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In this work, we investigate possible bound states of the ΛcΛ̄c system in the Bethe-Salpeter formalism in
the ladder and instantaneous approximations. By numerically solving the Bethe-Salpeter equation, we
confirm the existence of ΛcΛ̄c bound states with quantum numbers JPC ¼ 0−þ and JPC ¼ 1−−. We further
investigate the partial decay widths of the ΛcΛ̄c bound states into NN̄, DD̄, DD̄�, D�D̄�, ππ̄, and KK̄. Our
results indicate that the decay width of the ΛcΛ̄c bound state with JPC ¼ 1−− is much larger than that with
JPC ¼ 0−þ, and among their decay channels, the DD̄� final state is the main decay mode. We suggest
experiments to search for the ΛcΛ̄c bound states in the DD̄� final state.
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I. INTRODUCTION

Exotic hadrons have become a major focus in both
experimental and theoretical research due to their potential
to reveal fundamental properties of strong interactions.
With the efforts of experimental and theoretical studies,
numerous heavy flavor exotic hadrons have been discov-
ered, such as Xð3872Þ [1], Zcð3900Þ [2], and Pc [3,4].
These exotic hadrons are believed to have four or five
quarks, their masses are typically located near the thresh-
olds of either two mesons or one meson and one baryon.
Recently, the LHCb, CMS, and ATLAS collaborations
observed several exotic structures in the di-J=ψ invariant
mass spectra [5–7], including the Xð6200Þ, Xð6600Þ,
Xð6900Þ, and Xð7200Þ, which are candidates for fully
charmed tetraquark states. In addition to tetraquark and
pentaquark states, it is natural to extend the research to the
study of heavy flavor hexaquark states.
In 2017, the BESIII Collaboration carried out precision

measurements of the cross section for the eþe− → ΛcΛ̄c

process at four energy points just above the ΛcΛ̄c thresh-
old [8]. These measurements, depicted in Fig. 1, reveal an

intriguing pattern: a discernible nonzero cross section close
to the ΛcΛ̄c threshold and an almost constant profile. This
contrasts sharply with the earlier results obtained by the
Belle Collaboration using the initial-state radiation
method [9], which are also illustrated in Fig. 1 and were
plagued by significant uncertainties in both the center-of-
mass energy and the cross section. In Refs. [10,11], the
authors suggest that the plateau near the threshold can be
understood as the consequence of the Coulomb potential or
the Sommerfeld factor, along with the presence of a
threshold pole. In Ref. [10], the authors stated the pole
position can be below threshold. Reference [12], as a
continuation of the work in Ref. [11], also predicts the

FIG. 1. Cross section of eþe− → ΛcΛ̄c obtained by BESIII and
Belle.
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existence of a ΛcΛ̄c bound state with a binding energy of
38 MeV. Reference [13] utilizes a model incorporating a
Breit-Wigner resonance and ΛcΛ̄c four-point contact inter-
actions to explain the enhancement above the ΛcΛ̄c thresh-
old as a consequence of a virtual pole. Nonetheless, if the
ΛcΛ̄c contact coupling were larger, this pole would become
a bound state. This indirectly indicates the experimental
evidence for the possible existence of theΛcΛ̄c bound state.
The existence of the ΛcΛ̄c bound state has been

corroborated by numerous theoretical works. Within the
one-boson-exchange model [14,15], the ΛcΛ̄c system can
exist as a bound state and the binding energy of this system
is very sensitive to the cutoff. Similarly, the quasipotential
Bethe-Salpeter (BS) equation approach also supports the
existence of a ΛcΛ̄c bound state [16]. The existence of the
ΛcΛ̄c bound state is also supported by the effective field
theory [17]. Additionally, based on the heavy baryon chiral
perturbation theory it is suggested that the ΛcΛ̄c system can
form a bound state through two-pion exchange interaction
potentials [18]. In Ref. [10], the authors state that the
binding energy of this system may range from a few to
several tens of MeV depending on the cutoff within the BS
equation approach.
As a formally exact equation to describe the relativistic

bound system, the BS equation is formulated in Minkowski
space based on the relativistic quantum theory [19,20].
Over the past decades, this formalism has been successfully
used to investigate heavy mesons, heavy baryons, and
exotic states [21–26]. In this work we will establish the BS
equation for the ΛcΛ̄c system. The interaction kernel will
be derived from the four-point Green’s function with the
relevant Lagrangians. Since the strong interaction vertices
are determined by the physical particles and the off-shell
exchanged particles, a form factor is introduced to account
for the finite size effects of the interacting hadrons.
Subsequently, the BS equations will be numerically solved
under the covariant instantaneous approximation. More-
over, we will explore some possible partial decay widths of
the ΛcΛ̄c bound state.
The remainder of this paper is organized as follows.

Section II will establish the BS equation and the normali-
zation conditions for the ΛcΛ̄c system. In Sec. III, the

partial decay widths of the ΛcΛ̄c bound states to various
final states will be investigated. The numerical results will
be presented in Sec. IV. The final section will offer our
summary.

II. BETHE-SALPETER EQUATION
FOR THE ΛcΛ̄c SYSTEM

As we discussed in the Introduction, we will study the
possible ΛcΛ̄c bound state. The S-wave ΛcΛ̄c system may
form two bound states with quantum numbers JPC ¼ 0−þ

and 1−−. The BS wave function for the ΛcΛ̄c bound state is
defined as

χPðx1; x2; PÞ ¼ h0jTΛcðx1ÞΛ̄cðx2ÞjPi; ð1Þ

where P (¼ Mv) is the total momentum of the ΛcΛ̄c bound
state and v represents its velocity. The BS wave function in
the momentum space is defined as

χPðx1; x2; PÞ ¼ e−iPX
Z

d4p
ð2πÞ4 χPðpÞe

−ipx; ð2Þ

where X ¼ λ1x1 þ λ2x2 and x ¼ x1 − x2 are the center-of-
mass coordinate and the relative coordinate of the ΛcΛ̄c

bound state with λ1ð2Þ ¼ m1ð2Þ
m1þm2

¼ 1
2
and m1ð2Þ is the mass of

Λc (Λ̄c), and p is the relative momentum of the bound state.
The momenta ofΛc and Λ̄c can be expressed in terms of the
relative momentum p and the total momentum P as p1 ¼
λ1Pþ p and p2 ¼ λ2P − p, respectively.
The BS equation in the momentum space can be written

as follows [27,28]

χPðpÞ ¼ Sðp1Þ
Z

d4q
ð2πÞ4 K̄ðP; p; qÞχPðqÞSð−p2Þ; ð3Þ

where K̄ðP; p; qÞ is the interaction kernel from the irre-
ducible Feynman diagrams, and Sðp1Þ and Sð−p2Þ are the
propagators of Λc and Λ̄c, respectively. For convenience,
we define pl ≡ v · p as the longitudinal projection of p
along v and pt ≡ p − plv which is transverse to v.
In general, the normalization condition of the BS wave

function for the Λc and Λ̄c system is

i
Z

d4p
ð2πÞ4 χPðpÞ

d4q
ð2πÞ4

∂

∂P0
½IðP; p; qÞ þ K̄ðP; p; qÞ�χPðqÞ ¼ 2EP; P0 ¼ EP; ð4Þ

where IðP; p; qÞ ¼ ð2πÞ4δ4ðp − qÞS−1ðp1ÞS−1ð−p2Þ.
In the heavy quark limit, the propagators of Λc and Λ̄c

can be expressed as the following forms:

Sðp1Þ ¼ i
m1ð1þ =vÞ

2w1ðλ1M þ pl − w1 þ iϵÞ ; ð5Þ

and

Sðp2Þ ¼ i
m2ð1þ =vÞ

2w2ðλ2M − pl − w2 þ iϵÞ ; ð6Þ

where the energy w1ð2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1ð2Þ − p2
t

q
, and ϵ is the

infinitesimal.
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Substituting Eqs. (5) and (6) into Eq. (3), we obtain
the following two constraint relations for the BS wave
function χPðpÞ:

=vχPðpÞ ¼ χPðpÞ; ð7Þ

χPðpÞ=v ¼ −χPðpÞ: ð8Þ

Then taking into account these two constraint relations
and other restrictions from Lorentz covariance and parity
transformation on the form of χPðpÞ, the BS wave
functions for the S-wave pseudoscalar (JPC ¼ 0−þ) and
vector (JPC ¼ 1−−) ΛcΛ̄c bound state can be parametrized
in the following forms, respectively:

χPðpÞ ¼ ð1þ =vÞγ5f1ðpÞ; ð9Þ

and

χðrÞP ðpÞ ¼ ð1þ =vÞ=ξðrÞf2ðpÞ; ð10Þ

where f1ðpÞ and f2ðpÞ are the Lorentz-scalar functions of
p2
t and pl, and ξðrÞμ is the polarization vector of the vector

ΛcΛ̄c bound state.
To simplify the BS equation (3), we impose the so-called

covariant instantaneous approximation in the kernel:
pl ¼ ql ¼ 0. In this approximation the projection of the
momentum of each constituent particle along the total
momentum P is not changed; the energy exchanged
between the constituent particles of the binding system
is neglected. This approximation is appropriate since we
consider the binding energy of ΛcΛ̄c bound state to be in
the range (0–50) MeV, which is very small compared to the
constituent particle masses. Under this approximation, the
kernel in the BS equation is reduced to K̄ðP; pt; qtÞ, which
will be used in the following calculations.
After some algebra, we find that the BS scalar wave

functions for both the pseudoscalar ΛcΛ̄c bound state
[f1ðpÞ] and the vector ΛcΛ̄c bound state [f2ðpÞ] satisfy
the same integral equation as follows:

fðpÞ ¼ −m1m2

w1w2ðλ1M þ pl − w1 þ iϵÞðλ2M − pl − w2 þ iϵÞ

×
Z

d4q
ð2πÞ4 K̄ðP; pt; qtÞfðqÞ: ð11Þ

We integrate both sides of above equation with respect to pl
to obtain

f̃ðptÞ ¼
−im1m2

w1w2ðM − w1 − w2Þ
Z

d3qt
ð2πÞ3 K̄ðP; pt; qtÞf̃ðqtÞ;

ð12Þ

where we define f̃ðptÞ ¼
R
dplfðpÞ.

For later convenience we also write out fðpÞ in term of
f̃ðptÞ. From Eqs. (11) and (12) we have

fðpÞ ¼ −i
M − w1 − w2

2πðλ1M þ pl − w1 þ iϵÞðλ2M − pl − w2 þ iϵÞ
× f̃ðptÞ: ð13Þ

As the Λc is an isoscalar state, the total interaction kernel
arises from the exchanges of ω and σ. The related
Lagrangians, constructed with heavy quark and chiral
symmetries [29,30], are presented as follows:

LΛcΛcω ¼ −i
gVβB
4mΛc

ωμΛ̄c ∂
↔

μΛc;

LΛcΛcσ ¼ ilBσΛ̄cΛc; ð14Þ

where the adopted coupling constants are gV ¼ 5.8,
βB ¼ 0.87, and lB ¼ −3.1.
Then the interaction kernel can be derived in the lowest-

order form as follows:

K̄ωðP; p; qÞ ¼ ð2πÞ4δ4ðq1 þ q2 − p1 − p2Þ
�
gVβB
4mΛc

�
2

× ðp1 þ q1Þμðp2 þ q2ÞνΔω
μνðkÞ;

K̄σðP; p; qÞ ¼ ð2πÞ4δ4ðq1 þ q2 − p1 − p2Þl2
BΔσðkÞ;

ð15Þ

where Δω
μνðkÞ and ΔσðkÞ are the propagators for the

exchanged ω and σ mesons, respectively, and k represents
the momentum of the exchanged meson.
To take into account the structure and finite size effect

of the interacting hadrons, it is necessary to introduce
the form factor at the vertices. For t-channel vertices,
we use the following monopole and exponential form
factors:

Fðk2Þ ¼ Λ2 −m2

Λ2 − k2
; ð16Þ

and

Fðk2Þ ¼ eðk2−m2Þ=Λ2

; ð17Þ

respectively, where m and k represent the mass and
momentum of the exchanged meson. The cutoff parameter
Λ can be further reparametrized as Λ ¼ mþ αΛQCD with
ΛQCD ¼ 220 MeV, and the parameter α being of order
unity. The value of α depends on the exchanged and
external particles involved in the strong interaction vertex
and cannot be obtained from the first principle.
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III. THE PARTIAL DECAY WIDTHS
OF THE ΛcΛ̄c BOUND STATE

In this section, we will investigate the decay widths of
the S-wave ΛcΛ̄c bound states, thereby providing theoreti-
cal support for the experimental search for ΛcΛ̄c bound
states. For the ΛcΛ̄c bound state with quantum numbers
JPC ¼ 1−−, some possible strong decay channels include
NN̄, DD̄, DD̄�, D�D̄�, ππ̄, and KK̄. Due to parity
constraints, final states such as DD̄, ππ̄, and KK̄ are
forbidden for the ΛcΛ̄c bound state with JPC ¼ 0−þ, while
only NN̄, DD̄�, and D�D̄� final states are allowed.
The strong decays of S-wave ΛcΛ̄c bound states into

NN̄, Dð�ÞD̄ð�Þ, ππ̄, and KK̄ can occur via exchanging
D=D�, N (nucleon), Σc, and Ξ0

c, respectively. The relevant
interaction vertices are [31–34]

LDNΛc
¼ igDNΛc

Λ̄cγ
5DN þ H:c:;

LD�NΛc
¼ gD�NΛc

Λ̄cγ
μND�

μ þ H:c:;

LΛcΣcπ ¼ gΛcΣcπΛ̄c∂
μπγ5γμΣc þ H:c:;

LΛcΞ0
cK ¼ gΛcΞ0

cKΛ̄c∂
μKγ5γμΞ0

c þ H:c:; ð18Þ

where H.c. represents the Hermitian conjugate of the
previous terms. The coupling constants gΛcND ¼ −13.98
and gΛcND� ¼ −5.2 are determined from flavor-SU(4) sym-
metry [35,36], gΛcΣcπ ¼ g2ffiffi

2
p

fπ
and gΛcΞ0

cK ¼ g2
2fπ

[37], where

fπ ¼ 93 MeV is the pion decay constant, and g2 ¼ 0.565 is
determined from the Σþþ

c → Λþ
c π

þ decay [38].
In the rest frame, the two-body decay width of the bound

state is expressed as

dΓ ¼ 1

32π2
jMj2 jp

0j
M2

dΩ; ð19Þ

where M is the Lorentz invariant decay amplitude of the
process. jp0j is the magnitude of the three-momentum of the
final state particles in the rest frame of the bound state,
defined by

jp0j ¼ 1

2M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðM2; m2

1; m
2
2Þ

q
; ð20Þ

with λða; b; cÞ ¼ a2 þ b2 þ c2 − 2ab − 2ac − 2bc being
the Källén function.
The lowest order Lorentz-invariant decay amplitude for

the ΛcΛ̄c bound state decaying into NN̄ is

MNN̄ ¼ MD
NN̄ þMD�

NN̄

¼
Z

d4p
ð2πÞ4 g

2
DNΛc

ūðp0
1Þγ5χPðpÞγ5vðp0

2ÞΔDðk;mDÞF2ðk2; mDÞ

−
Z

d4p
ð2πÞ4 g

2
D�NΛc

ūðp0
1ÞγμχPðpÞγνvðp0

2ÞΔμν
D� ðk;mD� ÞF2ðk2; mD�Þ; ð21Þ

where p0
1ð2Þ ¼ ðE1ð2Þ; ð−Þp0Þ denotes the momentum of

NðN̄Þ in the final state, k is the momentum transfer in the
decay process, ūðp0

1Þ and vðp0
2Þ are the Dirac spinors of N

and N̄, respectively, and ΔDðk;mDÞ and Δμν
D� ðk;mD� Þ are

the propagators for the exchanged mesons. For conven-
ience, we define p0 ≡ λ2p0

1 − λ1p0
2 which is not the relative

momentum of the final particles, and is given by
p0 ¼ ðλ2E1 − λ1E2;p0Þ. The BS wave function χPðpÞ could
be either pseudoscalar or vector.
The lowest-order Lorentz-invariant decay amplitudes are

MDD̄ ¼
Z

d4p
ð2πÞ4 g

2
DNΛc

γ5ΔNðk;mNÞγ5χPðpÞF2ðk2; mNÞ;

ð22Þ

MDD̄� ¼ −i
Z

d4p
ð2πÞ4 gDNΛc

gD�NΛc
ϵ�μðp0

2Þγ5χPðpÞγμ

× ΔNðk;mNÞF2ðk2; mNÞ; ð23Þ

and

MD�D̄� ¼ −
Z

d4p
ð2πÞ4 g

2
D�NΛc

ϵ�μðp0
1ÞγμχPðpÞγνϵ�νðp0

2Þ

× ΔNðk;mNÞF2ðk2; mNÞ; ð24Þ

for the DD̄ (only allowed for the vector ΛcΛ̄c bound state),
DD�, and D�D� final states, respectively, and ϵ is the
polarization vector of D� or D̄�.
For the ππ̄ and KK̄ final states, the lowest-order Lorentz-

invariant decay amplitudes are given by

Mππ̄ ¼
Z

d4p
ð2πÞ4 g

2
ΛcΣcπ

γμγ
5χPðpÞγ5γνp0μ

1 p
0ν
2

× ΔΣc
ðk;mΣc

ÞF2ðk2; mΣc
Þ; ð25Þ

and
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MKK̄ ¼
Z

d4p
ð2πÞ4 g

2
ΛcΞ0

cK
γμγ

5χPðpÞγ5γνp0μ
1 p

0ν
2

× ΔΞ0
c
ðk;mΞ0

c
ÞF2ðk2; mΞ0

c
Þ; ð26Þ

respectively. These two decay processes are exclusive to the
vector ΛcΛ̄c bound state.

IV. NUMERICAL RESULTS

To show the numerical results, we begin by presenting
the masses of mesons and baryons in Table I [39], which
are essential for studying the ΛcΛ̄c bound states and their
potential decay channels. Our model includes a single free
parameter, α, which is influenced by the exchanged particle
and the external particles at the strong interaction vertex. It
is expected that α is order unity and cannot be decided from
the first principle. Consequently, the binding energy Eb

(defined as Eb ¼ m1 þm2 −M, where we consider ΛcΛ̄c
as a shallow bound state system with Eb ranging from 0 to
50 MeV) of the ΛcΛ̄c system cannot be determined, as it
depends on the value of the parameter α. To explore
possible solutions for the ΛcΛ̄c bound states, we vary α
over a broader range (0.5–5).
To solve the integral equation (12), we discretize the

integration region into n pieces (with n being sufficiently
large), transforming Eq. (12) to an eigenvalue equation for
the n dimensional vector f̃. After solving the eigenvalue
equation, we find that when the parameter α is in the range
of 1.65 to 3.41 for the monopole form factor and 1.32 to
3.53 for the exponential form factor, the ΛcΛ̄c system can
exist as a bound state with a binding energy in the range of
0–50 MeV. This indicates that the contributions from the
exchanges of ω and σ are sufficient to allow the ΛcΛ̄c
system to form bound states. The values of α and the
corresponding binding energy Eb are depicted in Fig. 2,
indicating that the binding energy Eb increases with
parameter α. This trend is attributed to the fact that as
the parameter α increases, the effective range and intensity
of the interactions between the constituent particles of the
bound state are enhanced, resulting in a stronger binding.
As we discussed in Sec. II, for both the pseudoscalar and
vector ΛcΛ̄c systems, they satisfy the same scalar BS
equation (11), and therefore, they exhibit the same trend but
with different normalization factors. In Fig. 3, we present
the numerical results of the normalized scalar BS wave

functions for the pseudoscalar and vector ΛcΛ̄c bound
states with binding energies Eb ¼ 5 MeV, 25 MeV,
and 50 MeV.
Taking into account the constraints of quantum numbers

such as spin and parity, the ΛcΛ̄c bound states with JPC ¼
0−þ can decay through strong interactions into NN̄, DD̄�,
and D�D̄� final states. The estimated partial decay widths
for these final states are 1.40 × 10−10 ∼ 2.45 × 10−4 MeV,
4.01 × 10−9 ∼ 4.46 × 10−3 MeV, and 4.01 × 10−9 ∼
4.46 × 10−3 MeV for monopole form factors, 2.88×
10−10 ∼ 2.91× 10−4 MeV, 6.07×10−9∼5.13×10−3 MeV,
and 2.60 × 10−9 ∼ 2.15 × 10−3 MeV for exponential form
factors, with the binding energy ranging from 0 to 50 MeV.
The partial decay widths are also illustrated in Fig. 4. The
decay to the NN̄ final state is suppressed by the OZI rule
due to cc̄ annihilation, resulting in the smallest decay width
among the considered channels. The decays of the ΛcΛ̄c

bound state with JPC ¼ 0−þ to both DD̄� and D�D̄� final
states are mediated by N exchange. Due to the stronger
coupling at the ΛcDN vertex and the larger phase space for
the DD̄� final state, the decay width of the DD̄� final state
is larger than that of the D�D̄� final state.
The partial decay widths of the JPC ¼ 1−− ΛcΛ̄c bound

state to NN̄, DD̄, DD̄�, D�D̄�, ππ̄, and KK̄ final states
range from 1.86×10−10∼8.31×10−4 MeV, 1.12 × 10−7 ∼
0.18 MeV, 4.00 × 10−4 ∼ 16.85 MeV, 1.85 × 10−8 ∼
1.68 × 10−2 MeV, 1.41 × 10−14 ∼ 6.64 × 10−8 MeV, and
4.49 × 10−13 ∼ 2.23 × 10−6 MeV for monopole form

TABLE I. Masses (unit: MeV) of the relevant mesons and baryons.

Λþ
c Σþþ

c Σþ
c Σ0

c Ξ0þ
c Ξ00

c p n

2286.46 2453.97 2452.65 2453.75 2578.2 2578.70 938.27 939.57

D0 D� D�0 D�� π0 π� K0 K� ω σ

1864.84 1869.66 2006.85 2010.26 134.98 139.57 497.61 493.68 782.66 500

FIG. 2. Values of α and Eb for the possible bound states for the
ΛcΛ̄c system.
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factors, and 7.02 × 10−10 ∼ 1.60 × 10−3 MeV, 1.10×
10−7∼0.19MeV, 7.04×10−4∼19.25MeV, 1.89 × 10−8 ∼
2.03 × 10−2 MeV, 8.77 × 10−14 ∼ 1.73 × 10−7 MeV, and
3.16 × 10−12 ∼ 6.26 × 10−6 MeV for exponential form fac-
tors, with the binding energy ranging from 0 to 50 MeV.
The ΛcΛ̄c bound state with JPC ¼ 1−− exhibits larger
decay widths compared to the state with JPC ¼ 0−þ.
The decay processes to ππ̄ and KK̄ final states, involving
the cc̄ annihilation, are suppressed by the OZI rule,
and the coupling strengths at the ΛcΣcπ and ΛcΞ0

cK
vertices are relatively small, leading to minimal decay
widths as anticipated. The DD̄� final state still has the
largest decay width in the decay of the JPC ¼ 1−− ΛcΛ̄c
bound state.
As presented in Figs. 4 and 5, the partial decay widths of

the ΛcΛ̄c bound states exhibit a similar trend of increasing
with the binding energy Eb, which is determined by the
parameter α as shown in Fig. 2. Intuitively, one might
expect smaller decay widths with increased binding due to
reduced phase space. However, as α increases, the corre-
sponding cutoff parameter Λ also increases. This causes the
value of the form factor to increase at low momentum
transfer and only decrease significantly at high momentum
transfer, leading to larger decay widths. Additionally, the
normalized scalar BS wave function f̃ðjptjÞ also increases
significantly with binding energy, as shown in Fig. 3.

Therefore, the decay widths increase with binding energy
rather than decrease.
If we adopt the binding energy Eb ¼ 38 MeV for the

JPC ¼ 1−− ΛcΛ̄c bound state as predicted in Ref. [12], the
partial decay widths for the NN̄, DD̄, DD̄�, D�D̄�, ππ̄, and
KK̄ final states are 2.56 × 10−4 MeV, 6.43 × 10−2 MeV,
8.92 MeV, 6.78 × 10−3 MeV, 2.05 × 10−8 MeV, and
6.83×10−7 MeV for monopole form factors with α¼ 3.11,
respectively, and 5.47 × 10−4 MeV, 6.97 × 10−2 MeV,
10.37 MeV, 8.19 × 10−3 MeV, 6.06 × 10−8 MeV, and
2.19 × 10−6 MeV for exponential form factors with
α ¼ 3.16, respectively. These results show that the DD̄�

final state predominates in the decay of the JPC ¼
1−− ΛcΛ̄c bound state. Therefore, we propose searching
for the ΛcΛ̄c bound state in the DD̄� final state.
In addition to the two-body strong decay processes we

have studied, three-body decays are also important for the
ΛcΛ̄c bound state because these processes do not involve
quark-antiquark annihilation. For example, decays to ηcππ
and J=ψππ are significant. In Ref. [40], the authors argue
that Yð4260Þ is a deeply bound ΛcΛ̄c state and propose that
J=ψππ is its dominant mode of decay, and that there are
enough events to observe Yð4260Þ in the ψ 0ππ channel. In
Ref. [41], the authors studied baryon-antibaryon molecular
states and similarly suggested that important decay modes
forΛΛ̄molecular states include ηππ, ωππ, and others, since

FIG. 3. Numerical results of the normalized scalar equation f̃ðjptjÞ for (a) pseudoscalar and (b) vector ΛcΛ̄c bound states. The solid
and dashed curves correspond to the monopeole form factor and the exponential form factor, respectively.

FIG. 4. The particle decay widths of the JPC ¼ 0−þ ΛcΛ̄c bound state to (a) NN̄, (b) DD̄�, and (c) D�D̄� final states, respectively.
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these processes involve only quark rearrangements and not
quark-antiquark annihilation. Currently, the study of three-
body decays faces certain computational challenges in our
model. In addition, the coupling parameters of the ΛcΛ̄c
bound states to the ηcππ and J=ψππ decays are not well
understood. We aim to address these challenges in future
work to obtain a more comprehensive understanding of the
decay processes.

V. SUMMARY

In this study, we have presented a comprehensive
analysis of the possible ΛcΛ̄c bound states and some
possible strong decays of these bound states. Our theo-
retical framework is based on the BS equation, which
provides a relativistically consistent description of the
bound state system. The interaction kernel of the BS
equation was constructed from relevant Lagrangians that
describe the strong interaction vertices among the
exchanged (ω and σ) and external (Λc) particles.
Our numerical results indicate that ΛcΛ̄c bound states

could exist. However, we cannot determine the mass of the
bound state precisely, as it depends on the value of the
parameter α, which is not determined from first principles
and reflects the nonperturbative nature of QCD at low
energies. Through our study, we found that when the
parameter α is in the range of 1.65 to 3.41 for the monopole
form factor and 1.32 to 3.53 for the exponential form factor,
the ΛcΛ̄c system can exist as a bound state with the binding
energy in the range of 0–50 MeV.

We have also calculated the partial decay widths of the
ΛcΛ̄c bound states for various decay channels. For the
JPC ¼ 0−þ state, the decays to NN̄, DD̄�, and D�D̄� final
states were considered. The decay widths increase with the
binding energy, with the decay to the DD̄� final state being
the most significant one. The OZI rule suppresses the decay
to the NN̄ final state, resulting in the smallest decay width
for this channel.
For the JPC ¼ 1−− state, we investigated the decay

channels to NN̄, DD̄, DD̄�, D�D̄�, ππ̄, and KK̄ final
states. The decay widths for the ππ̄ and KK̄ channels are
the smallest due to the suppression by the OZI rule and
the relatively small coupling constants at the ΛcΣcπ
and ΛcΞ0

cK vertices. Similar to the JPC ¼ 0−þ state, the
decay to the DD̄� final state is the most prominent one for
the JPC ¼ 1−− state.
The results presented in this work have important

implications for the experimental search for ΛcΛ̄c bound
states. The predicted decay widths can serve as a guide for
future experiments at facilities such as BESIII, LHCb, and
Belle II. Further theoretical and experimental investigations
are needed to validate the existence of these bound states
and to refine the understanding of their properties.
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FIG. 5. The particle decay widths of the JPC ¼ 1−− ΛcΛ̄c bound state to (a) NN̄, (b)DD̄, (c) DD̄�, (d)D�D̄�, (e) ππ̄, and (f) KK̄ final
states, respectively.
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