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Deconfined quark matter at asymptotically high densities is weakly coupled, due to the asymptotic
freedom of quantum chromodynamics. In this weak-coupling regime, bulk thermodynamic properties of
quark matter, assuming a trivial ground state, are currently known to partial next-to-next-to-next-to-leading
order. However, the ground state at high densities is expected to be a color superconductor, in which the
excitation spectrum of (at least some) quarks exhibit a gap with a nonperturbative dependence on the strong
coupling. In this work, we calculate the thermodynamic properties of color-superconducting quark matter
at high densities and zero temperature at next-to-leading order (NLO) in the coupling in the presence of a
finite gap. We work in the limit of two massless quark flavors, which corresponds to deconfined symmetric
nuclear matter, and further assume that the gap is small compared to the quark chemical potential. In these
limits, we find that the NLO corrections to the pressure and speed of sound are comparable in size to the
leading-order effects of the gap, and further increase both quantities above their values for non-
superconducting quark matter. We also provide a parametrization of the NLO speed of sound to guide
phenomenology in the high-density region, and we furthermore comment on whether our findings should
be expected to extend to the case of three-flavor quark matter of relevance to neutron stars.
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I. INTRODUCTION AND SUMMARY

The bulk thermodynamic behavior of strongly interact-
ing matter at large baryon densities and small temper-
atures remains a fundamental open question within
high-energy and nuclear physics. While at high temper-
atures and small baryon densities, thermodynamic
properties of the fundamental theory of the strong
interactions—quantum chromodynamics (QCD)—can
be directly computed with a lattice regularization and
Monte-Carlo sampling techniques [1,2], such an approach
fails in the cold, dense regime of the theory due to the
infamous sign problem, see, e.g., Refs. [3–7] for
reviews. Despite this difficulty, the study of dense nuclear
matter is currently a very active area of research, with

interdisciplinary input from astrophysical observations
(e.g., Refs. [8–20]) and theoretical computations in
nuclear [21–26] and high-energy physics [24,27–36].
The input from perturbative computations within QCD

itself has recently received increased attention [37–40],
though their inclusion in the determination of the dense-
matter equation of state (EOS) within neutron stars was first
performed a decade ago [41]. These computations are
convergent above about 25–40 times nuclear saturation
density n0 ≈ 0.16 fm−3 [36] and have currently reached the
partial next-to-next-to-next-to-leading order in the strong
coupling constant [30,31,35]. However, one shortcoming
of these computations is that they are performed about the
unpaired vacuum, which is unlikely to be the true ground
state of QCD at large quark chemical potentials. Instead,
due to the attractive gluonic force between quarks, it is
expected that Cooper pairing leads to the generation of a
gap in the excitation spectrum of the quarks for at least
some species, as demonstrated in various studies based on
the fundamental quark and gluon degrees of freedom
[24,33,42–50]. For example, at sufficiently large chemical
potential μ, where the explicit breaking of the flavor
symmetry is parametrically suppressed, three-flavor
QCD is expected to be a color superconductor in the
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so-called color-flavor locked (CFL) statewhere quarks of all
three colors and all three flavors form zero-momentum
Cooper pairs with zero spin [51–54]. This indeed represents
themost symmetricway to formCooper pairs in this regime.
Toward smaller chemical potentials, where the strange quark
mass can no longer be neglected, other less symmetric
pairing patterns may be more dominant, see Refs. [55–62].
The presence of a pairing gap jΔgapj in the quark

excitation spectrum directly affects thermodynamics prop-
erties of strong-interaction matter. Indeed, the leading-order
correction to the pressure of ungapped quark matter is of
Oðμ2jΔgapj2Þ (see, e.g., Refs. [33,34,63–65]). Assuming
that the QCD ground state is a color superconductor at high
densities, this correction must lead to an increase of the
pressure relative to the pressure of ungapped quark matter,
since the ground state corresponds to the phase with highest
pressure. Depending on the size of the gap and the density
under consideration, gap-induced corrections may then
already yield a significant contribution to the pressure.
This line of arguments is very general and does not make
use of the specific type of the gap. Moreover, it also applies
to situations where the superfluid ground state is associated
with the formation of a condensate of color-neutral states,
such as pions in the case of large isospin asymmetry at
small chemical potential, see, e.g., Refs. [66–68].
With respect to phenomenological applications, we add

that even if gap-induced corrections to the pressure may be
small, the gap may nevertheless strongly affect other
observables. In particular, this applies to quantities which
can be derived from the pressure by taking derivatives with
respect to the chemical potential—such as the density and
speed of sound—as well as transport coefficients. Whether
this is the case for specific quantities derived from the
pressure or not depends on the scaling of the gap with
respect to the chemical potential. For example, it has been
found in a renormalization-group (RG) study based on the
fundamental quark and gluon degrees of freedom that the
presence of a global maximum in the speed of sound
appears tightly connected to the formation of a gap in the
quark excitation spectrum [24,33], at least for two-flavor
quark matter. A more general analysis on how gap-induced
corrections to the equation of state affect thermodynamic
observables, in particular the speed of sound, can be found
in Ref. [34].
In the present work, we consider symmetric nuclear

matter in the limit of vanishing temperature and quark
masses with a focus on the computation of thermodynamic
quantities. To this end, we shall present a framework in
Sec. II that allows us to systematically compute the
coefficients of an expansion of the pressure p in powers
of the dimensionless gap jΔ̄gapj2 ≡ jΔgapj2=μ2:

p ¼ pfreeðγ0ðgÞ þ γ1ðgÞjΔ̄gapj2
þ γ2ðgÞjΔ̄gapj4 þ…Þ: ð1Þ

Here, pfree is the pressure of the free quark gas, the γi’s
denote the expansion coefficients, and g is the renormalized
strong coupling. Although we have written the pressure
only in terms of monomials of the gap here, it is not
excluded that terms with a logarithmic dependence on the
gap appear. Indeed, starting at OðjΔgapj4Þ, also corrections
of the form ∼jΔgapj4 ln jΔgapj2 can appear as our present
study already indicates. However, these are irrelevant for our
current computation of the coefficients up to OðjΔgapj2Þ. In
any case, we tacitly assume here that the pressure is a smooth
function of the gap, which is reasonable away from phase
transitions.Adiscussion of other aspects of this expansion of
the pressure, such as its form in the presence of finite quark
masses can be found in, e.g., Refs. [34,54].
In our calculations of thermodynamic quantities, we

shall restrict ourselves to the case of QCD with two
massless quarks, which is simpler than the case with 2þ 1
quark flavors from a purely technical standpoint as we do
not have to account for the explicit breaking of the flavor
symmetry. In two-flavor quark matter, ignoring the
electromagnetic force, the ground state is expected to
be governed by pairing of the so-called two-flavor color-
superconductor (2SC) type and the formation of a corre-
sponding chirally symmetric gap in the quark excitation
spectrum, as indicated by many nonperturbative first-
principles studies [24,33,42–50]. Note that this type of
pairing is different from CFL-type pairing since it does not
involve all three colors.
The expansion (1) of the pressure represents a double

expansion in terms of the gap and the strong coupling. The
explicit dependence on the latter is encoded in the coef-
ficients γi and arises from quantum corrections to the
gapped quark and gluon propagators. In addition, there is
an implicit dependence on the strong coupling coming from
the gap. In contrast to the coefficients γi, however, the gap
is an inherently nonperturbative quantity, representing a
nontrivial ground state. Indeed, color-superconducting gaps
are generally found to exhibit a nonanalytic dependence on
the strong coupling, see, e.g., Refs. [33,42–49]. Hence, a
perturbative calculation of the gap in the form of an
expansion about g ¼ 0 is not possible. Nevertheless, by
treating the strong coupling as a small constant parameter,
the dependence of, e.g., the 2SC gap on the strong coupling
has been extracted analytically from Dyson-Schwinger
equations (DSE) [42–48]:

jΔgapj ∼ μg−5 exp

�
−

3π2ffiffiffi
2

p
g

�
: ð2Þ

The functional dependence of this gap on the strong
coupling is expected to hold for large chemical potentials
μ ≫ ΛQCD, i.e., at high densities. Since the strong coupling
has been assumed to be small and constant in these studies,
the presence of a Cooper instability in finite-density QCD
and the associated BCS (Bardeen-Cooper-Schrieffer)
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mechanism underlie the formation of a gap. However,
toward lower densities, the strong coupling grows and the
assumption of a small coupling may no longer be justified.
This increase of the strong coupling may even “boost” pair
formation which potentially leads to larger gaps and may
also alter the dependence of the gap on the strong coupling
in Eq. (2), see Refs. [33,34] for a discussion.
In the following we shall not perform nonperturbative

computations of the gap. We rather treat the gap as an input
in the presence of which we perform a perturbative
computation of the expansion coefficients γi in Eq. (1).
To be specific, the focus of the present work is on a
computation of the pressure, consistently expanded up to
second order in the gap and to Oðg2Þ in the corresponding
coefficients γ0 and γ1. As we shall discuss in detail in
Secs. II and III, we find

γ0ðgÞ ¼ 1 −
g2

2π2
þOðg4Þ ð3Þ

and

γ1ðgÞ ¼ 2þ 1.09ð4Þg2 þOðg4Þ; ð4Þ

the former of which is already well-known [69–74].
Thermodynamic stability requires that γ1 > 0, provided
that the QCD ground state is a color superconductor, but
note that the sign of the Oðg2Þ corrections in γ1 is not
similarly fixed. Note that pfree ¼ μ4=ð2π2Þ in Eq. (1) for
quark matter with two flavors coming in three colors.
The coefficients γ0 and γ1 at order g2 can be employed to

compute thermodynamic quantities, such as the baryon
density n ¼ ð1=3Þð∂p=∂μÞ and the speed of sound cs,

cs ¼
�
μ

n
∂n
∂μ

�
−1=2

; ð5Þ

where 0 ≤ cs ≤ 1 because of mechanical stability and
causality, respectively. For a (numerical) evaluation of
the pressure, which enters these quantities, we also must
specify the form of the gap and the strong coupling. In the
following we shall employ the weak-coupling result for the
gap, see Eq. (2), with the constant of proportionality
adjusted such that jΔ�j≡ jΔgapðn ¼ 10n0Þj ¼ 100 MeV.
This represents a typical size of the gap in the literature, see,
e.g., Refs. [43,75]. For the strong coupling, we shall for
simplicity use the standard one-loop result evaluated at the
scale set by the chemical potential:

g2ð2Xμ=ΛQCDÞ ¼
1

b0 lnð2Xμ=ΛQCDÞ
: ð6Þ

Here, X∈ ½1=2; 2� is the usual scale variation factor
[27–29,31,32,35,36], which we use to provide theoretical
uncertainty estimates, ΛQCD ¼ Λ0 expð−1=ðb0g20ÞÞ with
b0 ¼ 29=ð24π2Þ, and g0 is the value of the strong coupling
at the scale Λ0. In our numerical calculations, we chose
g20=ð4πÞ≈0.179ð4Þ and Λ0 ¼ 10 GeV [76], which yields
ΛQCD ≈ 265 MeV.
In Fig. 1, we present our results for the pressure as a

function of the quark chemical potential (left panel) and the
speed of sound as a function of the baryon density (right
panel) as obtained from an evaluation of the coefficients γ0
and γ1 at different orders in g, namely order g0 (leading
order, LO) and order g2 (next-to-leading order, NLO),
respectively.
Examining the pressure in Fig. 1, we indeed observe that

the inclusion of the gap leads to an increase of the pressure

FIG. 1. Pressure normalized to the pressure of the noninteracting quark gas as a function of the quark chemical potential μ (left panel)
and speed of sound squared as function of the baryon density n in units of the nuclear saturation density n0 (right panel) as obtained from
a computation at different orders, see main text for details. In our calculations of the pressure and the speed of sound of color-
superconducting matter (NLO=LO, NLO=NLO), we have employed the gap found in the weak-coupling limit, see Eq. (2). The results
without gap corrections (NLO, no gap) correspond to the well-known perturbative results at two-loop order. The shaded regions depict
the uncertainty arising from the usual scale variation of the strong coupling, see Eq. (6).
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relative to the perturbative two-loop result for ungapped
quark matter (NLO, no gap), as expected for a color
superconductor. We furthermore see that the NLO correc-
tions to γ1 are of a comparable size to (or even larger than)
the LO corrections when added on top of the NLO
ungapped result and further increase the pressure. In case
of the speed of sound as a function of the baryon density,
see the right panel of Fig. 1, the situation is very similar.
Toward the high-density limit, we observe that the results
for the speed of sound with gap corrections approach the
value of the free quark gas from below, in accordance with
the standard two-loop result. However, at lower densities,
the inclusion of the NLO corrections to γ1 computed in this
work cause the sound speed to grow even more quickly at
lower densities. They also induce a local minimum in the
speed of sound above 30n0, in the perturbative regime.
Decreasing the density further, the gap-induced corrections
then even push the speed of sound above its asymptotic
high-density value, though in the regime where the strong
coupling is no longer small.
Given that the speed of sound in studies based on chiral

EFT interactions at low densities has been found to be
smaller than cs ¼ 1=

ffiffiffi
3

p
and decrease toward the zero-

density limit (see, e.g., Refs. [21–24]), our present results
are in accordance with previous theoretical work [24,34]
suggesting a maximum in the speed of sound at high
densities. Such a result also has been found to follow from
high-mass neutron-star observations in the three-quark-
flavor case, especially once constraints from high-density
perturbative-QCD calculations are included in the equation
of state inference [38,77–84].
We emphasize that our general observations regarding

the behavior of the pressure and the speed of sound are
robust under a variation of the size of the gap at ten times
the nuclear saturation density. With respect to the speed of
sound, this essentially only affects the value of the densities
at which it exhibits a local minimum or exceeds its
asymptotic value. We discuss this in detail in Sec. IV
where we vary the size of the gap within a range consistent
with recent astrophysical constraints [85]. In that section,
we also demonstrate that our observations are additionally
robust against a variation of the specific form of the gap
used in our numerical computations. Finally, we present a
scaling law for the speed of sound as a function of density
in Sec. IV which may be useful to guide the construction of
parametrizations of the speed of sound in the analysis of
astrophysical constraints.
Let us conclude by commenting on how the inclusion of

strange quarks may affect our present results. In three-
flavor quark matter, the expansion of the pressure in powers
of the gap in Eq. (1) should assume the same functional
form as considered in our present work [34,54], provided
that quark mass corrections are suppressed as they are at
large densities [32]. The gap in the expansion would in that
case then refer to the CFL gap rather than the 2SC gap.

Since the CFL gap in the weak-coupling limit is also of the
form given in Eq. (2), it is reasonable to expect that our
conclusions with respect to the pressure and the speed
of sound remain unaltered on a qualitative level in the
presence of the CFL diquark gap.1 Note that, at the order
considered in this work, the coefficient γ3-flavor0 for three-
flavor quark matter agrees identically with the one for
two quark flavors [69–74] as the flavor dependence is
absorbed in p3-flavor

free ¼ 3μ4=ð4π2Þ. The coefficient γ3-flavor1 is
known at Oðg0Þ for quark matter in the CFL phase,
γ3-flavor1 ¼ 4 [54,57,59,86]. Thus, gapped quark matter with
two and three flavors behaves qualitatively the same at
NLO=LO. Of course, a quantitative comparison requires
the computation of the corresponding coefficient γ3-flavor1 at
Oðg2Þ in 2þ 1 flavor QCD, which will be performed in an
upcoming work.

II. THEORETICAL FRAMEWORK

In this section, we motivate and describe the computa-
tional setup for our double expansion of the pressure in
terms of the strong coupling and the gap. The impatient
reader may wish to skip to Sec. II C for a concrete
discussion of the action that we use.

A. General considerations

We begin our discussion of the computation of the
pressure of dense matter with the action of QCD:

S¼
Z

β

0

dτ
Z

d3x

�
ψ̄ði=D− iμγ0Þψþ1

4
Fa
μνFa

μν

�
þSgf þSgh:

ð7Þ

Here, β ¼ 1=T is the inverse temperature, μ denotes the
quark chemical potential, Fa

μν is the field strength tensor
implicitly depending on the non-Abelian gauge field Aa

μ,
Sgf is the gauge fixing term, and Sgh the ghost action.
Throughout this work, we consider two massless quark
flavors coming in three colors in 3þ 1 Euclidean spacetime
dimensions. The coupling between the quark fields ψ and
the gauge fields Aa

μ (associated with the gluons) is governed
by the covariant derivative Dμ,

Dμ ¼ ∂μ − iḡAa
μTa; ð8Þ

where Ta is the generator of the SU(3) color group in the
fundamental representation and ḡ denotes the bare strong
coupling.

1We remark here that in CFL matter there are additional
condensates arising from the chiral and baryon symmetry break-
ing in the CFL phase [53,59], which may complicate the picture.
These condensates can however also be handled using the
approach employing in the present work, by introducing addi-
tional expansion parameters.
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From the path integral Z as a function of the quark
chemical potential,

ZðμÞ ¼
Z

DAa
μDψ̄Dψe−S; ð9Þ

the thermodynamic equation of state (i.e., the pressure p)
can then in principle be obtained, e.g., at zero temperature:

pðμÞ ¼ lim
β→∞

1

β

∂

∂V
lnZðμÞ; ð10Þ

where V is the spatial volume.
In practice, the computation of the path integral is a

highly nontrivial problem and to date requires approxima-
tions, in particular at high densities. The challenges are
manifold. For example, the coupling is weak only at high
densities and becomes successively stronger toward the
low-density regime. Moreover, depending on the density,
nonperturbative effects leading to a nonanalytic depend-
ence on the coupling may become relevant, such as the
dynamical formation of a gap in the quark propagator
associated with some form of symmetry breaking. Of
course, an analysis of the phenomenological relevance of
such nonperturbative effects at high densities requires their
inclusion in a computation of the equation of state, which is
the main motivation of this work.
Assuming that the coupling is small, the path integral in

Eq. (9) may be expanded in terms of it, which yields a
corresponding expansion for the pressure and related
thermodynamic quantities. Over many decades now,
impressive progress has been made in such computations
of thermodynamic properties of cold and dense strong-
interaction matter, see, e.g., Refs. [27,29–31,35,71–74].
For example, at two-loop order, such a perturbative
evaluation of the path integral yields

p ¼ pfree

�
1 −

g2

2π2
þOðg4Þ

�
: ð11Þ

Here, g is the renormalized strong coupling and pfree
denotes the pressure of the free/noninteracting quark gas.
Due to the presence of a BCS instability, early ground-

breaking nonperturbative studies in the weak-coupling limit
pointed out that QCD in the zero-temperature limit at
sufficiently high densities is a color superconductor [42–
48]. To be more specific, in the case of QCD with two
massless quark flavors with equal chemical potentials, an
analysis of the excitation spectrum of the quarks revealed
that the formation of a chirally symmetric gap (with
quantum numbers JP ¼ 0þ) associated with 2SC pairing
is favored at high densities. Up to a normalization factor,
the corresponding gap can in principle be obtained from an
evaluation of the following path integral:

Δgap;a ∼
Z

DAμDψ̄Dψðψ̄bτ2ϵabcγ5Cψ̄T
c Þe−S; ð12Þ

where C ¼ iγ2γ0, τ2 is the second Pauli matrix and the
expression is summed over the totally antisymmetric tensor
ϵabc in color space. Note that jΔgapj2 ¼

P
a Δ�

gap;aΔgap;a is a
gauge-invariant quantity.
In order to better understand the role of the gap in two-

flavor QCD, it is instructive to look at the path integral from
an RG standpoint. For concreteness, we first consider
Wilson’s RG approach as it allows us to make direct
contact to the path integral in Eq. (9). By introducing a
momentum scale k to split the fields in the path integral into
soft modes with momenta Q2 ≲ k2 and hard modes with
Q2 ≳ k2, we can compute the path integral by successively
integrating out momentum shells with momenta Q2 ≃ k2.
This leads us to a path integral of the following form:

ZðμÞ ¼
Z

DÃa
μD ˜̄ψDψ̃e−SW ; ð13Þ

where the path integration is now restricted to soft modes
with Q2 ≲ k2, and we have added tildes to the fields to
denote this change. The action SW, which is Wilson’s
effective action, only depends on the soft modes.2

Wilson’s effective action SW depends on the so-called
RG scale k, SW ≡ SW;k, and its functional form is in general
not identical to the original action S. Instead S is taken to be
the initial point of this so-called RG flow at some high-
momentum scale k ¼ Λ in the perturbative regime,
SW;k¼Λ ¼ S, such that also μ=Λ ≪ 1. For k < Λ, all terms
permitted by the symmetries of the action S are in general
generated, i.e., SW is spanned by an infinite set of scale-
dependent couplings. We emphasize that not all of the
generated couplings may be equally relevant for the
computation of a given observable. For example, one-loop
corrections to the propagators contribute to the pressure at
two-loop order in perturbative calculations of the pressure.
However, one-loop corrections to couplings associated with
a four-point function would only contribute to the pressure
at three-loop order in perturbative studies.
For the generation of a gap in the quark propagator, four-

quark interactions λi generated via gluon-exchange dia-
grams in the RG flow are of particular relevance. Here, the
index i refers to specific symmetry properties of the four-
quark channel associated with the coupling λi. At one-loop
order, we have λi ∼ g4, i.e., such interactions are dynami-
cally generated by the quark-gluon vertex in S via two-
gluon exchange diagrams as shown in Fig. 2, left; see, e.g.,
Ref. [88] for an introduction. These interactions directly
affect the quark propagator, which can be made explicit by
means of a Hubbard-Stratonovich transformation of the

2For a discussion of Wilsonian RG flows and gauge invariance,
we refer the reader to Ref. [87] and references therein.
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path integral. To be specific, if we are interested in how the
aforementioned 2SC-type pairing correlations affect the
quark propagator, it is convenient to introduce complex-
valued auxiliary (diquark) fields Δ̃a,

Δ̃a ∼ ð ˜̄ψbτ2ϵabcγ5C ˜̄ψT
c Þ; ð14Þ

into the path integral in Eq. (13),

ZðμÞ ¼
Z

DΔ̃�
aDΔ̃aDÃa

μD ˜̄ψDψ̃e−SW ; ð15Þ

and replace the corresponding dynamically generated four-
quark interaction channel associated with the coupling λ2SC
in SW as follows:

λ2SCð ˜̄ψbτ2iϵabcγ5C ˜̄ψT
c Þðψ̃T

dCγ5τ2iϵadeψ̃eÞ
↦ m2Δ̃�

aΔ̃a þ ih½ðψ̃T
bCγ5τ2Δ̃aϵabcψ̃cÞ

− ð ˜̄ψbγ5τ2Δ̃�
aϵabcC ˜̄ψT

c Þ�; ð16Þ

where h2=m2 ¼ λ2SC, see, e.g., Refs. [33,88] for a more
detailed discussion. This transformation may be viewed as
a “coordinate transformation” in the space of operators
which span Wilson’s effective action SW. Note that this is
an exact transformation and does not involve an approxi-
mation of the original path integral.3

From the right-hand side of Eq. (16), we deduce that a
nonzero expectation value of the diquark fields generates a
gap in the quark propagator,

Δgap;a ∼ h ˜̄ψbτ2ϵabcγ5C ˜̄ψT
c i; ð17Þ

since the diquark fields couple to two quark fields. Note
that, in our conventions for the Hubbard-Stratonovich
transformation, the actual gap in the quark propagator is
therefore given by the product of the Yukawa coupling h

and the expectation value of the diquark field. Since λ2SC ∼
g4 at one loop order, we have h ∼ g2 for the quark-diquark
(Yukawa-type) coupling on the right-hand side of Eq. (16)
at this order.4 In practice, it may even be convenient to split
the diquark fields into two parts, a potentially spacetime
dependent background field and fluctuations about this
background:

Δ̃aðx0; x⃗Þ ↦ Δ̃aðx0; x⃗Þ þ δΔ̃aðx0; x⃗Þ; ð18Þ

where the background field can be directly related to the
gap in the excitation spectrum of the quarks. Regarding
computations of the gap, we note that, from the quark
kinetic term in S and the terms bilinear in the quark fields
on the right-hand side of Eq. (16), we can deduce the
parametrization of the quark propagator which has been
employed in early nonperturbative Dyson-Schwinger com-
putations of the gap in the weak-coupling limit [42–48].
The four-quark interactions not only directly affect the

quark propagator but also modify the gluon propagator.
This follows immediately from our formulation of Wilson’s
effective action including the (auxiliary) diquark field Δ̃a,
which includes quark-diquark interactions; see right-hand
side of Eq. (16). Indeed, in the RG flow, these quark-
diquark interactions generate a covariant term of the form
∼ðDca

μ Δ̃aÞðDcb
μ Δ̃bÞ�, which renders the diquark fields

dynamical; see, e.g., again Ref. [33] for a more detailed
discussion. Note that the diquark fields are not color-neutral
fields and therefore naturally couple to the gluons. By
expanding the operator with the covariant derivatives, we
obtain, among other terms, a term bilinear in the gauge
fields:

∼Ãa
μðTaÞbcΔ̃cðTeÞbdΔ̃�

dÃ
e
μ: ð19Þ

This term corresponds to a two-gluon-two-diquark inter-
action. Importantly, we observe that a nonzero expectation
value of the diquark field not only generates a gap in the
quark propagator but potentially also in the gluon propa-
gator. We add that the interaction in Eq. (19) together with
the generation of a finite expectation value of the diquark
fields essentially underlies the Anderson-Higgs mechanism
[97–101], which, in case of pairing of the 2SC type, is
associated with the symmetry-breaking pattern SUð3Þ →
SUð2Þ in color space. As a consequence, only three
of the eight gluons are massless. The remaining five
gluons are effectively rendered massive by “eating up”
Goldstone modes that would otherwise appear in the

FIG. 2. Four-quark interaction (left) and two-gluon-four-quark
interactions generating a two-gluon-two-diquark interaction
(right). Curly lines represent gluon propagators, while straight
lines are fermionic propagators.

3We add that, after having performed a Hubbard-Stratonovich
transformation of the path integral, the four-quark interaction
channel associated with this transformation will in general be
regenerated in the RG flow by the quark-gluon vertex and the
Yukawa-like vertex on the right-hand side of Eq. (16). Therefore,
loosely speaking, Hubbard-Stratonovich transformations have to
be performed continuously in the RG flow which can indeed be
implemented, see Refs. [89–96] for discussions of this aspect.

4Here, we exploited the freedom to choose h2 ¼ g4 in Eq. (16).
For m2, we may choose m2 ¼ Λ2 where Λ is the scale at which
we have performed the Hubbard-Stratonovich transformation.
Other less convenient choices are possible but do not alter our
general line of arguments in this work.
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spectrum associated with the diquark fields, see, e.g.,
Ref. [59] for a review.
We emphasize again that the insertion of the (auxiliary)

diquark fields into Wilson’s effective action by means of an
exact transformation of the path integral is only convenient
to make apparent how higher-order quark correlation
functions affect the gluon propagator. In fact, given the
definition of the diquark fields, the two-gluon-two-diquark
interactions associated with the term in Eq. (19) correspond
to two-gluon-four-quark interactions shown in the right
panel of Fig. 2. In a standard loop expansion of the path
integral given in Eq. (9), corrections of this type enter the
pressure beginning at four-loop order and are of Oðg6Þ.
Up to now, we have worked on the level of the path

integral and have employed general RG arguments to
prepare the discussion of our framework and introduce
concepts that underlie our calculation of the QCD pressure
in terms of a systematic expansion in powers of the gap.
Standard perturbative-QCD calculations, where the pres-
ence of a possible gap is not taken into account, will
appear in this expansion at zeroth order in the gap, see
Eq. (1). For the actual derivation of this expansion, we
shall not operate on the level of the path integral but
compute directly the quantum effective action. To facili-
tate the systematic setup of the perturbative calculations of
the pressure in the presence of a color-superconducting
gap we employ as a tool the functional RG (fRG)
framework [102]. This framework is also a Wilsonian
type of RG approach, but operates on the effective action,
providing us with direct access to thermodynamic quan-
tities. The simple one-loop structure of this RG equation
(the Wetterich equation) for the effective action makes it
advantageous for general discussions and the construction
of approximation schemes.

B. Loop expansion of the effective action from the
functional renormalization group approach

Thermodynamic quantities can be directly extracted
from a computation of the quantum effective action Γ.
Indeed, the pressure of a given theory is obtained from an
evaluation of the effective action at the ground state (gs):

p ¼ − lim
β→∞

1

β

∂

∂V
Γ½Φ�jgs; ð20Þ

where the vector ΦT ¼ ðAT;ψT; ψ̄ ;…Þ contains all fields
which are employed to span the effective action of a given
theory. The field configuration at the ground state corre-
sponds to a solution of the quantum equation of motion:

δΓ½Φ�
δΦ

����
gs
¼ 0: ð21Þ

As discussed above, in our case of QCD with two massless
quark flavors at zero temperature, the field configuration at

the ground state is expected to describe a color super-
conductor of the 2SC type at sufficiently high densities.
In the absence of condensates, the pressure can be

obtained from a perturbative expansion of the effective
action in the strong coupling g, at least in regimes where the
latter is small. For example, the one-loop effective action is
given by

Γ1-loop½Φ� ¼ S½Φ� þ 1

2
STr ln Sð2Þ½Φ�jreg þ c:t:; ð22Þ

where the second term on the right-hand side is assumed to
be regularized. We leave the counter terms (c.t.) unspecified
for our general discussion as they depend on the details of
the regularization. The super trace STr arises since Φ
contains all types of fields which are employed to span the
quantum effective action, and it is defined to provide a
minus sign in the fermionic and ghost subspace of the
operator Sð2Þ, which is the second functional derivative of
the action. We add that this trace runs over not only discrete
indices of Sð2Þ, such as color, flavor, and Dirac indices but
also over momenta.
We turn now to the Wetterich equation, which underlies

the fRG approach. It describes the evolution of the scale-
dependent effective action Γk starting from the classical
action Γk→Λ ¼ S at a suitably chosen initial scale Λ to the
full quantum effective action Γ≡ Γk¼0 [102]:

∂tΓk½Φ� ¼ 1

2
STr½ðΓð2Þ

k ½Φ� þ RkÞ−1 · ∂tRk�; ð23Þ

where t ¼ lnðk=ΛÞ is the so-called RG time. The regulator
function Rk specifies the Wilsonian momentum-shell inte-
gration, such that the RG flow of Γk is dominated by
fluctuations with momenta k with k2 ∼Q2. In particular,
the regulator provides an infrared and ultraviolet regulari-
zation of the loop diagrams taking into account in a given
study. According to this equation, the variation of the
effective action under the RG scale k is determined by the
full scale-dependent propagator, which is in general a
matrix-valued operator also in field space, as it is the case
for Sð2Þ:

G−1
k ¼ ðΓð2Þ

k þ RkÞ−1: ð24Þ
Looking now at the Wetterich equation from a diagram-
matic standpoint, we observe that its right-hand side
assumes a simple one-loop structure. However, this does
not imply that only one-loop corrections are included in
calculations, as one can in principle systematically generate
loop corrections of arbitrarily high orders, which we now
illustrate.
The one-loop approximation of the effective action can

be immediately seen by replacing Γð2Þ
k on the right-hand

side of Eq. (23) with its initial condition Sð2Þ and then
integrating over the RG scale k:
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Γ1-loop
k ½Φ� ¼ Γ1-loop

Λ ½Φ� þ 1

2
STr ln ðSð2Þ½Φ� þ RkÞ; ð25Þ

where

Γ1-loop
Λ ½Φ� ¼ S½Φ� þ Γ1-loop

c:t: ½Φ� − 1

2
STr ln ðSð2Þ½Φ� þ RΛÞ:

ð26Þ

The term Γ1-loop
c:t: depends on the scale Λ and contains the

counterterms which are chosen such that Γ1-loop ≡ Γ1-loop
k¼0

does not depend on Λ, i.e., it ensures that Λ∂ΛΓ1-loop ¼ 0;
see Ref. [103] for a detailed discussion. In particular, this
term allows us to remove the scheme dependence intro-
duced by the regulator function. By comparing Eq. (25)
with the standard result for the one-loop effective action in
Eq. (22), we can deduce that the regulator renders the loop
integrals in a perturbative calculation finite and, by con-
struction, we recover the one-loop effective action in
Eq. (22) from Eq. (25) in the limit k → 0 as limk→0 Rk ¼ 0.
The result for the one-loop effective action in Eq. (25)

can then be used to compute the two-loop corrections to the
effective action. More precisely, this is done by now

approximating Γð2Þ
k in the Wetterich equation (23) using

the scale-dependent one-loop effective action Γ1-loop
k given

in Eq. (25). After integrating over the RG scale k, this
eventually yields the two-loop corrections to the effective
action:

Γ≡ Γk¼0 ¼ Sþ δΓ1-loop
k¼0 þ δΓ2-loop

k¼0 ; ð27Þ

where, e.g., δΓ1-loop
k ¼ Γ1-loop

k − S. Higher orders in the loop
expansion can then be obtained along these lines, see, e.g.,
Refs. [104,105] for a general discussion.
It may also be worth noting that the Wetterich equation

for the effective action can also be used to construct gap
equations and study nonperturbative phenomena. For
example, by directly integrating the flow equation (23),
we obtain [106,107]:

Γ½Φ� ¼ ΓΛ½Φ� þ 1

2
STr lnΓð2Þ½Φ� þOð∂tΓð2Þ

k ½Φ�Þ ð28Þ

with ΓΛ½Φ� again containing counter terms. The third term
on the right-hand side corresponds to integrated RG-
improvement terms.5 From Eq. (28) we could for example
derive the DSE for the quark propagator underlying the
computation of the 2SC gap in two-flavor QCD in, e.g.,
Refs. [43–45]. An explicit derivation and solution of this
type of equations is not part of the present work.
From a more general standpoint, our discussion indicates

that a solution of the Wetterich equation (23) for a given
ansatz of the effective action provides an “interpolation”
between regimes which may be well described by a loop
expansion of the effective action and regimes which are
governed by nonperturbative phenomena.

C. Expansion of the QCD effective action

As our discussion in the previous subsection makes
clear, results obtained with non-fRG methods (e.g., the
specific coupling dependence of the 2SC gap observed in
DSE studies or perturbative results for the QCD equation of
state) can also be derived within the fRG approach. In the
following, we shall employ a “hybrid approach,” i.e., we do
not solve directly the Wetterich equation (23) for a specific
ansatz but only employ general RG arguments and proper-
ties of the Wetterich equation to underpin the systematic
expansion (1) of the equation of state of QCD at high
density in powers of the gap. To this end, parts of our
general RG analysis in Sec. II A can indeed be straight-
forwardly reframed in the fRG approach.
Let us start the RG flow from the QCD action in Eq. (7),

ΓΛ ¼ S. All operators permitted by the symmetries of QCD
will be generated throughout the RG flow. As discussed in
Sec. II A, we can at any RG step perform an exact
transformation on the space of operators to introduce
complex-valued auxiliary (diquark) fields Δa which carry
the quantum numbers of the operator ðψ̄bτ2ϵabcγ5Cψ̄T

c Þ.
After a single infinitesimal RG step, this leads to the
following effective action:

Γk¼Λ−δk¼
Z

β

0

dτ
Z

d3x

�
Zψ ψ̄ði=D− iμγ0Þψþ1

4
ZAFa

μνFa
μνþZΔðDca

μ ΔaÞðDcb
μ ΔbÞ�þ2μZΔðΔaðDab

0 ΔbÞ�−Δ�
aðDab

0 ΔbÞÞ

−4μ2ZΔΔ�
aΔaþ

1

2
iZhhðψT

bCγ5τ2ΔaϵabcψcÞ−
1

2
iZhhðψ̄bγ5τ2Δ�

aϵabcCψ̄T
c ÞþZm2m2Δ�

aΔaþ…

�
þSgfþSgh; ð29Þ

where Zψ , ZA, ZΔ, Zh, Zm2 , h, and m2 denote renormal-
ization factors and couplings. Terms that simultaneously
depending on diquark fields and the chemical potential
appear since these fields carry a finite baryon number. The
dots on the right-hand side of Eq. (29) refer to operators of
higher orders in the fields and derivatives; see also

Ref. [108] for a discussion of the form of the effective
action of dense quark matter.

5Note that these RG-improvement terms vanish if we identify
Γk with S on the right-hand side of Eq. (28) and we recover the
one-loop effective action in Eq. (25) for k → 0.
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Let us now identify the terms in the effective action
Eq. (29) which are required for a computation of the
pressure in Eq. (1) at a given order in the strong coupling
and the 2SC gap. To this end, it is convenient to split the
diquark fields into a constant background field and fluc-
tuations about it, Δa → Δa þ δΔa, where Δa now refers to
the background. Assuming that the 2SC gap is finite, which
implies that the background field Δa is finite, the gluon and
quark propagators receive a gap.6 From this and the general
form of the flow equation (23) for the effective action, it
follows that, at one-loop order, the quark propagator
already will contribute to all coefficients of the expansion
(1) of the pressure. These one-loop contributions do not
carry an explicit dependence on the strong coupling g but
only an implicit one via the gap and emerge from an
expansion of the quark propagator in powers of the gap,
jΔgapj2 ∼ h2

P
a jΔaj2. Note that since the right-hand side

of the flow equation (23) is determined by the propagator of
the fields, one-loop corrections to the quark propagator lead
to Oðg2Þ contributions to the coefficients γn, as expected.
The situation is somewhat different for contributions to

the pressure from the gluon loop in the flow equation (23).
The appearance of a gap in the gluon propagator arises
from a dynamically generated two-gluon-two-diquark cou-
pling in Fig. 2 (right), which is included in the term
ðDca

μ ΔaÞðDcb
μ ΔbÞ�. Because of the six vertices, this term

appears at Oðg6Þ (see also our discussion in Sec. II A).
Taking into account that it is jΔgapj2=h2 which contributes
to the gluon gap, and furthermore noting that h2 ∼ g4 at
one-loop order (see again Sec. II A), we find that the
propagators of the gapped gluons depend on g2jΔgapj2 at
leading order with respect to their explicit dependence on
the strong coupling. Moreover, in the medium, the gapped
gluon propagators receive corrections from momentum-
dependent screening effects ofOðg2μ2Þ (at one-loop order),
see also Refs. [109–112]. From an expansion of the gluon
propagators, we therefore deduce that the gluons contribute
terms to γ0 which are at least of Oðg2Þ. The contributions
associated with the gap are irrelevant for this coefficient in
the expansion of the pressure. However, contributions to γ1
requires taking into account both the gap in the gluon
propagator and the chemical potential. Since screening
effects are at least of Oðg2Þ and the gap enters the
propagators in the form of a term ∼g2jΔgapj2 at leading
order, it follows that contribution to the coefficient γ1 from
the gluon loop is at least of Oðg4Þ. For the expansion
coefficient γ2 associated with terms ∼jΔgapj4, we also find
that the gluon loop in the flow equation of the effective
action yields contributions which are at least ofOðg4Þ. This

reasoning can in principle be continued to coefficients γn of
higher order.
Our general analysis of the effective action now allows

us to systematically construct an action S0 which can be
employed to compute the coefficients γn in the expansion
(1) of the pressure as a function of the strong coupling. In
the present work, we restrict ourselves to the computation
of the g2-correction to the coefficient γ1 in Eq. (1). The
corresponding correction to the coefficient γ0 is already
well-known as it is nothing but the two-loop contribution to
the pressure found in conventional perturbative-QCD
calculations, which we shall find again from our calcu-
lations below. In any case, from our above discussion of the
effective action as generated by the classical QCD action,
we deduce that in order to compute the coefficients γ0 and
γ1 to Oðg2jΔgapj2Þ, it suffices to consider the following
action S07:

S0 ¼
Z
x

�
ψ̄ðiD − iμγ0Þψ þ 1

4
Fa
μνFa

μν

þm2Δ�
aΔa þ

1

2
ihðψT

bCγ5τ2ΔaϵabcψcÞ

−
1

2
ihðψ̄bγ5τ2Δ�

aϵabcCψ̄T
c Þ
�
þ Sgf þ Sgh: ð30Þ

Here, it is in principle not required to consider the diquark
field to be constant. However, as we shall only consider
constant diquark background fields in our calculations
below, we do not include terms with derivatives of the
diquark field. In particular, as explained above, we do not
include terms which give rise to a gap ∼g2jΔgapj2 in the
gluon propagators, as it does not contribute to the coef-
ficients γ0 and γ1 at Oðg2Þ. We also note that in order to
ensure color neutrality of the system in the 2SC phase, a
constant background gauge field A8

0 is also induced, which
in turn effectively shifts the chemical potentials of the
different quarks by an amount dependent on their color
charge [115,116]. However, we find that this only induces
an OðjΔgapj4Þ correction to the pressure, so we do not
include this additional background gauge field in our
computation.
Before proceeding to the computation of the corrections,

let us comment on the parameter m2 in the action S0 and its
relation to the 2SC gap. This parameter together with the
quark-diquark interaction h emerges from the Hubbard-
Stratonovich transformation of the four-quark channel
associated with 2SC pairing. From Eq. (30), we now

6Strictly speaking not all quarks and gluons are gapped in case
of a 2SC superconducting ground state since the corresponding
condensate only couples two colors. See Sec. III below.

7This action is invariant under chiral transformations but not
invariant under Uð1ÞA transformations. Note that this is in
accordance with an RG analysis of symmetry breaking patterns
in dense QCD matter with two quark flavors, where it has been
found that a broken Uð1ÞA symmetry is required to render 2SC
pairing correlations to be the most dominant ones at high density
[50], see also Refs. [51,52,113,114] for early model studies.
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deduce that m2 can be associated with the curvature of an
effective action in terms of the gauge-invariant quantity
jΔj2. The ground state configuration of the diquark field
derived from such an effective action determines the gap in
the quark excitation spectrum. In the present work, we do
not aim at a self-consistent computation of this minimum or
the gap, both of which would determine m2 in terms of the
gauge coupling but treat the gap as an external (constant)
input parameter for simplicity, jΔgapj≡ hjΔgsj. To be more
specific, in our computations of the pressure, we shall
rather fix m2 to provide a gap that agrees with different
previous calculations of the quantity as a function of μ and
g. In principle, the self-consistently computed solution of
the quantum equations of motion of the diquark field is in
general not constant. Therefore, our assumption of a
constant gap is a simplification which may potentially
affect our results for γ1 and may introduce a residual gauge
dependence in this coefficient. We shall at least investigate
the gauge dependence further in an upcoming work on
three-flavor quark matter.

III. PERTURBATIVE COMPUTATION OF THE
PRESSURE OF GAPPED QUARK MATTER

The starting point of our perturbative computation of the
pressure of gapped two-flavor quark matter up to Oðg2Þ in
the strong coupling and jΔgapj2 in the gap is given by the
action S0 in Eq. (30). For such a perturbative study, it is
convenient to introduce Feynman rules as usual. However,
since we have introduced the auxiliary background field Δa
in the action, the quark propagator now assumes the
following form:

Pψ ≡
� hψTð−PÞψðQÞi hψ̄ðPÞψðQÞi
hψTð−PÞψ̄Tð−QÞi hψ̄ðPÞψ̄Tð−QÞi

�

¼
�
Vψ Xψ

Yψ Wψ

�
ð2πÞ4δð4ÞðP −QÞ ð31Þ

with

Xψ ≡ −ðP−G−
ψ1c

þ ½P−G−
ψ − ðP− þ h2jΔj2PþGþ

ψ ÞG−
ψ ;Δ�ϵ23Þ1f ; ð32Þ

Yψ ≡ −ðPTþGþ
ψ 1c

þ ½PTþGþ
ψ − ðPþ þ h2jΔj2PT

−G−
ψÞGþ

ψ ;Δ�ϵ23Þ1f ; ð33Þ
Vψ ≡ ihΔ�τ2ϵ3ðP−Pþ þ h2jΔj2ÞG−

ψ ;ΔG
þ
ψ γ5C; ð34Þ

and

Wψ ≡ −ihτ2ΔCγ5ðPþP− þ h2jΔj2ÞG−
ψ ;ΔG

þ
ψ ϵ

2
3: ð35Þ

Here, 1c and 1f are the identity matrices in color and flavor
space, respectively, τ2 is the second Pauli matrix which
lives in flavor space, and ðϵ3Þab ≡ ϵ3ab is a totally

antisymmetric tensor in color space. Furthermore, we have
introduced P� ≡ ðP0 � iμ; p⃗ÞT and the following addi-
tional auxiliary quantities:

G�
ψ ≡ 1

P2
�
; ð36Þ

G�
ψ ;Δ ≡ P2∓

P2
�P

2∓ þ 2h2jΔj2P� · P∓ þ h4jΔj4 : ð37Þ

The invariance of the action S0 under SU(3) transformations
in color space implies that the effective action and also
physical observables only depend on jΔj2. In all explicit
calculations, we exploit this invariance and have chosen to
rotate the background field into the 3-direction in color
space for convenience.
Following our line of arguments in Sec. II C, a gap in the

gluon propagator leads to corrections to the pressure which
are of higher order than those considered in this work. For
the computation of the coefficient γ1 at Oðg2Þ, it hence
suffices to consider the free gluon propagator. In Feynman
gauge, which we employ in the present work, we have

ðP0
AÞabμν ¼ 1

P2
δabδμνð2πÞ4δð4ÞðP −QÞ; ð38Þ

where μ, ν are Lorentz indices and a, b denote adjoint color
indices. Moreover, we only need to consider the quark-
gluon vertex as derived from the classical action S0:

ðΓð3ÞÞabc;μ ¼
�

0 −ḡðTa
bcÞTγTμ

ḡTa
bcγμ 0

�
: ð39Þ

Here, ḡ is the bare strong coupling.
With these prerequisites at hand, we can now compute

the effective action as discussed in Sec. II B. At one-loop
order, we find that only the quarks contribute, since the
corresponding gluon and ghost contributions do not depend
on the background field and the chemical potential at this
order. To be specific, we find

Γ1−loop ¼ Sþ Γ1−loop
Λ − Γ1−loop

quark ð40Þ

with

Γ1−loop
quark ¼ 2V4

X
�

Z
P⃗

�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjP⃗j � μÞ2 þ h2jΔj2

q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjP⃗j � μÞ2

q �
: ð41Þ

Here, Γ1−loop
Λ contains the counter terms and V4 is the

four-dimensional spacetime volume. We observe that the
effective action indeed only depends on the invariant jΔj2,
as expected. For jΔj2 → 0, we recover the pressure of the
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free quark gas from this expression, i.e., pfree ¼ μ4=ð2π2Þ.
Note that pfree ¼ −ð1=V4ÞΓ1−loopjjΔj2¼0 (up to additive
constants).
A minimization of the (one-loop) effective potential

U1−loop ¼ ð1=V4ÞΓ1−loop with respect to jΔj2,

∂U1−loop

∂jΔj2
����
jΔgapj2=h2

¼ 0; ð42Þ

determines the parameter m2 in Eq. (30) as a function
of jΔgapj2 at this order. Recall that we shall treat the gap
as an external parameter to fix m2 in our present study,
as discussed in Sec. II C. In any case, the pressure is
then obtained as a function of the dimensionless parameter
jΔ̄gapj2 ≡ jΔgapj2=μ2 by evaluating the effective potential at
the nontrivial ground state, see Eq. (20), i.e., p ¼
−UðjΔgapj2=h2Þ. Up to order jΔ̄gapj2, we recover

p ¼ pfreeð1þ 2jΔ̄gapj2Þ þOðΔ̄4
gapÞ; ð43Þ

see, e.g., Refs. [33,55–59,63–65,103,117–119]. In our
terminology, this represents the result for the pressure at
LO=LO with γ0 ¼ 1 and γ1 ¼ 2 in Eq. (1).
To compute the coefficients γ0 and γ1 at Oðg2Þ, we must

consider the following two-loop correction to the effective
action:

ð44Þ

where in principle all propagators carry a dependence on
the background field. Note that the effective potential at
jΔ̄j2 ¼ 0 atOðg2Þ is directly related to the well-known two-
loop result for the pressure of ungapped quark matter,
UðjΔ̄j2 ¼ 0Þ ¼ −p, which has already been computed
analytically many decades ago [69–74]. The computation
of this diagram including the full dependence on the
background field is more complicated. However, it can
be simplified by exploiting the fact that we are only
interested in a computation of corrections of Oðg2Þ to
the pressure up to OðjΔgapj2Þ. For this, it suffices to
compute the corrections to the effective potential up
to Oðg2Þ and OðjΔj2Þ. To extract these terms, it is
convenient to split the quark propagator into a gapped
and ungapped contribution:

Pψ ¼ P0
ψ þ ðPψ − P0

ψÞ≡ P0
ψ þ PΔ

ψ : ð45Þ

Here, Pψ is the quark propagator with the full background-
field dependence, P0

ψ is the propagator without insertions
of the background field, and PΔ

ψ denotes the difference of
these two propagators.

We can now expand the above two-loop diagram in
terms of PΔ

ψ . Schematically, this yields

ð46Þ

Here, thick lines represent the propagators with the full
background-field dependence, while thin lines correspond
to background-field independent propagators and thin lines
labeled with Δ are associated with the “propagators” PΔ

ψ .
The first diagram on the right-hand side of Eq. (46) does
not carry a dependence on the background field and
corresponds to the standard two-loop contribution. From
the standpoint of the effective potential, this contribution
induces a shift of the potential of Oðg2Þ, which in turn
yields a correction of Oðg2Þ to the coefficient γ0 in Eq. (1).
The second term on the right-hand side of Eq. (46) is
explicitly proportional to jΔj2 and generates the correction
of Oðg2Þ to γ1.
Using the Feynman rules above, we have the following

expression for the new term

Γ2−loop
quark ¼ V4

2

Z
P;Q

½P0
A�aa

0
μν ðP −QÞTr½ðΓð3ÞÞa0bb0;ν

× ½PΔ
ψ �b0cðPÞðΓð3ÞÞacc0;μ½P0

ψ �c0bðQÞ�: ð47Þ

A discussion of the computation of this integral can be
found in the Appendix.
From the result of the integral in Eq. (47) we can now

deduce the correction of Oðg2jΔj2Þ to the effective poten-
tial. Adding this correction and the correction of Oðg2Þ
from the two-loop integral evaluated with background-field
independent propagators to the one-loop effective potential,
see Eq. (41), we obtain the effective potential to the order of
interest. In order to obtain a finite result, we must introduce
a counterterm δm2 for the diquark mass parameter m2 to
cancel an ultraviolet divergence in the integral (47). After
renormalization, we can then once again minimize the
effective potential and solve for m2, this time to Oðg2Þ. Via
this procedure, we eventually obtain the pressure up to
OðjΔgapj2Þ with coefficients consistently computed up to
Oðg2Þ. Our results for γ0 and γ1 in the expansion of the
pressure in Eq. (1) can be found in Eqs. (3) and (4),
respectively. Importantly, we note that our results for the
expansion coefficients do not depend on a specific form or
value of the gap.

IV. RESULTS

Let us now use our results for the expansions coefficients
γ0 and γ1 in Eq. (1) to analyze the pressure and speed of
sound in the presence of a color-superconducting gap in the
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quark excitation spectrum. We compare our results for the
pressure and the speed of sound at different orders of the
expansion and to perturbative calculations that assume a
trivial ground state. Furthermore, we study the dependence
of these quantities on the size of the gap and on its
specific form.

A. Pressure

In Fig. 3 we present our results for the pressure
normalized to the pressure of a free noninteracting
quark gas as a function of the quark chemical potential
for different values Δ� of the gap at n ¼ 10n0,
Δ� ≡ jΔgapðn ¼ 10n0Þj. To obtain these results, we have
adjusted the gap by rescaling it with a constant factor such
that it assumes a given value at n ¼ 10n0, while leaving
their originally predicted dependence on the chemical
potential unchanged. Note that since the density itself is
a derivative of the pressure with respect to the chemical
potential, this is an implicit constraint that we solve
numerically. Shown also in this figure is the pressure for
unpaired quarks at NLO (labeled “no gap”).
We see from the two panels that at the largest chemical

potentials—see especially the right panel of Fig. 3—all
curves approach the unpaired result, as is expected, since
gap corrections to bulk thermodynamic properties become
smaller at larger chemical potentials as jΔgapj=μ → 0.
However, at lower quark chemical potentials the pressure
with gap corrections significantly exceeds the pressure of
unpaired quarks and, eventually even exceeds the pressure
of the noninteracting quark gas (horizontal dashed line). In
all cases, the NLO/NLO pressure exceeds the ungapped
pressure, otherwise, the formation of a gap would be
disfavored. Moreover, using continuously smaller and

smaller gaps, we eventually smoothly run into the pertur-
bative result.
We turn now to a comparison between the two panels of

Fig. 3, which illustrate the dependence of the results on the
specific functional form of the gap. The left panel shows
our results obtained with the gap from a previous fRG study
[33]. Although we directly employ the numerical data from
the latter work in our numerical calculations, it is instruc-
tive to also consider an analytic estimate for the scaling
behavior of this gap:

jΔgapj ∼ ΛQCD exp

�
−

c
g4μ2

�
; ð48Þ

where c ∼ Λ2
QCD is a positive constant. The right panel uses

the weak-coupling form of the gap given in Eq. (2) above.
Whereas in the computation of the latter, the strong
coupling has been assumed to be small and constant,
effectively describing the situation at high densities
(ΛQCD=μ ≪ 1), the former follows from a consideration
of lower densities where the density is still high but the
coupling can no longer be assumed to be small
(ΛQCD=μ≲ 1). Comparing the two panels, we observe that
the dependence on the size of the gap is larger in the fRG
case at high chemical potentials. This difference arises
because the fRG gap slightly grows as the density is
increased within the considered density range, while the
weak-coupling result slightly decreases. However,
jΔgapj=μ → 0 as μ → ∞ for both gaps under consideration.
We finally see that for the smallest gapΔ� ¼ 100 MeV, the
results for the two gaps are even quantitatively similar at all
densities. See Fig. 4 for a comparison of the two gaps as a
function of the chemical potential in this case.

FIG. 3. Pressure normalized to the pressure of the noninteracting quark gas as a function of the quark chemical potential μ. The gap
entering the numerical calculations has been adjusted by a constant factor such that it assumes the different values at n=n0 ¼ 10,
jΔ�j≡ jΔgapðn ¼ 10n0Þj, while leaving their originally predicted dependence on the chemical potential unchanged. The corresponding
results for ungapped quark matter (NLO, no gap) are shown for comparison. Left panel: Pressure as obtained from a computation with
the chemical-potential dependence of the gap as found in a recent fRG study [33]. The uncertainty bands result from the usual scale
variation of the strong coupling, see Eq. (2), and the uncertainty band for the fRG gap computed in Ref. [33]. Right panel: Pressure as
obtained from a computation with the chemical potential dependence of the gap as found in the weak-coupling limit, where the
uncertainty bands only result from the aforementioned scale variation of the strong coupling.
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Let us now turn to a comparison of the perturbative result
for the pressure at different orders, using the fRG gap,
which we show in Fig. 5. This serves as a direct comparison
with the results shown in Fig. 1 above. In this figure, we
label the different results by a pair of orders, which indicate
the order of the expansion used in the γ0 and γ1 terms,
respectively.8 In all cases, the overall scale of the gap is
fixed to be Δ� ¼ 100 MeV. We find that results here are
qualitatively similar to the weak-coupling gap shown in
Sec. I. In particular, our new NLO=NLO result provides a
further small shift to higher pressures over the NLO=LO
result. Though we note that this shift is comparable to, or
even larger than, the shift from the LO result. We see that
also for the fRG case, the pressure at some point exceeds
the free result, although within the regime of small μ where
the entire perturbative series is not well converged.

B. Speed of sound

In this subsection, we analyze the speed of sound cs,
which is more sensitive to corrections arising from the gap
because of the additional derivatives with respect to μ in the
definition (5). Additionally, the speed of sound of dense
matter is very important from a phenomenological point of
view. It is a direct measure of the stiffness of the equation of
state and therefore, e.g., in the three-flavor case at high

densities its value is crucial to assessing whether a neutron
star of a given mass is stable against gravitational collapse
to a black hole. Due to asymptotic freedom, for high
densities (large chemical potentials), the speed of sound
approaches the conformal limit of a noninteracting (mass-
less) quark gas of 1=

ffiffiffi
3

p
, see the horizontal black dashed

line in Fig. 6.
One recurring question in the very high density regime is

whether the speed of sound approaches the conformal limit
from above or from below. Perturbative calculations, which
assume a trivial ground state, suggest that the speed of
sound approaches the conformal limit from below. In the
current work, we also observe that the speed of sound
approaches the limit of a noninteracting quark gas from
below, see Fig. 6, although this may occur only at
asymptotically high densities when the gap is large, see
in particular the left panel of this figure.
Considering the right panel, we see that the speed of

sound falls below the conformal limit starting at the largest
densities. Then, as the density is lowered, it assumes a local
minimum and increases, eventually exceeding the con-
formal limit. The point at which c2s crosses 1=3 is set by an
interplay between the loop corrections in the ungapped
result, which drive the speed of sound to smaller values,
and corrections from the gap, which drive it to larger ones.
From Fig. 6, we see that the overall scale of the gap, here set
by Δ�, is the only relevant parameter that sets where this
crossing occurs. Comparing the fRG and weak-coupling
forms of the gap between the two panels, one sees that the
same size of the gap at 10n0 yields different crossing
densities, even though the plot for the pressure, cf. Fig. 3, is

FIG. 4. Comparison of the dimensionless gap squared,
jΔgapj2=μ2, as a function of the quark chemical potential, as
found in a previous fRG study [33] and the weak-coupling limit
[42–45]. The inset shows the same plot on a log-log scale. For the
comparison, the gaps have been adjusted by a constant factor
such that Δ� ≡ jΔgapðn ¼ 10n0Þj ¼ 100 MeV.

FIG. 5. Pressure normalized to the pressure of the noninteract-
ing quark gas as a function of the quark chemical potential μ as
obtained from a computation at different orders, see main text for
details. The gap entering these results has been taken from a
previous fRG study [33] adjusted by a constant factor such
Δ� ≡ jΔgapðn ¼ 10n0Þj ¼ 100 MeV. The results for ungapped
quark matter at the corresponding order (NLO, no gap) are shown
for comparison. The shaded regions depict the uncertainty arising
from the usual scale variation of the strong coupling, see Eq. (6),
and the uncertainty band for the gap given in Ref. [33].

8We do not show results at LO=LO. At that order, the
coefficient γ0 would be simply a constant which implies that
both the pressure normalized to the pressure of the noninteracting
quark gas and the speed of sound approach their asymptotic high-
density values from above. For completeness, however, we add
that the functional form of the expansion (1) at LO=LO agrees
with the one obtained for the pressure in Nambu-Jona-Lasinio-
type model calculations at that order, see, e.g., Refs. [55–59,63–
65,118,119].
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quite comparable. In either case, however, for moderate
values of the gap at low densities Δ� ¼ 100 MeV, the
speed of sound remains very close to the conformal value
over a wide density range.
Going to lower densities the speed of sound increases for

all sizes of the gap Δ�, where it must achieve a global
maximum before decreasing again to the chiral EFT values
at small densities n ≃ 1–2n0. For low densities our approxi-
mation breaks down, since the coupling becomes large and
the ground state eventually changes from a color super-
conductor to a state governed by spontaneous chiral
symmetry breaking where the BCS gap in the quark
spectrum disappears. An expansion of the pressure in
terms of the gap can therefore no longer be considered
efficient as the full information on the thermodynamics
would then be nonperturbatively encoded in the coeffi-
cient γ0.
Let us briefly comment on the fRG analogue of the right

panel of Fig. 1, comparing the different approximation
schemes already mentioned for the pressure with the fRG
form of the gap in Fig. 7. For high densities, the NLO=LO

approximation falls below 1=3 and smoothly runs into the
NLO (no gap) result. The next order in our expansion, i.e.,
NLO/NLO, again pushes the speed of sound slightly
upward. It however still agrees with the perturbative result
at high densities. We again see broad agreement between
the two forms of the gap, with the fRG gap showing slightly
larger deviations from the unpaired result at the highest
densities.
Up to this point, we have computed the speed of sound

by plugging our numerical results for the pressure as a
function of the chemical potential into the definition of the
speed of sound, see Eq. (5). Let us finally examine the
speed of sound analytically. To this end, we assume that
the gap effectively scales as jΔgapj ∼ μσ where σ is the
associated scaling exponent. As indicated by the inset in
Fig. 4, this assumption is indeed reasonable. Using the
numerical data in the range μ∈ ½0.5 GeV; 1.5 GeV� for
X ¼ 1, we obtain σ ≈ −0.33 for the weak-coupling gap and
σ ≈ 0.24 for the fRG gap. Inspired by the analysis in
Ref. [34], we now plug the pressure up to OðjΔgapj2Þ into
Eq. (5). This yields

c2s ¼ γcs0 þ γcs1 jΔ̄gapj2 þOðjΔ̄gapj4Þ ð49Þ

with

γcs0 ¼ 1

3
−

b0
18π2

g4 þOðg6Þ; ð50Þ

where b0 is defined in Eq. (6) and

γcs1 ¼ 2

9
ð1 − σ2Þ þ 1

9
ð1 − σ2Þ

�
1

π2
þ 1.09ð4Þ

�
g2 þOðg4Þ:

ð51Þ

Here, we dropped all terms which are not fully determined
by the expansion of the pressure up to Oðg2Þ and
OðjΔgapj2Þ. Note that the contribution γcs0 at Oðg4Þ is

FIG. 6. Same as Fig. 3, but for the speed of sound squared c2s as a function of the number density n in units of the nuclear saturation
density n0.

FIG. 7. Same as Fig. 5, but for the speed of sound squared c2s as
a function of the number density n in units of the nuclear
saturation density n0.
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indeed fully determined by the pressure at Oðg2Þ. We add
that, for the derivation of the expansion in Eq. (49), it is
convenient to use μð∂g2=∂μÞ ¼ −b0g4, see Eq. (6),
and μð∂jΔ̄gapj2=∂μÞ ¼ 2ðσ − 1ÞjΔ̄gapj2.
From the expansion in Eq. (49) we deduce that the speed

of sound approaches the value of the conformal limit,
c2s ¼ 1=3, from below as ∼1= ln2ðμ=ΛQCDÞ since the
contributions from the gap vanish in the limit μ → ∞.
As discussed above, by decreasing the quark chemical
potential, the gap then triggers the development of a local
minimum in the speed of sound before the associated
corrections eventually even push the speed of sound above
the value associated with the conformal limit. This follows
from the fact that the coefficient γcs1 is strictly positive since
we have σ ∈ ð−1; 1Þ,9 at least for the scaling exponent of the
gaps considered in our numerical studies. Put differently,
the astrophysically expected existence of a local minimum
in the speed of sound at high densities puts a constraint on
the scaling of the gap as a function of the chemical
potential. Note also that the increase of the speed of sound
toward lower densities is amplified by the correction of
Oðg2Þ in the coefficient γcs1 . We expect that these general
statements deduced from Eq. (49) also apply to three-flavor
quark matter, provided that quark-mass corrections can be
neglected. Only the numerical values of the expansion
coefficients of the speed of sound should be different as the
ones for the pressure are in general different for quark
matter with two and three flavors, see our discussion
in Sec. I.
With respect to phenomenological applications, the

expansion of the speed of sound given in Eq. (49) may
be considered as a starting point for the construction of
parametrizations of the high-density tail of the speed of
sound in the analysis of astrophysical constraints. To this
end, the gap could be parametrized by jΔgapj ¼ c0μσ0 with
c0 and σ0 being fit parameters. Of course, this entails that σ
in γcs1 should be replaced by the fit parameter σ0 as well. For

example, performing the fit in this way for our X ¼ 1 data
as a function of the chemical potential yields σ0 ≈ −0.35 for
the weak-coupling gap, and σ0 ≈ 0.24 for the fRG gap,
which agree very well with the direct fits for the scaling
exponents, see above. Exploiting further the relation
between the density and the chemical potential for the
noninteracting quark gas, the quark chemical potential in
the gap and in the coupling can be replaced by μ ¼ c00n1=3.
This eventually leads us to a parametrization of the speed of
sound as a function of the density which depends on three
parameters. The use of this parametrization or relatives of it
in astrophysical applications may provide at least an
indirect insight into the properties of color-superconducting
matter at high densities.
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APPENDIX: TWO-LOOP CONTRIBUTION TO
THE EFFECTIVE POTENTIAL

In this appendix, we comment on the calculation of the
two-loop effective potential. By applying the approxima-
tions discussed in Sec. III, we obtain the following two-
loop integral for the leading background-field dependent
contribution on the right-hand side of Eq. (46)10:

Γ2−loop
quark

V4

¼ 1

2

Z
P;Q

½P0
A�aa

0
μν ðP−QÞTr½ðΓð3ÞÞa0bb0;ν½PΔ

ψ �b0cðPÞðΓð3ÞÞacc0;μ½P0
ψ �c0bðQÞ�

¼ g2
Z
P;Q

½P0
A�aa

0
μν ðP−QÞTr½γνTa0

bb0 ½XΔ
ψ �b0cðPÞγμTa

cc0 ½X0
ψ �c0bðQÞ�

¼ 8g2h2jΔj2 dA
Nc

Z
P;Q

�
P− ·Q−

P2
−

ðh2jΔj2þ2Pþ ·P−Þ−Pþ ·Q−

	
1

P2þP2
−þh4jΔj4þ2h2jΔj2Pþ ·P−

1

Q2
−ðP−QÞ2 ; ðA1Þ

where we have substituted the propagators and the vertices
and took the traces in the last step. Note that Nc is the
number of colors and dA ¼ N2

c − 1. We exclusively con-
sider Nc ¼ 3 in the present work.

Although we are only interested in the computation of
two-loop corrections to terms up toOðjΔj2Þ in the effective
potential, we cannot simply setΔ ¼ 0 inside the integral on

9Note that this includes the case of a constant gap, σ ¼ 0.

10The first-term on the right-hand side of Eq. (46) is obtained
by replacing PΔ

ψ with P0
ψ in Eq. (A1).
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the right-hand side of Eq. (A1) as the background field
screens the BCS singularity at jp⃗j ¼ μ. To resolve this, one
may integrate the momenta about the Fermi surface as often
done in QCD studies at high densities in the presence of a
Cooper instability, see, e.g., Refs. [33,42–45]. Either way,
the Silver-Blaze symmetry of QCD is broken explicitly, see
Refs. [120,121] for a detailed discussion in this context.
Here, we choose to leave the background field in the two-
loop integral and rearrange the expression by completing
squares and compute the integral over Q analytically. The
integral over Q is then essentially the well-known one-loop
quark self-energy in the absence of a background field and
requires the standard renormalization to remove an ultra-
violet divergence. Finally, we perform the remaining
background-field dependent integral over P numerically
to obtain:

Γ2−loop
quark

V4

¼ 8g2h2jΔj2μ2 dA
Nc

�
−0.816ð1Þ þ 0.0026ð1Þ

× ln

�
h2jΔj2
μ2

��
þ divergences: ðA2Þ

To compute the two-loop integral in Eq. (A1), we have
employed a sharp three-momentum cutoff and ensured that
our results agree with already existing results, e.g., with the
standard one-loop quark self-energy correction in the
absence of a background field. The latter not only underlies
the computation of the two-loop pressure of ungapped
quark matter but also enters the computation of Eq. (A2),
see also Eq. (46). To perform the numerical integration
mentioned above, we have first rescaled the dimensionful
variables in the integral to be in units of μ. The numerical
integration has been performed for several large values of
the dimensionless sharp cutoff Λ̄≡ Λ=μ and small values
of the dimensionless background field jΔ̄j≡ jΔj=μ, i.e., the
parameter range for which our approximation is suitable.
The numerical data has then been fitted by positing a
suitable fitting function fðχ̄; Λ̄Þ, where χ̄ ≡ h2jΔ̄j2. For

vanishing background field, the integral vanishes by con-
struction, which we have also verified numerically. In
particular, this implies that there is no Λ̄4 vacuum con-
tribution needed in the fit function.
To be specific, we have used the following ansatz for f,

which includes all terms that we would expect to appear as
well as terms of one higher order in χ̄ than our results
require:

fðχ̄;Λ̄Þ¼8
dA
Nc

½Λ̄2χ̄ðc1;0þc1;1 lnΛ̄þc1;2 ln χ̄þc1;3 ln χ̄ lnΛ̄Þ

þ χ̄ðc2;0þc2;1 ln χ̄þc2;2 lnΛ̄þc2;3 ln χ̄ lnΛ̄Þ
þ χ̄2ðc3;0þc3;1 ln χ̄þc3;2 lnΛ̄þc3;3 ln χ̄ lnΛ̄Þ�:

ðA3Þ

Higher-order terms are not included in our ansatz in
Eq. (A3). The results from this fit can be found in
Table I, where the uncertainties are estimated by addition-
ally performing a few similar fits, using, e.g., functions
with some higher-order terms included, or some lower
order terms removed to assess the robustness. To obtain a
finite result for the effective potential, we must eventually
define a counter term δm2 for the diquark mass parameter
m2 to cancel the divergent terms in Eq. (A2), namely all of
those that dependent on Λ̄. This renders our results for the
effective potential independent of Λ.
We close by commenting on the general form of the

expansion of the pressure in Eq. (1). In the two-loop
correction to the effective potential, we find terms which
depend logarithmically on the gap at OðjΔj2Þ. However,
after minimizing the (renormalized) effective potential, we
find that these terms do not lead to corresponding loga-
rithms in the pressure at OðjΔj2Þ. We note however that a
OðjΔj4 ln jΔj2Þ term in the effective potential would indeed
lead to a OðjΔj4 ln jΔj2Þ term in the pressure. Hence, we
conclude that terms logarithmic in the gap will also appear
in the expansion (1) at higher orders.

TABLE I. Values of the fit parameters of the ansatz in Eq. (A3).

ci;j j ¼ 0 j ¼ 1 j ¼ 2 j ¼ 3

i ¼ 1 0.0442(0) 0.0017(0) 0.00003(0) −7.4ð0Þ × 10−6

i ¼ 2 −0.816ð1Þ 0.0026(1) 0.450(1) −0.0017ð1Þ
i ¼ 3 −0.0014ð1Þ −0.0035ð1Þ 0.0015(1) 0.0013(1)
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