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This paper investigates the impact of strangeness chemical potential and anisotropic momentum
distribution on finite-size isospin asymmetric quark matter by employing a three-flavored Polyakov quark
meson model. The model incorporates scalar and vector interactions to investigate the critical endpoint
(CEP) and the susceptibilities of conserved charges in isotropic and anisotropic medium. The chiral critical
point in the QCD phase diagram is found to be shifted toward higher values of the quark chemical potential
(μq) and lower temperature (T) for decreasing system size. On the other hand, there is an opposite change to
lower quark chemical potential and higher temperature for decreasing strangeness chemical potential.
The impact of anisotropic momentum distribution is discussed in terms of anisotropy parameter, ξ. It is
found that as the value of ξ increases toward a positive value, the chiral phase boundary becomes a
crossover. The Polyakov loop potential is introduced in the model to analyze the change in the
deconfinement transition line.
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I. INTRODUCTION

Thermodynamics of strongly interacting matter, such as
quark-gluon plasma (QGP), is of tremendous interest to
theoretical and experimental physicists [1,2]. Heavy ion
collision (HIC) experiments like the Large Hadron Collider
(LHC) [3] at CERN in Switzerland and the Relativistic
Heavy Ion Collider (RHIC) at Brookhaven National
Laboratory [4,5] are crucial in recreating the conditions
of the early universe to understand the properties of QGP
better. In addition to the experimental facilities, lattice
quantum chromodynamics (QCD) simulations are also a
powerful technique for calculating the QCD partition
function on a discrete space-time lattice [6]. It is a non-
perturbative application of field theory based on the
Feynman path integral technique and can also be used to
study some important hadron properties [7–9]. The had-
ronic tensor has been computed on the lattice to encompass
the inclusive contribution of all intermediate states, which
is crucial for understanding neutrino scattering experiments
at low energies [10]. Also, a novel perspective on hadronic
parity violation by considering four quark operators has
been highlighted in lattice studies [11]. The pressure,
energy density, and susceptibilities of conserved charges
can be obtained using lattice QCD simulations of thermo-
dynamic phenomena. At high temperatures and low

baryonic densities, these computations have anticipated a
crossover transition from the confined to the deconfined
state [12]. On the other hand, due to the sign problem at
higher baryonic chemical potentials and low-temperature
values, the phase fluctuations derived from the complex
fermion determinant are found to be very large [13].
In HICs, after the formation of QGP, it expands rapidly

and cools down to form hadrons in a small region of space.
Due to the finite size of colliding nuclei and the geometry
of the collision, the fireball created in the initial stage is a
finite-sized system. In this case, the finite size refers to the
influence of the QGP’s finite volume on its properties and
evolution. Finite-size effects can affect particle flow,
hadronization, and other variables sensitive to QGP proper-
ties [14,15]. In conjunction with experimental and simu-
lation facilities, QCD low-energy effective models
contribute to a nuanced and comprehensive exploration
of the complexities inherent in studying QCD matter
[16–23]. The quark-meson model has been earlier utilized
to assess the impact of finite volume and long-range
fluctuations [24,25]. The effect of finite volume on the
QCD phase diagram has also been analyzed considering
different boundary conditions, such as stationary, periodic,
and antiperiodic for cubic and spherical regions [15]. On
the basis of the pion mass, it has been observed that the
curvature, which is defined as the second derivative of the
chiral condensate with respect to temperature and chemical
potential, continually decreases for periodic and antiperi-
odic boundary conditions as a function of system size, thus
indicating that the phase transition boundary may shift in a
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finite volume [14]. For low chemical potential values, the
impact of finite size effects on the curvature of the chiral
transition boundary has also been studied in lattice QCD
[26,27]. By using a lower momentum cutoff in the
Polyakov Nambu-Jona-Lasinio (PNJL) model, transport
properties are observed to be enhanced in lower temper-
ature regimes, whereas they become independent for higher
values of temperatures [28]. The finite size effects have
been utilized in the literature to explore the impact of the
magnetic field, study the phase structure of difermion, and
investigate the thermodynamic properties of QCD matter
[29–34]. In investigating finite volume quark matter in the
PQM model, the phase transition lines tend to crossover
with decreasing system volume, and the phase transition
line shifts to the higher value of quark chemical potential
and temperature [22,23]. On the contrary, the phase
transition line is found to shift to low quark chemical
potential and temperature for decreasing system volume in
the PNJL model [35–37]. However, the CEP is shifted to a
higher quark chemical potential and lower temperature in
both PQM and PNJL approaches. An opposite change in
CEP to higher quark chemical potential and temperature is
observed for the Polyakov chiral quark mean field model
[34]. Thus, studying finite volume effects on the QCD
phase diagram requires further investigation to understand
the phase transitions and CEP behavior, modeling physical
systems, and developing effective theoretical frameworks.
In order to study the phase transitions in the QCD phase

diagram, an isotropic momentum distribution is usually
taken into account in the theoretical models and lattice
QCD studies. A departure from perfect isotropy is being
anticipated in a real quark-gluon plasma. Hence, it becomes
essential to study the various properties of anisotropic
quark matter, which is characterized by varying expansion
rates along the longitudinal and radial directions of the
fireball produced in HICs. This involves manipulating the
isotropic distribution by stretching or squeezing it in a
specific direction [38]. The nonequilibrium state of QGP
governed by instability with respect to color collective
modes can significantly impact the dynamical evolution of
a QGP [39]. These unstable modes can potentially expedite
the processes of thermalization and isotropization, particu-
larly of the softer modes within the QGP [40]. In essence,
these modes, marked by their exponential amplification,
contribute to a more rapid redistribution of energy and
momentum, facilitating the establishment of local thermal
equilibrium [41]. This conceptual framework enables the
incorporation of anisotropy in the momentum distribution
of particles, providing a practical means to describe the
asymmetrical nature of their motion within the given
system [42]. In prior investigations, ellipsoidal momentum
anisotropy, which considers two independent anisotropy
parameters, has been employed to calculate the dispersion
relations and self-energies of the quark-gluon plasma at
high temperatures [40,43]. It has been suggested that the

production of high-energy photons is influenced by the
assumed degree of initial momentum-space anisotropy in
the quark-gluon plasma. Therefore, it might be feasible to
experimentally determine the early-time momentum-space
anisotropy of the quark-gluon plasma produced in relativ-
istic heavy-ion collisions by examining high-energy photon
yields [44–46]. In the framework of the relaxation time
approximation and solving the Boltzmann kinetic equation,
the transport coefficients for the quark-gluon plasma
phase have been calculated by considering momentum
anisotropy originating from varying expansion rates along
the longitudinal and transverse directions of the medium
[47,48]. The chiral phase structure of quark matter within
the (2þ 1) flavor quark-meson model (in the absence of
Polyakov loop and vector interactions), characterized by
spheroidal momentum-space anisotropy determined by a
single anisotropy parameter, ξ, has been studied earlier
[49]. Also, the variation of the average momentum and the
distribution function of quarks with respect to angular
orientation has been studied in the framework of the PNJL
model. Thus, the study of anisotropic quark matter
becomes an essential parameter while analyzing the
QCD critical endpoint.
Along with the investigation of finite volume aniso-

tropic quark matter, the concept of finite strangeness
chemical potential is critical to our understanding of
the fundamental building blocks of the universe. By
fitting observed particle ratios, studies have estimated
μS to be approximately 2% to 30% of the baryonic
chemical potential [50–52]. These findings underscore
the significance of nonzero strangeness chemical potential
despite its modest but significant value. Incorporating
finite strangeness chemical potential into the study of
quark matter allows us to investigate the behavior of
strange quarks in this exotic condition. Strangeness
enhancement in heavy-ion collisions serves as a signature
of the deconfinement phase transition, provides insights
into thermalization and strangeness equilibration,
influences the equation of state of nuclear matter and
the QGP, and helps in understanding the dynamics of
hadronization [53–56]. The large value of strangeness has
been shown to affect the generation of neutron twin stars,
which can predict the existence of first-order phase
transition at lower temperatures and higher density values
[57]. In the framework of the Hadron resonance gas
(HRG) model, it has been highlighted that the critical
temperature decreases with the increase in the value of
strangeness chemical potential [58]. Therefore, the quark-
hadron phase boundary is modified as a consequence of
finite strangeness chemical potential considerations [59].
In the investigation of QCDmatter, the susceptibilities of

conserved charges are particularly significant observables
[60–62]. These have been recognized as observables that
can be theoretically and experimentally estimated better to
understand the CEP. It has been demonstrated in recent
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studies that fluctuations in net-kaon and net-pion fluctua-
tions are predominantly influenced by resonance contribu-
tions, unlike protons, thereby rendering them effective
indicators of baryon number fluctuations [63]. In the
HRG model, it has been concluded that differences and
ratios of susceptibilities offer crucial insights into inter-
actions, furnishing significant details about deviations from
an ideal gas model [64]. Studying the susceptibilities of
conserved charges in finite volumes has gained popularity
recently since it can shed light on the nature of QCD phase
transitions and the equation of state of QCD matter in
practical experimental settings [33,65]. In the PQM model,
the interaction of quarks is governed by the exchange of
scalar and vector mesons, each playing a distinct role in the
dynamics of hadronic matter. Scalar mesons induce an
attractive force between quarks, essential for binding them
together to form mesons and baryons, whereas vector
mesons introduce a repulsive force between quarks. This
repulsion arises from the exchange of vector mesons, which
mediate the interaction between quarks, preventing the
collapse of hadrons under the strong interaction. At low
temperatures and densities, the dominant attractive scalar
interactions lead to the formation of bound quark states,
while at higher temperatures or densities, the repulsive
vector interactions become more prominent, influencing
the thermodynamic properties of the system [66–68]. The
introduction of vector interactions has been found to impact
the position of the QCD endpoint in the mean field as
well as in the functional renormalization group (FRG)
approach [69,70]. In FRG, enhancing the repulsive vector
interaction has shifted the CEP toward high temperature
and lower chemical potential values in the two-flavor
quark meson model [69] whereas, in the three-flavor PQM
model with vector interaction, the CEP has been found to
shift to lower value of temperature and higher quark
chemical potential [67,70,71]. Hence, in order to study the
thermodynamic characteristics of finite volume isospin
asymmetric strange quark matter in anisotropic momen-
tum space, it is essential to include vector meson inter-
actions to attain a comprehensive understanding of the
phase diagram. In the present work, we use the three-
flavored Polyakov quark-meson model, extended by the
inclusion of vector interactions and isospin asymmetry, to
study the thermodynamics of finite volume quark matter
for the nonzero value of strangeness chemical potential
and anisotropic distribution of momentum.
This paper is organized as follows: In Sec. II, we present

the details of the PQM model and the introduction of
momentum space anisotropy in the finite volume quark
matter. In Sec. III, the impact of the nonzero value of
strangeness chemical potential and anisotropic momentum
parameter in finite volume quark matter on various thermo-
dynamic variables and the QCD phase diagram have been
discussed. In Sec. IV, the critical findings of the current
work have been summarized.

II. POLYAKOV QUARK MESON MODEL

The chiral quark meson model is an effective approach to
study the strong interactions between mesons and quarks.
The spontaneous breaking of the chiral symmetry in a
vacuum is described by including a scalar field that
represents the chiral condensate. It is a nonperturbative
model based on the mean-field approximation to study the
thermodynamic properties of the system. The model has
been used to study various phenomena in QCD, such as the
properties of hadrons, the phase structure of QCD at finite
temperature and density, and the properties of quark-gluon
plasma created in heavy-ion collisions [72,73]. It has also
been used to study the behavior of matter under extreme
conditions, such as the properties of neutron stars and the
early universe [67,74]. The total Lagrangian of the model
for Nf flavors is given by [66,75]

L¼ Ψ̄iγμ∂μΨþTrð∂μφ†
∂
μφÞ−m2Trðφ†φÞ−λ1½Trðφ†φÞ�2

−λ2½Trðφ†φÞ2�þcðdetðφÞþdetðφ†ÞÞþTr½Hðφþφ†Þ�

þLqm−
1

4
TrðVμνVμνÞþm2

1

2
VaμVa

μ: ð1Þ

In the above equation, Ψ ¼ ðu; d; sÞ is the quark spinor
for Nc ¼ 3, color degrees of freedom and φ ¼
Taðσa þ iγ5πaÞ, where Ta ¼ λa=2 are Gell-Mann matrices.
The first term in Eq. (1) accounts for the kinetic energy of
massless quarks. The next two terms describe scalar
mesons kinetic energy and mass term contributions. The
terms involving λ1 and λ2 are quartic interaction terms,
followed by the determinant term, which corresponds to
Uð1ÞA anomaly in QCD vacuum [76] and explicit sym-
metry-breaking terms defined byH ¼ Taha. Through these
symmetry-breaking terms, the σ meson has a finite vacuum
expectation value (VEV) and, consequently, a finite quark
mass [66]. The last two terms in the Lagrangian are
incorporated to define the interaction with vector mesons.
Here, vector mesons field tensor is represented as
Vμν ¼ ∂

νVμ − ∂
μVν, where Vμ is multiplet of vector mes-

ons. The second last term represents the kinetic energy,
while the subsequent term denotes the mass term of vector
mesons [66,77]. Due to SUð3ÞL × SUð3ÞR symmetry in the
effective Lagrangian, the term representing the quark-
meson interaction can be written as [75]

Lqm ¼ gsðΨ̄LφΨR þ Ψ̄Rφ
†ΨLÞ

− gvðΨ̄Lγ
μLμΨL þ Ψ̄Rγ

μRμΨRÞ: ð2Þ

Here, gv and gs represent the coupling constants for the
vector and scalar mesons, respectively. In the above
equation, Lμ and Rμ are defined in terms of pseudovector
ðAa

μÞ and vector ðVa
μÞ mesons as
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LμðRμÞ ¼
1ffiffiffi
2

p

0
BBB@

ωþρ0ffiffi
2

p ρþ K⋆þ

ρ− ω−ρ0ffiffi
2

p K⋆0

K⋆− K⋆0 ϕ

1
CCCA

μ

� 1ffiffiffi
2

p

0
BBB@

f1þa0
1ffiffi

2
p aþ1 Kþ

1

a−1
f1−a01ffiffi

2
p K0

1

K−
1 K̄0

1 f1ϕ

1
CCCA

μ

: ð3Þ

To study the properties of chiral symmetry breaking and
deconfinement within the PQM framework, the model is
extended by introducing gauge-invariant Polyakov loop
potential. The parameters of the Polyakov-loop potential
are fitted to lattice data from the pure Yang-Mills system to
incorporate the essential features of confinement and
deconfinement transitions from purely gluonic interactions.
The Polyakov loop serves as a well-defined order parameter
in the limit of infinitely heavy quarks, where the dynamics
of quarks become negligible, and gluonic interactions
primarily govern the system’s behavior [78,79]. Thus,
the Polyakov loop effectively characterizes the transition
from a confined phase, where color charges are confined
within hadrons, to a deconfined phase, where they are free
to move independently. In the infinite mass limit of quarks,
the order parameter that contributes to confinement is
determined by its expectation value. The Polaykov loop
is defined in a manner that obeys the center symmetry [80]
and is operationally defined as a Wilson loop in the

temporal direction. This definition is expressed through
the following formulation:

℘ðx⃗Þ ¼ P exp

�
i
Z

β

0

dτA0ðx⃗; τÞ
�
: ð4Þ

Here, ℘ signifies the path-ordering, and A0ðx⃗; τÞ denotes
the Euclidean gauge field’s temporal component [80,81].
The absence of a unique choice for the Polyakov loop
potential in QCD stems from the intricate, nonperturbative
nature of strong interactions, the interplay of confinement
and chiral symmetry breaking, temperature and density
dependencies, and diverse modeling approaches. In the
current work, we use the polynomial form of the Polyakov
loop defined as [82]

UpolyðΦ; Φ̄Þ
T4

¼ −
b2ðTÞ
2

Φ̄Φ −
b3
6
ðΦ3 þ Φ̄3Þ þ b4

4
ðΦ̄ΦÞ2;

ð5Þ
and the temperature-dependent coefficient b2 defined as

b2ðTÞ ¼ a0 þ a1

�
T0

T

�
þ a2

�
T0

T

�
2

þ a3

�
T0

T

�
3

: ð6Þ

As mentioned before, the parameters are determined by
fitting the data to lattice simulations, which gives: a0 ¼ 1.53,
a1 ¼ 0.96, a2 ¼ −2.3, a3 ¼ −2.85, b3 ¼ 13.34 and b4 ¼
14.88 [83]. Using the total effective Lagrangian of themodel,
we obtain the thermodynamic potential given as

Ωðσu;σd;σs;ω;ρ;ϕ;Φ; Φ̄;T;μfÞ ¼ Uðσu;σd;σsÞ þΩvac
qq̄ ðσu;σd;σsÞ

þUðΦ; Φ̄∶T;μfÞ þΩth
qq̄ðσu;σd;σs;Φ; Φ̄∶T;μfÞ þVðω;ρ;ϕÞ−U0ðσu0;σd0;σs0Þ ð7Þ

where the mesonic potential, including the chiral symmetry-breaking terms, is described as [84]

Uðσu; σd; σsÞ ¼
λ1
4

��
σ2u þ σ2d

2

�
2

þ σ4s þ ðσ2u þ σ2dÞσ2s
�
þ λ2

4

�
σ4u þ σ4d

4
þ σ4s

�

−
c

2
ffiffiffi
2

p σuσdσs þ
m2

2

�
σ2u þ σ2d

2
þ σ2s

�
−
hud
2

ðσu þ σdÞ − hsσs: ð8Þ

Since vector-like gauge symmetries are not spontaneously
broken in a vacuum, hud in the above equation represents
the explicit symmetry breaking for the u and d quarks [85].
In the above equation, m2 represents the tree-level mass of
the fields in the absence of symmetry breaking, λ1, λ2
denote the two possible quartic coupling constants, and c
stands for the cubic coupling constant. The parameters λ1,
λ2, m2, c, hud and hs are determined by fitting the known
decay constants fπ and fK along with the masses of mesons

such as mπ , mK , mσ and squared masses of η0 and η
mesons [86].
At vanishing temperature and baryonic chemical potential

values, the dynamical chiral symmetry breaking is taken into
account by the fermion vacuum term in the model repre-
sented by Ωvac

qq̄ ðσu; σd; σsÞ in Eq. (7). Due to this term, the
critical point is relocated to a lower temperature and higher
baryonic chemical potential values [87,88]. Additionally, the
vacuum potential energy, U0ðσu0; σd0; σs0Þ is subtracted to
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obtain the vanishing vacuum energy. The quark-antiquark
interaction term is written as a combination of the vacuum
mesonic fluctuations and thermal terms, Ωth

qq̄, which is
deduced from the fermionic determinant. These terms can
be described as [88]

Ωqq̄ ¼ Ωvac
qq̄ þΩth

qq̄ ð9Þ

where,

Ωvac
qq̄ ¼−2Nc

X
f¼u;d;s

Z
d3p
ð2πÞ3E

�
f ¼−

Nc

8π2
X

f¼u;d;s

m�4
f log

�
m�

f

Λ

�
;

ð10Þ

Ωth
qq̄ ¼ −2T

X
f¼u;d;s

Z
d3p
ð2πÞ3 ½ln g

þ
f þ ln g−f �: ð11Þ

In above equation, gþf and g−f are defined as

gþf ¼ ½1þ 3Φe−ðE
�
f−μ

�
fÞ=T þ 3Φ̄e−2ðE

�
f−μ

�
fÞ=T þ e−3ðE

�
f−μ

�
fÞ=T �;
ð12Þ

and

g−f ¼
h
1þ3Φ̄e−ðE

�
fþμ�fÞ=T þ3Φe−2ðE

�
fþμ�fÞ=T þe−3ðE

�
fþμ�fÞ=T

i
:

ð13Þ

In Eq. (10), Λ is the regularization scale parameter. The
effective single particle energy of the quarks is modified due
to the interactions with mesons and is defined as

E�
f ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm�2

f

q
. The m�

f represents the effective mass

of constituent quarks given by

m�
u ¼

gs
2
σu; m�

d ¼
gs
2
σd and m�

s ¼
gsffiffiffi
2

p σs: ð14Þ

The Yukawa coupling constant gs value is determined by
fixing the constituent quark mass for light quarks at
ml ¼ 300 MeV. It has been studied in the quark meson
model [67] that due to increased scalar coupling by
increasing the constituent quark mass greater than or equal
to 300 MeV, a first-order phase transition emerges, char-
acterized by a sudden jump in the chiral condensate. A
crossover transition has been observed for mq values
approximately less than or equal to 300 MeV. As mq

values increase further, the intensity of the first-order chiral
phase transition also amplifies. In case of very low quark
mass values, the scalar condensates would exhibit a smooth
crossover-like behavior as a function of the chemical
potential. In Eq. (7), the interaction term incorporating
the nonstrange vector (ω) and vector-isovector field (ρ),

along with strange vector field (ϕ) is written as
Vðω; ρ;ϕÞ ¼ − 1

2
ðm2

ωω
2 þm2

ρρ
2 þm2

ϕϕ
2Þ. The effective

chemical potential of the quarks is modified as a conse-
quence of vector-meson interactions [89] and is defined in
terms of baryonic chemical potential, μB, isospin chemical
potential, μI and strangeness chemical potential, μS as

μ�u ¼ μB=3þ μI − gωuω − gρuρ

μ�d ¼ μB=3 − μI − gωdωþ gρdρ

μ�s ¼ μB=3 − μS − gϕsϕ: ð15Þ

In the above equation, the baryonic chemical potential is
related to quark chemical potential as μB ¼ 3μq. In the
context of anisotropic quark matter, the modification of
quasiparticle dispersion relations aligns with the aniso-
tropic momentum distribution. In this case, the nontrivial
dispersion relation for effective mass m�

f is characterized
by [40]

E�ðanisoÞ
f ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ ξðp:n̂Þ2 þm�2

f

q
: ð16Þ

In the aforementioned equation, n̂ is the unit vector in the
direction of anisotropy. Using the above relation, the
interaction term of quarks in Eq. (9) is modified, and
hence, the distribution functions are obtained in an aniso-
tropic medium. The anisotropy parameter is defined in
terms of pk, the component of momentum parallel to n̂ and
p⊥, the component of momentum perpendicular to n̂ as

ξ ¼ hp2⊥i
h2p2

ki
− 1. The parameter ξ varies over the range

−1 < ξ < ∞, signifying the degree and nature of momen-
tum-space anisotropy. An isotropic momentum distribution
is represented when ξ equals 0, and as ξ becomes greater
than 0, the momentum distribution undergoes squeezing
along the n direction. Conversely, −1 < ξ < 0 corresponds
to a stretched momentum distribution along the n direction.
In conjunction with heavy-ion collision experiments, opting
for the direction of nucleon-nucleon collision as the n-axis is
rational and practical. This parametrization facilitates the
formulation of the dispersion relation for quarks and anti-
quarks as

E�ðanisoÞ
f ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ ξp2 cos θ2 þm�2

f

q
: ð17Þ

The expression of total thermodynamic potential in
anisotropic quark matter is obtained by redefining the
effective energy of condensates and substituting the above
relation in Eq. (7). The impact of the finite size on the
thermodynamic properties can be investigated using lower
momentum cutoff or boundary conditions. Following the
Refs. [23,35,90], in the present manuscript, the finite size
effects are introduced by a lower momentum cutoff,
denoted as pmin [MeV], equal to π=R [MeV], where R
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signifies the length of a cubic volume. This lower momen-
tum cutoff has been introduced in Eq. (11) by replacing
p⃗ ¼ 0 by π=R. This term gives the thermal contribution of
quarks and thus gets modified due to the introduction of a
lower momentum cutoff. As discussed in Ref. [91], when
quantum field theory is applied to finite temperatures, an
imaginary time parameter has to be introduced, varying
from τ ¼ 0 to τ ¼ −iβ. In the imaginary time formalism,
the energy component attains discrete values due to finite τ
values. In a similar manner, the implication of finite size
discretizes the four-momentum component, ðp0; p⃗Þ apply-
ing, p0 →

2π
β ðnþ 1

2
Þ and p⃗ → 2π

R ðnþ cÞ, here, n ¼
0;�1;�2… and T ¼ 1=β. Here, c ¼ 0 and 1=2 corre-
sponds to periodic and anti-periodic boundary conditions,
respectively. The Kubo-Martin-Schwinger conditions
necessitate the implication of antiperiodic boundary con-
ditions in imaginary-time coordinates due to the fermionic
nature of the system under investigation [92–94]. However,
for spatial coordinates, there are no restrictions on which
boundary conditions should be taken into account [95–97].
As described in Ref. [28], by employing the technique of
analytic continuation, the discrete sum of energies can be
written as a continuous integral over momentum states. In
the case of three momentum components, approximating
the discrete sum as a continuous integration commences
from the lower momentum cutoff. By analyzing a one-
dimensional boson gas, the authors in Ref. [98] have
highlighted that the inclusion of finite size corrections
by the introduction of lower momentum cutoff correctly
reproduces the thermodynamic properties. For simplifica-
tion, the curvature and surface effects are not considered in
the current work.
The equations of motion for scalar, vector, and the

Polyakov loop fields are derived by minimizing the total
thermodynamic potential as

∂Ω
∂σu

¼ ∂Ω
∂σd

¼ ∂Ω
∂σs

¼ ∂Ω
∂ω

¼ ∂Ω
∂ρ

¼ ∂Ω
∂ϕ

¼ ∂Ω
∂Φ

¼ ∂Ω
∂Φ̄

¼ 0: ð18Þ

The field equations are thus utilized to obtain values of
quark condensates and vector fields [70]. Using the total
thermodynamic potential calculated in Eq. (7), pressure
density is calculated by the relation p ¼ −Ω. Further, the
fluctuations of conserved charges are calculated by Taylor’s
series expansion method at the zero value of the corre-
sponding chemical potential. The susceptibilities of order
nth are written as

χqISijk ¼ ∂
iþjþk½p=T4�

∂ðμq=TÞi∂ðμI=TÞj∂ðμS=TÞk
: ð19Þ

The given series is expanded for chemical potential value
zero, and hence susceptibilities are obtained for varying
temperature values at μq ¼ μS ¼ μI ¼ 0 in the current
work. The value of the susceptibilities is dependent on

the value of the vector-interaction constant as well as the
Polyakov loop under consideration [70].

III. RESULTS AND DISCUSSION

In this section, we discuss the effect of the finite system
size, R, strangeness chemical potential, μS, and momentum
anisotropy on the thermodynamics of isospin asymmetric
quark matter. It has been pointed out in earlier studies that
the determination of the parameters of the model is
dependent on the inclusion of vacuum mesonic fluctuations
term [87]. The expectation values of curvature mass and
sigma field are used as input to calculate the sigma-meson
mass,mσ , and pion decay constant, fπ [99]. The strength of
vector coupling is determined by the coupling constant, gv,
defined as v ¼ gv=gs.
The introduction of vector interactions has been found to

impact the position of the QCD endpoint in the mean-field
as well as in the functional renormalization group (FRG)
approach [69,70]. In FRG, enhancing the repulsive vector
interaction has shifted the critical endpoint (CEP) toward
high temperature and lower chemical potential values in the
two-flavor quark meson model [69]. The extension of the
quark meson model with the inclusion of Polyakov loop
variables, along with the introduction of vector interactions,
helps in giving a comprehensive description of the strong
interaction dynamics, enriching our understanding of the
phase structure and properties of strongly interacting matter
under varying conditions. The model parameters in the
current work are taken from Ref. [87]. Also, a finite value
of isospin chemical potential is anticipated in heavy-ion
collision. Thus, it becomes important to include isospin
asymmetry when studying the thermodynamic properties of
quark matter.
In Sec. III A, the phase diagram and CEP are analyzed

for varying system sizes and strangeness chemical potential
values for isotropic momentum distribution. Section III B
highlights the results of varying momentum anisotropy
parameter ξ on susceptibilities of conserved charges and
phase transitions. In the later discussion of current work, the
strangeness chemical potential values have been taken,
ranging from positive to negative, to study the regimes of
finite strangeness created due to fluctuations [59,100,101]. It
has been investigated by Greiner et al. in [101] that
strangeness separation occurs within the Gibbs-phase coex-
istence of a baryon-rich quark-gluon plasma and hadron
matter, even when the temperature is zero (T ¼ 0). This
separation happens because the system becomes energeti-
cally favorable when s quarks remain in the quark phase. As
the temperature rises to a finite value, the strange K mesons
containing s quarks are produced in the hadron phase while
the s quarks reside within strange-quark-matter droplets.
Also, in the analysis of data from nucleus-nucleus collisions
at the AGS and SPS, it has been suggested that a distinct and
straightforward indication of the transition from hadronic
matter to quark-deconfinedmatter is the alteration of the sign
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of the strange-quark chemical potential [102,103] which is
dependent on strangeness chemical potential as defined in
Eq. (15). The authors in [59] have shown the abundance of s
quarks as the strangeness chemical potential tends to bemore
negative in the chiral parity doublet model framework.
Similarly, the baryonic chemical potential values are

varied over a range to investigate the behavior of quark
matter in extreme conditions. The infinite value of R
corresponds to infinite system size, whereas to consider
finite volume conditions, R ¼ 5, 3 fm is taken by employ-
ing a lower momentum cutoff. Studying the quark matter in
isotropic and anisotropic finite volume by considering a
finite value of strangeness chemical potential, temperature,
baryonic chemical potential, and vector and scalar inter-
actions helps to recreate a more well-defined system to
investigate the QCD phase transitions and critical endpoint.

A. Impact of finite volume and strangeness
chemical potential in isotropic medium

In this section, the effect of finite system volume and
strangeness chemical potential on isotropic matter is
investigated. The value of the vector coupling constant
has been fixed at gv ¼ 6.5 with v ¼ 1, and the isospin
chemical potential, μI ¼ 30 MeV. As discussed in the
introduction, finite values of isospin and strangeness
chemical potentials have been interpreted in HICs, neces-
sitating the evaluation of field configurations and thermo-
dynamic quantities under these nonzero potentials [51]. In
Fig. 1 we have shown the variation of u quark condensate,
σu=σu0, (normalized with respect to vacuum value of u
quark condensate, σu0), as a function of the baryonic
chemical potential, μB for R ¼ ∞, 5 and 3 fm, and the
strangeness chemical potential ranging from positive to
negative values, for temperatures, T ¼ 30 and 60 MeV
whereas Fig. 2 shows these results at T ¼ 100 and
150 MeV. We have observed a sudden decrease in the
value of the quark condensate with increasing μB, which
signifies the phase change at higher chemical potential for
all values of μS and R. For decreasing volume and at a given
value of μS, this change in chiral condensate values occurs
at a higher value of μB.
On the contrary, for a given system size and temperature,

a drop in σu=σu0 at lower baryonic chemical potential
values for decreasing μS is observed. Hence, the critical
chemical potential is found to be shifted toward higher
values for decreasing system volume and increasing
strangeness chemical potential. As the temperature
increases from low to high values, the u quark condensate
drops significantly. For T ¼ 150 MeV and infinite system
size, σu=σu0 < 0.2 for all values of μB and μS. The decrease
in the value of the quark condensate with an increase in the
value of temperature signifies the phase change from
confined to a deconfined state. As stated by Eq. (14),
condensate σu is directly proportional to the effective mass
of u quark. Hence, the variation of m�

u follows the same

trend as σu with a change in system size and strangeness
chemical potential. The value of quark condensate has been
found to increase with increasing the strength of vector
coupling, gv at a given value of baryon chemical potential,
whereas it decreases with increasing the isospin chemical
potential, μI [70]. The authors in Ref. [104] have observed
that increasing the isospin chemical potential value shifts
the transition temperature to a lower value, evident from the
behavior of the pseudo-critical temperature and quark
condensates. These changes in vector interaction coupling
and isospin chemical potential have been found to have an
opposite impact on phase transition, as has also been
observed in Refs. [77,105]. Thus, increasing μI favors
the restoration of chiral symmetry, whereas increased
vector coupling tends to delay the same.
As discussed earlier, in the current work, the finite

volume effect is included by applying a lower momentum
cutoff, i.e., π=R, only to the quark interaction term and not
to the mesonic vacuum term in Eq. (10). The authors in
Ref. [106] have shown that due to the inclusion of finite
size effect in the mesonic vacuum fluctuation term, the
chiral phase transition line shows an opposite trend.
Though the CEP moves to low T and high μq with
decreasing system size, the chiral phase transition line
shifts to a lower value of temperature and quark chemical
potential. Also, the value of nonstrange quark condensate
shows a similar trend as the present work with vacuum term
defined by infinite system size, whereas for the finite size
incorporated vacuum term, the value of nonstrange quark
condensate decreases with decreasing system size. This
shows that there is an early onset of chiral symmetry
restoration for lower system sizes with finite volume
vacuum term in contradiction to delayed restoration of
chiral symmetry for infinite size vacuum term. Due to the
change in the value of quark condensate, the masses of the
quarks change as a function of system volume. A sharp
drop in the mass of u quark condensate with decreasing
system size has been reported in Ref. [107] in the PNJL
model, which includes the vacuum fluctuations. In the
framework of the PQM model with no vector interactions
[106], and consideration of discrete boundary conditions
for momentum causes a significant change in the trajectory
of CEP, and as a consequence, the obtained finite volume
effects are inconclusive. However, the NJL model in the
mean-field approximation and Schwinger conditions was
employed to study the solution of the gap equation and
chiral susceptibilities in finite size effects by taking into
account the different boundary conditions [96].
The deconfinement transition is well explained by

Polyakov loop parameters, Φ and Φ̄. Thus, the derivatives
of the chiral condensates and the Polyakov loop parameters
are calculated to study the QCD phase diagram and, hence,
plot the chiral phase transition boundary and the deconfine-
ment transition line, respectively. The first-order phase
transition line ends at a critical point and becomes a
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crossover for the chiral limit [108]. The deconfinement
transition line remains a crossover for all the values of
temperature. The first-order phase transition line is deduced
by plotting the susceptibility of the chiral condensate as a
function of baryonic chemical potential at a fixed temper-
ature value. This is because the first-order phase transitions
involve a discontinuous change in the order parameter at the
transition point. On the other hand, crossover represents a
gradual change in physical properties as a function of
temperature or other parameters. The susceptibility does
not diverge at crossover; instead, it remains finite [108–110].

The nature of the phase transition from confined to
deconfined state with increasing μB is more accurately
predicted through derivatives of the strange and nonstrange
quark condensates. In Fig. 3, the variation in vector density,
ρu, and susceptibility, χu of u quark has been shown as a
function of the baryonic chemical potential for R ¼ 5 and
3 fm at μS ¼ 200, 0, −100 and −160 MeV. The sharp rise
in susceptibility values at low temperatures suggests a first-
order phase transition, while the smooth change signals the
crossover. It is clear from Figs. 3(a) and 3(c) that the critical
value of the baryonic chemical potential moves to a lower

FIG. 1. The u quark condensate, σu=σu0 (normalized with respect to vacuum value of u quark condensate, σu0) plotted as a function of
baryon chemical potential, μB, for strangeness chemical potential, μS ¼ 200, 0, −100, and −160 MeV,. Results are shown for system
size R ¼ ∞ [in subplots (a) and (b)], 5 fm [in subplots (c) and (d)], and 3 fm [in subplots (e) and (f)] and temperatures T ¼ 30MeV [in
subplots (a), (c) and (e)], and 60 MeV [in subplots (b), (d) and (f)].
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value at finite μS and Figs. 3(b) and 3(d) shows the shift to
higher μB for decreasing volume. The sharp peak in the
susceptibility of the u quark, at T ¼ 30 MeV, confirms the
first-order phase transition. The susceptibility peak smooth-
ens with increased temperature values, indicating a cross-
over transition. The change in the phase transition line from
crossover to first-order phase transition at varying values of
μS and R is highlighted by the peak of χu. The curve
becomes smoother, and very little change is observed at
T ¼ 120 MeV for all values of R and μS, highlighting the
crossover regime. It has been observed that the peak of χu
shifts to a higher baryonic chemical potential for increasing

vector coupling strength for a given value of μS, T, and R,
whereas there is an opposite shift to lower value of μB with
increasing isospin chemical potential. This result is
deduced from the behavior of u quark condensate with
varying gv and μI , which is discussed earlier in this section.
Figure 4 shows the dependence of the strange quark

vector density, ρs, and susceptibility, χs, on the variation of
strangeness chemical potential and system size at different
temperatures. For vanishing μS and given system size, ρs is
almost zero for μB ≈ 1050 MeV and T ¼ 30 MeV. This
shows that strange quarks are produced at the higher
baryonic chemical potential for the vanishing value of

FIG. 2. The u quark condensate, σu=σu0 (normalized with respect to vacuum value of u quark condensate, σu0) plotted as a function of
baryon chemical potential, μB, for strangeness chemical potential, μS ¼ 200, 0, −100, and −160 MeV. Results are shown for system
size R ¼ ∞ [in subplots (a) and (b)], 5 fm [in subplots (c) and (d)], and 3 fm [in subplots (e) and (f)] and temperatures T ¼ 100MeV [in
subplots (a), (c), and (e)], and 150MeV [in subplots (b), (d), and (f)].
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strangeness chemical potential. With the increasing value of
Tand μB, ρs shows amonotonically increasing trend. For the
finite value of μS, the density of s quarks in the system
remains zero for finite μB, and then a sudden change is
observed at fixed volume. This sudden rise may signify the
change in phase from a confined to a deconfined state. For
high-temperature values, ρs increases uniformly with μB.

The increase in density of s quarks is observed to occur at a
higher μB for R ¼ 3 fm at a given temperature and strange-
ness chemical potential value. Compared to the u quark
susceptibility in Fig. 3, no peak is observed for the vanishing
value of μS at T ¼ 30 MeV. Hence, the phase transition line
of s quark is a crossover at low-temperature values for given
system sizes and for zerovalue ofμS, which indicates that the

FIG. 3. The u quark density, ρu, and susceptibility, χu plotted as a function of baryon chemical potential, μB for temperature, T ¼ 30,
60, 90, 120 MeV. Results are shown for system size R ¼ 5 fm [in subplots (a), (c), (e), and (g)], and 3 fm [in subplots (b), (d), (f), and
(h)] and strangeness chemical potential, μS ¼ 0 [in subplots (a), (b), (e), and (f)], and −160 MeV [in subplots (c), (d), (g), and (h)].
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phase transition line of strange quarks might not coincide
with nonstrange quarks at low-temperature values and
vanishing strangeness chemical potential. The appearance
of the peak in the χs at T ¼ 30 and 60MeV for both the given
system volumes emphasizes the shift of critical temperature
to a higher point in the QCD phase diagram.

Figure 5 shows the derivatives of chiral strange and
nonstrange condensates and Polyakov loop variables with
varying temperature values for a given quark chemical
potential. The peak of the plotted derivatives of order
parameters gives the value of critical temperature at a given
value of chemical potential. For the vanishing value of μS,

FIG. 4. The strangequark density, ρs, and susceptibility, χs plotted as a function of baryon chemical potential,μB for temperature, T ¼ 30,
60, 90, 120MeV.Results are shown for system sizeR ¼ 5 fm [in subplots (a), (c), (e), and (g)], and 3 fm [in subplots (b), (d), (f), and (h)] and
strangeness chemical potential, μS ¼ 0 [in subplots (a), (b), (e), and (f)], and −160 MeV [in subplots (c), (d), (g), and (h)].
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there are only single peaks in the derivatives of chiral
condensates and Polyakov loop parameters. For the zero
value of μq, the curve forΦ coincides with that of Φ̄ as these

parameters have equal values in this confined regime. The
shift of peaks for different values of μS and system size is the
same as discussed earlier. For the finite value of μS and μq,

FIG. 5. The derivatives of quark condensates and Polyakov loop variables plotted as a function of temperature, T for quark chemical
potential, μq = 0 [in subplots (a), (b), (e), and (f)] and 250 MeV [in subplots (c), (d), (g), and (h)]. Results are shown for system size
R ¼ 5 fm [in subplots (a), (c), (e), and (g)], and 3 fm [in subplots (b), (d), (f), and (h)] and strangeness chemical potential, μS ¼ 0 [in
subplots (a), (b), (c), and (d)], and −160 MeV [in subplots (e), (f), (g), and (h)].
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two peaks are observed for Φ. In this scenario, the critical
point is calculated by using the condition ΦðTÞ=ΦðT →
∞Þ > 1=2 [111]. In comparison to the density derivatives
plotted in Figs. 3 and 4, the peak of derivatives in this case is
smoother and does not diverge at the critical point. Thus
signifying the existence of a crossover in this scenario.
Using the critical temperature values derived from

Figs. 4 and 5, the QCD phase diagram for different system
sizes and strangeness chemical potential has been displayed
in Fig. 6. The chiral phase boundary and the deconfinement
transition line have been shown for R ¼ ∞, 5 and 3 fm and
μS ¼ 0 in the above panel while for μS ¼ 200, 0, −100 and
−160 MeV and R ¼ ∞ in the below panel. At the critical
point, the first-order phase transition changes to the cross-
over for the chiral phase transition. The position of the
critical point at the vanishing value of μS and infinite size is
ðμqðCPÞ; TCPÞ ¼ ð306; 55Þ MeV. For R ¼ 5 fm, the critical
value of the temperature drops by 16.37% and increases by
4.91% for quark chemical potential. A further drop of
19.57% for the critical temperature and a 9.66% increase in
quark chemical potential value is observed forR ¼ 3 fm. For
the positive value of μS, it should be noted that the first-order
phase transition line almost overlaps that of μS ¼ 0, but TCP
falls by 14.5%, while μqðCPÞ changes positively by only

0.9%. This can also be observed in the trends of u quark
condensate in Fig. 1,where a negligible change is observed at
T ¼ 30 and 60 MeV with increasing μB. For μS ¼
−100 MeV, the critical temperature rises by 50.9% whereas
μqðCPÞ falls by 12.42%. For μS ¼ −160 MeV, critical quark
chemical potential decreases by 11.2%, whereas TCP
increases further by 4.81%. Hence, from the above discus-
sion, it is clear that the critical point shifts to a lower
temperature value and higher quark chemical potential with
decreasing system size. A similar change in the value of the
critical point has also been observed in the Polyakov loop
modified Nambu-Jona-Lasinio (NJL) model [20,35], though
an opposite change to a higher temperature for the critical
point has also been reported with a decrease in volume in the
framework of Polyakov chiral quark mean field model [34].
As the value of μS approaches the negative value, the

phase boundary becomes a first-order phase transition with
increasing TCP and decreasing μqðCPÞ. The change in the
phase transition order at finite μS with increasing temper-
ature has also been highlighted in [58,112]. Thevalues of the
critical points for varying volume and strangeness chemical
potential have been listed in Table I. The deconfinement
boundary remains crossover for all temperatures and quark
chemical potential values for allR and μS. Avery small shift

FIG. 6. The QCD phase diagram for varying system sizes, R ¼ ∞, 5, and 3 fm [in subplot (a)] and strangeness chemical potential,
μS ¼ 200, 0, −100, and −160 MeV [in subplot (b)], for vector coupling constant, gv ¼ 6.5.
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to lower values is observed for the deconfinement transition
temperature for reduced system volume and negative values
of strangeness chemical potential.
Fluctuations and susceptibilities of conserved charges

have been recognized as observables, which helps to find
the location and nature of the QCD critical point. Figures 7
and 8 shows the second-order susceptibility and kurtosis of
quark number and strangeness number for varying values of
system volume and μS. The susceptibilities have been
calculated using Taylor’s series expansion method for
vanishing values of corresponding chemical potentials. In
Figs. 7(a) and 7(c), for zero value of μS and changing system
size, χq2 and χ

q
4=χ

q
2 changes rapidly near the transition regime.

There is a slight shift in the critical temperature value to a
higher temperature with decreasing system size. But as
discussed earlier, for finite values of μq, the critical temper-
ature shifts toward lower values for a reduced systemvolume.
On the other hand, for finite values of μS and infinite system
size, the critical temperature is shifted to a lower value for
decreasingμS, which contrasts with results discussed at finite

μq. The kurtosis value drops nearly to zero for higher
temperatures, which signifies the change in degrees of
freedom to quarks. The value of second-order susceptibility
for quarks increases monotonically with the rise in temper-
ature in both scenarios. The critical temperature for
zero value of μq appears to be around 155 MeV, which
coincides with the results of lattice QCD [113]. The value of
susceptibilities depends on the form of the Polyakov
loop under consideration and vector interactions. The com-
parisonof these fluctuations of conserved chargeswith lattice
data for changing gv and the Polyakov loop has been
discussed in earlier work for the zero value of μS and infinite
volume [70].
The trend of second-order susceptibility of strangeness

number is similar to that of χq2 . The kurtosis for the
strangeness number shows a peak around the transition
regime. The peak position is found to be shifted toward a
lower temperature value for increasing system volume. This
is similar to the change observed in the susceptibilities of
quark number. While investigating the derivatives of the

FIG. 7. The second order susceptibility, χq2 [in subplots (a) and (b)], and kurtosis, χ
q
4=χ

q
2 [in subplots (c) and (d)], plotted as a function

of temperature, T. Results are shown for system size R ¼ ∞, 5, and 3 fm [in subplots (a) and (c)] and strangeness chemical potential,
μS ¼ 0, −100, and −160MeV [in subplots (b) and (d)].

TABLE I. The value of critical temperature and quark chemical potential for finite values of system size and
strangeness chemical potential.

R value R ¼ ∞ R ¼ 5 fm R ¼ 3 fm R ¼ ∞ R ¼ ∞ R ¼ ∞

μS value μS ¼ 0 μS ¼ 0 μS ¼ 0 μS ¼ 200 MeV μS ¼ −100 MeV μS ¼ −160 MeV
TCP (MeV) 55 46 37 47 83 87
μqðCPÞ (MeV) 306 321 352 309 268 238
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chiral condensates, the change observed in critical temper-
ature is opposite to that studied for finite chemical
potential value.

B. QCD phase diagram for anisotropic
momentum distribution

In this section, we discuss in detail the impact of the
anisotropic distribution of momentum-space in finite-vol-
ume quark matter. When the value of the anisotropy
parameter is small, it can be derived in terms of one-
dimensional Bjorken expansion within the Navier-Stokes
limit for a system resembling an ideal massless parton gas
[114]. The expression for ξ is thus defined as ξ ¼ 10

Tτ
η
s,

where η is the shear viscosity, s is entropy density and τ
represents the proper time of the medium [114]. Using the
above expression, ξ is estimated to be around 0.3 for a
relaxation time of 6 fm=c, the ratio η=s ¼ 1=4π, and a
critical temperature of 160 MeV at RHIC. Hence, by
considering a very little deviation from the isotropic
momentum space, the value of ξ is considered to be
-0.2, 0.2, and 0.4 in current work. The isotropic momentum
distribution is represented by ξ ¼ 0, as in the Sec. III A. In
order to study the change in critical point due to varying
vector interactions, the value of v ¼ 0.5 and hence vector
coupling constant, gv ¼ 3.25, is taken. The value of μI is
fixed at 30 MeVand strangeness chemical potential at μS ¼
200 MeV for R ¼ ∞ and 3 fm.
In Figs. 9 and 10, we have shown the variation of u quark

condensate, σu=σu0, (normalized with respect to vacuum
value of u quark condensate, σu0), strange quark conden-
sate, σs=σs0, (normalized with respect to vacuum value of
strange quark condensate, σs0) and Polyakov loop varia-
bles, Φ and Φ̄, as a function of temperature, T respectively.
The order parameters are investigated for different values of
the anisotropy parameter, ξ, and value of R ¼ ∞ and 3 fm
for quark chemical potential values fixed at 0 and 300 MeV.
For the vanishing value of quark chemical potential
and both system sizes, σu=σu0 and σs=σs0 decrease

continuously with the rise in temperature values for all
values of ξ. With the increase in value of ξ, σu=σu0, and
σs=σs0 value increases for a given T and μq, their melting
behaviors exhibit a smoother transition. This observation
indicates that large deviations from the isotropic medium
tend to postpone the restoration of chiral symmetry. In the
case of finite μq, the transition appears to be happening at a
lower value of temperature at a given value ξ. In Figs. 9(b)
and 9(d), the value of condensates drops to a lower value as
compared to those at finite volume and finite quark
chemical potential. This is attributed to the fact that the
chiral symmetry restoration happens at higher μq for
decreasing system size, as concluded in the previous
section. Thus, with increasing volume, we observe a sharp
fall in σu=σu0, and σs=σs0 with varying values of anisotropy
parameter at higher μq. Contrary to the case of quark
condensates, the value of Φ and Φ̄ increases continuously
as a function of temperature in all scenarios. The swift rise
in Polakov loop variables with increasing T signifies the
transition of confined state to deconfinement QGP. For the
vanishing value of quark chemical potential, the Φ and Φ̄
have equal values. With an increasing value of ξ and at a
given μq, the transition temperature seems to shift to a
higher T value. Thus, the deconfinement phase transition
line may shift to the higher value of temperature for a given
value of quark chemical potential with an increase in
momentum anisotropy of the system.
As discussed earlier, the phase diagram is plotted by

investigating the derivatives of order parameters of the
model. Figure 11 illustrates the derivatives of quark
condensates and Polyakov loop variables for different
values of ξ, and vanishing quark chemical potential. The
peak of the derivatives of order parameters determines the
critical temperature at a given value of μq. Clearly, with an
increased anisotropic parameter, the peak is shifted to a
higher temperature value, signifying the change in the
transition line to higher T values. The peak of the up and
strange quark condensate derivative coincides at a given

FIG. 8. The second-order susceptibility, χS2 [in subplot (a)], and kurtosis, χ
S
4=χ

S
2 [in subplot (b)], plotted as a function of temperature, T

and system size R ¼ ∞, 5, and 3 fm.

IMPACT OF NONZERO STRANGENESS AND MOMENTUM … PHYS. REV. D 110, 014028 (2024)

014028-15



FIG. 9. The u quark condensate, σu=σu0, (normalized with respect to vacuum value of u quark condensate, σu0) and strange quark
condensate, σs=σs0, (normalized with respect to vacuum value of strange quark condensate, σs0) plotted as a function of temperature, T,
for anisotropy parameter, ξ ¼ −0.2, 0, 0.2, and 0.4. Results are shown for system size R ¼ ∞ [in subplots (a), (b), (c), and (d)], and 3 fm
[in subplots (e), (f), (g), and (h)] and strangeness chemical potential, μq ¼ 0 [in subplots (a), (c), (e), and (g)], and 300 MeV [in subplots
(b), (d), (f), and (h)].
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value of ξ, showing the overlap of the strange and non-
strange chiral boundary. A similar shift of peak to higher T
values is observed for Polaykov loop variables with
increasing ξ. The shift of the critical point to a lower T

value, with increasing system size, at a given value of ξ
demonstrates the change in the phase transition line. Using
the following derivatives and determining the critical
temperature for varying μq, the phase diagram showing

FIG. 10. The Polyakov loop variables Φ and Φ̄ plotted as a function of temperature, T, for anisotropy parameter, ξ ¼ −0.2, 0, 0.2, and
0.4. Results are shown for system size R ¼ ∞ [in subplots (a), (b), (c), and (d)], and 3 fm [in subplots (e), (f), (g), and (h)] and
strangeness chemical potential, μq ¼ 0 [in subplots (a), (c), (e), and (g)], and 300 MeV [in subplots (b), (d), (f), and (h)].
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chiral phase boundary and deconfinement transition has
been shown in Fig. 12. With the increase of momentum-
space anisotropy, the chiral phase boundary shifts to a
higher temperature and quark chemical potential values,

which was also clear from the behavior of the order
parameter. Similarly, the deconfinement boundary also shifts
to higher temperature values for increasing ξ. As discussed
earlier, the position of the CEP is determined by visualizing

FIG. 11. The derivatives of quark condensates [in subplots (a), (b), (c), and (d)] and Polyakov loop variable [in subplots (e), (f), (g), and
(h)] plotted as a function of temperature, T, for anisotropy parameter, ξ ¼ −0.2, 0, 0.2 and 0.4. Results are shown for system sizeR ¼ ∞ [in
subplots (a), (c), (e), and (g)], and 3 fm [in subplots (b), (d), (f), and (h)] and value of quark chemical potential, μq fixed at 0 MeV.
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the derivative of strange and nonstrange quark densities. The
CEP for isotropic medium with vector coupling constant
gv ¼ 3.25 is ðμqðCPÞ; TCPÞ ¼ ð291; 70Þ MeV. When com-
pared to the value of the critical point for gv ¼ 6.5 in the
previous section, the CEP shifts to a higher value of T and

low μq for decreasing vector coupling [77]. For ξ ¼ −0.2,
the CEP is observed at ðμqðCPÞ; TCPÞ ¼ ð262; 82Þ MeV,
whereas for ξ ¼ 0.2, ðμqðCPÞ; TCPÞ ¼ ð313; 63Þ MeV.
With further increase in momentum anisotropy parameter
to 0.4, ðμqðCPÞ; TCPÞ ¼ ð332; 55Þ MeV. With the change in

FIG. 12. The QCD phase diagram plotted for varying values of anisotropy parameter, ξ, and vector coupling constant fixed at
gv ¼ 3.25.

FIG. 13. The second-order susceptibility of quark number, χq2 , and kurtosis, χq4=χ
q
2 , [in subplots (a) and (c)] and second-order

susceptibility of strangeness number, χS2 , and kurtosis, χS4=χ
S
2 [in subplots (b) and (d)] plotted as a function of temperature, T, for

anisotropy parameter, ξ ¼ −0.2, 0, 0.2 and 0.4.
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the value of ξ from −0.2 to 0.4, there is a rise of 26.7% in
μqðCPÞ, whereas a fall of 32.9% in the value of TqðCPÞ. In the
quark meson model, as the value of ξ changes from -0.4 to
0.4, the CEP has been shown to shift from ðμqðCPÞ; TCPÞ ¼
ð174; 100Þ MeV to ðμqðCPÞ; TCPÞ ¼ ð270; 79Þ MeV [49]. A
similar trend in the CEP with increased deviation from the
isotropic momentum distribution has been observed in the
PNJL model [115]. This shows that with an increase in
momentum anisotropy, the first-order phase transition tends
to disappear and becomes a crossover.
Figure 13 shows the second-order susceptibility and

kurtosis for the quark number in the left column and the
strangeness number in the right column for different values
of ξ. It is observed that in the phase transition regime, the χq2
and kurtosis are stronger for momentum distribution
stretched along the direction of anisotropy (ξ ¼ −0.2) as
compared to the case for isotropic and squeezed momen-
tum distribution (ξ ¼ 0.2, 0.4). The value of the critical
point at zero value of μB for varying ξ changes according to
as discussed in Fig. 12. Hydrodynamic simulations and
experiments in HICs suggest the existence of a momentum
distribution with ξ > 0 along the beam direction. It has
been shown that in anisotropic quark matter, compared to
isotropic conditions, the net baryon kurtosis and skewness
values may be heightened, particularly at lower collision
energies [115]. This can be investigated in future work by
studying the susceptibilities at finite chemical potential.

IV. SUMMARY

To summarize, we have discussed the thermodynamic
properties of asymmetric quark matter using the Polyakov
quark meson model extended by introducing vector inter-
actions. The effects of strangeness chemical potential,
anisotropic momentum distribution, and finite system size
have been investigated by analyzing the variation of strange
and nonstrange fields at varying temperatures and densities.
The derivatives of quark condensates and Polyakov loop
variables have been studied to locate the position of the
QCD critical point. We have observed that the production
of s quarks gets saturated at high-temperature values. The
chiral phase boundary for u, d, and s quarks coincides with
a crossover transition at lower μq before the critical point
and a first-order phase transition at higher values of quark
chemical potential. The deconfinement phase boundary

remains a crossover for all temperature values. With
decreasing system volume, the critical point is found to
shift to lower values of temperature and higher values of
quark chemical potential. On the other hand, the critical
point is repositioned to a higher temperature and lower
values of quark chemical potential for the decreasing value
of strangeness chemical potential. The susceptibilities of
conserved charges are enhanced in the transition region.
The peak of the kurtosis for the strangeness number gives
the value of the critical point to be ≈155 MeV, which is
consistent with the lattice QCD studies at zero chemical
potential. For increasing the value of the anisotropic
momentum parameter, the CEP shifts to lower temperature
and higher quark chemical potential values. Thus, inves-
tigating the QCD phase diagram in isospin asymmetric
quark matter with anisotropic momentum distribution is
crucial for enhancing the understanding of phase transitions
and critical endpoint. By examining how the phase boundary
varies with changing volume, we indicate a heightened
possibility of detecting signatures of a CEP in low-energy
experiments aiming to produce high baryonic densities,
particularly when temperatures are not excessively high.
This includes examining the potential fluctuations
within the fireball, which can lead to regions with positive
and negative net-strangeness and net-isospin, respectively.
Understanding the fluctuations of conserved charges
through a comparative analysis involving low-energy effec-
tivemodels, latticeQCD, and experimental data is crucial for
predicting the phase structure of QCD at high densities
[115]. The future experimental programs such as RHIC-
BES II data may provide more opportunities to address the
uncertainties in understanding the QCD phase structure. In
futurework, the susceptibilities of conserved charges can be
studied at the finite value of chemical potential [116]. The
model can be further improvised using the functional
renormalization approach [117,118].
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