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One-loop QCD corrections to heavy quark angular distributions in DIS

Qing-Song Chang

and Guang-Peng Zhang :

Department of physics, Yunnan University, Kunming, Yunnan 650091, China

® (Received 16 February 2024; accepted 11 June 2024; published 22 July 2024)

In this paper we calculate the fully differential cross sections for inclusive heavy quark production in
deep-inelastic scattering. We construct proper projection operators to give all possible azimuthal angle
distributions of the heavy quark for unpolarized and longitudinally polarized scatterings. These projection
operators are expressed in terms of momenta of incoming hadron, virtual photon, and detected heavy quark.
The azimuthal angle distributions are calculated to next-to-leading order of a;, i.e., O(a2), in a unified way.
Analytic expressions of the hard coefficients are given. Numerical results on future electron-ion colliders
are also given. It is found that at least three azimuthal angle asymmetries can be more than 1% in typical

kinematical regions of these colliders.
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I. INTRODUCTION

Deep-inelastic scattering (DIS) is crucial for the extrac-
tion of parton distribution functions (PDFs). Because gluons
do not carry electric or weak charges, they cannot be
detected directly by the exchanged photon or weak bosons.
For standard structure functions (see Ref. [1] for the
definition), such as F,, F; for unpolarized DIS and g, for
longitudinally polarized DIS, quark PDFs contribute start-
ing from O(a?), but gluon PDFs contribute starting from
O(ay). Thus, these structure functions are more sensitive to
quark PDFs than to gluon PDFs. To extract gluon PDFs
more precisely, we can consider heavy flavor tagged

structure functions, F' 2Q F % ng, with Q the detected heavy
quark (charm or bottom). In these structure functions, the
final hadron states must contain at least one heavy quark or
antiquark, with the momentum of heavy quark or antiquark
not measured. If the transferred momentum squared of
lepton Q0 < M%,, M2, the exchanged gauge boson between
lepton and initial hadron is approximately photon. For this
case, the final states must contain heavy quark and antiquark
at the same time, because QED and QCD interactions
preserve quark flavor. For these heavy flavor tagged struc-
ture functions, gluon PDFs contribute starting from O(a)
still, but quark PDFs contribute starting from O(a?). Quark
contributions are suppressed by a, compared with gluon
contributions. Thus flavor tagged structure functions pro-
vide stronger constraints to gluon PDFs.
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The leading order (LO) contribution in a; to flavor
tagged structure functions, F Q,FLQ, ng, is given by the
photon gluon fusion process, y* + g — QQ, which is
O(ay). Next-to-leading order (NLO) QCD corrections
to FZQ,Fg are calculated by [2], and analytic results in
the asymptotic region Q2 > m? are given by [3], with m
the mass of tagged heavy quark. The NLO QCD correc-
tion to ng was calculated recently by [4], but the analytic
results were given by [5] long ago in the asymptotic region
Q%> m?. Of course, the heavy quark contributes to
structure functions F,, F;,g; no matter if the heavy
quark is tagged or not. Nontagged heavy flavor correc-
tions to these structure functions are analytically calcu-
lated to O(a?) by [6-8] in the whole kinematic region
(complete results for Compton subprocess are also
given in [3,5]). These analytic calculations are compli-
cated. So far, [6-8] contain only quark contributions.
As far as we know, analytic gluon contributions at O(a?)
in the whole kinematic region are still absent. These
results are parts of inclusive structure functions. By
removing the contributions of the diagrams without heavy
quark in the final states, tagged structure functions can
be obtained. For the progress, please see the recent
review [9].

Besides heavy flavor tagged structure functions, the fully
differential cross sections for heavy quark production in
DIS are also sensitive to gluon PDFs for the reason given
above. We calculate them in this work. For unpolarized
DIS, the differential cross section with azimuthal angle
integrated out has been calculated to NLO [2,10]. For
longitudinally polarized DIS, the differential cross section
is calculated to NLO [4,11]. Also, the azimuthal angle is
integrated out. Here the azimuthal angle ¢ is the angle
between lepton plane and hadron plane in the center of
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mass (c.m.) frame of virtual photon and initial hadron. The
lepton plane is expanded by initial and final detected
leptons, and the hadron plane is expanded by initial hadron
and final detected heavy quark. With ¢ integrated out, the
transverse momentum and rapidity distributions of heavy
quark (for D-meson or heavy quark jets) are also measured
by HERA (please see Ref. [12] for a review). But, with ¢
unintegrated out, we can have many more observables.
Since ¢ can be measured easily in experiments, we expect
these observables can provide additional constraints to
PDFs. According to the analysis of [13,14], to all orders of
ay, ¢ distributions are proportional to sink¢ or cos kg,
k=1, 2. These ¢ distributions contain some interesting
information on dynamics. On the other hand, it seems
impossible to estimate the magnitudes of these ¢ distribu-
tions without direct calculation. In this work, we calculate
analytically all of these ¢ distributions in both unpolarized
and longitudinally polarized DIS to NLO, i.e., O(a?). In the
calculation, heavy quark mass is preserved. The fixed
flavor number scheme (FFNS) used in [2] is adopted.
The crucial feature of this scheme is when Q? ~ m? the
heavy quark is assumed to decouple from gluon self-energy
correction. The detected heavy quark is not counted as an
active parton. In this paper we consider only charm
production with Q% ~ m?. Then the active partons in this
scheme are u, d, s, so Ny = 3. With the analytic hard
coefficients, the cross section for bottom production can be
calculated similarly.

The structure of this paper is as follows: in Sec. Il we
describe our notation and kinematics; in Sec. III we present
our factorization formalism and construct all projection
operators used to get all possible azimuthal angle distri-
butions; Sec. IV contains the final finite hard coefficients
and all pieces needed to produce them, which include tree
level results, virtual corrections, real corrections, counter-
term contributions, and collinear subtractions; Sec. V is our
numerical results for future electron-ion colliders; Sec. VI
is a short summary. Loop integrals, various hard coeffi-
cients, and numerical results for inclusive structure func-
tions are given in Appendixes.

II. KINEMATICS

The process we consider is

e(, ) +ha(pa,dn) = e(l') +Q(p1) +X. (1)

The momenta of particles are indicated in the brackets.
A; = £1 and 4, = %1 are helicities (normalized to 1) of the
incoming lepton and hadron (proton), respectively. Q is the
detected heavy quark, which can be charm or bottom in our
case. X are undetected hadrons. The lepton interacts with
the hadron by exchanging a gauge boson. The momentum
of the gauge boson is ¢* = I* — I'*. In this work, we let

0% = —¢*> < M%,M3,. In this region, only the photon
needs to be considered. Because quark flavor will not be
changed by the photon or the gluon, the undetected final
state X contains at least one antiquark Q.

The standard DIS variables are

_ _paqg_ @
2pa-q’ pa-l xS,
Q*=—-¢*=—(I-1') (2)

Sp,:(pA+l)2, X

We work in the c.m. system of the incoming hadron and
virtual photon (y*N frame), where the initial hadron moves
along the +Z axis. Note that the Z axis here is opposite to
the choice of [14].

For a given four vector @, we rewrite it in terms
of light-cone coordinates @* = (a™,a™,d'}), where a* =
(a®+a)/V2. Then, a®>=2a*a~+d%, a> =-a, -a, <O0.
Under high energy limit, hadron mass can be ignored, so
only pi is nonzero in pk, ie., pi ~ (p},0,0). For ¢*, g*
and ¢~ may be nonzero, so we define §* = g* + xp/;, so
that §> = 0 and §* = 0. Using p, and § we further define
transverse metric and antisymmetric tensor,

H~v U S
dj_u:gﬂy_PAq + Pagq ’ e;iy

Pa-q = cem B2l (3)

Pa-4q

In this work €23 = +1, then € = —¢3! = +1 by defi-
nition. These two transverse tensors can be used to project
out the transverse components of a vector, such

as | = ¢\a,.
Concerning the final detected heavy quark Q, we define

D1 DPa
=1 74

1 0 z 1 +
- R ) N e WL WY S
q-Da

2 pl-pi 2 py

Y is the rapidity of heavy quark in the y*N frame. z,Y
and p;, are related to each other by the following
relation:

E X
z=e V2

oViox E= Vpitmt. p=Ipl. ()
Besides, there is one more variable, that is the azimuthal
angle ¢ between hadron plane and lepton plane. The
hadron plane is expanded by detected heavy quark (rather
than antiquark) and initial hadron, while the lepton plane is
expanded by initial and final leptons. Alternatively, ¢ is the

rotation angle of p,, around the Z axis with respect to 1 1
as shown in Fig. 1. Since our Z axis is opposite to that
defined in [14], our ¢ is also opposite to theirs. Explicitly,
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p1

DA €y

FIG. 1. The center of mass frame of y* and initial hadron, in
which the momentum of initial hadron p, is along the +Z axis.
The azimuthal angle of the final heavy quark relative to the lepton
plane is denoted by ¢. p; is the momentum of detected
heavy quark.

Iy x p11 = |LL|p(sing)é,

(6)

Iy -p1L = |1, |p;cos g,
- 1/l—y
|ZL| = QT-

¢ is independent of x, O, p, and Y. The differential cross
section with ¢ not integrated can be written as

2
do A

- L
dxdQ*dYd’p,, ~ 32m°x°S2,0° "

WL ()

In the above a,, = e*/(4n) ~1/137, and L* is the
leptonic tensor,

L =20 + 1M1 = (I - 1) g™ + ile'" ). (8)

Here we use the usual convention to write the contraction of
. 4 .

a vector and € tensor, ie., €'V =™V 1, WH is the

hadronic tensor

W = (pas 2l (0)|Q(p1)X) (XQ(p1)]*(0)

X
X |pa, ) (27)"8" (pa + q — p1 — Px)s )

where >y means the summation over all undetected
hadron states, with phase space integration for each particle
in |X) included. 4; and 4, are the helicities (normalized to 1)
of initial lepton and hadron, respectively. j* is the electro-
magnetic (EM) current, j* = > e, y*w,. a is the quark
flavor, e, is the EM charge of quark in unit of electron
charge e. n = 4 — ¢ is the dimension of spacetime. In this
work we use dimensional regularization scheme to regu-
larize ultraviolet (UV) and infrared (IR) divergences.

Constraints to the variables introduced above are also
important for our calculation. From threshold conditions,
(pa+q)*>4m? and (py + q — p;)? > m?, the following
constraints can be derived:

0° 0°
S_lsx_Q2+4 2 SplZQ2+4m27
p
0 /1—x x E?
E <= , 1-2)> —, 10
<5 z(1-2) =20’ (10)

where the last inequality can be solved to give

l—py

I1+p, / 4x E?
<z< =4/l —-—-— 11
2 _Z_ 2 ’ pJ_ l_xQZ’ ( )

The constraint to rapidity ¥ can be obtained from the
relation between Y and z. We get

1. 1- 1.1
_mis yg_lni. (12)
2 1+pJ_ 2 1—pJ_

These constraints are important since we need to extract the
absorptive part of virtual corrections for some azimuthal
angle dependent hard coefficients, where the physical
region should be identified.

III. FORMALISM AND AZIMUTHAL ANGLE
DISTRIBUTIONS

Our main task is to calculate the differential cross
section, Eq. (7). Q% is a hard scale of our system,
0% > Ajep- Aqep is the low energy scale of QCD.
Heavy quark mass m is also a hard scale, for which we
think it is of the same order as Q. The differential cross
section is expanded in Agcp/Q and Agep/m. The leading
power contribution is preserved in this work. Such a
leading power contribution is called twist-2 contribution,
for which the collinear QCD factorization theorem is
expected to hold [15]. The calculation of the twist-2
contribution now is very standard. We take the diagram
expansion method described in [16]. For a complete
description of this method one can consult [17]. For the
process we are considering, twist-2 contributions are from
Figs. 2(a) and 2(b). The central bubble represents the hard
part, in which all propagators are far off shell. The lower
bubble is the jet part, in which all propagators are collinear
to external momentum p,. The partons (quark or gluon)
connecting the hard part and the jet part are collinear to p,.
Besides the two parton lines shown in Fig. 2, there can be
any number of collinear longitudinal gluons connecting the
hard part and the jet part, but these gluons can be summed
into gauge links by using Ward identities [15]. In the
following calculations, we will ignore these longitudinal
gluons and gauge links since they do not affect the final
hard coefficients.
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%

|
(b)

FIG. 2. The diagrams giving leading power contribution under Bjorken limit. The central part is the hard part and the lower part is the
jet part. In (a), the partons going into the hard part are quarks or antiquarks. In (b), the partons are gluons.

Under collinear approximation,
A
K= (kf kg k)~ Q(1,42,2). Az%« 1. (13)

Kk is the momentum of parton connecting the hard part and
the jet part in Fig. 2. At twist-2, we ignore all components
suppressed by A in the hard part. So, k4 — k* = (kr,0,0)
|

dﬂé
w __ n (2
WY _/d k Hq,,(ka,q,pl)/@ﬂ)n

S (Pl (0)

in the hard part. After this approximation, the hard part
becomes the product of on-shell amplitudes, for
which QCD and QED gauge invariance holds. As we
can see later, gauge invariance provides a nontrivial check
of our results.

Then the contribution of Fig. 2(a) for a given quark
flavor g can be written as

()P i)

w (7 dé_ ik e _
/ ik Hyi (ko q. 1) / S € PAn S O (E)Pady) + . (14)

where - - -

are power corrections. H’;f'ji is the hard part. (% is the quark field with a given flavor ¢. The light-cone matrix

elements are parton distribution functions (PDFs) for quark [18]. According to boost invariance, the matrix element can be

decomposed as

HE Pl (O (&) Pads) =

/ 4 ik o !
27 J 2N,

where ij represents both Dirac and color indices. Higher
twist PDFs are ignored. ¢(x,) and Ag(x,) are the usual
unpolarized and longitudinally polarized quark PDFs. After
renormalization, PDFs depend on renormalization scale .
For simplicity, u is suppressed. 4, is the helicity of hadron
(e.g., proton) normalized to 1. As mentioned before, gauge
links are ignored in this work. So, they are not shown in the
above.
With g(x

dx
W};l/ ~ / a
x(/l

«) and Ag(x,), we have

[a(xa) HY + 2 Aq(x,) AHE].  (16)

where

[ra(xa) + rsrbda(x,)] ;.

ki = x,P}, (15)

_
Hy =N, (ki HY (kyoq. p1)77)

[ijZy(]}a’val)(YSY_)]' (17)

_ 1
AHY =
2N,

The trace is for Dirac and color indices. In H and AH color
and spin averages are included.
Similarly, the gluon contribution from Fig. 2(b) is

Wzy: ngwaﬂ |:gﬁ_ o _M'héﬁaAg(-xa) >
HY = 5ah HY . . (18)

g.ap Z(N% _ 1) g.ap.ab

a, b are color indices of the gluon going into the hard part,
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and a, f are their Lorentz indices. The gluon PDFs are
defined by [19]

[ af -
[ S e PG OGPt

- xaP:‘r
S 2(NE -

1) 5ab |:2 E ngiﬁg(xa) - M’hejj_aAg(xa) e
(19)

In calculation we assume the gluons going into the hard
part are transverse, and take the replacement
0"GY , — G/. The latter is gluon field strength tensor.
This replacement is allowed at twist-2, since the color
gauge invariance is retained by using Ward identities [16].

Since we also consider polarized scatterings, ys in
dimensional regularization scheme should be clarified.
We take HVBM scheme [20,21] in this work. In this
scheme ys = —iy’y'y?y® is the same as that in four-
dimensional (4-dim) spacetime. It is anticommutable with
y# in 4-dim spacetime, but commutable with 7# in (n — 4)-
dim spacetime. Because y* are defined in 4-dim spacetime,
we can use the identity

1 )
rsyT = Y hVﬂlemﬁ =Tiyr [h’}’ﬁﬂemﬁ (20)

to eliminate ys. The antisymmetric tensor e**? is always
defined in 4-dim spacetime. After y5 is replaced, the quark
contribution can be rewritten as

dx, 1
HY H”” ap
W / X, [ P 2g_Laﬂq(xa)

+ AH"”“” 7€ Laﬂ,lhAq(xa) (21)

where

_ 1
Hgv.aﬂ _ W Tr [H/u/kagiﬂ] ,

c

AR = —Tr

c

(k571 (22)

Note that we have put y~[y?, 7] in the hard part A%
where a, f are in n-dim spacetime. Then the tensor
I:IZb.a/i

decomposition of A can be done in n-dim spacetime,

just like A%’ In this way, polarized and unpolarized
quark and gluon hard coefficients can be calculated in a
unified way.

As mentioned A4 and AH"; should be decomposed
in n-dim space. For co nvenience, we use H*% to
represent one of H* or AH*™, i=g or q. H"P

depends on only three momenta py4,q,p;. pa,q are
longitudinal in y*N frame, so, there is only one transverse
momentum p/ | in H*?_Since there is no ys in the Dirac
trace, only ¢\" and p/, can carry transverse Lorentz
indices. Further, QED gauge invariance g, W" = g, W" =
0 tells us that g, 4" = q,H"* =0. Thus, the two
longitudinal momenta p/, and ¢* should appear as a
combination,

Pa-4q

P = —761”, (23)

which satisfies g - p = 0. After this is clear, it is not

difficult to write out all possible tensors of H***. They

can be classified into four types, which are denoted by
X;w (1/1 Y;w (1[1 Z;‘w,aﬁ and ng,aﬁ.

For X P , they are defined by

wvaf _pvypaf
Xt = a b, (24)
with
et T
1L
agy = P’llj_lav + pi.p", a’i” = p'p”,

o 0 =p -1
as = py,p* — pi,b",

1 ;1
v =gl by = o [pilp/u ——d7 ph} :
1L
(25)
(uv) and (ap) are separated in this type.
For Y¥“? they are defined by
it e
Y’zw‘aﬂ =3 [(ﬁapﬁpllji - g’iaplﬁpllii) (@< ﬁ)]
L
1
af a B
Yy /= 72 (g Pﬁp[l}i - gyfplllplu) +(a < p)l.
L

(26)

All Y; are traceless in a, f3, i.e., gmﬁY’f”‘“ﬁ =0.Y,,Y,, Y3
are antisymmetric under u <> v. Y, Y, are antisymmetric
under a <> f, while Y5 is symmetric. It is noted that in
4-dim spacetime, Y, and Y, are not independent. One can
show Y, = —Y;. But in n-dim spacetime, Y, and Y, are
independent.

For Z***’, they are defined by

014030-5
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2
P = g gl gl — gt

n—2"
1
af XU 4 4 op

i :E (¢ Py Pl + gepl Pl + (@ B)) - Pupugl/ ol
1
1 B

Z’;D'aﬁ:pT[(diaplflplu+glfplﬂpﬁ—(ae)ﬂ))]' (27)
1L

[
Z\, Z,, Z5 are symmetric in u, v. Z,, Z, are symmetric and

] 0 af 7] aff £ aff ) aff
traceless i 1n a, p, while Z5 is antisymmetric in a, f. Heh = HX[/XIiljD +HyY T+ HZ,-Z,iw + Hy, Vit
For V**_ they are defined by (29)
Vil = B L+ P L+ (o ).

Vi af — 4 < —(a < p) We stress that these tensors are independent in n-dim space.

PP - gL We have checked that all of these coefficients can be

VA - e pY p1 L gep! p1 L+ (@< p), solved. The coefficients before basis tensorzs are Lorentz

qwaf - scalars, in which p;, appears only in py,. So, these

Vit =g p 1+ IrP p = (aef). (28) coefficients do not depend on ¢. Then, by contracting

One of u, v, but not both of them, is longitudinal in Za With L and transverse tensors from PDFs, i.e., g

this type. and e , all possible azimuthal angle distributions can be
With these tensors, H*** can be written as obtamed. From Egs. (7), (18), and (21), the results are
do :4ﬂa2 l—y—i—ly FUUT+<1_y)FUUL+(2_y)\/1_ycos¢ch¢ + (1 —y) cos(2¢) Fy szd)

dxdQ?dzd*p,,  xQ* 2 ' '

_/lly /1 —yquﬁFsmlﬁ ﬂh(( )msm(stmd) + (1 _ )Sln(2¢)FSln2¢)
+/1hﬂ]< (1—%y>FLL —|—y\/1—ycos¢FC°S¢>} (30)

Structure functions Fyy 7 etc. are standard ones defined in [14]. They have mass dimension —2, and depend on
x,z, p?, 0%, m. For the subscripts of structure functions, the first, second, and third labels are for the polarizations of initial
lepton, initial hadron, and exchanged virtual photon. U, L, and T mean the particle is unpolarized, longitudinally polarized,
and transversely polarized, respectively. For example, about F' ; initial lepton and initial hadron are unpolarized,
and the exchanged virtual photon is transversely polarized. The minus sign before sin ¢» and sin 2¢) is because our Z axis
is opposite to that of [14]. Our ¢ is their —¢,. Expressed in terms of projected hard coefficients, these structure
functions are

FUU,T—_%#;Z/%_' bxm FUU,L—%%SQQ/CZXH* bxw
Fou! = 87 pr,/ dia e U= _32);4Z/ % b
FLL:%ﬂ;tZ/Ci)ZaAa‘EYz’ FEOLS(ﬁZ #th/d?A bv,
P —i#ﬁﬂ/fj&ﬂxﬂ, Fine —i#;pt/d):“mz by,  FnM— l;cz/i):ua by. (31)

The i factor in the last three structure functions indicates that the corresponding hard coefficients EX5|’ I;V W Z;Z3 are purely
imaginary. At twist-2 level, these imaginary parts are provided by the absorptive parts of loop integrals in virtual corrections.
These angular distributions are also given by [13], where these results are obtained by using a different method based on
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helicity cross sections. Our projection operators are ex- In Eq. (31), we have taken n = 4 in the coefficients of

pressed by external momenta. This makes the simplification ;. [;'l_ and AG - j;i_ This is allowed because we expect QCD
oflc.>c.>p integrals in the .followmg calculat1.01.1 muclleaswr. In factorization holds for (A)a - Ei and thus (A) - l;i ‘s finite
addition, the calculation of hard coefficients b; can be  for dimension n = 4 in the final result. In order to consider

performed in n-dim space consistently. These are the gluon and quark contributions at the same time, we

benefits of using projection operators. On the other hand,  jnroduce vectors @ and Ad for unpolarized and polarized
using helicity cross sections makes the physical meanings of

various angular distributions clear. So, we also list the
relations between helicity cross sections and our projected
hard coefficients in Appendix A.

PDFs, respectively. b ; 1s the hard coefficient projected by 7.
Their explicit expressions are

2—n

- 7 o
{t uva/}H L ;wa/}HZW/ } (32)

Q
I
@
~—~
=
S
N~—
—_
[\
Q9
—~
N~—
—
>
SY
I
—
>
@
~—
=
S
?/
|
|
>
_
~
-
5]
S~—
——

The dot product between a (Ad) and I;[ is understood as follows, for example:
> 1
- [j ﬂ
a- bX]l - (tl;(lf szaﬁ) E t!)t(l:l]x Zyaﬂ ) q(xa)v
> -1
= ofp 7,
Aa - bXn (t”y(/ AHZI/(lﬂ § : tl;(bl(,ﬁAHZya/} T A('I(xa)' (33)

Dot products for other hard coefficients 1;,- are defined similarly. fﬁ"’“ﬁ are projection operators introduced above, where p, v
are labels for virtual photon, while a, § are labels for gluons from PDFs. Their explicit forms are

o= b (2{12)2’ =t = 1X—216’

= 2(;(2 SR 2X4le’

s =Tx, = 2(;(5—1 g == 4(1Yi o)’

=1z = 4(121 e)’ ?gmﬂ = ?11511/\71/} = gg (pY g" + P a"),

ty = ty, 4(1‘/3 o)’ tio = ty, 4(1Vi ) (34)

For simplicity, the Lorentz indices uvaf of 7; and X, Y, Z, V tensors are suppressed. The tensor 7y, contains ¢*, ¢*. This
tensor is introduced to check QED gauge invariance. If our calculation is right, 7y, should give vanishing unsubtracted hard
coefficients. For convenience, we list the relation between 7; and structure functions as follows:

zl _;2 _;3 _;4 _;5 _?6 _;7 _28 _;9 _; 10
Ix,, Ixy, Ixs, x4y Ixs, Iy, Iz, ‘em tv, tv,
FUU,T FUU,C052¢ FUU,cosr/) FUU,L FLU,sindz FLL FUL.sin2¢ EM FLL.cosdz FUL,sind)

Equations (30) and (31) are parts of our main results. Besides various double spin asymmetries, three single spin
asymmetries (indicated by UL and LU) appear. We know that for inclusive cross section of DIS, single spin asymmetry
vanishes due to parity and time-reversal symmetries of QCD [22]. Here the final heavy quark is detected, thus final state
interaction or the absorptive part of virtual loop integrals may be not canceled and then gives a nonzero single spin
asymmetry, even at twist-2 level. Our single spin asymmetries are not zero as can be seen later.

For convenience, we also give the expressions of standard structure functions F s T, gl According to [1], with target
mass ignored, the unpolarized inclusive cross section is
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do 4ral,
mzv[(l—y)Fzg—f—ysz?]. (35)
The polarized inclusive cross section is
dAc 4ral,
m =4 xQ4 J’(Z —y)2x91Q7 (36)

with Ao = o(4, = —1,4;) — (4, = 1,4;). From our results in Egs. (30) and (31), we have

1
F1Q(x Q*.m?) = E/desz_(ZFUU,T) = —/deP

(2p,) / dx, . »

"327° X,

2p )X [dx, . -
Fg(x Qz,mz) :/dY‘{ZPIJ_(ZFUU,L) :/dePz( 2 / a-by,,,

47 0% | x,
1 2p dx, . -
. 0) = o [ aveepieru) ~ [ avap, 29 [T 035, 37)

where F g =F 2Q —2xF 1Q In this paper, we consider only
structure functions relevant to heavy quark. Hereafter we
will suppress the subscription Q for simplicity. From the
above equations, Y or p, distributions of inclusive structure
functions can be obtained. In the numerical part we
compare dF,/dY and dF,/dp, with known results
in [10,11], for unpolarized and polarized structure func-
tions, respectively. Here F, = {F», F;,¢;}.

IV. CALCULATION OF HARD COEFFICIENTS

With the formalism given in_the last section, our main
task now is to calculate all @ - b; and Ad - b; to one-loop
level. We write the result as

a-b;=Ulglx,)+ > Ulglx,). i=12734.538

q=u,u,...

Ad-b; = UlAg(x,)+ Y UlAq(x,). i=6,7.9.10.

g=u,i,...

(38)

At parton level, it is useful to introduce the following
variables:

¢ _x  ,_anm
Zka'q xa’

k. -
];—Zl:z, =1-%-9-2 (39

X

[0

With these variables, p; can be worked out. That is,

P} =2pipy —m> =271 k“pli (@)
a9
2a
=250 -0~ -] -2 (40)

Then, the hard coefficients U can be expressed by 7, %, 2
and Q?%, m?>. Among these variables 7, is very important. As
will be seen later, it is a measure of the energy of final
real gluon.

LO results are given by the following process:

g(ky) +7"(q) = Q(p1) + Q(pa). (41)

The resulting hard coefficients are proportional to
8(p3 —m?). Since p, = k, + q — p, for this process, we
have

8(p3 —m?) = 6(2k, - q— Q> =2k, p1 =29 - p1)
b

= @5(%)- (42)

At NLO, both virtual and real corrections should be

calculated. Virtual correction is given by the same process

as LO, Eq. (41), but a virtual gluon is included. The
diagrams are given in Fig. 4.

Real corrections are given by the following subprocesses:

&)l

g(k,) +7°(q) = Q(p1) + O(pa) + g(ky).
q(ky) +7°(q) = O(p1) + Q(p2) + q(k,).
a(ky) +7°(q) = O(p1) + O(p2) + qlky).  (43)

Define W=k, +¢g—p;. In the frame with W=0
(W frame), the energy of the final gluon is
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ok W _Womt @ (44)
RRVA N VAT T2 S RVAT 72

From Eq. (44) we see clearly that 7, is proportional to the
energy of the real gluon (or light quark) in W frame. 7, — 0
implies the gluon (or light quark) is soft. Under this soft limit,
real corrections also contain a part proportional to &(z,).

Then, the general form of hard coefficients for gluon
contributions is

Ug _ ﬂgze[-l
itree — N2 _ 1 ttree
Ul — ﬂgseH 47r/12/m €/2
@ D(N2 1) 1672

< (Bl wate) + e |- 09

where
gy = ey (145). (46)

Both D and P depend on Q%, m?, 2. For simplicity we do
not list these variables explicitly. Throughout this paper, for
D and P, we use subscript (0) and (1) to indicate results of
order a, and a?, respectively. The following calculation
includes several parts: tree level results, virtual corrections,
real corrections, counterterm contributions, collinear sub-
traction parts, and total results. We introduce the label
a = {tree, v,r,ct, pdf, tot} to denote these contributions.
ey 1s heavy quark electric charge in unit of e.

For the quark contribution, the label ¢ represents the
flavor of quark, ¢ = u, d, s. According to the coupling
between virtual photon and quark, the contribution can be
classified into three parts:

Ui, = Uttt 2,

La

+ U2 + Ullleye,.  (47)

iatq ia

It is clear that Ufa with k = HH, LL, HL are flavor

independent. Similarly, U{{a is decomposed into

e _ w9 (i’ fm?) P2
2N, 167°

DL @6 + Pl (3w,

N CF

2 2

1

(a) (b)

:

3

FIG. 3. Tree level diagrams contributing to heavy quark
production. Another two diagrams can be obtained by reversing
the direction of fermion flow. The bold lines are for heavy
quark.

At tree level the quark does not contribute, so a # tree in
the above. The hard coefficient of antiquark with flavor ¢ is

+ ULL 2 _ UHL

ia“-q ia l]’

U‘I — UHH

La

(49)

which is the same as that of the quark with flavor ¢, except
for the sign of the last term. The following are our
calculations for each part mentioned above.

A. Tree level hard coefficients

The tree level hard coefficients are given by Fig. 3. From
charge conjugation symmetry of QCD, the amplitude
squared is symmetric in py, p, =k, + g — py,

H"™ P (py, py) = H*(p,, py). (50)

Then, after contracted with 7;, the results are symmetric or
antisymmetric about 2 = 1/2:

ngyes

Ul e = Ty = -7
A 2Nz - 1)

I,tree

The explicit results are

p\” IS {16m*3? — 8m? Q%% (%(1 = 22)* = 2(2 = 1)2) + Q*(4%* — 4%+ 2)(2 — 1)2(42* = 42 4 2)
+ 2e[12m*3? — 4m> Q% (%(62% — 62 + 1) = 3(2 — 1)2)
+ 0%z - 1)2(482(322 =32+ 1) —4%(32 =32 + 1) + (1 — 22)?)]
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+ €2 [24m*%* — 6m> Q% (%(82* — 82 + 1) —4(2 — 1)2)

+ 04z - 1)2(652(1 —22)2 — 6%(1 - 22)> + 622 - 62+ 1)] + O(¢*) };
N 8N, Cr(m? — Q*(2 - 1)2) (m*% + Q*2(R(-2) + X+ 2-1))
0 _ c-F 2 3
Dy = 3€? 4 4e +4) + 0(&%),
5 0°G 1222 (3¢* +4e+4) + 0(e”)
N (22 — 1)N.Cr(2m*32 — m2Q%%(4% = 3)(2 — 1)2 + Q*(282 = 3% + 1) (2 — 1)32
Dgo):x(z )N.Cr(2m*3 mQx(J:A )(ZzAz)Z—'—Q(x T+ 1)(2 )Z)<3€2+4€+4)+0(€3);
; 0*(z2-1)"2%x
y 282N Cp(m*% + Q*2(R(-2) + 2 +2-1)
0) _ c~F 2 3).
D, = 3e2 4 4e +4) + 0(€%);
A OG- 1)ir (3¢* +4e+4) + O(€’)
Y =o;
_ (0) 4%(222 =22 + )N .Cp(Q*(2% — 1) (2 — 1)z — 2m?3) ~
DY = — o(e’);
: 0z 177 o
b = o;
Dy =o;
~0)  4R(22—1)N.Cp(Q*(3 - 1)(2 - 1)2 — m?%) N
DY — _ O(e’);
9 022 — 1)x +0(€)
DY =o. (52)

|
These hard coefficients are preserved to O(e?). Dgo) =0  gluons are not included in this part, and will be calculated
due to QED gauge invariance; Dgog 1o =0 because the  separately later. Still, the relation in Eq. (50) holds. Since
o the electromagnetic current j# is Hermitian, the contribu-
tions of complex conjugates are obtained by exchanging
(4, @) and (v, ) and by taking complex conjugates at the
same time, i.e.,

amplitudes are purely real at LO.

B. Virtual corrections

Virtual corrections are given by diagrams in Fig. 4. Self- B B
energy corrections to external heavy (anti)quark lines and | = (H””*ﬁ"|Fig.4)*. (53)

7 % 7

IR S

Tk

1k

(e) )

Z Z

s

(a)

% :

FIG. 4. Some diagrams for virtual corrections to heavy quark production. Other diagrams can be obtained by exchanging the photon
and the gluon on the right-hand side (rhs) of the cut, and by reversing the direction of fermion flow. For (d), reversing fermion flow is
equivalent to exchanging the photon and the gluon on the rhs. The conjugates of the above diagrams are included in the calculation. Self-
energy corrections to external legs are not included in this kind of virtual corrections.
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This relation holds also for real corrections. Because of the
symmetries in u, v and a, f§ of 7*%,

;iﬁﬂuaﬁ[_{”b’aﬁ :;i,ﬂuaﬁl_{”y.aﬁ|}7ig.4+C'C'? i= 1,2,3,4,6,8,9;
f,»#m/,»ljl””’“ﬂ :f,»,ﬂmgljl”""'ﬂ|1:ig.4 —c.c., i=5,7,10. (54)

i =15, 7, 10 correspond to single spin asymmetries, i.e.,
doy;, and dop . They receive contributions only from the
imaginary parts of H, which appear in loop integrals of
Fig. 4. Further, since ¢> <0, the box integral in
Fig. 4(d) cannot give any imaginary part. Only QED-like
diagrams like Fig. 4(e) give the nonzero imaginary part.
Thus, the imaginary parts of 7 ,zH"*, i =5, 7, 10
are proportional to the color factor of Fig. 4(e), i.e.,
N, = Tt[T*T’T*T?] = (Cr — C4/2)CpN,. We also point
out the imaginary part of Fig. 4(e) is IR divergent.

For the calculation of loop integrals, we use FIRE [23],
which is based on integration-by-part relations, to reduce
the tensor integrals to scalar ones. Resulting scalar integrals
are standard 4-,3-,2-,1-point integrals. We recalculate these
integrals and express them in terms of dilogarithms Li, (x).
Numerically, the results are the same as known results in
literature [24] in the unphysical region. In the physical
region of DIS, our results are checked by comparison with
the results given by direct numerical integrations. The
results of two four-point integrals are listed in Appendix B.
Other integrals are easy and can also be obtained from the

|

expressions in [24] by simple continuations. In the calcu-
lation, we do not distinguish eyy and €.

The complete results of virtual corrections are very
lengthy and cannot be shown here. Instead, we show
double pole parts here. The double pole 1/€” is caused
by the overlap between soft and collinear regions for the
gluon in the loop, which must be canceled by real
corrections if the factorization theorem is right. After

(n)

calculation, we find that D; " has the following structure:

~(1)g _ =0 [I6N; =N, 1~ 0
D' =D"\——+=|4+-D" +0 . 55
1L, 1 |:€2 NL-CF (€) ( )

What is important is the factor in [- - -] is common to all i.
N, = Tr[T*T*T"T"] = N.C% is another independent color
factor. For i=15, 7, 10, the hard coefficients are
purely imaginary and automatically finite. This is a check
of our calculation, because loop integrals themselves have
divergent imaginary parts. The explicit expressions of

Dﬁ,‘,}g with i =5, 7, 10 are given in Appendix C. The
1/e part is relatively lengthy, and we list them in
Appendix D.

In addition, we find that D&L. is nonzero. This is because
our diagrams in Fig. 4 are incomplete: self-energy correc-
tions to external heavy (anti)quark are not included. As a
justification, Ds,u should be canceled by the self-energy

contributions given later. Its expression is short,

€

B9 — (_ 6 7> 64N, m*%(22 — 1) (2m*32 — m>Q*%(4% = 3)(2 — 1)2 + Q*(28* = 3% + 1)(2 — 1)?2?) '

Q7(2— 1)222 (56)

C. Real corrections

Some real corrections of the gluon channel are given by Fig. 5. Quark contributions are shown in Fig. 6. The antiquark
contribution is given by the diagrams in Fig. 6 with quark replaced by antiquark. The hard part of Fig. 5 is given by

et — s [ B (m)3. () 2,5 (= m) 203k + 4 = i = 12—y
[Trl(p1 + m)HL™ (P = m)H 1P (k). (57)

where H’z””1 and H',’f “ are left and right parts of the diagrams in Fig. 5, with external legs for initial particles truncated.
P, (k,) is the polarization summation for the final gluon. In this work we use Feynman gauge d,G% = 0. Because the hard
part is the product of on-shell physical amplitudes, we can take P, (k,) to be —g;,. As an example, the hard part of Fig. 5(b)
is

1 1
—T p p
/k_q,lz{ ¢ r[(m—km)y <P1+ky)'7—my (p1tky—q)v—

Fﬂd(_km kgv ka - kg)
(ka - kg)2 ’

l-géfathl"(TcTh Ta)
22— 1)
1 y’l]
(P1+ky—ky) -y —m

H’;; = p” V1P = m)y*

(58)
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2 8 o o,

: ",
e

: Y
S

®) (€9) ()

| @ | o,
Sl S R R
i i i

S L
& I ™ 5
FiF T

FIG.5. Example diagrams of real corrections for gluon contributions. Other diagrams are obtained by exchanging external photon and
gluon on the right-hand side of the cut, by reversing the direction of fermion flow, or by taking the complex conjugate. There are 36
diagrams in total.

where

/c\IZ

By replacing the delta functions to the difference of propagators, e.g.,

)26, (k3)5, (p3—=m?),  Tup(P1.P2:P3) = Gap(P1 = P2), + 95y (P2 = P3)a+ Gya(P3—P1)g- (59)

1T 1
5, (K2 - , 60
k) = [k§+ie kﬁ—ie} (60)

the tensor integrals in Eq. (§57), after contracted with projection tensors, can be reduced to simpler scalar integrals by using
FIRE, just like what we do for virtual corrections. One can also consult [25,26] for more details. After reduction, the resulting
scalar integrals can be classified into nine types as follows:
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Z Z 2 2

¢ £

‘I - I

() (b) (c) (d)

- -

(e) ®) (® (h)

B =28 S
\ -

® ®

< £

- — — —J—- —

FIG. 6. Diagrams of real corrections for quark. Except for (a), (b), (i), and (j), all complex conjugates of these diagrams should be
included in the calculation. The closed loop is for heavy quark. The line with arrow in the lower part is for light quark. For antiquark PDF
contributions, the direction of the line should be reversed.

i) _ / 1 i) _ / 1
1 = : N s . y
: ka2 (kg + py = ko)* = m?][(k, — k,)?)/ > k12 [(kg + pr — q)* — m?)[(k, + py — k,)* — m*}/
/ 1 ' m_/ 1 '
iz [+ 2=l =k T S [tk 21 =y + py = ke =]

1 il / 1
: . 1Y = : -,
Alzk+m )? = m?)[(ky + py = q)* = m?) o k12 [(ky = q = ko )*) (kg = ko)?)

/ ! ,m_/ 1
k12 (kg = @ = ko)) [(ky + p1 = ko)* = m?P s ka2 [(kg = @) [(ky — kg)?
1
A;zk’—@ Tk, —q— k) 61)

[11]

where i, j can be O or 1. To calculate these integrals, we notice that some of them, e.g., I; *, contains both soft and collinear
divergences. The former is given by kK — 0, and the latter is by collinear gluon ky||k,. It is better to separate them.
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As illustrated in Eq. (44), we can define W =k, + g — p;
and do calculation in the frame with W = 0 (W frame). In

this frame, integrations over kj and |l;g| can be done by
using the two delta functions, which give

W2 _ m2 B Q2 7,
WW? 28 VW2

By taking the limit k) — 0 or 7, — 0, the soft divergence
can be obtained. The remaining angular integral gives

kg = |kq|

(62)

collinear divergence. According to this idea, all I,[:j] are
written into the form

17 = 277, (63)

where s is an integer, whose value is chosen so that 7%7 Vis
regular but nonzero at 7, = 0. In this way, 1 gj ) contains only
collinear divergences at most. This method has been
applied in [26]. If s = —1, the overall factor gives soft

divergence by using the formula

e = —éa(rx) + (l>+ - e(lm)‘>+ +0(). (64)

Tx Tx

The pole 1/¢ includes all possible soft divergences. The
plus function is the standard one, that is, if g(x) is singular
at x =0 and f(x) is normal at x = 0,

/ L axlg(@)], £ (x) = / g [f() — FO). (65)

0 0
|

- 4 2(s —2m?
SQED:*+2+¥
€ S5

We note that 0 <7, <7, = (1 —2)(1—x)—xE?/(z0%) < 1
[see Eq. (11) for the range of z]. This completes the
illustration of the method to separate soft and collinear
divergences. It is also possible that in / L” ], one has s > —1,
but in the coefficient of ILij] there is 1/z, after FIRE
reduction. For this case, one can combine 3¢ and 1/z,
together and then use the above formula to get the soft
divergence. Thus, the crucial is to calculate out all TE{”],
expanded to desired power of €. In Appendix F we list our
results for I, and I,. All I, can be expressed in terms of R,
functions given in [26].

After the expansion of 77! 7¢, the hard coefficients of real
correction can be organized into the form of Eq. (45). It is

reasonable to identify Dg’lr)'gé(rx) as a soft gluon contri-
bution, since 7, = 0 corresponds to a gluon with vanishing
energy. In [2,4], this part is calculated separately by using
eikonal approximation. We have checked numerically that
the soft part of real corrections has a common soft factor for
all 7;. By using the notation of [2], the soft factors can be
expressed as follows:

r, e—%yE Az —6'/2 - ~
0 =2 <_> {CrSqep +CaSox } +O0(e),
r(1+5)

m4

(66)

where SQED and S,k are extracted from their Eqs. (3.24)
and (3.295),

2
{ < - 1> Inr, + 2Liy(ry) + 2Liy(=r;) — In’ry + 2In 7y In(1 — 72) — C(2)},
€

~ 4 2 tl u 1 u 1 3 . tl . uy
Sok =5 ——In—+Inr;In—+ ~In>— — ~In?r, — = ¢(2) + Li, (1 - —Lip| 1-
Ok ™ 2 €nu1+ s nt1+2n 9 2nr3 ¢2) +Lip Upry E nr
N m2 2 . . 2 2
———— < =Inry+2Liy(ry) + 2Lis(—ry) = In*rg + 2InrgIn(1 — r5) = £(2) ¢. (67)
s3 €
In the above, ¢ =4 — n is our definition. The sign before Z 1-2 Q?
, . . : o th=-0%*%, u=-0° s'==
In® rg in their Eq. (3.25) is wrongly typed, which is also 1 % ! P P
pointed out by [4]. Note that S,z and SQED are not Syx and 1 1—5 a2
Sqep given in Egs. (3.21) and (3.22) of [2]. In the above, A s=0? (;— 1) = e 5=14/1 - (68)

is a small parameter of their subtraction method. Explicitly,
to extract the soft gluon contribution they integrate over s,
with an upper limit A, where their s; is our
(p2+ kg)2 —m?. s, — 0 means the final gluon is soft.
Numerically, A should be a small quantity, e.g., A < m?>.
However, in order to compare with our result, A should be
Q?/%. Other variables are expressed by our notations as

and ¢(2) = #?/6. Equations (66) and (67) indicate that the
soft part extracted from our results is the same as that
derived from eikonal approximation if proper cutoff (A for
s4) is chosen. The agreement is a strong check of our
calculation. For analytical calculation, the subtraction
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method of [2] is not necessary. For numerical calculation,
the subtraction is very helpful to make calculation stable.
For other subtraction methods or phase space slicing
methods, one can consult [27,28] for example.

From Eq. (66), we find the 1/¢* part is opposite to the
double pole part of virtual correction given in Eq. (55).
Thus, there is no double pole in the sum of real and virtual

corrections, which reflects the fact that soft divergences are
canceled. The sum of real and virtual corrections is

1
o _Lpl-n | po
€

- i,r+v i,r+v

+0(e). (69)

The explicit expressions of single pole parts are

A1 _ 64(N, = Ny)RIn(1 —2) (4m*3* —2m* Q%% (R(1 —22)* —2(2 - 1)2) + Q*(24* — 28 4+ 1)2(22° - 42> + 32— 1))
Lrd+v — 6(2 )
48N, %
+ Q8(42);33 (8m033(232 =22 + 1) — 4m* Q232 (£(232 — 22 + 1)(1 = 22)2 +23(=35% + 632 — 53+ 2))
+ m?Q*(2— 1)2(43%(222 = 22 + 1)? + %(—242% 4+ 4823 — 5222 + 282 — 6) + 82* — 162° + 1822 = 10z + 1)
+ 05(28% =28+ 1)(2-1)22%(222 =22 + 1)),
A1 512(Ny = N»)22In(1 = 2) (m? — Q*(2—1)2) (m* 2 + Q*2(*(-2) + X+ 2 - 1))
2,r+v T Q6(2 _ 1)222
384N 22(% —1
232 (m? x+(Q ()16() 2)+3+2 )) (22252 — 2% 1 1)
—2m*Q*(z - 1)2(2&22 - 282 +% - 22 + 2 - 1) — QY2 - 1)222),
Bl _ 64(N; —N»)x(22—1)In(1 - 2) Q*(3-1)(z=1)2—m?2)(2m*% + 0%2(-2%(2—1) +2—1))
e 0*(z—1)2%%
48N,%(22 = 1)(Q*(3 = 1)(2 = 1)z — m?3) herimmy e
—4m*32(25%2 =22+ 1
07— 172 (—4m*%%(22 z2+1)
+ m?Q?%(2 —1)2(%(822 —82+4) — 622+ 62— 5) + 0*(2x — 1)(2 — 1)?2?),
Bl 96N R (m? R+ Q%2(R(-2) + & +2-1))2m?%(222 - 22+ 1) + Q*(2 - 1)2)
4r+v Q4( )2 2 2
_128(w, —N,)#2In(1 =2)(m?>% + Q*2(2(=2) + & +2—1))
Q*(z—-1)zx? ’
~[—1
D[S,rj]Lv O’
B _64(N; —N»)2(222 =22+ 1)In(1 —2)(Q2(2k — 1) (2 — 1)2 —2m?%)
6.r+v Q4(2 _ 1)222
48N,%(28* =2z + 1
2’2( < ) (4m*R2(22 =2+ 1) = m2 QR (2 = 1)2(4R(2 = 2 1 1) — 422 4 42 5)
0°(z-1)z
- 0* (22 - 1)(2 - 1)%2?),
1
Dy}, =0.
Bl :_384m2N256(22—1)(2m4562 m*Q*x(4% — 3)(z—1)z+Q4(2x 3%+ 1)(2-1)%2?)
8, r+v Q7(2—1) Z )
Bl 64(N; —N»)x(2z—1)In(1=2)(Q*(x = 1)(2 = 1)z — m?%)
9,r+v Q2(2_1)2x
_ABN,R(22-1)(Q* (R - D= 12 -mPR)2m?R(22 -2+ 1) + 02 (2 - 1)2)
0*z-1)2%x ’
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We also point out that both tree level and virtual corrections
are symmetric or antisymmetric about Z = 1/2, which can
be shown from charge conjugation symmetry of QCD.
Explicit results in Eq. (52) and Appendix D confirm this.
For real corrections the symmetry is broken, even for the
part proportional to &(z,). We will discuss this later.
Another hard coefficient 2" is divided into five parts,

Lr

- 1. 1 . 1 -
PG =2 )+ B+ () FLG)

(Tx)+ Tx
1 1 -
=G, (%,7,) +—2KY (%,1,), (71)
X TX

where E, F, G, K are finite, i.e., O(€"). We have made plus
functions explicit in P. Variables 2,0, m in these coef-
ficient functions are suppressed for simplicity. Fori = 5, 7,

10, P( )9 vanishes because real corrections are purely real

at this order. For i = §, Pl(,) =0 due to QED gauge
invariance ¢*W,, = 0.

- +2—1,+ 22+ 1)

From our calculation G, - 18 given by linear combinations
of Tt A ! [see Eq. (63)]. The coefficients of IE( 7 are rational
functions of z,. By definition, / E{ 7 are regular at 7, = 0 and
the Taylor expansion to any order of 7, exists. Thus, for
small 7, G; is

Gi,(t) = G, (0) +7.G7,(0) + O(z3).  (72)

In calculation, we have expanded 7;” 17 to O(z,) in the small
7, region and checked that G; ,(0) = 0 and G} (0) is finite.
G.,(0) is given in our Mathematica files. Since G;,
approaches zero linearly when 7z, — 0, G,»A,/rx is well
defined. The same conclusion holds for K -

The complete hard coefficients are too lengthy to be
shown here. Instead we present the divergent parts C; , in
the following. As expected, no logarithm is involved in the
divergent part:

O = - P a- R
—2m*Q%%(2 — 1) (*(1 —22)* = 22(r, + 2 - 1))
+0%20222 - 22+ 1)(-2%E - D(r, + 2= 1) + (r, + 2 — 1)2 + 2382(2 - 1)?)),
&0 512(Ny = No)&2(m?> — Q*(2 = 1)2)(3(ry = 2) + 12 — 1, + 22 + 1)2(mP% + Q*2(R(=2) + 7, + X+ 2-1))
> 0°(2 =102 (7)) 4 (ze + 2= 1)* ’
Cg‘,:“(Nl‘Ngjé > i(i((f )‘(23;2_‘1’)“ O ot 4 w2022 (3, +2— 1) — 433~ 1))
+ O (B2 -+ 2D+ (e +2-1)2+282(2 - 1)2))
o :128(N,—N2)5cz( (t,=2)+ 22 =1, + 22+ 1)2(m*2 + Q*2(R(=2) + 7, + 2+ 2 1))
b Q* (2 - 1)2x% () (z, + 2 = 1)* ’
¢, =0,
&0 _64(N) = Np)F(22° =22+ 1)(2(z, = 2) + 203 — 7, + 22 + 1) 2m?3 + Q*2(=2%(2 - 1) + 7, + 2 - 1))
or 0'(z-1)2 2(fx)+(fx+2— 1)? ’
7, =0.
C5, =0,
Rl — Ny = 1)(2(1, = 2) + 222 — 7, + 22 + 1) (m*% + Q?2(k(=2) + 7, + &+ 2 1))
o (2= 1)2x(ry)y (. + 2 — 1)? ’
CY, =0

D. Real corrections from quark and antiquark PDF

The light quark PDF contributes through real corrections. The calculation is the same as the gluon case. For a given quark

flavor g, the hard coefficients U? . are decomposed into three flavor independent coefficients U*

shown in Eq. (47). Further, U* ir

with k = HH, LL, HL, as

ir?

is written in terms of D¥, and Pf . as done for gluon contribution. However, for quark
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contributions, Dfﬁ, vanishes because the final soft quark (with 7z, = 0) gives a power suppressed contribution. Pf‘ . 1S
decomposed in the same way as the gluon contribution,

- 1. 1 . Int - 1. nt, -

Pt =2 O () + o L@ + () L0+ Gl + K (). (74)
' (Tx)+ ' TX =+ ’ Tx ’ X ’

Because D, = 0, EX, and F¥, vanish, and C¥, is regular at 7, = 0. As a result, the remaining two coefficients G¥, and K¥,

are zero at 7, = 0. Further, it is clear that only for k = HH, Cﬁ, # 0, otherwise QCD factorization is broken. We also

confirm that P(l)'k vanishes, which is consistent with QED gauge invariance. The divergent parts are shown in the
following, where N 3 = Te[TeT?|Tr[T*T?] = (N2 —1)/4 is the color factor for quark contribution:

e _ 16N (73 + 22 =22+ 1)
0%(2 - 1) (r, +2-1)*

(Am*3* (2 — 1) = 2m?>Q%*%(2 — 1) (R(1 = 22)> = 22(r, + 2 — 1))

+ 0420222 =22+ 1)(-232 = Dz, + 2= 1) + (z, + 2= 1) +282(2 = 1)),
EHH _ 128N3%%(m? — Q?(2 = 1)2) (2 + 22 =22 + 1) (m*2 + Q*2(3(=2) + 7, + &+ 2 1))
2 0°(z-12(r, +2- 1) ’
oy 16N33(22 = 2_22+1
o 422 )(T FE 24D 002 4 202 (3(e, 4+ 2— 1) — 43(2 = 1))

02— 1)x(r, +2-1)*
+ 022 (32 - D(r, +2- 1)+ (. + 2 - 1) +28%(2 - 1)?)),
G 32N (12 + 22 =22 + 1) (m*% + Q*2(R(-2) + 7, + &+ 2 - 1))

bro 0%2x2(zr, +2—-1)* ’
eun = o,
ek _ 16N32(22% = 22 + 1)(—7, + 2 — 1) (2m2% + Q%2(-23%(2 - 1) + 7, + 2 — 1))
Q2 - 1?2 (z, +2 - 1) ’
CHH = 0,
)
ek _ 16N3%(22 — 1) (-7, + 2 — 1) (m2%x + Q*2(%(-2) + 7, + ¥ + 2 — 1))
! Q* (2 - 2x(r, +2-1)° ’
i =0, (75)

E. Contributions from counterterms

In this subsection, we give the results of counterterms (cts) of QCD Lagrangian and self-energy corrections to external
legs. Relevant counterterms are

Loew D +(Zo = Vg + (Zy = Di(=mly + (Z, = V(=g = (23 = 1) 1 (0,62 = 4,GL + (27 = Di(=efw.

(76)
where G is gluon field and A* is photon field. To one-loop level,
iC 2 2 2
62y =Zy—1 = — ?6‘;( yE—|—1n47t> 62y =7Zy—1=— ZZ(CA+CF)<——yE+ln4ﬂ>,
€uv
g? 2 g (2 5 2
§z6m — zem _ | — — Co|l —— In4 , 07r=7Z~—1=— —N.——C —_— = In4 s
AT 1672 F(eUV ren ”) B 1672 <3 P30 gy TTET M
2 2
gsCF 2 H
020 =2Zyg—1= -4 —- In(4 —3In——4]|. 77
20 = Zo 1622 [ <€UV ve + In( ﬂ)) na ] (77)
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m is the pole mass of detected heavy quark, which satisfies
X(p,m) =0 when p=m. Z(p,m) is the self-energy
correction of quark propagator, with cts included. This
condition determines Z,. Bare mass and pole mass are
related by mg = mZ,,, Z,, = Zoy/Z,. So,

3a,Cp [ 2 i
sF | 2y 4+ In(4n) +Int 42
a7 |eoy ve+1n(4x)+ nmz—i—3

(78)

0zZn=2Zy—1=-—

0z,, 1 the same as that given in literature, such as Eq. (3.5)
of [2]. Other renormalization constants are determined in
MS scheme. Z¢™ is for photon-quark vertex. All of these
counterterms are well known and can be found in [29], for
example. For convenience we list them above.

With counterterms, especially Z, and Z,, known, the
residual of quark propagator at physical mass is

RZI 1 +5R2,
C 2 2
SRy = EF [_2 (—]/E—l-ln(4ﬂ')> —4—31n”2]. (79)
4x €1R m

The residual of gluon propagator is

2
P25 2
Ry =+—=|=-Nr—=C —— Indr ). 80
3 +1677,'2 <3 FT3 A> <€IR ye+In ”) (80)

Here N is the flavor number of active quarks. We take the
fixed flavor number scheme (FFNS) used in [2,10]: for
Q? ~ m?, the heavy quark loop is ignored totally in gluon
self-energy corrections. For charm production, Q2 ~ m?
and N = 3. Bottom production can be calculated easily in
the same way by setting Ny = 4. However, for the case

Q? > m?, our result cannot be applied directly. The large
logarithm In g—i should be summed up by introducing heavy
quark distribution functions or fragmentation functions.
This is beyond the scope of this paper. In numerical
calculations below we always let Q% ~ m?,

With self-energy corrections included, the hard coeffi-
cients related to counterterms are

1
Ui,ct =2 <5Z1 + 5Z€m + 5R2 + §6R3 - 6Z2> Ui.tree + 5Zm(AU)i

= Ui,tree@
111G, - 2N,

po=—"

X ~2
o ) o

m2

202 4 P (AriR\ 2 (6
S - () (244 (AU,
) )] ) Ere)eor

(81)

U, wee 18 the tree level hard coefficients, given by Eq. (51). The 6z, term is given by the mass counterterm contributions for
Fig. 4(f). This part is not proportional to tree level amplitudes and it breaks QED gauge invariance. The explicit results are

written as

5ZmAUi =

ngs  (4mp’ /m?) "

C2(N2-1)

1672

et [ADS(z,)]. (82)

AD; are listed in Appendix E. From the result we see clearly that AUy is nonzero:

L 64m?R(22 — 1) (6 + )N C}(2m*%* — m*Q*%(4% - 3) (£ — 1)2 + Q*(28% - 3% + 1) (2 — 1)722)

ADg =

However, from the corresponding virtual correction,
Eq. (56), we have

DY)? + ADg = 0. (84)

In this way, QED gauge invariance for virtual corrections is
retained. This is a check of our calculation.

I

(83)

|
F. Subtraction of collinear divergence

It is clear that real corrections contain only soft and
collinear divergences, and virtual corrections contain all
kinds of divergences: UV, soft, and collinear ones. With
U{., included, UV divergences of virtual corrections are
canceled. Soft divergences are also canceled in the sum
of real and virtual corrections. So, the sum of real, virtual,

and ct contributions contains only collinear divergences.
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As pointed out in [16], the collinear contribution should be subtracted to avoid double counting. The subtraction procedure
now is very standard; one can consult [ 16] for an illustration. The subtraction is realized by the following replacement in tree
level results. For unpolarized PDF contributions, it reads

22 st = [ 22 Vst + (2= -4 1004 ) 22 % (ng<);“)g<5>+;qu(’;“)q<5>)}}

= [ Vgt [ 2 U 5t + UL 50000 (35)

where P, (x) and P, (x) are LO DGLAP evolution kernels. For convenience we define the IR divergent parts above as
U? pdf and UZ pdf> which are the quantities we used for collinear subtraction. For polarized PDF contributions, PDFs and

evolution kernels should be replaced to corresponding polarized ones.
For unpolarized PDFs, evolution kernels are

o ay’ 99 99 1-x
P(x) =6(1 —x) >+ ——+a’(x), all =2Cy, al’(x) =2C, | -1+ ——+x(1 —x)|,
& 2 (I=x), X
1+ (1-x)?
P, (x) = al’(x), aj’(x) = Cr . (86)
For polarized PDFs, evolution kernels are
Bo , Agy’ 99 99 99
Ang(x):5(l—x)7+W+Aal (x), Aag’ =2Cy, Aal’(x) =2C,[-2x + 1],
+
AP, (x) = Aafi(x),  Aaf(x) = Cp2—4]. (87)
G. Final hard coefficients
Now we have presented all ingredients to get true one-loop hard coefficients, which are given by
U;}tot = U;]tree + [U?F‘rl + U;}ct + Uz pdf]
U?tot = U‘l + Ul pdf* (88)

We have checked that all divergences are canceled out in the total results UY,/,. For convenience, we write them into the
following forms:

nges < (0) @ [~ . 1\ . Inz,\ - 1. Inz, -
Uzgtot = 2(N? _Hl) {DE )(x)5(1'x) + 16722 |:Dt(',t2)t(x>6(rx) + _x +E?,tot + . +Fig,tot + ang.tot + ?thOt
2 99
U = (0) )« g 1 l—z—-72\\x0 (. 1-2
In— (6 2a¥’ In(1 — z)|D; -2 99 D —_— , 89
#inl (stefzaging - 100 -2+ L (PR o (s (59
where
~ 1 ~
Dg.t())t = [Dz( i +D§c>tq+D512de4 m» E;qtot [E +Elpdf]ﬂ m>
Fliq,tot = F?,r’ G?tot [Gq + Gz pdf]y m? K?tot K;],r (90)

In Ul af;.al’; are the quantities appearing in DGLAP evolution kernels Eqs. (86) and (87). Explicitly, ag’, = af’,

i,tot?
all, = al’fori =1,2,3,4,5,8; af; = Aay’, al’, = Aal’ fori = 6,7, 9, 10. The explicit In x4 dependence is obtained from

Eq. (85) by using the identity
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2 4ri®\ €22 2
v+ In(4n) = <—’2‘> “—mE 4 06). 1)
€ m € m

For the quark part, the results for flavor independent hard
coefficients are

4
ng | Inz 1 ,u
U = m { Gl + . — K+ TTen

1 1—-z- . 1—
x | =2 aj’ < DV (s < .
11—z 1—z ! 1—z Tx

with

Gf{tot [Gl r + 6kG1 pdf} u=m’ K{(tot K (93)
In the above, k = HH,LL,HL. 6, =1 when k = HH,
otherwise &; = 0. The same as the gluon contribution, a{*
are evolution kernels given in Egs. (86) and (87). For
unpolarized PDFs, i =1, 2, 3, 4, 5, 8, a{% = a{’; for
polarized PDFs, i =6, 7, 9, 10, a{ = Aaf{’.

All of these total hard coefficients are stored in our
Mathematica files, which can be downloaded from [30]. In
Appendix G, we give a short description of these files.
These hard coefficients are our main results.

Now all hard coefficients are presented. Before ending
this section, we would like to discuss the symmetry in z for
real corrections. We have mentioned that real soft con-

tribution D( )9 is not (anti)symmetric about z = 1/2. It is

also the case for the soft factor Sy in Eq. (67), in which
|

t1/u; = z/(1 —z) is not symmetric about z = 1/2. The
soft factors are obtained from eikonal approximation.
Before k, is integrated out, eikonal approximation gives
an amplitude which is invariant under the exchange
p1 < P, which can be confirmed by Egs. (3.21) and
(3.22) of [2]. Under soft limit, p, is equal to k, + g — p;.
However, the angular integration of k, is done in the W
frame, rather than the c.m. system of initial gluon and
photon. So, after k, is integrated out, the result generally is
not invariant under the exchange p; <> p,. For the integral
containing collinear divergence, e.g., the first two terms of
Eq. (3.21) of [2], the symmetry is lost after integration.
With 7, = 0, the symmetry about p; <> p, is equivalent to
the symmetry of z about z = 1/2. It is also equivalent to
the #; <> u; symmetry mentioned in [2]. The breaking of
this symmetry is also noticed by [2], where the reason is
resorted to the inequivalence of photon and gluon in initial
state. One can consult [2] for more details.

V. NUMERICAL RESULTS

In this section, we first present the numerical results for
the structure functions given in Eq. (30). NLO NNPDF2.3
PDF sets [31] and NLO NNPDFpoll.1 PDF sets [32]
are used through LHAPDF [33]. NLO a,(u) is used
and a,(M;) =0.119. The pole mass of charm is
m,. = 1.414 GeV. We use the FFNS scheme [2] to deal
with heavy quark, and only charm production is considered
in this work. Charm PDF is not included in the calculation.
Bottom production can be calculated in a similar way. In
practical calculation, we use the following formula to
organize various hard coefficients:

G- by = Uliwg(xa) + UM Y~ eflalxa) +a(x)] + Uk Y €dlalxa) +a(x,)]

q=u,d,s q=u,d,s
UL " epeglq(x,) —q(x,)].  i=1.2,3.4.5.8;
q=u,d,s
Ad b = Ul Ag(x,) + UE N " e} [Aq(x,) + Ag(x,)] + UkL, > e2[Aq(x,) + Ag(x,)]
q=u.d.s q=u,d,s
UL " eye [Aq(x,) — Ag(x,)]. i=6.7.9,10. (94)

q=u,d,s

For charm production, the charge of heavy quark is
ey =e,=2/3, and the charges of light quarks are
e,=2/3,e4=e,=-1/3.

Now the high-luminosity and polarized electron-ion
colliders in the U.S. (EIC) and in China (EicC) are under
consideration [34-36], so we calculate these structure
functions on EicC and EIC. Kinematical variables on these
two colliders are chosen as

EicC:4/S,=16.7GeV, 0?>=4.0GeV?, x=0.02,
EIC:/S,;=100.0GeV, 0?=10.0GeV?, x=0.002.
(95)

Figures 7 and 8 are the p, distributions of structure
functions on EicC and EIC with z fixed. All structure
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FIG.7. p, dependence of structure functions on EicC, with Q> = 4 GeV?2, x = 0.02, z = 0.4. The error bands are given by changing

from p /2 to 2p., p. =

Q? + 4(m® + p?). The blue band is for the NLO result [to O(a?)], and the gray band is for LO result [to

O(a,)]. Both gluon and quark contributions are included. Quark contributions with 4 = y,. are indicated by the dashed lines separately.

functions have unit GeV~2 and are multiplied by 10°. The
gray band is for LO result and the blue band is for NLO
result. The bands are obtained by changing y from p./2 to
2u., where p?2 = Q%+ 4(m?* + p?) as adopted in [2,10].
The width of the band represents an estimate of theoretical
error, e.g., missing higher order corrections. Compared
with LO results, our NLO results still have a large
theoretical errors, especially in the small p; region. In
Figs. 7 and 8, p, > 0.3 GeV. The dashed lines in these
figures represent quark corrections with p = u.. For
x = 0.02, except for Fyyr and Fyy g, quark corrections
are comparable with gluon corrections in the small p,
region. When x decreases to 0.002, only for Fyy o5 and
Fyy cos2¢ quark corrections persist sizable and comparable
with gluon corrections. In all other structure functions,
quark corrections can be ignored.

From Figs. 7 and 8 each structure function has a strong
peak in the small p, region, i.e., p, <3 GeV. F r takes
its maximum at p, = 0. According to the partial wave

analysis in [13], ¢ dependent structure functions should be
proportional to a certain positive power of p, when p; is
small. With our notation, Fyy cosgs Fricosgps FULsings
FLU,sin(/) are PrOPortional to Pt and FUU,C052¢7FUL.sin2(/)
are proportional to p? at least. On the other hand, when p,
is large, all structure functions decay to zero fast. This
behavior produces a peak in the small p, region. Peak value
corresponds to p, ~ m.. Generally, cos2¢, sin2¢ depen-
dent structure functions take their maximum at larger p,
compared with cos ¢, sin ¢p dependent structure functions.
The shift of peaks allows us to get relative large asymme-
tries in the region p, > m,.
For convenience we define asymmetries by the ratios

k
Ci
uu
Cl

Ak

(96)

where C* are defined by
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FIG. 8. Same as Fig. 7, but for EIC with 0% = 10 GeV?, x = 0.002, z = 0.4.
dd LL . .
2o — VU4 Cgucos b+ CglﬁucosZ P percent level. Further, ’A.¢ on Elcc can r?ach 1% if
dxdQ<dzd*p, | p, >4 GeV. The remaining three single spin asymme-

+ iy [CHE 4+ CEE cos ] + 4 [C5Y sing ]
+ 24 [CYEsing + CYf sin2¢). (97)

A¥ with z fixed are listed in Tables I and IL

From these results, the largest asymmetries are related
to unpolarized scatterings, i.e., Ag¢U and AgU , which are
of order 10%. For LL scatterings, ¢ independent asym-
metry ALE can be more than 10% on EicC when
p; >4 GeV. We expect this asymmetry can be measured
precisely on EicC. On EIC, up to 6 GeV, ALl is still

TABLE 1.

tries, AgL,A’q;U ,Aég , are of order 107°—1073, which are
similar on EIC and EicC.

Next we consider the z dependence of structure functions
with p, =2 GeV on EicC or p, =6 GeV on EIC. The
results are given in Figs. 9 and 10, respectively. We only
show the results with 0.3 < z < 0.7. Beyond this region, the
numerical integration over x, becomes unstable, because
the allowed p, is small. In the kinematical regions con-
sidered, for x = 0.02 and x = 0.002, quark corrections
represented by dashed lines are negligible, compared with
gluon corrections. As mentioned before, at LO zF; should
be symmetric or antisymmetric about z = 1/2. At NLO,

Asymmetries corresponding to different p, on EicC with z = 0.4. Other parameters are given by Eq. (95).

pe (GeV) CYY(pb/GeV*) AYY(x1072) AYY(x1072) AFE(x1072) ALL(x1072) ALV(x1072) AYE(x1072)  AYE(x1072)

1 575.50 3.056 13.100 1.728 0.051 0.097 0.004 0.020
2 96.05 —1.948 16.730 —1.435 0.386 0.100 0.002 0.056
3 10.84 —4.522 13.520 -7.974 0.940 0.076 —0.005 0.086
4 0.98 -5.491 10.140 —17.710 1.530 0.055 -0.013 0.098
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TABLE II.

Asymmetries corresponding to different p, on EIC with z = 0.4. Other parameters are given by Eq. (95).

pi (GeV) CYU(pb/GeV*) AYY(x1072) AYY(x1072)  AFE(x1072)  ALE(x1072)  ALV(x1072)  AYE(x1072)  AYE(x107)

3 601.80
4 213.40
5 80.72
6 33.03

-3.178
—4.431
—4.903
—4.906

16.360 -0.197 —0.002
14.820 -0.524 0.035
12.500 —0.897 0.065
10.380 -1.314 0.091

0.102
0.079
0.063
0.052

—0.001
—-0.002
—-0.003
—0.004

0.016
0.017
0.017
0.017

real corrections break such a symmetry. These features can
be seen clearly from the results in Figs. 9 and 10.
Corresponding asymmetries A¥ are listed in Table IIL
Still, A%J is the largest one, which is of order 10%.

AJY,A}" are of order 1%. Others are negligible.

Next we compare our results with known results in
literature. For structure functions given in Eq. (37), the
distributions dF/dp, and dF/dY with F;, = {F,, F;, g }
are given by [10,11]. To get these distributions, Y or p,

should be integrated out. For example, for F';, we have

dx,
a-

dFL_(Zpt)x3/Ymade/l
dp,  4m°0* Jy,, i Xa
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dashed line is for the quark contribution with u = u,.
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z dependence of structure functions on EicC, with p, =2 GeV, x = 0.02, 0? = 4 GeV?. The error bands are given by
\/ Q% + 4(m? + p?). The gray band is for the LO result, and the blue band is for the NLO result. The
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FIG. 10. Same as Fig. 9, but for EIC with p, = 6 GeV, x = 0.002, 0*> = 10 GeV?>.

The integration limits are derizved from Egs. (11) and (12).
In the above, x,, = x(1 + Zlfﬁ) is the allowed minimum
of parton momentum fraction x,. All results about inte-
grated structure functions are shown in Appendixes H
and L.

In the calculation we use x,, rather than 7, as integration
variable. From the definition of plus function, we encounter
the following integrals:

TABLE III.
on EIC.

/1 dxa F(xa) - F(xm) i (99)

Xa = Xm

where F(x,) is a combination of PDF and hard coefficients.
All other variables are suppressed in F. Such integrals are
well defined, but we still introduce a small parameter & to
ensure the denominator of integrand is positive. The above
integral becomes

The values of asymmetries on EicC and EIC. Parameters are given by Eq. (95). p, = 2.0 GeV on EicC, and p; = 6.0 GeV

2 CYV(pb/GeV*) AYU(x1072) AYY(x1072) ALL(x1072) ALE(x1072)  ALU(x1072)  AVE(x1072)  AYE(x1072)

EicC 0.3 90.88 —3.084 13.980 —1.835 1.029 0.170 —0.000 0.051
0.4 96.37 —1.932 16.640 —1.422 0.386 0.100 0.002 0.056
0.5 96.36 —0.670 17.420 —1.388 —0.242 0.0 0.0 0.059
0.6 92.04 0.635 16.280 -1.720 —-0.818 —0.104 —-0.002 0.059
0.7 81.25 1.843 13.460 —2.471 —1.307 —0.191 0.000 0.057
EIC 03 32.82 —11.060 8.404 —1.501 0.237 0.090 —0.009 0.014
0.4 33.07 —4.913 10.350 —1.313 0.092 0.052 —-0.004 0.017
0.5 32.87 2.639 10.750 —1.313 —-0.061 0.0 0.0 0.018
0.6 32.21 9.133 9.612 —1.472 —-0.187 —0.054 0.004 0.017
0.7 30.42 12.460 7.358 —1.811 —0.260 —0.097 0.009 0.015
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[ Flr= Flsn)
X Xa = Xm +6

For 6 = 1078 to 10, we have checked that our numerical
results shown in this paper are stable. For the calculation of
the two-dimensional integration in Eq. (98), taking
dF;/dp, as an example, we first integrate out x, with
specific Y (or z), then we do interpolation for ¥ and then
integrate out Y. In this way, the precision can be improved
by increasing the number of points for the interpolation. In
our calculation, ten points are used for Y interpolation
(or z interpolation), and 30 points are used for p,
interpolation.

For the unpolarized case, Morfin-Tung PDF sets (Table
114-Fit B1) [37] are used, with NLO Agcp = 0.194 GeV,
Np =4, m, = 1.5 GeV. This PDF set is used by [10]. For
dF,;/dp,, renormalization scale is n=

VO +4(m? + p?); for dF,,/dY, u=+/Q*+4m>.
All results are shown in Appendix H. For x = 0.1,
0.01, both dF,;/dp, and dF,;/dY are in agreement
with [10]. But for x = 0.001, 0.0001, in some regions
of p, or Y, our NLO results cannot reproduce the results
of [10], due to the errors from numerical integration in
Eq. (98). In these regions, we need to improve our
calculation further.

Results for dF,;/dp, are given in Figs. 11 and 12.
Compared with [10], some small differences exist,
which appear for x =0.001 and x = 0.0001, i.e.,
Figs. 11(c), 11(d), 12(c), and 12(d). In the small p, region,
our NLO results are a little smaller than theirs; while in the
large p, region, our NLO results are a little larger than
theirs. As mentioned, one possible source for the difference
is the uncertainty from numerical integration in Eq. (98).
Really, near the border of phase space (e.g., with given p,,
Y is close to Y, or Y. the hard coefficient G,-‘tot is
highly oscillated when x, is approaching x,,. Because of
the oscillation the integration converges very slowly and
has a large uncertainty. Because 7, = (1 — z)(x, — x,,)/ X,
7, approaches zero when x, — x,. One method to
improve the situation is to expand G,-Jot to a certain power
of 7, and then use expanded Gim to replace original Gi,m
when 7, is sufficiently small. In Eq. (72), we have expanded
G in the small 7, region to O(t,). However, if 7,
is not so small the omitted O(z2) corrections to Eq. (72) can
be large. This is the case if x, Q?, 7 are near the border of
phase space. We expect that expanding G, to higher
order of 7z, can help to reduce the numerical uncertainty.
This will be done in a future work. In this work, we use
the original G,-’tol rather than the expanded one to do
calculation.

For the same reason, our rapidity distributions dF, ; /dY
cannot match the results of [10] precisely in the region with
positive Y, for x = 0.001 and x = 0.0001. Note that our

(100)

rapidity Y is opposite to theirs by definition. For dF,/dY
with x = 0.001, the NLO result becomes unstable
when Y > 1. The NLO result for ¥ > 1 is not shown in
Fig. 13(c). In the region —4 <Y < 1, our results are
compatible with [10]. For dF,/dY with x = 0.0001, the
situation is similar, but now the NLO result becomes
unstable starting from Y = 0. The corresponding NLO
result is not shown in Fig. 13(d). Moreover, in our result,
Fig. 13(d), there is a dip around Y = —4.5, which does not
appear in [10].

For dF;/dY with x=0.001, when Y >2.5 our
NLO result is highly oscillated. For x = 0.0001, the
oscillation occurs when Y > 0.5. Near Y = 0.5, our
NLO result is a little smaller than [10]. At ¥ = 0.429 in
Fig. 14(d), our NLO result is dF; /dY = 107>, But at this
point [10] gives dF;/dY ~2x 107>. Because of
different calculation schemes, we think the difference is
acceptable.

For the polarized case, dg,/dp, and dg,/dY are calcu-
lated with x = 0.01 and 0.001. The NLO NNPDFpoll.1
PDF set [32] is used. a; and m for charm are the same as
those used in the calculation of Fig. 7. The results are
shown in Figs. 15 and 16. In [11], a different PDF set
(DSSV PDF [38,39]) is used. For x = 0.001, our results
agree with [11] within uncertainty. Especially, in
2xdg,/dp, the node mentioned by [11] also appears in
our results. Our results for x = 0.01 are new, which may be
useful for EicC. We also mention that the loop corrections
with x = 0.01 are much smaller than those with x = 0.001
for both p, and Y distributions.

VI. SUMMARY

In this paper, we consider the fully differential cross
section of heavy quark production in the DIS process.
Especially, the azimuthal angle ¢ is not integrated out. By
constructing projection operators based on measured
momenta, all possible ¢ distributions in unpolarized and
longitudinally polarized DIS are given. We then calculate
NLO QCD corrections to these angular distributions
analytically. Heavy quark mass is preserved in the calcu-
lation. It has been confirmed that all divergences from real
and virtual corrections are removed consistently by renorm-
alization and collinear subtraction. The resulting hard
coefficients are finite. With these hard coefficients, numeri-
cal results relevant for kinematics of EIC and EicC are
given. On EicC, \/:S’_p_, =16.7 GeV, 0* =4 GeV? and
x=0.02; While on EIC, \/571 =100 GeV, Q%=
10 GeV? and x = 0.002. Structure functions Fyyr etc.
defined in Eq. (30) are calculated, with z or p, fixed.
Results are given in Figs. 7-10. From LO to NLO, for most
structure functions, the theoretical errors obtained by
changing u from p./2 to 2u, are still large and are not
reduced, especially in the small p, region. This may be
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caused by the bad convergence of soft gluon contribution.
Higher order corrections or threshold resummation are
needed.

With these structure functions the asymmetries for vari-
ous azimuthal angle distributions are obtained, as shown in
Tables I-III. The asymmetries have similar size on EicC and
EIC. In the kinematics considered in this paper, the four

asymmetries A%],Agu, AfL,A{%L are of order 1 ~ 10% and

other three single spin asymmetries A%Y, AJ", A7f are of

order 1075-1073. As a reference, the unpolarized and ¢
independent differential cross section, C%’U in Eq. (97), is of
order 1 ~ 103 pb/GeV* on the two colliders, depending on
the value of p,. The planned luminosity of EIC and EicC is of
order 1073-1072pb~! s~! [34-36]. With this luminosity, the
observation of the four asymmetries mentioned above is
possible.

To check our calculation, we also compare p, and Y
distributions of inclusive structure functions, i.e., dF/dp,
and dF;/dY, with known results in [10,11]. Forx > 0.01, a
reasonable agreement is found. But for smaller x, our
dF,;/dY are unstable for positive Y. One reason is that,
near the border of phase space, the hard coefficient Gmot
becomes highly oscillated when 7, approaches 0. Since
small 7, corresponds to soft gluon, resummation of soft
gluon contributions [40-42], especially in small x region,
may improve the situation and will be studied in the future.
Also, we intend to expand the hard coefficients Gim to
higher powers of 7, in future work. This is helpful for
reducing the error of numerical integrations for dF,/dp,
or dF,/dY.
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APPENDIX A: HELICITY CROSS SECTIONS

In [13], the azimuthal angle distributions in Eq. (30) are
given for one-hadron production in semi-inclusive DIS.
There the ¢ distributions are obtained from helicity
amplitudes of virtual photon and proton. Our method is
different from theirs. The projection operators 7; we
introduce here are expressed by external momenta,
Pasq>p1- By comparing the y and ¢ dependence, the
helicity cross sections of [13] can be expressed in terms of

a- l_;i and Aa - l_;,» as follows:

(i) UU case:
1 ++ — Ao X -
5(0+++‘7++):_2” l—xc[a'bx“]’
2a,, x> -
W =g T Pl
Ao X - 7
|
Re(oty +075) =—V2—e" L Cla-by,]:  (Al)
+0 T4 20p, 1 —x .
(i) LL case:
1 QAuy X o=
SLPLE(O"ﬁ—O'ﬁ):Emﬂzﬂhcma‘byz],
++ — \/_ Xem x2 - 7.
SLPLRE(G+0 —O'Jro) = Zﬂth—l_xll/IhC[Aa'bvz],
(A2)
(iii) UL case:
aem X . >
S Imett =— o m(llh)C[Aa-bZJ,
S Im (ot —075) =vV2—t X (i,)CIAG by, ];

@iv) LU case:

PiIm(cl +075)=—

70p;1—x
(A4)
where
Cla- b)) :/dp%dy/dx“a b,
xa
) dx,
ClAa-b;]= [ dp;dY Ad-b;. (AS)
xa

In az, ij are helicities of proton and kl are helicities of
virtual photon (please see Ref. [13] for the notations). The
nontrivial azimuthal angle dependence is associated with
the change of helicity of virtual photon. This is reasonable
because the change of helicity implies that the photon is
transversely polarized. Because of the special transverse
direction, a nontrivial azimuthal angle distribution such as
sin 2¢h, cos 2¢, etc. can appear.
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APPENDIX B: RESULTS OF TWO FOUR-POINT INTEGRALS

The first integral is

an d'l 1
Dr=n / (27)" P[(1 = p2)* = m*|[(I = p2 + ko)* = m?|[(1 + p1)* —m?]

The result in the DIS region is

with

: s(m* = u)p,
1 - - - Z_u)?s 1
D(lo) == —2p,K(r, r’)+p,K(r,O)+p,K(r,r)+21n(m ~2u) sln +'0r—27r2
2s(m _u)pr s 1_pr
j 4(m?* — u)? 1 - ,
SR <ln (m ~2”) S P o p’—zlnp’+”’).
S<m —M),D, S 1_pr 1_pr Pr

The second integral is

D / d"l 1
2/ )" P(1+ ko )*[(1 + ko — p2)* —m?|[(1+ py)? = m?]’

The result in the DIS region is

i) [ 4 en2 o
D=z |P2 @t ot
with
(-2) _ 1
D - k)
2 (mr =) (m? —u)
mz— mz—u
Dl T —
2 (m? = t)(m* —u)’
5O _ In(m?)[3 = 61n(m? = 1)(m? — u)] + 121In (m? = 1) In (m* — u) — 61n2(g;—;11) — 472
2 s

6(m> —t)(m* — u)
which has no absorptive part in the DIS region. In the above, the variables are defined by
2 2

pr=V1+4r, pr =V1+4r, r:m—, r’:m—,

—S

S=s+rtu=2m*=-0>  s=(k,+q)? 1= (ks—p1)’  u=(ks—p2)*
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In D, the function K(a,b) is defined by

- 2 [1 1 1 1 -1 2
R(r0) == [n PP 4 n Py, +pr+2Li2(p, >+”—],
pr 4 lL—p, 2 L—p, p1+1 6
- 2 [1 1 1 1 1- -1
K(r,r)==|=-Inr?In +p’+lnp,ln +pr—|—ln t oy, pr+2L12< )—l— ]
Pr _4 l_pr 1_pr Zpr Zpr Zpr 3
- 2 1 1 1 - -1
K(r,7)==|-Inr*In Jrﬂr_HnPrJrPr In +pr—}-lnpr Plygr —2 2
Pr _4 l_pr 2 1—,0,- pr_l l_pr 3

Pr . l_pr’ . pr+l
+ Li + Li —Li
2< +1> 2<1_pr> 2(pr+pr’> (pr+pr :|

APPENDIX C: HARD COEFFICIENTS FOR SINGLE SPIN ASYMMETRIES

These single spin asymmetries are given by 7;, i = 5, 7, 10. They are automatically finite.
For f)gz,"q, the result is

D

g 4177,'(22 - 1)

( . A . a . A . A (5.2
S0 T Qi G = 1)(2 = 1), {do(2.2) + d\(%,.2)Ly + da(%.2) Ly + d5(%.2) L3 + da(%.2) Ly + ds5(%.2)Ls },
with

40%(p5—1)pz
(1—p2)?

2,2 _1)p2 _ -
, Lzzlnw Ly=In +"", L4:ln%, Ls=In2(1-2).
—2Z

L]:hl
]_px

The coefficients are

dy = =282 (4m*3> = m*Q*(* — 1)2(422 =42 - 1) - Q*(2 — 1)2(2 - 1)2),
dy = %(4m*(3 = 23)%* + m* Q*%(2%* = 3% + 1) + Q*(3 — 1)*),
d, = —d,,
dy = (& = 1)3p, (—4m*3* + m> Q?2(R(—42% + 42+ 2) + 422 - 42— 1) + Q* (R - 1)?),
iy = 2(=32mt% + 4m* Q2% + m* Q'3 (632 — 112 + 5) + 0°(2 — 1)%)
0*(2z2-1) ’
ds = %(4m*(3 = 22)%% + m>Q*x(2%% = 3% + 1) + Q*(2 — 1)3).

Because d, = —d;, Ly, L, appear as a combination

4 0*1-% 4m*%
Li—L;,=In ) Px = T o
= Q*(1-%)

Thus, In Q? disappears.
For D%)},g’ which corresponds to Z;, we have

dim
S0k - 1)(423 = 1)p (Q*( — 1)(422 — 1) — 4m?%)
x {do(%,21) + dy(%.2))L) + d(&, 2 )Ly + ds(%,21) L3 + da(%.21) Ly + ds(%.%)Ls |,

Dy’ =

with
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dy = —8%(Q* (2 — 1)(427 — 1) — 4m?3) (—16m*%> + 16m*>Q*(% — 1)32} + Q*(* — 1)2(427 + 1)),
dy = 1632 (4m% + Q*(% — 1)) (4m*3 (2% — 1) — m*Q2(% — 1)(2(822 — 6) + 422 + 1) + Q* (3 — 1)?(422 + 1)),
d, = —d,,
dy = 16(% — 1)%%p,(48m®3% — 8m* Q2% (%(82% — 4) — 427 + 3)
+m?Q*(—4x(821 - z1+3)+5(2(16z1—821+9)+16 - 822 43) + Q% - 1)*(423 + 1)),
dy = 325°2,(4m*% + Q*(% — 1)) (4m*x(2% — 3) — m*Q2(23% — 3% + 1)(422 = 3) +20*(x - 1)?),
ds = 1622 (4m?% + Q* (2 — 1)) (4m* 228 = 1) = m>Q* (2 — 1)(X(827 — 6) + 427 + 1) + Q*(x — 1)>(42} + 1)), (C6)

where 2, =2 —1/2. D7 .7 is even in Z;.
|
For DEO)WQ, which corresponds to V,, we have

~(1),g 4lﬂ
D = .
e = QR = )2, - (% + Dy U
{--}=do(%.2)) +dy(%.21)Ly + dr(X,2))Ly + d5(%,21) L3 + ds(%, 21 )Ly + ds(X,2,)Ls, (C7)

with

dy = =452 (-16m*3% + 8m2 Q% (% — 1)2(222 — 1) + Q*(x — 1)2(422 - 1)),
dy = 832y (4m*(1 — 2%)%* + m*Q?2(282 = 53 + 3) + Q*( — 1)%),

dZ = _dl’
g _8(8 = 1)32:(22) = 1)(22) + Dpy (=12m*%* + m* Q*&(3(427 = 3) =421 +2) + Q* (3 - 1)*)
37 422 -1 ’
dy =4x(4m?% + Q*(2 - 1)) (m*2(-8(2 — 1)27 — 1) + Q*(x — 1)?),
ds = 832, (4m>% + Q*(x — 1)) (m?(1 = 28)% + Q*(2 — 1)?). (C8)

D¢ is odd in 2.

APPENDIX D: DIVERGENT PARTS OF VIRTUAL CORRECTIONS

Here we give the explicit expressions for the single pole part of virtual correction, i.e., l~)£1

three independent logarithms. The forms are

,] In general, the results contain

e 163(1 4m*%
D[b ] :ao—l-allnﬁ—l—aﬂn(l—px)+a3ln(1—|—,0x), Px = _QZ(I—)?) (Dl)
First, for i = 5, 7, 10, the divergent part vanishes, Pl —o.
For i = 1, the results are
ag = aél)Nl + aE)Z)Nz’
325
0°(z-1)2
QM- NP (B2 - 32 41) 45032 = 32+ 1) + (1-22)?)),
16x
o)) = ey (A 02 =22+ 1) =~ 4m QI (3122 - 22 4 1)(1 = 20)? 4 26(=92° 4 1822 ~ 112+.2))
+m2 (2 — 1)2(1282(222 — 22 4 1)? — 28(362* — 7223 + 4627 — 10z + 3) + 242* — 4823 + 2222 + 22 + 3)
— 0°(2 = 1)?22(R7(202% = 202 + 6) + £(~202> + 202 — 6) + 62* — 62 + 1)), (D2)
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and
32(Ny — No)&(4m*3? —2m* Q%% (2(1 —22)> = 2(2 — 1)2) + Q*(2#% — 28 + 1)2(28° - 422 + 32 - 1))

ay = — B

! 0°(2 —1)222
P 328(N, (2m?% + Q*(2&p, +2p, + & — 1)) + 2N, 0%(k — 1)py) (432

? O (x-1)(z-1)’2p

—2m* Q2% (%(1—-22)2 = 2(2 - 1)2) + Q*(2%2 = 2% + 1)2(22> — 422 + 32 - 1)),

a5 = 323(N, (2m*3 4+ Q* (X = 1)(2p, + 1)) = 2N,0° (R = 1)p,) (4m*32

Q% - 1)(z-1)2%p
—2m*Q%%(%(1-22) =2(2 - 1)2) + Q*(28% — 2% + 1)2(283 — 422 + 32 - 1)). (D3)

For i = 2, the results are

128%%(m*x + Q%2(&(-2 z—1 PR SN
a9 =12 Qs(z(—(lﬁ)z 22D 4,22 - 12w - 02 - 1)2)
+3N, (2m*%(22% =22 + 1) = 2m?Q*(2 — 1)2(282% = 28248 - 22 4+ 2) + 0*(2 - 1)727)). (D4)
and
256(Ny —N,)32(m? — Q*(2—1)2)(m?*x 4+ Q*3(%(=2) + & +2—1))
a;=-— Q6( ) 52 ’
A2 20 1\5 2 _5 s
4y = 2R = QE- D+ QUKD +3422D) (. 24+ 025, 129, +5-1))

O (F-1)(z-1)°2%p,
+ 2N2Q2(5\C_ l)px),
25687 (m? = 02 (2—1)2) (m*3 + Q*2(R(-2) + 2 +2-1))
)(2

az = 05 (- (N1(2m*&+ Q* (3= 1)(2p, +1)) = 2N,0*(k — 1)p,).  (D5)

For i = 3, the results are

ay = a(()l)Nl + 6182)]\,2,

(1) _ 64%(22 - D(Q*(&-1)(2-1)2—m?2)(Q*(2x = 1)(2 = 1)z — 2m?%)
ay " = ,
Q4( _ 1)222)6
48%(22 - 1 +0%2(3(=2) +i+2-1 i e
ay) = (= D 26@ _ 1(;(235) frizl) (4m*32 (222 - 22+ 1)
—m?Q%(2 —1)2(R(822 =82 +4) — 622 + 62 — 1) + Q* (28 — 1)(2 — 1)282), (D6)

and

32(Ny — N2)%(22 — 1) (2m*%2 — m*Q*%(4% = 3)(2 - 1)2 + Q* (282 =38 + 1)(2 — 1)%2?)

ay = — N ~ )
Q*(z—1)*2%x
323(22 — 1)(N, (2m2% + Q*(=2&ps + 2p, + & = 1)) + 2N, 0% (R = 1)py) 1y 4
a, = — s - 5 (2m*x
Q°(% — 1)(2 - 1)"Z%xp,
—m?Q*%(4% = 3)(2 — 1)z + Q*(28% - 3k + 1)(2 - 1)?2?),
_ 32322 - (N, 2m*3 + Q*(R = 1)(2p, + 1)) =2N,0* (R = D)py) () 4
“ 0%k - 1)(2 - 1)*Z2xp, (@ms
—-m?*Q*%(4% - 3)(2 - 1)2+ Q*(2%% = 3% + 1)(2 — 1)?2%). (D7)
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For i = 4, the results are

3282 (m25% + Q*3(3(=2) + £+ 2—1))

ag = Q4(2 — )ZZZXZ <3N2(2m256(222 - 2? + 1) - Q2<2 - 1)2) + 4'1\/1Q2<2 - 1)2)’
64(Ny — N»)&2(Q*(% — 1)(2 — 1)z — m2%)
a; = s
‘ 0 (2 - 1)242
6432(m?% + Q*2(%(=2) + & + 2 — 1)) (N (2m?% + Q*(=2%p, + 2p, + X — 1)) + 2N, Q% (3 — 1)p,)
ar = — s A 22 ’
0'(x - )z - )2y,
. 6432 (m?% + Q*2(2(=2) + 2+ 2—1))(N,2m*% + Q*(2 = 1)(2p, + 1)) — 2N, 0%(2 — 1)p,) (DS)
’ 0 (& - 1)(2 - 1)2x?p, '
For i = 6, the results are
16N,& (222 =22 + 1
ap = ZQ’Q((;_l 3f3 )( 2mAR2(22 =24 1) — m2Q2%(2 — 1)2(128(22 = 2 + 1) — 1222 + 122 — 11)
-0*(28 - 1)(2 - 1)*2%).
32(N; — N»)&(222 =22 4+ 1)(Q*(2&% — 1)(2 — 1)z — 2m?%)
a; = S
! 0z - 1222
32%(222 =22+ 1)(Q*(2x — 1) (2 — 1)z — 2m?x . ) . .
0 =2 FL(@ 22— Lz - 1) LN, (2023 + Q*(~23p, + 2p, + 5 — 1)) + 2M,0%(E — 1py),
°(F-1)(E-1)%p
b 32%(222 =22 + 1)(Q*(28 — 1)(2 = 1)z = 2m*%) (N, (2m2% + Q*(3 — 1)(2p, + 1)) — 2N, Q% (X — 1)p,) (Do)
: 0°(t - 1)z~ 12 |
For i = 8, the results are
384m>N,2(22 — 1) (2m*3% — m*Q*%(4% = 3)(2 - 1)2+ Q*(2%% = 3% + 1)(2 — 1)?2?)
ag = — 7 .
Q'(z -1’2
a, = 0,
a, = 0,
as = 0. (D10)
For i = 9, the results are
o _L6NR(22— D(Q* (& — 1)(2 = 1)z — m?%)(6m?%(22 =2+ 1) + Q*(2 - 1)3)
o 0*(2 - 1)22%x ’
1 Q*(2 - 1)zx ’
32522 = 1)(Q*(3 = 1)(2 = 1)z — m?&
ay = ( - 4)(Q (x 5 )(Z S )Z " X) (Nl(zmz'%'f' Q2(_22px + 2px +3- 1)) + 2N2Q2('% - 1)px),
0*(x = 1)z - )2xp,
32822 - (@R - (&= D2 = mPR)(N, (207% + Q2% = D(2p, + 1)) = 2N,0%(2 = 1)p) D11)
3 — — .

Y& = 1)(z - 1)2xp,
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APPENDIX E: MASS COUNTERTERM CONTRIBUTION AU;

The contribution of mass counterterms to diagrams like Fig. 4(f) and their complex conjugates are given as follows:

4 =2/ 2v\e/2
gy (dmi*/m?*) 0 [
6z, AU; = AD;S , El
Zm i Z(N% _ 1) 1671'2 eH[ i (Tx)] ( )

with
AD, — 48PN, (222 - 22+ 1) (St — 4nP Q2R (3(1 = 22 = 3(2 = 1)2)
e(0%(2-1)°2)
+ 028 —1)(2 —1)2(x(422 — 424 2) — (1 —22)?)]
8N [—104m*%2(222 = 22 + 1) + 4m>Q*%(22% — 22 + 1)(28(262% — 262 + 5) —39(2 — 1)2)
0%(z-1)°2

— O*(2 — 1)2(8%%(262* — 5223 4 4927 — 232 4 5) — 43%(782* — 15623 + 13722 — 592 + 10)

+ 1042% —2082% + 1762 — 722 + 7)] 4+ O(€'),
AD, — 128m2N 3% (222 =22 4+ 1)(=2 = 5)(2m*% + Q®2(-2%(2 — 1) + 2= 1)) (m?& + Q*2(%(-2) + £+ 2 - 1)) ’

Q8<2 _ 1)323
AB, = 16m>N,3%(22 — 1)(22% =22 + 1) (=2 = 5) (4m*%> — m?>Q?%(8% = 7)(2 — 1)z + Q*(432 — 7% + 3) (2 — 1)%2?)
E Q6<2 _ 1)323x ’
o 64m’N,3(25% =22 4+ 1) (=2 = 5)(m?x 4+ Q*2(3(=2) + i+ 2-1))
ADy = Q‘f(ﬁ —1)22%%2 ’
ADs =0,
AD, — 16m*Ny32(222 =224+ 1)3+2)(Q* (2 — 1)2(4% (22 -2+ 1) — 422 + 42 = 3) —4m?%(2* - 2 + 1))
0°(z-1)°2 ’
AD; =0,
AD, — 64m>N,5%(22 — 1) (8 + 7) 2m*32 = m2 Q%% (4% — 3)(2 — 1)z 4+ Q*(232 = 33 + 1) (2 — 1)%2?)
Q7(2 _ 1)222 ’
AD, = 32m>N,32 (25 — 1) (22 =2 + 1)(4—? - 2)(17122 +Q%2(3(-2)+3+2-1)) ’
0*(2-1)%2%x

AD,, = 0. (E2)

APPENDIX F: REAL INTEGRALS 1

The integrals defined in Eq. (61) are given here. The calculation is done in W frame. For any vector a*, a° = a - W/VW?.
The following A; and w; appear in our calculation:

_ zp(l)akg—’—p%a_mz _ 2p?qk2+p%q_m2 o p(l)
Al - = - 0 ) AZ —_ = = 0 5 A3 — 1= |
z‘pla‘kg 2|p1q|ky ‘pl|
2 07,0 0.0 2
, :M, As — 2"&‘{714 (F1)
2kg|kay| 2|ky||4]
with p1, = p1 —k4s P1g = P1 — 4> kag = ka + q. All of these A;s are larger than 1.
We notice that in W frame, W = 0, so
ﬁla = Z]» l_jlq = Kqg- (FZ)

Thus,

014030-32



ONE-LOOP QCD CORRECTIONS TO HEAVY QUARK ANGULAR ... PHYS. REV. D 110, 014030 (2024)

_ _ (W-q)? . > ko= W = . (W-p1)?
|p1a| = |CI| = W2 —6]27 |P1q| = |ka‘ = kg = \G/W s |kaq| = |P1| = T_mz‘ (F3)
There are six w;s, which are
1 1
Wl = = T Wz = = N
|ka =+ q| |ka - Q|
1 1
W3 — A N s W4 — A . )
|ku+pl| |ka_p1|
1 1
Wsg = ———, We = ——— (F4)
Py + 4l [P =14
For a three-vector d, @ = d/|d| is the unit vector parallel to @. Other definitions are
- - A Wk
k.(g):kg/fx’Aw:?w’ A, = \/Wzg (FS)
X

In the following results, all R; functions are regular at 7, = 0. Their expressions are given in [26]. Only independent
integrals are shown in the following.
Four-point integrals are

Wk, [2rule w2 1
1[111] _ > g U 0TS R2 (Ahﬁ)’
1671' W _AW 4(kgw> ka|pla| |ka+pla|

Wk, [2ru|¢ w? 1
1[2”] =——2 23 113 R3(A1’A2’ p p >’
l6z"W _Aw_ 4(kgW> |p1q||pla| |p1q_p1a|
Wk, [2zu]€ -Ww? 1
11 H
1[3 ]:16 - 92 A PY— R2<A3, = = >a
wW2 LA ] 4k, - W25y ||K,| |ka = D1l

Wk, [2mu]e -w?

L[tll]: 292 fddad S R3<A1,A3,A - >,
1622W2 [ A, | 4(k,- W)2[p:||p1dl 1+ Pl
Wk, [2zu)€ -W? 1

I‘[sll] _ . .‘12 ﬂ 3= - R3 <A2,A3, = ~ >a
162°W2 | A, | 4(k, - W[5y [P, |P1 + Pigl
Wk, [2zu] -W? 1

o Woky [2m i e
167°W2 [ A, | d(k, - W)2[kq||ky| |kag + Kal
Wk, [2mu)€ -w?

11

1[7 ]:7292 2= = RS( 1> 4’#)’
162°W? | Ay | 4(ky - W) Bral gl kKag = P1al
Wk, [2zu)¢ w2 1

M=o idlad RN — N —
167*W2 [ A, | 4(k, - W)?|k,]|q| |G = kol
Wk, [2mu]e -w? 1

R I _ R3<A4,A5,A—). (F6)
162°W? [ A, ] a(k, - W)[ky,||d] |Kaq + @

Three-point integrals are

014030-33



QING-SONG CHANG and GUANG-PENG ZHANG

PHYS. REV. D 110, 014030 (2024)

o = Wk ol W
Vo esw? A, | 20k, W) Pl T
[01] W . kq _271',[,{_ € —W2
I =i | | ox wr whe
16x°W= | A, | 2k, Wk, - W
o Wk fmle VWL
216 W A, ] 2k, Wpy|
no . Weky [2au]e VW?
I37 = ——5— || 5= Rs(43),
167T 1% _AW 2kg . W|p1|
1[10] _ w- kg 2”/[ € v W2 (A )
6 T 162W2 LA | AL w7z oN\T4)
167°W= | A, 2k, Wlk,,|
oo _ Wk [2ap)e VW2 (As) (F7)
S T 1622W2 A, ] 2k, Wg]
The two-point integral is
Wk, [2nulec
7100] g R.. F8
162w (A, ] (F8)
7,[fj] are given by
1[111] _ 1;67[11”, 1[211] _ )16_67[211]’ 1[311] _ 1;1_67[311}’ ILH] _ T;EILII]’ 1[511] _ 1;57[511]’ 1[611] _ 7;67[611]’
1[711] _ T}(_gjgu]’ IQ” ;67%11]’ 1[911] _ T;_gi([)n]’ (F9)
and
1[110] T)lc 61[110] 1[101] _ ;61[101]’ 1[210] _ 7)1(‘57[210], 1[310] —51[10] 1[610] _61[10] 1[810] T}C_STQO]’
(F10)
and
100 = 1=l (F11)
|
APPENDIX G: ILLUSTRATIONS FOR (v) tildeG: {G1 ot szw Gfo’mt};
Mathematica FILES (vi) tildek: {K’ tot’KZ o - i{IOtot}; )
Our final hard coefficients can be downloaded from [30]. (vii) tildeGs: (a_) _O{G1 ot G2 ot Glo o)
An example file is given there. There are 24 files for hard (viii) tildeKs: (;) 0{K1 - th, ey I?fo’tot}.
coefficients in total. Here we explain the notations of these  Quark contributions (HH part) are
files. Each hard coefficient is. Wl"itten as a list wit'h length (i) tildeQGHH: {G!! ", glgt’ N G10t0t .
of 10. Each element of the list is the corresponding hard HH “HH HH 1.
: . - o (i) tildeQkHH: {K{'l, K¥. ... Kl )s
coefficient projected by t;. Gluon contributions are . B HH
(0) = (0)7. (i) tildeQGsHH: (,)T,)TX:O{Gltot’ Gz tots +* GlOtot ;
(@) eildeD: {D DIO} ~ (iv) tildeQKsHH: (i) {KHH ghH K
(ii) tlldeDLoopTotal (D! tm,Dg Ja D\ _ 0r, Tx=0 1 Ltol? 2 t00 10t
; ’ The files tildeQGHL, tildeQKHL, tlldeQGsHL,
(i) tildeE: {£{ tot’E2 o - Eloacts tildeQKsHL and tildeQGLL, tildeQKLL,
(iv) tildeF: {F{ . F 0 - Floob: tildeQGsLL, tildeQKsLL are organized in the same
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way, but for HL and LL contributions, respectively. In
addition, we also provide files tildeD2, tildeDmax.
They are obtained from tildeD by & — (1 —z)/(1 —
z—1,) and X — %, respectively. %, is the maximum of %.
7, and X are not independent,

X T
P (R ,
! xm< I_Z)

where x,, is given in Eq. (98). So, X takes its maximum at

(G1)

N2—1

N, =Tr(T°TT*T?) = N

N, =Tr(T°T*T*T?) =

7, = 0. X,, = x/x,,. In Mathematica files %,, corresponds
to the wvariable xhatm. Similarly, tildeEmax,
tildeFmax are obtained from tildeE, tildeF with
the same replacement.

All of files given above depend on variables 7, X,
z,m, Q, x, whose representations in Mathematica files are
taux,xhat, z,m, Q, x. Note that we have used Z = z.
So, Z does not appear in these files. Other variables nc, cF,
cA are N, Cr, Cy4, respectively. n1,n2,n3 are the three
color factors N, N,, N3, whose explicit expressions are

(N2—1)? N2—1

N N3:Tr(TaT”)Tr(TaT”):“T (G2)

APPENDIX H: p, OR Y DISTRIBUTIONS OF F,

Here we list all figures for p, or Y distributions for inclusive unpolarized structure functions F, and F;. Morfin-Tung
PDF (Table I14-Fit BI1) [37] are used, with NLO Agcp = 0.194 GeV, Np =4, m, = 1.5 GeV. Charm and bottom PDFs are
not included in the calculation. This PDF set is used by [10]. For dF,;/dp, renormalization scale is

p= /0> +4(m? + p?); for dF,, /dY, u = \/ Q> + 4m?, dF,, /dp, for 0> = 10 GeV?, and x = 0.1, 0.01, 0.001 are
shown in Figs. 11 and 12, where the dashed lines are for NLO results and the solid lines are for LO results. dF, ; /dY with

x=0.1 x=0.01

0.010 0.100

0.005¢f — . 0.050f — .
‘_I/‘-\ ™~ == NLO —F\ 7 == NLO
% 0.001f % 0.010f
<} 5% 1074 o 0.005f,
& &
= 1x 1074 & 0.001
< 5x 1073 < 5x1074

1x1073 . 1x10™4
0 4 5 0 8

0.100 0.100

0.050¢ 0.050}
% 0.010 '% 0.010
<} 0.005 S 0.005
o o
)
50001 2 0.001
S 5%x107 5 5x107

1)(10_4 . . . . N . 1X10_4
0 2 4 6 8 1012 14 0 20
p(GeV) p(GeV)
(© )

FIG. 11.

p, distributions of F,, 0% = 10 GeV?. (a), (b), (c), and (d) are for x = 0.1, 0.01, 0.001, 0.0001, respectively. The solid lines

are results to O(a,), and the dashed lines are results to O(a?). Both gluon and quark contributions are included.
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the same Q?, x are given in Figs. 13 and 14. Note that for Y > 1 in Fig. 14(c) and Y > 0 in Fig. 14(d) the NLO results are
highly oscillated, which are not reliable and thus not shown in these two figures.

x=0.01
0.010 . .
0.005 .
'T,‘-\ /—\\ —= NLO
% 0.001¢f/ \
O 5x1074H \\
= |
5 \
= 1x107 \
5 5%x10°° \
\
1x1073 \
4 5 0 2 4 6 8 10
p(GeV)
(b)
x=0.0001
0.010 .

dF/dp,(GeV~")

1x1 -5 " " " " ANy .
><002468101214 20
p(GeV) p(GeV)
(© (d

FIG. 12. p, distributions of F;. Kinematics and notations of plots are the same as Fig. 11.
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x=0.1 x=0.01
0.01 : - : 0.1 e e
0.001 0.01}
> >
2 04 2 0.001}
5 5

10—4.

1073

0.1 0.1
0.01 0.01
>~ >
= 0.001} = 0.001
o o
o o
10-4} 10-4
-5 -5
10727 4 =02 4
Y
(d)

FIG. 13. Rapidity Y distributions of F,, with 0% =10 GeV?2. (a), (b), (c), and (d) are for x = 0.1, 0.01, 0.001, 0.0001, respectively.
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x=0.1 x=0.01
0.001 . . . (1) e ————_———
1074 0.001 e
> =
% 10 < 107
=] 5
1076 10—5
\
\
1077 10-6 A
-2 2 -3 2 3
Y
(b)
x=0.0001
0.01 0.1 —
0.001 0.01} o
> >
= 1074 = 0.001}
[ [
o o
1073 104t
\ Y=0.439
1076 1073 s .
-4 4 0 2 4
Y
(c) (d)

FIG. 14. Rapidity Y distributions of F; with Q> = 10 GeV>.

APPENDIX I: p, OR Y DISTRIBUTIONS FOR g,

For polarized structure functions, 2xdg, /dp,, 2xdg, /dY with Q> = 10 GeV? and x = 0.01, 0.001 are given in Figs. 15
and 16. The same as the unpolarized case, dashed lines and solid lines are for NLO and LO contributions, respectively. In
addition, quark contributions are also shown, by the dotted lines. The NLO NNPDFpoll.1 PDF set and associated NLO

with a,(M,) = 0.119 is used [32]. Charm mass is m = 1.414. For p, distribution, yu = \/Q? + 4(m> + p?); for Y

distribution, p = \/Q* + 4m?.
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x=0.01
0.0008
. 0.0006 — w0
=)
= 0.0004 == N
=
= 0.0002 gk
N
0.0000F == L —
-0.0002
0 1 2 3 4 5 6
p(GeV)
(@

FIG. 15.

x=0.001
0.0004
= LO
£ 0.0002}/ -- w0
) s -\ -= quark
A\
E‘j 0 \\_/
~0.0002
1 2 3 4 5 6
pi(GeV)
(b)

p, distributions of 2xg;, with Q> = 10 GeV?. (a) and (b) are for x = 0.01, 0.001, respectively. Solid lines and dashed lines

are for results to O(a;) and O(a?), respectively. Quark contributions are represented by dotted lines separately.

x=0.01
0.0008
0.0006 -
% 0.0004
~
s 0.0002
o
& op—= —
—0.0002} %
—0.0004
-30 -25 -20 -15 -1.0
Y
(a)

x=0.001
0.0004 — w0
5
< 0.0002
on
I
& of
~0.0002
—40 -35 3.0 -25 -20
Y
(b)

FIG. 16. Rapidity distributions of 2xg;, with 0> = 10 GeV?. (a) and (b) are for x = 0.01, 0.001, respectively. Notations of plots are

the same as Fig. 15.
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