼ iγ4ω̃nCðp̃Þ þ iγ · pAðp̃Þ þ Bðp̃Þ;
p2DμνðpÞ ¼ ΠE

μνðpÞZEðpÞ þ ΠM
μνðpÞZMðpÞ; ð36Þ

with

ω̃n ¼ ωn þ iμq; p̃ ¼ pþ iμq; p ¼ ðp;ωnÞ; ð37Þ
and the quark and gluon Matsubara frequencies

quark∶ ωn ¼ ð2nþ 1ÞπT; gluon∶ ωn ¼ 2n πT; ð38Þ

respectively. Equation (36) also depends on the electric and
magnetic gluon projection operators ΠE;M

μν ,

ΠM
μνðpÞ ¼ ð1 − δμ4Þð1 − δν4Þ

�
δμν −

pμpν

p2

�
;

ΠE
μνðpÞ ¼ δμν −

pμpν

p2
− ΠM

μν: ð39Þ

The quark DSE at finite ðT; μBÞ is of the form (1) with a
spatial momentum integral and a thermal sum over
Matsubara frequencies defined in Eq. (5). The DSE of

the gluon propagator at finite T and quark chemical
potentials ðμu; μd; μsÞ is computed along the lines sug-
gested in [22]. A diagrammatic depiction of the gluon DSE
is provided in Fig. 4.
We first use the difference DSE for the gluon propagator

as in Eq. (5) in an expansion about the gluon propagator in
the vacuum,

D−1
μν;vðkÞ ¼ D−1

μν;v0
ðkÞ þ ΔΠv;v0

A;μνðkÞ; ð40Þ
with

v ¼ ðNf;mf; T; μBÞ; v0 ¼ ðNf;mf; 0; 0Þ: ð41Þ
In Eq. (40), ΠA;μν is the vacuum polarization of the gluon
that comprises all quantum, thermal, and density fluctua-
tions in terms of the diagrams in the DSE. In a further step
we split the diagrams in the thermal and density difference
DSE into the gluonic part ΔΠgl

A ðkÞ whose classical three- or
four-gluon vertex comes from the Yang-Mills sector, and
the quark part ΔΠqu

A ðkÞ that is proportional to the classical
quark-gluon vertex. The latter part is one-loop exact while
the former one also contains two-loop diagrams.

ΔΠv;v0

A;μνðkÞ ¼ ΔΠgl;v;v0

A;μν ðkÞ þ ΔΠqu;v;v0

A;μν ðkÞ: ð42Þ

The quark loop contribution ΔΠqu
A in Eq. (42) reads

ΔΠqu;v;v0

A;μν ðkÞ ¼
X
f

h
Πf;v

A;μνðkÞ − Πf;v0

A;μνðkÞ
i
; ð43Þ

with

Πf;v
A;μνðkÞ ¼−

1

2
Zf
1Fg

2
XZ
q

tr½γμSfðp̃ÞΓf
νðk; p̃; q̃ÞSfðq̃Þ�; ð44Þ

for each flavor. The trace in Eq. (44) sums over Dirac
indices and gauge group indices in the fundamental

FIG. 4. Diagrammatic depiction of the gluon DSE. Full
propagators are depicted with lines with gray blobs, full vertices
are depicted with large black blobs, and classical vertices with
small black dots. The classical gluon propagator is depicted with
a spiralling black line.
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representation. The contribution is flavor diagonal as
already assumed in the quark gap equation.
The pure gauge theory part can be evaluated analo-

gously. While the difference does not require renormaliza-
tion, the numerical implementation of this property requires
some care and for this purpose a numerically stable scheme
has been set up and successfully used in [12,22]. In the
present work we resort to a further simplifying approxi-
mation suggested in [10,42] and expand the gauge loop
contribution in Eq. (42) about the lattice data of the Yang-
Mills (YM) gluon propagator. We obtain

ΔΠgl;v;v0

A;μν ðkÞ ¼ ½DYM
T;μνðkÞ�−1 − ½DYM

T¼0;μνðkÞ�−1; ð45Þ

where we have used that YM theory is only sensitive to the
temperature and not the rest of the parameters in v and v0.
The systematic error of this approximation for physical
quark masses has been evaluated in detail in [11] and does
not add significantly to the total systematic error for the
T; μB regime considered here. In a forthcoming work this
approximation is also resolved with the numerically stable
scheme from [12,22].
Finally, we have to consider thermal and density splits in

the vertices and especially in the quark-gluon vertex. The
miniDSE approximation of the latter with two tensor
structures has been introduced in Sec. II in the vacuum,
see Eq. (26). At finite T; μB we have to take into account the
thermal or density split of tensor structures as the heat bath
or medium singles out a rest frame. To begin with, the
classical tensor structure in Eq. (26) is split as

γμΣAðq; pÞ → γμ½δμ4ΣCðq̃; p̃Þ þ ð1 − δμ4ÞΣAðq̃; p̃Þ�; ð46Þ

where q̃; p̃ contain complex frequencies Eq. (37).
In the present work we employ the further simplification

beyond the miniDSE scheme already discussed in the
previous section on vacuum QCD: we only consider the
second most important tensor structure T ð4Þ of the quark-
gluon vertex, dropping the T ð7Þ contribution. Moreover, we
use an RG-consistent split as in the vacuum. The vertex part
with the second tensor structure T ð4Þ in Eq. (26) is split as
follows:

T ð4Þ
μ ðq; pÞλð4Þðq; pÞ
→ ½T ð4Þ�νðq; pÞ

h
ΠE

μνðkÞλð4ÞE ðq; pÞ þ ΠM
μνðkÞλð4ÞM ðq; pÞ

i
;

ð47Þ
with the miniDSE approximation for the electric and
magnetic dressing functions

λð4ÞE;Mðk; q̃; p̃Þ ¼ gsZ
−1=2
E;M ðk2ÞΔBðq̃; p̃Þ: ð48Þ

This concludes the discussion of the simplified version of
the miniDSE scheme used in the present work: We have

reduced the task of solving the gap equations and vertex
DSEs to that of solving the gap equations, where each
approximation step has been benchmarked and controlled
by functional results obtained within more sophisticated
approximations as well as lattice results. We proceed
by solving this set of difference DSEs for the quark and
gluon dressings with the coupled quark and gluon DSEs
[Eqs. (1) and (40)].

III. QCD PHASE STRUCTURE

We now present results for QCD phase structure, which
are confronted with that obtained with lattice simulations
and functional approaches at vanishing density and func-
tional approaches at finite density. The latter results offer
a quantitative benchmark up to densities μB=T ≲ 4. The
calculation is performed in the isospin-symmetric approxi-
mation and with a vanishing strange quark chemical
potential, ðμu; μd; μsÞ ¼ ð1=3μB; 1=3μB; 0Þ, which give
the net-baryon number density nB ¼ 2=3nu;d and the
vanishing strange quark density ns ¼ 0. This matches
the scenario of heavy-ion collision with a vanishing net
strangeness.
We define the pseudocritical temperature of the

chiral phase transition TcðμBÞ as the peak temperature of
the thermal susceptibility of the reduced condensate Δl;s

defined in Eq. (32),

χTðT; μBÞ ¼ −∂T
�
Δl;sðT; μBÞ
Δl;sð0; 0Þ

�
: ð49Þ

Numerical results of χT at several chemical potentials are
shown in Fig. 5. At zero μB, we obtain Tcð0Þ ¼ 156.5 MeV
in agreement with results from lattice QCD [16–18] and
functional approaches [10–12,22,23].
A further benchmark result is provided with the curva-

ture coefficients of the pseudocritical temperature at
μB ¼ 0. Its Taylor at μB ¼ 0 is given by

TcðμBÞ
Tcð0Þ

¼ 1 − κ2

�
μB

Tcð0Þ
�

2

− κ4

�
μB

Tcð0Þ
�

4

þ � � � ; ð50Þ

and the present simplified version of the miniDSE scheme
yields

κ2 ¼ 0.0169ð6Þ: ð51Þ

This result is slightly larger but compatible with lattice
QCD [16,17,43] and fRG/fRG-DSE [11,12,22] predictions
with κ2 ≈ 0.015 [0.0142(2) in [11], 0.0147(5) in [12]].
On the other hand, we found κ4 ≈ 5 × 10−4 which is also
larger but of the same magnitude as the functional results
κ4 ≈ 3 × 10−4 in quantitative approximations [12].
These slight deviations grow larger at finite chemical

potential. In Fig. 6 we depict the obtained phase transition
line in Fig. 6 in comparison to other functional and lattice
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studies. Our result agrees well with the previous functional
QCD results within more sophisticated truncations until
μB ≈ 400 MeV or μB=T ≈ 3. For μB=T ≳ 3 the deviations
become sizable, which also manifests itself in the location
of the critical end point (CEP) with

ðTCEP; μCEPB Þ ¼ ð108.5; 567Þ MeV: ð52Þ

This location has to be contrasted with the quantitative
estimate

ðTCEP; μCEPB Þ ≈ ð100–110; 600–650Þ MeV: ð53Þ

from the results in [11,12,22]. Considering the small error
of the curvature obtained in Eq. (53), the phase transition
temperature is well constrained. Therefore, the parameter
space singles out a line instead of an area.
In short, Eq. (52) shows a ∼10% deviation with respect

to the estimate Eq. (53) and this deviation provides a
systematic error estimate for the simplified miniDSE
scheme used in the present work. In summary, this analysis
entails that the simplified miniDSE scheme, provides
semiquantitative results for a large range of chemical
potentials. Hence, we can use it for the computation of
thermodynamic quantities which are directly related to the
measurements.
We close this section with a brief discussion of the

twofold origin of the deviations, which are responsible for a
successive loss of fully quantitative reliability of the present
results for μB=T ≳ 3. To begin with, we already know from
the comparison of the phase structure computation in [22],
that the use of full vacuum dressings for the quark-gluon
vertex corrects the curvature coefficient κ. Moreover, the
deviation at larger chemical potential is also caused by
the use of ΔB, Eq. (29), in the dressing λð4Þ, Eq. (30): in
comparison to the dressing computed in [12], ΔB carries a
singular momentum dependence. This can be compensated
for with the introduction of higher order corrections from
the scattering kernel together with the imaginary part of the
propagator induced by the chemical potential. An upgrade
of the present simplified miniDSE scheme based on two-
point dressings is work in progress and we hope to report
on the respective results soon.
Another interesting aspect is the negligible contribution

of the thermal chemical potential splits. For example, we
find that the difference of chiral crossover temperature for
theOð4Þ-symmetric vertex without split and the vertex with
thermal split is less than 1 MeV, and the curvature is barely
changed. This result is also corroborated within a DSE
computation with full vertices, [48] as well as many fRG
tests, see, e.g., [14]. In conclusion, the split affects mainly
the quark and gluon propagators, and the Oð4Þ-symmetric
approximation for the quark-gluon vertex gives agreeing
results for μB=T ≳ 3 as discussed above. Note, however,
that the explicit results here are obtained within the
thermal split.

IV. EQUATION OF STATE OF QCD

The miniDSE scheme allows for a numerically cheap
complete scan of the EOS and other observables in the
phase diagram of QCD. In the present work we also employ
the further simplification beyond the miniDSE scheme
described in Secs. II C and II D and tested in Sec. III.
In Sec. IVA we present results for the quark number

density and the pressure. These results are accompanied
by further derived observables, the entropy and energy

FIG. 5. Temperature dependence of the susceptibility χT at
several quark chemical potentials, including μCEPB ¼ 567 MeV.
For the case of μB ¼ 640 MeV, the first order phase transition
occurs and the χT for both Nambu and Wigner solutions
are shown.
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FIG. 6. Phase diagram obtained here within the simplified
miniDSE scheme, compared to other functional QCD studies
[11,22,23], lattice QCD extrapolation [16,17], and the extracted
freeze-out data from different groups [44–47]. The present
approximation to the minimal DSE scheme is reliable up to
μB=T ≲ 3, which is marked by the black dashed line. We also
display the reliability of the full quantitative computations
[11,12], the dotted line with μB=T ≲ 4.
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densities as well as the ratio of pressure to energy density.
In Sec. IV B these results are used to compute the isentropic
trajectories, and the speed of sound in Sec. IV C. Finally,
we discuss extrapolations in the phase structure in
Sec. IV D.

A. Thermodynamic observables

The quark number densities nfq are directly obtained
from the quark propagators,

nfqðT; μBÞ ≃ −NcZ
f
2T

X
n

Z
d3p
ð2πÞ3 trD½γ4S

fðpÞ�; ð54Þ

where we use μB ¼ 3μl with μu ¼ μd ¼ μl and μs ¼ 0. In
the present work we simply use the momentum-dependent
propagators in the T − μB plane on the right-hand side of
Eq. (54) and leave a more detailed analysis to future work.
First, it is well known that Eq. (54) has to be evaluated in

the nonvanishing background hA0i that solves the equa-
tions of motion, see [49,50]. This is tantamount to
implementing the nontrivial expectation value of the
Polyakov loop away from unity. Only with such a back-
ground the change from quark-gluon degrees of freedom to
hadronic ones is described accurately. This is well illus-
trated with the kurtosis whose asymptotic temperature
values is 1=9 in the quark-gluon phase for large temper-
atures and unity in the hadronic phase for vanishing
temperature, capturing the change of the degrees of free-
dom from asymptotically free quarks to weakly interacting
baryons. Without the A0 background, the degrees of free-
dom in the low temperature phase resemble the quarks and
the kurtosis is far smaller than unity; for a detailed
discussion see [51]. In short, with hA0i ¼ 0 the qualitative
behavior around the crossover line with its change of the
dynamical degrees of freedom is captured, for the quanti-
tative or even semiquantitative behavior the A0 background
is required. Respective results and formal developments in
functional approaches can be found in [11,52–55,55].
Second, the density Eq. (54) requires renormalization

and is subject to a nontrivial normalization, reflecting its
UV degree of divergence. This intricacy worsens at large
temperatures but can be resolved by representing the
density in terms of a (multiple) chemical potential inte-
gration of density fluctuations with a lower or absent UV
degree of divergence, e.g., the kurtosis. Indeed, the
thermodynamic relation between pressure and quark
number density discussed below is precisely of this type
as the quark number density has a lower UV degree of
divergence.
Both issues will be addressed in a forthcoming work

and we proceed with the present qualitative approximation.
The EOS follows from nfq in the ðT; μBÞ plane with the
thermodynamic relation between the pressure and quark
number densities,

PðT; μBÞ ¼ PðT; 0Þ þ 1

3

Z
μB

0

dμ nlðT; μÞ; ð55Þ

where nl ¼ nuq þ ndq. The standard thermodynamic relation
Eq. (55) is of the same structural form as our difference
DSE: The integral in Eq. (55) is simply ΔPðT; μBÞ ¼
PðT; μÞ − PðT; 0Þ and follows from the quark propagators.
In turn, the pressure at vanishing chemical potential can be
determined from the QCD trace anomaly IðTÞ,

IðTÞ ¼ ðϵ − 3PÞ=T4; ð56Þ

with

PðT; 0Þ=T4 ¼
Z

T

0

dT 0ðIðT 0Þ=T0Þ: ð57Þ

For IðTÞ we use 2þ 1 flavor QCD lattice data [56].
Moreover, the integral over the quark number density
expresses the density part of the pressure in terms of a
less-divergent operator which stabilizes the numerical
computation and lowers the systematic error.
In summary, with the lattice input for the trace anomaly

at μB ¼ 0 and the relations Eq. (54)(55), we can compute
the QCD pressure PðT; μBÞ, the energy density ϵ, and the
entropy density s and in the T-μB plane,

ϵðT; μBÞ ¼ TsðT; μBÞ þ μBnBðT; μBÞ − PðT; μBÞ;
sðT; μBÞ ¼ ∂PðT; μBÞ=∂T: ð58Þ

The respective numerical results for the pressure P=PSB

and the light quark number density nu;d=T3 are shown in
Fig. 7 and provide us with the EOS. Further thermody-
namic observables, namely the entropy density s=sSB, the
energy density ϵ=ϵSB, and pressure to energy density ratio
P=ϵ are shown in Fig. 8. We have normalized the pressure
and energy density with the free Stefan-Boltzmann counter-
parts in three flavor QCD at zero chemical potential,

PSB ¼ 19

36
π2T4; sSB ¼ 19

9
π2T3; ϵSB ¼ 19

12
π2T4:

ð59Þ

In the vicinity of the CEP, the entropy s and the energy
density ϵ experience rapid changes close to the chiral
crossover line TcðμBÞ. This rapid change indicates the
increasingly rapid change of the degrees of freedom from
hadrons to quarks in the vicinity of crossover. Moreover,
the successively sharper and deeper minimum of P=ϵ is
related to the peak of the trace anomaly in Eq. (57) as well
as the minimum of the speed of sound, and leaves a strong
imprint on the EOS. The latter allows us to estimate the
location of the CEP even relatively far away from it.
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B. Isentropic trajectories

We have also investigated the isentropic trajectories, i.e.,
the trajectories satisfying s=nB ¼ const in the ðT; μBÞ
plane, which are related to the cooling of the hot quark
gluon plasma matter produced in heavy-ion collision
experiments. The isentropic trajectories calculated from
our EOS at these s=nB values are shown in Fig. 9, together
with the chiral phase transition line and the CEP. We also
compare the obtained phase diagram and the trajectories to
the freeze-out data, which are marked with the same labels
as in Fig. 6. In the vicinity of the phase transition line,
our calculated trajectories are in good agreement with
those obtained from the state-of-the-art equation of state
named NEoS in [57,58]. Especially, our trajectories for
s=nB ¼ 420, 144, 51, and 30 whose values are chosen in
the previous studies for the corresponding collision ener-
gies in heavy ion collision experiments, also precisely meet
with the freeze-out points at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200, 62.4, 19.6, and
11.5 GeV, respectively.
At high temperatures, our results deviate from the

trajectories from lattice QCD simulation and we can trace
this back to the normalization intricacy of the quark number
density discussed below Eq. (54). In turn, below the
crossover line the background hA0i [10,11,49,50,59] has
not been incorporated in the present computations of the

FIG. 7. Light quark number density nu;d and QCD pressure P, normalized by the Boltzmann limit Eq. (59), at finite temperature T and
baryon chemical potential μB.

FIG. 8. Calculated entropy density s, energy density ϵ, which are scaled by their Boltzmann limits Eq. (59), and the ratio of pressure to
energy density P=ϵ.
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FIG. 9. Isentropic trajectories for several values of s=nB
together with QCD phase diagram; the black-dashed curve stands
for the chiral crossover phase transition line. The trajectories are
consistent with the lattice QCD calculation as shown with the
open points [57]. The filled points mark the freeze-out points
from Refs. [44–47].
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density or other thermodynamic quantities and has a
significant impact. A full quantitative computation is
beyond the scope of the present paper and will be presented
elsewhere.
In addition to the s=nB values obtained from the

extrapolation of lattice data at vanishing density, we also
have investigated a smaller value with s=nB ¼ 23 with the
present EOS. By comparing the result with the STAR
freeze-out points [46], we estimate that s=nB ¼ 23 corre-
sponds to

ffiffiffiffiffiffiffiffi
sNN

p ≳ 7.7 GeV. This estimate should be taken
with a grain of salt as the curve is located at the border of
(and beyond) the quantitative reliability regime of the
present simplified miniDSE scheme, and we have neither
tackled the A0 background nor the normalization issue.
With this caveat we note that this trajectory still does not
cross the CEP, and it may require a smaller collision energy
for approaching it.

C. Speed of sound

Finally, we report results for the speed of sound cs in the
simplified miniDSE scheme. We have computed c2s in the
vicinity of the phase transition line. In order to investigate
the experimental scenario of adiabatic cooling, the speed of
sound is evaluated along the isentropic trajectories, using
the following formula [60]:

c2s ¼
n2B∂

2
TP − 2snB∂T∂μBPþ s2∂2μBP

ðϵþ PÞ½∂2TP∂2μBP − ð∂T∂μBPÞ2�
: ð60Þ

The temperature T is chosen as the control parameter for
each trajectory, and the results are shown in Fig. 10. The
minimum of c2sðTÞ agrees with the chiral phase transition
point for each trajectory. The value of the speed of sound at
the minimum does not change too much in the current
energy range, as c2s ∼ 0.13, but the minimum becomes
sharper as s=nB decreases.
The speed of sound is computed from the second and

fourth order T; μB derivatives of QCD pressure, see
Eq. (60), including for example the mixed μB; T derivative,
the thermal susceptibility of the baryon number, as well as
its derivative. Its minimum may be regarded as a criterion
for the crossover temperature of the confinement-
deconfinement phase transition. This crossover can also
be measured more directly in terms of fluctuations of
baryonic charges, see [55] for recent functional results.
We observe that the crossover temperature is a bit lower as
the chiral crossover temperature defined by the peak of the
thermal susceptibility of the chiral condensate, Eq. (49), even
though this difference does not exceed the respective error
bars and the widths of these transitions. With increasing μB
the transition regime gets sharper as the region around the
minimum of c2s is getting steeper. Hence, both the chiral and
confinement-deconfinement phase transitions get steeper
towards the critical end point as expected.

D. Extrapolations in the phase structure

Note that we do not observe critical scaling; for a more
detailed analysis see [55]. However, it is precisely the
smallness of the critical regime, observed by now for both
the O(4)-scaling regime in the chiral limit, [61–63] and
around the critical end point [64], that allows for a precision
estimate of the location of the latter: the extrapolation of
suitable nonuniversal observables towards higher chemical
potentials provides a quantitative estimate of the location of
the CEP, if the data are sufficiently accurate. Such an
endeavor requires a theoretical search for and quantitative
computation of optimal observables in the phase structure
together with their extraction from high precision exper-
imental data. A respective program has been advocated
and started in [54,55] with the theoretical computation and
the comparison to experimental data of fluctuations of
observed charges.
In the present work, we contribute to this program by

comparing the estimates of the location of the critical end
point from several thermodynamic functions with the
computed location in the present simplified miniDSE
scheme, see Fig. 11. To that end we consider the thermal
width ΔT for both thermal susceptibilities χT and ∂nB=∂T,
which is defined as the width of the 90% value of the peak
heights of the respective susceptibility. In case of P=ϵ the
width ΔT is defined as the width of 110% value of the
minimum. These thermal widths monotonously decrease
for larger chemical potential and vanish at the CEP. Hence,
an extrapolation of the widths towards zero provides us
with an estimate of the location of the CEP. A fully
conclusive analysis will be presented elsewhere and will
answer the question about the required precision and
wealth of the experimental data for such a quantitative
estimate in dependence of the distance to the CEP in terms
of chemical potential or collision energy

ffiffiffi
s

p
.
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FIG. 10. Speed of sound squared c2s in isentropic evolution as a
function of temperature T along the trajectories in Fig. 9, labeled
with their s=nB values. Results from the lattice calculation
Refs. [19,58] are also attached for comparison.
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Here we proceed by simply elucidating this task with a
limited amount of data points, see Fig. 11. We perform
cubic polynomial fits for the ΔT data within several μB
regions and then extrapolate towards larger μB. For current
ΔT data, adding higher order polynomial terms only
changes the extrapolated CEP position for about 5% and
thus a cubic fit is sufficient for convergence. We find that
with successively larger μB included into the fit regime, the
estimates for the location of the CEP get closer to its actual
location. However, even with the present sparse data one
does not have to zoom into the neighborhood of the CEP.
Moreover, the comparison shows that the chiral condensate
or rather its susceptibility is better suited for such an
extrapolation. In summary, it is very suggestive that a
global combination of experimental precision data is best
suited for such a task. This asked for the latter, which can be
obtained in a combination of STAR data and in particular
future high precision CBM data, based on its orders of
magnitude larger luminosity.

V. SUMMARY

In the present work we have computed thermodynamic
quantities such as the chiral phase structure, the QCD
equation of state (EOS), the isentropic trajectories, and the
speed of sound within first principles functional QCD.
At low densities, the results are benchmarked with lattice
results, while at larger densities the current approach offers
qualitative predictions. The EOS was obtained from inte-
grating the quark number density from vanishing to finite
chemical potential, while using lattice results for the trace

anomaly at zero chemical potential as an input. Apart from
the above mentioned observables we have also computed
the pressure, entropy density, and energy density in a wide
range of temperature and chemical potential. In particular,
we also discussed the implications of our results for the
adiabatic speed of sound on the search for novel phases and
the location of critical end point in the strong interaction
matter produced in the collider experiments.
Our thermodynamic results are obtained within a minimal

computational scheme for functional approaches, developed
in the present work for quantitative and semiquantitative
computations, see Secs. II and II D. This scheme is also
based on previous developments in [11,12,22] both in the
DSE approach as well as in the fRG approach. Here we have
applied its DSE version, the miniDSE scheme, to compu-
tations of the quark propagator at finite temperature and
density. Additional truncations reduced the regime of quan-
titative reliability to the regime μB=T ≲ 3, where the current
results for the phase structure agree very well with that in
state-of-the art quantitative truncations [11,12,23]. Still, also
the results in the regime μB=T ≳ 3 provide semiquantitative
and qualitative estimates. For example, the current estimate
of the location of the critical end point only differs by
approximately 10% by that given in the quantitative studies.
This leads us to the suggestion to finally determine its
location within a combination of theoretical constraints and
predictions for both, the phase structure as well as exper-
imental observables, and respective experimental precision
measurements.
While the current application has been tuned to minimal

computational costs and further truncations have been
done, aiming at the computation in terms of two-point
functions alone, the fully quantitative miniDSE scheme is
set up as well. Moreover, the miniDSE scheme can also be
readily applied to the low temperature and finite chemical
potential regime, i.e., cold dense quark matter and the
equation of state of neutron stars. Furthermore, it provides a
simple and quantitative access for the exploration of the
QCD phase structure in the ðT;ml; msÞ space, the
Columbia plot, which is work under completion.
We hope to report soon on the respective results in the

Columbia plot and for cold dense matter, and in particular
on a precision prediction for experimentally accessible
observables in the regime 2 GeV≲ ffiffiffi

s
p ≲ 15 GeV. This

regime includes the location of the critical end point or
more generally the onset regime of new phases: Theoretical
predictions accompanied with an analysis of the μB or

ffiffiffi
s

p
dependence, and a combination of STAR data and future
high precision CBM data in this regime should allow us to
finally pin down the location of the CEP or the onset regime
of new phases as well as its physics.
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APPENDIX A: PARAMETRIZED FORMULA OF
THE VACUUM GLUON AND GHOST

PROPAGATORS

In our computations we use the parametrization in [24]
of the 2þ 1-flavor gluon propagator in the vacuum
equation (22), which combines the data from quantitative
functional QCD and from lattice QCD [11,12,22,66,67],

GAðk2Þ ¼
a2þk2

b2þk2

M2
Gðk2Þ þ k2½1þ c logðd2k2 þ e2M2

Gðk2ÞÞ�γ
;

M2
Gðk2Þ ¼

f4

g2 þ k2
; γ ¼ 13 − 4

3
Nf

22 − 4
3
Nf

; ðA1Þ

where γ is the anomalous dimension of the one-loop gluon
propagator and

a ¼ 1 GeV; b ¼ 0.735 GeV; c ¼ 0.12;

d ¼ 0.0257 GeV−1; e ¼ 0.081 GeV−1;

f ¼ 0.65 GeV; g ¼ 0.87 GeV: ðA2Þ

For the ghost dressing function Fðk2Þ in Eq. (27), the
vacuum fRG data in two-flavor QCD is taken from
Ref. [31], which is parametrized as

Fðk2Þ ¼
a1þb1

ffiffiffiffi
k2

p
þk2

c1þd1
ffiffiffiffi
k2

p
þk2

½1þ e1 ln ðf21k2 þ g21M
2
Gðk2ÞÞ�δ

; ðA3Þ

where MG is the same as in Eq. (A1), with δ ¼ 0.27 the
anomalous dimension, and

a1 ¼ 0.152 GeV2; b1 ¼ 0.697 GeV;

c1 ¼ 0.0055 GeV2; d1 ¼ 0.016 GeV; e1 ¼ 0.045;

f1 ¼ 0.025 GeV−1; g1 ¼ 0.0237 GeV−1: ðA4Þ

Equations Eq. (A1) and (A3) fit the functional and lattice
data well in the regime p∈ ½0; 40� GeV, and hence cover
the momenta relevant for the present computations.

APPENDIX B: ERROR ESTIMATE OF THE
KINEMATIC SINGULARITY

As a part of the evaluation on the kinematic singularity
effect in Eq. (30), we first argue that the kinematic
singularity can be avoided by the following upgrade of
the present procedure: Instead of using Eq. (21) and its
finite temperature and chemical potential analogs for the
definition of the gluon wave function, one can use a
parametrization for the scalar propagator part GAðkÞ in
Eq. (21), which takes into account the mass gap of QCD
explicitly. In the vacuum this reads

GAðkÞ ¼
1

ZA;scrðkÞ
1

k2 þm2
scr

; ðB1Þ

where m2
scr is the spatial screening mass. This mass is

defined via the exponential decay of the large distance limit
of the spatial Fourier transform of the gluon propagator,

G̃Aðk0; rÞ ¼
Z

d3k
ð2πÞ3GAðk0; kÞeikx; ðB2Þ

with the spatial momentum k and the spatial position or
distance x and r ¼ kxk. The large distance limit r → ∞ can
be parametrized with

lim
r→∞

G̃Aðk0 ¼ 0; rÞ → RðrÞe−mscrr; ðB3Þ

where RðrÞ is a polynomial or at most a rational function of
r. The spatial screening mass m2

scr is the inverse screening
length and is defined as the strength of the exponential
decay. A similar definition holds true for the temporal
screening mass, which is obtained from the asymptotic time
dependence of the Schwinger function.
In the vacuum these two masses agree due to Lorentz

invariance and we get from the functional and lattice 2þ 1
gluon data in [11,12,22,25,67],

mscr ≈ 850 MeV: ðB4Þ

The overall error of Eq. (B4) and the respective ones for
Nf ¼ 2 flavor QCD and Yang-Mills theory is about
20 MeV which can be reduced significantly if producing
dedicated data for the task of determining the screening
mass. Equation (B4) can be considered as a physics
definition of the gluon mass gap, and can be compared
withmscr ≈ 830 MeV for the two-flavor data from [31] that
underlie the 2þ 1 flavor computations in [11,12,22] and
mscr ≈ 760 MeV in Yang-Mills theory from the gluon
data in [68], compatible with the T → 0 extrapolation of
the finite temperature screening mass computed in [69].
The physical nature of this definition is corroborated by the
quantitative agreement of the screening mass with the
Debye screening mass in thermal perturbation theory for
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temperatures T ≳ 2Tc, where Tc is the critical temperature
of the confinement-deconfinement phase transition.
The spatial and temporal screening masses differ at finite

temperature and chemical potential, and a more quantitative
vertex construction at finite temperature and chemical
potential takes into account both screening masses. For a
respective discussion and computation in finite temperature
Yang-Mills theory, see [69], and the notation in Eq. (B1) is
close to that used there and in further fRG works such
as [11] and the DSE works [12,22,24,62].
We emphasize that the spatial and temporal screening

masses reflect the physical gluon mass gap in QCD even in
the present gauge-fixed settings and constitute a relevant
physics input in phenomenological considerations in the
phase structure of QCD. This is already evident for its
importance for the confinement-deconfinement phase tran-
sition in Yang-Mills theory, see [69]. Importantly, with the
substitution

Z1=2ðkÞ → 1

Z1=2
A;scrðkÞ

; ðB5Þ

in Eq. (30) as well as other dressings, kinematic singular-
ities are avoided and the respective dressings reflect the
decoupling of the dynamics below the (gluon) mass gap of
QCD. This as well as their phenomenological importance
will be considered elsewhere.
For the present purposes we find that the simplified

vertex construction Eq. (30) serves well and the kinematic
singularity has no impact on the physics considered here.
We proceed with the systematic error estimate with a
comparison to results with the full vertex. First, we note
that the negligible impact of this kinematic singularity has
been discussed in detail in [22], based on the explicit
vacuum results in [28–31]. Importantly, this analysis has
also been extended to finite T and μB in [12]. Below we
briefly discuss these different checks.
In [22], it has been shown that Eq. (30) describes the T ð4Þ

structure of the full vertex in the vacuum very well down to
momenta k ≈ 1 GeV, using also vertex data from [31]. This
has later been corroborated with vertex data from the
quantitative DSE vacuum computation in [24]. In turn,
for k≲ 500 MeV, the vertex Eq. (30) shows a kinematic
singularity which is not present in the full vertex that
monotonously rises and approaches a constant for k ¼ 0.

The kinematic singularity in Eq. (30) is in a regime which is
suppressed by the mass gap of QCD, and hence it has no
impact. This has been checked and confirmed in several
ways: Its reliability for computations in the phase structure
has been benchmarked with the good agreement of the
results with that from [11] up to baryon chemical potentials
μB ≲ 600 MeV, and this has been corroborated by the
phase structure results with the direct computation of
quark-gluon vertex DSEs in [12]. In the present work
we check the irrelevance of the kinematic singularity by
freezing ZðkÞ in Eq. (30) for small momenta with a freezing
scale in the regime

kfreeze ≈ 0.4–1.7 GeV; ðB6Þ
which is roughly 1=2mscr ≲ kfreeze ≲ 2mscr with the 2þ 1
flavor screening mass in Eq. (B4). This emulates the effect
of Eq. (B5) as ZA;scr indeed freezes for small momenta.
Moreover, it covers efficiently the difference to the full
vertex: while the kinematic singularity leads to an enhance-
ment of the vertex, the freezing leads to a lowering of the
vertex in comparison to the full vertex. The results do not
change by more than 3%, for example in the vacuum the
freezing effect on the quark mass function is shown in
Fig. 12. This is well within the systematic error estimate of
our computation and, hence, supports our procedure.
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