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In this work, we investigate possible bound states of the A, A, system in the Bethe-Salpeter formalism in
the ladder and instantaneous approximations. By numerically solving the Bethe-Salpeter equation, we
confirm the existence of A, A, bound states with quantum numbers J©¢ = 0~" and J©¢ = 17~. We further
investigate the partial decay widths of the A.A. bound states into NN, DD, DD*, D*D*, z7, and KK. Our
results indicate that the decay width of the A A, bound state with J*¢ = 1=~ is much larger than that with

JPC —

0~*, and among their decay channels, the DD* final state is the main decay mode. We suggest

experiments to search for the A,A, bound states in the DD* final state.
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I. INTRODUCTION

Exotic hadrons have become a major focus in both
experimental and theoretical research due to their potential
to reveal fundamental properties of strong interactions.
With the efforts of experimental and theoretical studies,
numerous heavy flavor exotic hadrons have been discov-
ered, such as X(3872) [1], Z.(3900) [2], and P, [3.4].
These exotic hadrons are believed to have four or five
quarks, their masses are typically located near the thresh-
olds of either two mesons or one meson and one baryon.
Recently, the LHCb, CMS, and ATLAS collaborations
observed several exotic structures in the di-J/y invariant
mass spectra [5-7], including the X(6200), X(6600),
X(6900), and X(7200), which are candidates for fully
charmed tetraquark states. In addition to tetraquark and
pentaquark states, it is natural to extend the research to the
study of heavy flavor hexaquark states.

In 2017, the BESIII Collaboration carried out precision
measurements of the cross section for the ete™ — A A,
process at four energy points just above the A A, thresh-
old [8]. These measurements, depicted in Fig. 1, reveal an
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intriguing pattern: a discernible nonzero cross section close
to the A, A, threshold and an almost constant profile. This
contrasts sharply with the earlier results obtained by the
Belle Collaboration using the initial-state radiation
method [9], which are also illustrated in Fig. 1 and were
plagued by significant uncertainties in both the center-of-
mass energy and the cross section. In Refs. [10,11], the
authors suggest that the plateau near the threshold can be
understood as the consequence of the Coulomb potential or
the Sommerfeld factor, along with the presence of a
threshold pole. In Ref. [10], the authors stated the pole
position can be below threshold. Reference [12], as a
continuation of the work in Ref. [11], also predicts the
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FIG. 1. Cross section of eTe™ — A_A, obtained by BESIII and
Belle.
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existence of a A_A, bound state with a binding energy of
38 MeV. Reference [13] utilizes a model incorporating a
Breit-Wigner resonance and A A, four-point contact inter-
actions to explain the enhancement above the A A, thresh-
old as a consequence of a virtual pole. Nonetheless, if the
A A, contact coupling were larger, this pole would become
a bound state. This indirectly indicates the experimental
evidence for the possible existence of the A, A, bound state.

The existence of the A,A, bound state has been
corroborated by numerous theoretical works. Within the
one-boson-exchange model [14,15], the A_A, system can
exist as a bound state and the binding energy of this system
is very sensitive to the cutoff. Similarly, the quasipotential
Bethe-Salpeter (BS) equation approach also supports the
existence of a A.A, bound state [16]. The existence of the
A.A, bound state is also supported by the effective field
theory [17]. Additionally, based on the heavy baryon chiral
perturbation theory it is suggested that the A A, system can
form a bound state through two-pion exchange interaction
potentials [18]. In Ref. [10], the authors state that the
binding energy of this system may range from a few to
several tens of MeV depending on the cutoff within the BS
equation approach.

As a formally exact equation to describe the relativistic
bound system, the BS equation is formulated in Minkowski
space based on the relativistic quantum theory [19,20].
Over the past decades, this formalism has been successfully
used to investigate heavy mesons, heavy baryons, and
exotic states [21-26]. In this work we will establish the BS
equation for the A, A, system. The interaction kernel will
be derived from the four-point Green’s function with the
relevant Lagrangians. Since the strong interaction vertices
are determined by the physical particles and the off-shell
exchanged particles, a form factor is introduced to account
for the finite size effects of the interacting hadrons.
Subsequently, the BS equations will be numerically solved
under the covariant instantaneous approximation. More-
over, we will explore some possible partial decay widths of
the A.A, bound state.

The remainder of this paper is organized as follows.
Section II will establish the BS equation and the normali-
zation conditions for the A.A, system. In Sec. III, the

|

d*p d*q

where I(P, p,q) = (27)*6*(p — ¢)S™' (p1)S™' (=p2).
In the heavy quark limit, the propagators of A, and A,
can be expressed as the following forms:

my(1+¢)
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(1) 2w (MM + p;—wy + ie)

l / 2P 3y % [1(P, p,q) + K(P,p,q)lxp(q) = 2Ep,

partial decay widths of the A.A, bound states to various
final states will be investigated. The numerical results will
be presented in Sec. IV. The final section will offer our
summary.

II. BETHE-SALPETER EQUATION
FOR THE A,A, SYSTEM

As we discussed in the Introduction, we will study the
possible A A, bound state. The S-wave A.A, system may
form two bound states with quantum numbers J*¢ = 0=+
and 17~ The BS wave function for the A.A, bound state is
defined as

xp(X1, X2, P) = <O|TAC(X])/_\C('X2)|P>’ (1)

where P (= Mv) is the total momentum of the A_A, bound
state and v represents its velocity. The BS wave function in
the momentum space is defined as

. d*p ;
xp(X1, X, P) = e_lPX/ (2ﬂ)4ZP(P)e_W’ (2)

where X = 1;x; 4+ A,x, and x = x; — x, are the center-of-
mass coordinate and the relative coordinate of the A A,

bound state with 4;(5) = m":jr(zz = Land my) is the mass of

A. (A,), and p is the relative momentum of the bound state.
The momenta of A, and A, can be expressed in terms of the
relative momentum p and the total momentum P as p; =
AP+ p and p, = 1,P — p, respectively.

The BS equation in the momentum space can be written
as follows [27,28]

20(p) = S(p1) / éﬁk(ap,qmw)sepz), 3)

where K(P, p,q) is the interaction kernel from the irre-
ducible Feynman diagrams, and S(p;) and S(—p,) are the
propagators of A, and A, respectively. For convenience,
we define p; = v - p as the longitudinal projection of p
along » and p, = p — p,v which is transverse to v.

In general, the normalization condition of the BS wave
function for the A, and A, system is

P’ = Ep, (4)

and

my(1 + ¢)
2W2(/12M — P — Wy + l€) ’ (6)

where the energy wy) = ,/mj, —pi, and e is the

infinitesimal.

S(py) =i
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Substituting Egs. (5) and (6) into Eq. (3), we obtain
the following two constraint relations for the BS wave
function yp(p):

#xe(p) = xp(p), (7)

xp(P)Y = —xp(p) (8)

Then taking into account these two constraint relations
and other restrictions from Lorentz covariance and parity
transformation on the form of yp(p), the BS wave
functions for the S-wave pseudoscalar (J¢ = 0~") and
vector (J¢ = 177) A.A, bound state can be parametrized
in the following forms, respectively:

xp(p) = (1 + P)rsf1(p)s )

and

25 (p) = (1 + 1ED f2(p), (10)

where f(p) and f,(p) are the Lorentz-scalar functions of

p? and p;, and ff,r) is the polarization vector of the vector
A A, bound state.

To simplify the BS equation (3), we impose the so-called
covariant instantaneous approximation in the kernel:
p; = ¢q; = 0. In this approximation the projection of the
momentum of each constituent particle along the total
momentum P is not changed; the energy exchanged
between the constituent particles of the binding system
is neglected. This approximation is appropriate since we
consider the binding energy of A.A, bound state to be in
the range (0-50) MeV, which is very small compared to the
constituent particle masses. Under this approximation, the
kernel in the BS equation is reduced to K (P, p,, q,), which
will be used in the following calculations.

After some algebra, we find that the BS scalar wave
functions for both the pseudoscalar A.A, bound state
[f1(p)] and the vector A.A. bound state [f,(p)] satisfy
the same integral equation as follows:

o —mnmy
W1W2(11M +p—w + l€)<ﬂ.2M —p;— Wy + 16)

d*q -
x / SR (P.pa)fa). (1)

f(p)

We integrate both sides of above equation with respect to p;
to obtain

N —i &g, N
Flpy) = —— / 9 R(P.ppa)(q):

Cwiwy (M —wy —wy) ) (27)}

(12)

where we define f(p,) = [dp,f(p).

For later convenience we also write out f(p) in term of

f(p,). From Egs. (11) and (12) we have

f(p) = -i o
P 2n(MM + p;—wy + i€) (M — p; — wy + i€)

x f(py)- (13)

As the A, is an isoscalar state, the total interaction kernel
arises from the exchanges of @w and o. The related
Lagrangians, constructed with heavy quark and chiral
symmetries [29,30], are presented as follows:

. 9vPs

ﬁAL-AL-m = —1 4mAl‘ Cl)”/\C aﬂAc’

EAL‘ACG == ifBo-[_\CAC? (14)
where the adopted coupling constants are gy = 5.8,
pp =0.87, and £ = —-3.1.

Then the interaction kernel can be derived in the lowest-
order form as follows:

2
[_(a)(P, P, C]) - (277:)454(q1 +q2 -p - Pz) (gVﬂB>

4mA(_

X (p1+ g )" (p2 + q2)" Ap, (k).
K,(P.p.q) = 27)*8* (g1 + q> — p1 — p2)C3A° (k).
(15)

where Af, (k) and A°(k) are the propagators for the
exchanged @ and ¢ mesons, respectively, and k represents
the momentum of the exchanged meson.

To take into account the structure and finite size effect
of the interacting hadrons, it is necessary to introduce
the form factor at the vertices. For t-channel vertices,
we use the following monopole and exponential form
factors:

A2 — m?
FR) = "33 (16)
and
F(k?) = e®*=m)/A*, (17)

respectively, where m and k represent the mass and
momentum of the exchanged meson. The cutoff parameter
A can be further reparametrized as A = m + aAgcp with
Aqcp = 220 MeV, and the parameter a being of order
unity. The value of a depends on the exchanged and
external particles involved in the strong interaction vertex
and cannot be obtained from the first principle.
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III. THE PARTIAL DECAY WIDTHS
OF THE A,A, BOUND STATE

In this section, we will investigate the decay widths of
the S-wave A,A, bound states, thereby providing theoreti-
cal support for the experimental search for A_A, bound
states. For the A.A, bound state with quantum numbers
JP€ = 17", some possible strong decay channels include
NN, DD, DD*, D*D*, zz, and KK. Due to parity
constraints, final states such as DD, zz, and KK are
forbidden for the A.A, bound state with J°¢ = 0=+, while
only NN, DD*, and D*D* final states are allowed.

The strong decays of S-wave A.A. bound states into
NN, DYD® | 7z, and KK can occur via exchanging
D/D*, N (nucleon), X, and =/, respectively. The relevant
interaction vertices are [31-34]

Lpya, = igDNA(,/_\CVS DN +H.c.,

Lpna, = gD*NA(./_\cy”ND; +H.c.,

Las.z= 9nzN07rsy,Z. +He.,

La =k = grzxN0"Kysy, B +He., (18)

Myy = MBy + ML

where H.c. represents the Hermitian conjugate of the
previous terms. The coupling constants g yp = —13.98
and g, yp+ = —5.2 are determined from flavor-SU(4) sym-
metry [35,36], gr.x.. = \/g_Tzfﬂ and gp =g = 2% [37], where
f= =93 MeV is the pion decay constant, and g, = 0.565 is
determined from the X7 — Afz™ decay [38].

In the rest frame, the two-body decay width of the bound
state is expressed as

p
ar = 5 1MP P Lo (19)

where M is the Lorentz invariant decay amplitude of the
process. |p’| is the magnitude of the three-momentum of the
final state particles in the rest frame of the bound state,
defined by

1

T /I(Mz,m%,m%), (20)

/
with A(a, b, c) = a* + b*> + ¢* — 2ab — 2ac — 2bc being
the Killén function.
The lowest order Lorentz-invariant decay amplitude for
the A.A, bound state decaying into NN is

4
:/(d )4gDNA #(p)rxp(P)rv(py) Ap(k, mp) F2(k*, mp)

2

where p’1(2> = (Ei(2), (—=)p’) denotes the momentum of
N(N) in the final state, k is the momentum transfer in the
decay process, &(p') and v(p}) are the Dirac spinors of N
and N, respectively, and Ap(k, mp) and A} (k,mp-) are

4
~ [ G n P )1 ) e F ), 1)
[
and
4
My == [ S an 5o 2n )i ()

the propagators for the exchanged mesons. For conven-
ience, we define p’ = 4, p)| — 4, p, which is not the relative
momentum of the final particles, and is given by
= (LE; — 11E,, p’). The BS wave function yp(p) could
be either pseudoscalar or vector.
The lowest-order Lorentz-invariant decay amplitudes are

d4
Mpp = /#g%)NALySAN(k’ my)ysyp(p)F2 (k2 my).
(22)
. d4p )
Mpp = —i WgDNACgD*NAceu(pz)VSXP(p)Yﬂ
X AN(k, mN)Fz(kz, mN)’ (23)

X Ay (k,my)F?(k*, my), (24)

for the DD (only allowed for the vector A_A, bound state),
DD*, and D*D* final states, respectively, and ¢ is the
polarization vector of D* or D*.

For the 77 and KK final states, the lowest-order Lorentz-
invariant decay amplitudes are given by

"oy

d*p
Maz = / (2z)* Grs 1u? 2p(P)rsr. Pl P

X Az(_ (k, mE(')FZ(kz, mzc), (25)

and
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d‘p
Myp = / 22)° giL_EZ_KYﬂVSZP(P)}’s}’upl 1)

X AEZ (k, mEZ.)FZ(kz, mE/C), (26)

respectively. These two decay processes are exclusive to the
vector A.A, bound state.

IV. NUMERICAL RESULTS

To show the numerical results, we begin by presenting
the masses of mesons and baryons in Table I [39], which
are essential for studying the A_A, bound states and their
potential decay channels. Our model includes a single free
parameter, a, which is influenced by the exchanged particle
and the external particles at the strong interaction vertex. It
is expected that « is order unity and cannot be decided from
the first principle. Consequently, the binding energy E,
(defined as E, = m; + m, — M, where we consider A A,
as a shallow bound state system with E), ranging from 0 to
50 MeV) of the A.A, system cannot be determined, as it
depends on the value of the parameter a. To explore
possible solutions for the A.A, bound states, we vary a
over a broader range (0.5-5).

To solve the integral equation (12), we discretize the
integration region into n pieces (with n being sufficiently
large), transforming Eq. (12) to an eigenvalue equation for
the n dimensional vector f. After solving the eigenvalue
equation, we find that when the parameter « is in the range
of 1.65 to 3.41 for the monopole form factor and 1.32 to
3.53 for the exponential form factor, the A_A, system can
exist as a bound state with a binding energy in the range of
0-50 MeV. This indicates that the contributions from the
exchanges of @ and ¢ are sufficient to allow the A A,
system to form bound states. The values of a and the
corresponding binding energy E;, are depicted in Fig. 2,
indicating that the binding energy E, increases with
parameter «. This trend is attributed to the fact that as
the parameter « increases, the effective range and intensity
of the interactions between the constituent particles of the
bound state are enhanced, resulting in a stronger binding.
As we discussed in Sec. II, for both the pseudoscalar and
vector A.A, systems, they satisfy the same scalar BS
equation (11), and therefore, they exhibit the same trend but
with different normalization factors. In Fig. 3, we present
the numerical results of the normalized scalar BS wave

—— 7T

s0f

— monopole

401 — exponential

30

Ep(MeV)

20 -

1.5 2.0 2.5 3.0 35
a

FIG. 2. Values of @ and E,, for the possible bound states for the
A A, system.

functions for the pseudoscalar and vector A.A. bound
states with binding energies E, =5 MeV, 25 MeV,
and 50 MeV.

Taking into account the constraints of quantum numbers
such as spin and parity, the A.A, bound states with J©€ =
0~* can decay through strong interactions into NN, DD*,
and D*D* final states. The estimated partial decay widths
for these final states are 1.40 x 10719 ~ 2.45 x 10~* MeV,
401 x 107 ~4.46 x 1073 MeV, and 4.01 x 1077 ~
4.46 x 1073 MeV for monopole form factors, 2.88 x
10719~2.91 x 107* MeV, 6.07x107~5.13x 107> MeV,
and 2.60 x 107 ~2.15 x 10~ MeV for exponential form
factors, with the binding energy ranging from 0 to 50 MeV.
The partial decay widths are also illustrated in Fig. 4. The
decay to the NN final state is suppressed by the OZI rule
due to cc annihilation, resulting in the smallest decay width
among the considered channels. The decays of the A A,
bound state with J*¢ = 0=" to both DD* and D*D* final
states are mediated by N exchange. Due to the stronger
coupling at the A_.DN vertex and the larger phase space for
the DD* final state, the decay width of the DD* final state
is larger than that of the D*D* final state.

The partial decay widths of the J°¢ = 17~ A_A, bound
state to NN, DD, DD*, D*D*, n#, and KK final states
range from 1.86 x 10719~ 8.31 x 107 MeV, 1.12 x 1077 ~
0.18 MeV, 4.00x 107* ~16.85 MeV, 1.85x 107 ~
1.68 x 1072 MeV, 1.41 x 107'* ~ 6.64 x 10™® MeV, and
449 x 10713 ~2.23 x 107 MeV for monopole form

TABLE I. Masses (unit: MeV) of the relevant mesons and baryons.

Af b I 0 B 27 p n
2286.46 2453.97 2452.65 2453.75 2578.2 2578.70 938.27 939.57
D° D* D D** P n* K° K* w c
1864.84 1869.66 2006.85 2010.26 134.98 139.57 497.61 493.68 782.66 500
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14} Eb=5 MeV — — — Eb=5MeV ] 3¢ Eb=5 MeV — — — Eb=5MeV ]
12[ —— Eb=25MeV ~ — — Eb=25MeV ] 30F —— Eb=25MeV ~ — — Eb=25MeV .
1ol — Eb=50 MeV - — — Eb=50MeV ] 250 — Eb=50 MeV - — — Eb=50MeV ]
- E q
1 3 1
1.5 2.0 25 3.0 3.5 1.5 2.0 25 3.0 3.5
lpt|(GeV) lpt|(GeV)

(a)

(b)

FIG. 3. Numerical results of the normalized scalar equation f(|p,|) for (a) pseudoscalar and (b) vector A.A, bound states. The solid
and dashed curves correspond to the monopeole form factor and the exponential form factor, respectively.
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FIG. 4. The particle decay widths of the J*¢ = 0~ A,A, bound state to (a) NN, (b) DD*, and (c) D*D* final states, respectively.

factors, and 7.02x 10719~ 1.60 x 1073 MeV, 1.10 x
1077 ~0.19 MeV, 7.04 x 10™*~19.25MeV, 1.89 x 1078 ~
2.03 x 1072 MeV, 8.77 x 10714 ~ 1.73 x 1077 MeV, and
3.16 x 10712 ~ 6.26 x 107% MeV for exponential form fac-
tors, with the binding energy ranging from 0 to 50 MeV.
The A.A. bound state with J°¢ = 17~ exhibits larger
decay widths compared to the state with JC€ =0+,
The decay processes to z7z and KK final states, involving
the cc¢ annihilation, are suppressed by the OZI rule,
and the coupling strengths at the A.X.z and AE.K
vertices are relatively small, leading to minimal decay
widths as anticipated. The DD* final state still has the
largest decay width in the decay of the JX€ = 17~ A A,
bound state.

As presented in Figs. 4 and 5, the partial decay widths of
the A,A, bound states exhibit a similar trend of increasing
with the binding energy E,, which is determined by the
parameter @ as shown in Fig. 2. Intuitively, one might
expect smaller decay widths with increased binding due to
reduced phase space. However, as a increases, the corre-
sponding cutoff parameter A also increases. This causes the
value of the form factor to increase at low momentum
transfer and only decrease significantly at high momentum
transfer, leading to larger decay widths. Additionally, the
normalized scalar BS wave function f(|p,|) also increases
significantly with binding energy, as shown in Fig. 3.

Therefore, the decay widths increase with binding energy
rather than decrease.

If we adopt the binding energy E, = 38 MeV for the
JP€ =17 A_A, bound state as predicted in Ref. [12], the
partial decay widths for the NN, DD, DD*, D*D*, n#, and
KK final states are 2.56 x 10~ MeV, 6.43 x 1072 MeV,
8.92 MeV, 6.78 x 107 MeV, 2.05x 1078 MeV, and
6.83 x 10~7 MeV for monopole form factors with @ =3.11,
respectively, and 5.47 x 107 MeV, 6.97 x 1072 MeV,
10.37 MeV, 8.19 x 107> MeV, 6.06 x 10~® MeV, and
2.19x 10° MeV for exponential form factors with
a = 3.16, respectively. These results show that the DD*
final state predominates in the decay of the JPC =
1=~ A.A, bound state. Therefore, we propose searching
for the A.A, bound state in the DD* final state.

In addition to the two-body strong decay processes we
have studied, three-body decays are also important for the
A.A, bound state because these processes do not involve
quark-antiquark annihilation. For example, decays to 5.7z
and J/wzr are significant. In Ref. [40], the authors argue
that ¥ (4260) is a deeply bound A A, state and propose that
J/wrr is its dominant mode of decay, and that there are
enough events to observe Y(4260) in the y'zz channel. In
Ref. [41], the authors studied baryon-antibaryon molecular
states and similarly suggested that important decay modes
for AA molecular states include nrr, wrr, and others, since
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0.020
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0.005
0.000
0 10
Ep(MeV)

states, respectively.

these processes involve only quark rearrangements and not
quark-antiquark annihilation. Currently, the study of three-
body decays faces certain computational challenges in our
model. In addition, the coupling parameters of the A A,
bound states to the 5.7z and J/ywrx decays are not well
understood. We aim to address these challenges in future
work to obtain a more comprehensive understanding of the
decay processes.

V. SUMMARY

In this study, we have presented a comprehensive
analysis of the possible A.A, bound states and some
possible strong decays of these bound states. Our theo-
retical framework is based on the BS equation, which
provides a relativistically consistent description of the
bound state system. The interaction kernel of the BS
equation was constructed from relevant Lagrangians that
describe the strong interaction vertices among the
exchanged (@ and o) and external (A,) particles.

Our numerical results indicate that A.A, bound states
could exist. However, we cannot determine the mass of the
bound state precisely, as it depends on the value of the
parameter «, which is not determined from first principles
and reflects the nonperturbative nature of QCD at low
energies. Through our study, we found that when the
parameter « is in the range of 1.65 to 3.41 for the monopole
form factor and 1.32 to 3.53 for the exponential form factor,
the A, A, system can exist as a bound state with the binding
energy in the range of 0-50 MeV.

20F

—— monopole

— exponential

30 ) o 40 50 0 10 o 20 ' 30 ’ 40 50
Ep(MeV) Ep(MeV)

(b) ©

=
S
&

=—— monopole
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The particle decay widths of the J*¢ = 17— A_A, bound state to (a) NN, (b) DD, (c) DD*, (d) D*D*, () 7, and (f) KK final

We have also calculated the partial decay widths of the
A.A, bound states for various decay channels. For the
JPE€ = 0=+ state, the decays to NN, DD*, and D*D* final
states were considered. The decay widths increase with the
binding energy, with the decay to the DD* final state being
the most significant one. The OZI rule suppresses the decay
to the NN final state, resulting in the smallest decay width
for this channel.

For the JPC =17~ state, we investigated the decay
channels to NN, DD, DD*, D*D*, =7, and KK final
states. The decay widths for the 77 and KK channels are
the smallest due to the suppression by the OZI rule and
the relatively small coupling constants at the A.X.7
and A ELK vertices. Similar to the JP¢ = 0~ state, the
decay to the DD* final state is the most prominent one for
the JP€ = 17~ state.

The results presented in this work have important
implications for the experimental search for A,A, bound
states. The predicted decay widths can serve as a guide for
future experiments at facilities such as BESIII, LHCb, and
Belle II. Further theoretical and experimental investigations
are needed to validate the existence of these bound states
and to refine the understanding of their properties.
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