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Exclusive C ¼ þ1 scalar, axial-vector, and tensor quarkonium production in high-energy electron-
proton scattering requires a C-odd t-channel exchange of a photon or a three-gluon ladder. We derive the
expressions for the corresponding amplitudes. The relative phase of the photon vs three-gluon exchange
amplitudes is determined by the sign of the light-front matrix element of the eikonal color current operator
dabcJþaJþbJþc at moderate x, and is not affected by small-x QCD evolution. Model calculations predict
constructive interference, which is particularly strong for momentum transfer jtj ∼ 1 GeV2 where the cross
section for χcJ production exceeds that for pure photon exchange by up to a factor of 4. Exclusive χcJ
electroproduction at the high luminosity Electron-Ion Collider occurs with well measurable rates and
measurements of these processes should find evidence for the perturbative odderon exchange. We also
compute the total electroproduction cross section as a function of energy and provide first estimates of the
number of χcJ events per month at the Electron-Ion Collider design luminosity.
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I. INTRODUCTION

A basic prediction of QCD, related to the nonzero cubic
Casimir invariant, is that there exists a contribution to high-
energy scattering amplitudes from a C-conjugation odd
exchange driven mostly by gluons, with a weakly energy
dependent cross section. The possible existence of such an
exchange, called the odderon, was predicted 50 years ago
from general principles of quantum field theory [1]. If the
scattering involves hadrons of a size much smaller than the
QCD confinement scale, or high momentum transfer, then
the composition of the exchanged “state” can be under-
stood from perturbative QCD. At leading order in pertur-
bation theory, it corresponds to an exchange of three gluons
which is symmetric under permutations of their colors. At
high energies the three-gluon exchange is dressed by higher
order QCD corrections enhanced by logarithms of energy
that have to be resummed into a gluon ladder. It accounts
for interactions between the exchanged t-channel gluons,
and for virtual corrections. The resulting “Reggeized”

three-gluon exchange is the hard odderon. In the weak
field limit the corresponding Bartels–Jaroszewicz–
Kwieciński–Praszałowicz (BJKP) linear QCD evolution
equation has been obtained long ago [2–4], and it amounts
to the Reggeization of the exchanged gluons by iteration of
the Balitsky–Fadin–Kuraev–Lipatov (BFKL) interaction
kernel [5–7] for each pair of gluons in the ladder. The
NLO corrections to the BJKP equation were found in
Ref. [8]. At asymptotically high energies the leading
solution to the BJKP equation corresponds to a configu-
ration of gluons in which two Reggeized gluons are
combined together [9]—the Bartels–Lipatov–Vacca
(BLV) solution. The BLV solution couples to color dipoles
so it is particularly important in C-even quarkonia (or
meson) photo- and electroproduction [9]. The intercept of
this solution equals one, in the leading logarithmic approxi-
mation [9], and it was argued that it remains at this value to
all orders in the perturbative expansion [10].
The nonlinear odderon evolution equation for dipole-

proton scattering was established in Refs. [11,12]. This
equation typically produces solutions where the odderon
amplitude decreases with energy [13–17], as will be
confirmed also in our present work. The seed for this
evolution to small x is provided by the cubic Casimir
dabcJþaJþbJþc in the effective action describing color
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current (Jþa) fluctuations in the proton at moderately

small x [18,19], which allows the C-odd gluon ladder to
couple to the proton. The matrix element1 of this operator
could also be evaluated directly from the light-cone wave
function of the proton [23,24]. A key point for the present
analysis is that the odderon evolution equation to small x
does not alter the sign of the amplitude. Hence, the
interference pattern with the electromagnetic amplitude
due to single photon exchange is determined by the sign of
the matrix element of the dabcJþaJþbJþc operator at the
initial, moderately small x.
TOTEM collaboration at CERN-LHC has measured the

differential cross section for pp elastic scattering at
ffiffiffi
s

p ¼
2.76 GeV [25]. They observe a significant difference to the
cross section for pp̄ scattering at

ffiffiffi
s

p ¼ 1.96 GeV mea-
sured by D0 [26]. Assuming that the difference in energy is
negligible they conclude that these results provide evidence
for the exchange of a color singlet gluonic state with odd
C-parity, the odderon. However, these measurements
involve the scattering of hadrons with a size of order the
QCD confinement scale as well as low momentum trans-
fers, jtj ≪ 1 GeV2. Hence, an analysis of the nature of the
t-channel exchange from perturbative QCD would not
appear reliable.
Exclusive production of pseudoscalar ηc quarkonia in

DIS has previously been proposed as a process suitable for
the discovery of the hard odderon exchange in QCD
[17,27–33]. In practice, the detection of this process is
difficult as the ηc has small branching ratios to all relevant
decay channels. For example, the radiative ηc → γγ mode
has a tiny (∼10−4) branching ratio,2 while the hadronic
ηc → ρρ mode has a branching ratio of 1.5%. Also, the
cross section for exclusive production of J=ψ is expected to
be far greater than that for ηc, and so most ηc’s would
originate from a J=ψ → ηcγ decay.3 The experimental
identification of the soft photon (MJ=ψ ¼ 3.097 GeV,
Mηc ¼ 2.984 GeV) is difficult [35,36].
Alternative approaches for the discovery of the hard

odderon include Pomeron–odderon interference (with a
background from Pomeron–photon interference) which
would manifest in asymmetries in exclusive production
of two charged particles in DIS [37–39]; for the γ�p → χcp
process considered here, it is instead the interference of the
Primakoff-like amplitude with the QCD odderon exchange

amplitude which will be important, i.e., photon-odderon
interference. Another process which involves a C-odd
t-channel gluonic exchange is exclusive production of a
J=ψ in double-diffractive proton-proton scattering [40,41].
At high-energy proton colliders this requires instrumenta-
tion over a large range of rapidity, close to the beams.
GlueX Collaboration at Jefferson Lab has recently

reported the observation of 56.5� 8.2 exclusive χc1ð1PÞ
and 12.7� 4.5 χc2ð1PÞ production events near threshold
energy [42]. They noticed a “dramatic difference” in the
momentum transfer t-distribution of events as compared to
J=ψ production in that the cross section for χc production
appears to drop off much less rapidly with increasing jtj. In
other words, the probability that the struck proton remains
intact at high momentum transfer is much greater in γp →
χcp than in γp → J=ψp events. This remarkable result
illustrates the importance of the underlying QCD dynamics
as opposed to naive expectations based solely on the mass
of the produced quarkonia. A much harder t dependence for
exclusive production of ηc vs J=ψ in eikonal dipole-proton
scattering is predicted by simple light-front constituent
quark models [33]. Inspired by the GlueX measurement of
exclusive χc production in DIS at Jefferson Lab, here we
consider the same process but at high energies appropri-
ate for the future Electron-Ion Collider (EIC) [43,44] where
dipole model factorization [45,46] applies, and where the
t-channel exchange of aC-odd color singlet state dominates.
Within the χcJ family (J ¼ 0, 1, 2), χc1 has the largest

branching ratio for the radiative χc1 → J=ψγ decay (34.3%
as opposed to 1.4% for χc0 and 19.0% for χc2). Indeed, this
was the detection channel used by the GlueX measurement.
Therefore, the production of χc1 axial-vector and χc2 tensor
quarkonia may prove the most promising channels for
discovery of the hard odderon. This is further corroborated
by the fact that for χc1 and χc2 the odderon and photon
exchange contributions become comparable at lower jtj than
for χc0, within the acceptance of the proton spectrometer of
the EIC design detector [44]. However, for the χcJ quarkonia
there is again a feed-downchannel fromexclusive production
of ψð2SÞ with subsequent decay ψð2SÞ → χcJγ. Hence, the
identification and rejection of such feed down is required.
The paper is organized as follows. In Sec. II we start with

the computation of the amplitude and the corresponding
γ�p cross section for exclusive production of C-even scalar,
axial-vector, and tensor quarkonia. We derive the light-cone
wave functions of quarkonia, whereas the amplitude is
obtained as an overlap with the photon light-cone wave
function. We introduce the odderon exchange amplitude
and discuss its evolution to small x. Section III is devoted to
the computation of the Primakoff contribution, where we
pay special attention to the t → 0 limit. In Sec. IV we
perform a numerical fit of the χcJ wave functions. The main
results are shown in Sec. V, where we numerically compute
exclusive γ�p → χcJp and ep → χcJep cross sections and
the expected number of events at the EIC. Our findings are

1We are here concerned with the off-forward matrix element
for nonzero momentum transfer t. In the t → 0 limit, instead, the
“spin dependent odderon” [20–22] is associated with a spin flip
of the proton in DIS.

2We take all branching ratios and particle masses from the
“Review of Particle Physics” [34].

3This issue could be mitigated by considering ηcð2SÞ instead,
since it lies between the J=ψ and the ψð2SÞ. The branching ratio
ψð2SÞ → ηc þ γ is favorably small (ð7� 5Þ × 10−4) but the
detection of the ηcð2SÞ is again problematic due to the small
branching ratios for many channels.
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summarized in the final Sec. VI. Several Appendixes
follow where we explain the computational steps leading
to some of the results from the main text.

II. THE PRODUCTION AMPLITUDE
OF C-EVEN QUARKONIA

We consider the process γ�ðqÞpðPÞ → pðP0ÞHðΔÞ
where H is a C-even quarkonium state, specifically a
P-wave χcJ charmonium state with J ¼ 0, 1, 2. However
our derivations are presented in a general form so that they
apply also to other C ¼ þ1 qq̄ bound states such as
bottomonia, or even mesons with light flavor content.
Our computation is performed in the dipole frame where

q ¼ ð−Q2=2q−; q−; 0; 0Þ, P ¼ ðPþ; 0; 0; 0Þ, and the proton
mass Mp ≪

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqþ PÞ2

p
is neglected. We use the conven-

tion for the components ðvþ; v−; v1; v2Þ of a four-vector v
where v� ¼ ðv0 � v3Þ= ffiffiffi

2
p

are the � light-cone compo-
nents. The amplitude is computed using light-cone gauge
A− ¼ A · n ¼ 0, that is, nμ ¼ δμþ, for the field correspond-
ing to the incoming photon.
Following a similar procedure as in [17,33] our starting

point is the amplitude

hMλλ̄ðγ�p → HpÞi

¼ 2q−Nc

Z
r⊥b⊥

e−iΔ⊥·b⊥ iOðr⊥; b⊥ÞAλλ̄ðr⊥;Δ⊥Þ; ð1Þ

with λ and λ̄ the helicities of the incoming photon and the
outgoing quarkonium, respectively. For brevity, we will
oftentimes write the amplitude simply as hMλλ̄i (omitting
the round parenthesis). Here Aλλ̄ðr⊥;Δ⊥Þ is the reduced
amplitude, described physically in terms of the photon
(Ψγ

λ;hh̄
) and the quarkonium (ΨH

λ;hh̄
) wave function overlap.

We have4

Aλλ̄ðr⊥;Δ⊥Þ ¼
Z
z

Z
l⊥l0⊥

X
hh̄

Ψγ
λ;hh̄

ðl⊥; zÞΨH�
λ̄;hh̄

ðl0⊥ − zΔ⊥; zÞ

× eiðl⊥−l0⊥þ
1
2
Δ⊥Þ·r⊥ : ð2Þ

A particular contribution to the amplitude (1) is shown in
Fig. 1, where the upper heavy quark loop represents the
reduced amplitude Aλλ̄ðr⊥;Δ⊥Þ, and the three-gluon con-
tribution is the lowest order depiction of the odderon
exchange amplitudeOðr⊥; b⊥Þ for the particular case where
the gluons connect to three different quarks in the proton
wave function, represented by the green blob.
The photon wave-function in momentum space is

given by

Ψγ
λ;hh̄

ðk⊥; zÞ≡
ffiffiffiffiffi
zz̄

p ūhðkÞeqcϵðλ; qÞvh̄ðq − kÞ
k2⊥ þ ε2

; ð3Þ

where qc ¼ þ2=3 is the fractional electric charge of the
c-quark and uhðkÞ (vh̄ðq − kÞ) are particle (antiparticle)
spinors with h ¼ �1 indicating the sign of the helicity h=2.
For explicit computations we use Lepage–Brodsky (LB)
spinors [47]—see Appendix A for their expressions. ϵðλ; qÞ
is the photon polarization vector: we have ϵð0; qÞ ¼
ðQ=q−; 0; 0; 0Þ for longitudinal (λ ¼ 0) and ϵðλ; qÞ ¼
ð0; 0; ϵλ⊥Þ for transverse (λ ¼ �1) polarization. We follow
the LB convention for the 2D polarization vector:
ϵλ⊥ ≡ ð−λ;−iÞ= ffiffiffi

2
p

, and the common shorthands ε≡ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

c þ zz̄Q2
p

and z̄≡ 1 − z, with z ¼ k−=q−. We compute
the photon wave function as described in Appendix A, with
the result

Ψγ
þ;hh̄

ðk⊥; zÞ ¼ −
ffiffiffi
2

p
eqc½k⊥eiϕkðzδhþδh̄− − z̄δh−δh̄þÞ

þmcδhþδh̄þ�
1

k2⊥ þ ε2
;

Ψγ
−;hh̄ðk⊥; zÞ ¼ −

ffiffiffi
2

p
eqc½k⊥e−iϕkðz̄δhþδh̄− − zδh−δh̄þÞ

þmcδh−δh̄−�
1

k2⊥ þ ε2
;

Ψγ
0;hh̄

ðk⊥; zÞ ¼
eqc2Qzz̄
k2⊥ þ ε2

δh;−h̄; ð4Þ

where k⊥e�iϕk ¼ k1 � ik2. Equation (4) coincides with the
result of Ref. [48] for both λ ¼ 0 and λ ¼ �1 after adjusting
for an overall factor of −

ffiffiffiffiffiffi
Nc

p
due to the difference in

conventions. Comparing to Ref. [49] the result coincides for

FIG. 1. An example Feynman diagram illustrating the ampli-
tude for exclusive production of χcJ ’s via three-gluon (odderon)
exchange from the proton in γ�p collision. The green blobs
represent the proton wave function that is shown here in terms of
three valence quarks. The magenta blob is the χcJ wave function.
In the dipole approach the two gluons coupling to the same quark
line in the top part of the diagram occupy the same point in
transverse position space.

4We employ the following abbreviation for the transverse co-
ordinate space integrals:

R
r⊥ ≡

R
d2r⊥. For transverse and longi-

tudinal momentum space integrals we use
R
l⊥ ≡

R
d2l⊥=ð2πÞ2

and
R
z ≡

R
1
0 dz=ð4πÞ.
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λ ¼ 0 (again up to a factor −
ffiffiffiffiffiffi
Nc

p
) but there is an opposite

overall sign for λ ¼ �1 (the relative factor beingþ ffiffiffiffiffiffi
Nc

p
), as

also explicitly noted in [49].While such overall signs play no
role for the processes involving overlaps of photons and
vector quarkonia, the sign is important for tensor quarkonia,
since the tensor wave function can be understood as a linear
superposition of the vector wave functions; see Eq. (12)
below. The computation described in Appendix A takes the
LB spinors as a starting point from which we proceed to
explicitly compute the photonwave function aswell as all the
subsequent quarkonia wave functions in a systematic and
self-contained fashion.
The explicit expressions for the quarkonia wave func-

tions will be given in the following subsection. Here we
want to emphasize that thanks to the C ¼ þ1 parity of the
quarkonium wave function [see Eq. (10) below] and to the
C ¼ −1 parity of the photon, the amplitude is strictly
proportional to the C ¼ −1 odderon amplitude Oðr⊥; b⊥Þ.
In the high-energy limit of eikonal dipole-proton scattering
we have [11,12]

Oðr⊥;b⊥Þ¼−
1

2iNc
trhVðx⊥ÞV†ðy⊥Þ−Vðy⊥ÞV†ðx⊥Þi; ð5Þ

where r⊥ is the dipole size and b⊥ the impact parameter

r⊥ ≡ x⊥ − y⊥; b⊥ ≡ x⊥ þ y⊥
2

; ð6Þ

respectively.5 Vðx⊥Þ and V†ðx⊥Þ represent Wilson lines at
transverse coordinate x⊥ which describe the propagation of
the quark and antiquark, respectively, through the Aþ color
field of the target proton in covariant gauge; and h� � �i

denotes an average over the configurations of that field; see
Appendix D for the conventions used in this work.
In Fourier space, the odderon amplitude is given by

Oðr⊥;Δ⊥Þ≡
Z
b⊥
e−iΔ⊥·b⊥Oðr⊥; b⊥Þ: ð7Þ

The C-invariance of the full amplitude (1) is now easily
verified. We can conventionally start by first exchanging
the quark-antiquark coordinates x⊥ ↔ y⊥ so that r⊥ →
−r⊥ in the odderon amplitude. Because of the phases in (2)
this needs to be followed by an exchange of quark and
antiquark transverse momenta l⊥ ↔ l0⊥ − zΔ⊥ and z ↔ z̄.
By this transformation only the photon wave function picks
up a sign which cancels with the sign in the transformation
of the odderon amplitude as Oð−r⊥; b⊥Þ ¼ −Oðr⊥; b⊥Þ.

A. Light-cone wave function of C-even quarkonia

The light-cone wave function of the C-even quarkonia,
ΨH

λ̄;hh̄
, is modeled by the following covariant ansatz:

ΨH
λ̄;hh̄

ðk⊥; zÞ≡ 1ffiffiffiffiffi
zz̄

p ūhðkÞΓH
λ̄
ðk; k0Þvh̄ðk0ÞϕHðk⊥; zÞ: ð8Þ

Here λ̄ is the quarkonium helicity and k (k0 ¼ Δ0 − k) is the
quark (antiquark) momentum, with Δ0 the invariant four
momentum of the cc̄ pair. ΓH

λ̄
is the appropriate Dirac

matrix vertex function for either a scalar (H ¼ S), axial
vector (A), or a tensor (T ) quarkonium which we take as6

ΓH
λ̄
ðk; k0Þ ¼

8>><
>>:

1; H ¼ S;

iγ5Eðλ̄;Δ0Þ; H ¼ A;
1
2
ðγμðkν − k0νÞ þ γνðkμ − k0μÞÞEμνðλ̄;Δ0Þ; H ¼ T :

ð9Þ

ϕHðk⊥; zÞ is a nonperturbative scalar function that we
model later (see Sec. IV).
The structure of (9) is motivated in part to ensure the

correct C-even property of the quarkonia wave function in
(8). Namely, by exchanging the quark and the antiquark
momenta (k ↔ k0) and helicity (h ↔ h̄) we have

ūh̄ðk0ÞΓH
λ̄
ðk0; kÞvhðkÞ ¼ þūhðkÞΓH

λ̄
ðk; k0Þvh̄ðk0Þ; ð10Þ

which holds thanks to the relation CðΓH
λ̄
ðk0; kÞÞTC−1 ¼

þΓH
λ̄
ðk; k0Þ with C ¼ iγ0γ2. Furthermore, the ΓT

λ̄
ðk; k0Þ

vertex is modeled as a coupling to the fermionic energy-
momentum tensor; see, e.g., [50–53].
In Eq. (9) the Eðλ̄;Δ0Þ describe the polarization state of

the axial quarkonia. To ensure that the axial vector carries
the correct quantum numbers, we require the transversality
condition

Δ0 · Eðλ̄;Δ0Þ ¼ 0: ð11Þ5The impact parameter of the dipole-proton collision is actually
b̃⊥¼zx⊥þ z̄y⊥¼b⊥−ð1

2
−zÞr⊥, and b̃⊥ is the Fourier conjugate

of the transverse momentum transfer Δ⊥. This is the origin of the
“off-forward phase” −iδ⊥ · r⊥ in Eq. (18). 6Our convention is γ5 ≡þiγ0γ1γ2γ3 and ϵ0123 ≡þ1 ¼ −ϵþ−12.
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This way, in the cc̄ rest frame, Eμðλ̄;Δ0Þ, reduces to its
spatial components corresponding to the total spin vector of
the cc̄ state. Recall that in the light-cone formulation the
“−” and ⊥ components of Δ0 are exactly equal to the
corresponding components of the quarkonia four-momen-
tum Δ, but that the “þ” components differ: Δþ ¼ ðM2

H þ
Δ2⊥Þ=2Δ− and Δþ

0 ¼ ðM0
2 þ Δ2⊥Þ=2Δ− with M2

0 ¼ Δ2
0

being the invariant mass of the cc̄ pair and M2
H ¼ Δ2

the quarkonia mass. This is because the cc̄ pair is allowed
to be virtual in the “þ” component, conjugate to the light-
cone time. Explicitly, we have

Eμðλ̄ ¼ �1;Δ0Þ ¼
�
ϵλ̄⊥ · Δ⊥
Δ− ; 0; ϵλ̄⊥

�
;

Eμðλ̄ ¼ 0;Δ0Þ ¼
�
Δ2⊥ −M2

0

2M0Δ− ;
Δ−

M0

;
Δ⊥
M0

�

¼ 1

M0

Δμ
0 −

M0

Δ− nμ: ð12Þ

Using Δ instead of Δ0 has no effect on the λ̄ ¼ �1

components, namely Eμðλ̄ ¼ �1;Δ0Þ ¼ Eμðλ̄ ¼ �1;ΔÞ.
However, the λ̄ ¼ 0 case differs as

Eμðλ̄ ¼ 0;ΔÞ ¼ 1

MA
Δμ −

MA

Δ− nμ: ð13Þ

We have checked that the projector iγ5Eðλ̄ ¼ 0;ΔÞ (instead
of iγ5Eðλ̄ ¼ 0;Δ0Þ) leads to incorrect results for the cc̄ state
as it leaves an admixture with spin different from one. This
happens because in the light-cone formulation the rest
frames of the quarkonia and of the cc̄ partonic state in
general move with different velocities, which is a conse-
quence of the difference in their “+” components of the four
momenta. The necessary condition for the correct projector,
Δ0 · Eðλ̄;ΔÞ ¼ 0, is fulfilled if and only if M0 ¼ MA. In
other words, we will assume that the amplitude for the
transition from Eμðλ̄ ¼ 0;Δ0Þ to Eμðλ̄ ¼ 0;ΔÞ is equal to
one. A similar approach was used in Ref. [54]. The
underlying principle of parton-hadron duality is also the
basis for the successful approach to exclusive ρ0 electro-
production [55,56].
The tensor quarkonia polarizations Eμνðλ̄;Δ0Þ can be

obtained in terms of Eμðλ̄;Δ0Þ, using Clebsch–Gordan
coefficients. We have [50]

Eμνð�2;Δ0Þ ¼ Eμð�1;Δ0ÞEνð�1;Δ0Þ;

Eμνð�1;Δ0Þ ¼
1ffiffiffi
2

p ðEμð�1;Δ0ÞEνð0;Δ0Þ

þ Eμð0;Δ0ÞEνð�1;Δ0ÞÞ;

Eμνð0;Δ0Þ ¼
1ffiffiffi
6

p ðEμðþ1;Δ0ÞEνð−1;Δ0Þ

þ Eμð−1;Δ0ÞEνðþ1;Δ0Þ
þ 2Eμð0;Δ0ÞEνð0;Δ0ÞÞ: ð14Þ

These polarization tensors are traceless, gμνEμνðλ̄;Δ0Þ ¼ 0,
and symmetric, Eμνðλ̄;Δ0Þ ¼ Eνμðλ̄;Δ0Þ. We also have
transversality conditions, Δμ

0Eμνðλ̄;Δ0Þ¼0¼Δν
0Eμνðλ̄;Δ0Þ,

as a consequence of (11). We have checked that Eq. (14) is
consistent with the polarization tensors written in [52], up
to overall signs.
It is instructive to explicitly compute the quarkonia wave

functions in this approach. Using LB spinors [47] we find
for the scalar quarkonia

ΨS
hh̄
ðk⊥; zÞ ¼

1

zz̄
½hk⊥e−ihϕkδhh̄ −mcðz − z̄Þδh;−h̄�ϕSðk⊥; zÞ:

ð15Þ

The helicity structure of the wave function agrees com-
pletely with the result in [57]; see (A.18) there. For the axial
quarkonia we have

ΨA
þ1;hh̄

ðk⊥; zÞ ¼ −
ffiffiffi
2

p
i

zz̄
½k⊥eiϕkðz̄δhþδh̄− þ zδh−δh̄þÞ

þmcðz − z̄Þδhþδh̄þ�ϕA;Tðk⊥; zÞ;

ΨA
−1;hh̄ðk⊥; zÞ ¼ −

ffiffiffi
2

p
i

zz̄
½k⊥e−iϕkðz̄δhþδh̄− þ zδh−δh̄þÞ

−mcðz − z̄Þδh−δh̄−�ϕA;Tðk⊥; zÞ;

ΨA
0;hh̄

ðk⊥; zÞ ¼ −
i
zz̄

1

MA
ð2k2⊥hδh;−h̄ þ 2mck⊥e−ihϕkδhh̄Þ

× ϕA;Lðk⊥; zÞ; ð16Þ

where k⊥e�iϕk ≡ k1 � ik2. At this point we have introduced
different scalar functions ϕA;Tðr⊥; zÞ and ϕA;Lðr⊥; zÞ for
transversely and longitudinally polarized quarkonia.7 The
helicity structure of (16) coincides with the axial part of
the Z-boson wave function from Refs. [58,59]. In Ref. [60]
the axial quarkonia wave function was computed starting
from the quarkonia rest frame followed by a Melosh trans-
formation. The resultingwave functions, their Eqs. (A.7) and
(A.9), agree up to an overall normalization constant
with (16).
For the tensor quarkonia we obtain the following results

ΨT
þ2;hh̄

ðk⊥; zÞ ¼ −
2

zz̄
k⊥eiϕk ½k⊥eiϕkðzδhþδh̄− − z̄δh−δh̄þÞ

þmcδhþδh̄þ�ϕT ;T2ðk⊥; zÞ;

ΨT
−2;hh̄ðk⊥; zÞ ¼

2

zz̄
k⊥e−iϕk ½k⊥e−iϕkðz̄δhþδh̄− − zδh−δh̄þÞ

þmcδh−δh̄−�ϕT ;T2ðk⊥; zÞ;

7For the sake of simplicity, in the case of λ̄ ¼ 0, we have
redefined ϕA;Lðk⊥; zÞ=M0 → ϕA;Lðk⊥; zÞ=MA, which introduces
only subleading effects in the heavy quark limit.
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ΨT
þ1;hh̄

ðk⊥; zÞ ¼
MT

zz̄
½−k⊥eiϕkðð3z − 4z2Þδhþδh̄−

þ ð3z̄ − 4z̄2Þδh−δh̄þÞ þmcðz − z̄Þδhþδh̄þ�
× ϕT ;Tðk⊥; zÞ;

ΨT
−1;hh̄ðk⊥; zÞ ¼

MT

zz̄
½k⊥e−iϕkðð3z̄ − 4z̄2Þδhþδh̄−

þ ð3z − 4z2Þδh−δh̄þÞ þmcðz − z̄Þδh−δh̄−�
× ϕT ;Tðk⊥; zÞ;

ΨT
0;hh̄

ðk⊥; zÞ ¼
ffiffiffi
2

p
ffiffiffi
3

p 1

zz̄
½ð3k2⊥ þ 2m2

cÞðz − z̄Þδh;−h̄
þmcðk⊥e−iϕkδhþδh̄þ − k⊥eiϕkδh−δh̄−Þ�
× ϕT ;Lðk⊥; zÞ: ð17Þ

The three different scalar functions ϕT ;T2ðk⊥; zÞ,
ϕT ;Tðk⊥; zÞ, and ϕT ;Lðk⊥; zÞ account for the two possible
transverse and longitudinal polarizations of the tensor
quarkonia.8 Comparing to Eq. (13) in Ref. [50], the wave
function for λ̄ ¼ þ2 polarization agrees with the first line in
(17) up to an overall normalization constant. For λ̄ ¼ −2
we find an opposite relative sign between the two terms in
square brackets [we agree, though, with the relative sign for
λ̄ ¼ −2 in Eq. (B.3) of [50] ]. For λ̄ ¼ �1 and λ̄ ¼ 0 the
results agree up to an overall normalization constant.
At this point we comment on the spin-momentum

structure of the wave functions in the rest frame. The C
parity of a qq̄ bound state is C ¼ ð−1ÞLþS and the χcJ
quarkonia with J ¼ 0, 1, and 2 have been classified by the
Particle Data Group as P-waves9 (L ¼ 1) [34]. Also, they
are spin triplets, S ¼ 1. Based on our model wave function
(8) we therefore explicitly checked that, after replacing the
light-cone LB spinors with Dirac spinors (uhðkÞ → usðkÞ
and vhðkÞ → vsðkÞ), the wave functions in the rest frame
take their expected nonrelativistic 3PJ spin-momentum
structure. The scalar wave function is proportional to
ξ†s̄ðσ · kÞξ̃s, while the axial-vector meson is ξ†s̄σ · ðk ×
EÞξ̃s [54,57,60,61]. Here ξs are the standard two-compo-
nent Pauli spinors and ξ̃s ¼ iσ2ξ�s . For the tensor wave
function we obtain ξ†s̄E

ijσikjξ̃s [62], at leading order in the
nonrelativistic limit.

B. Final expressions for the amplitudes

For explicit computations it is convenient to write the
reduced amplitude (2) in the following equivalent form;
see, e.g., Refs. [17,48,63]

Aλλ̄ðr⊥;Δ⊥Þ ¼ eqc

Z
z
e−iδ⊥·r⊥

Z
l⊥

eil⊥·r⊥

l2⊥ þ ε2

Z
l0⊥
e−iðl0⊥−zΔ⊥Þ·r⊥

× ϕHðl0⊥ − zΔ⊥; zÞ
1

zz̄
Aλλ̄ðl⊥; l0⊥ − zΔ⊥; zÞ;

ð18Þ

where δ⊥ ¼ 1
2
ðz − z̄ÞΔ⊥ ¼ ðz − 1

2
ÞΔ⊥. The helicity sum in

(2) is turned into a covariant Dirac trace

Aλλ̄ðl⊥; l0⊥ − zΔ⊥; zÞ

¼ 1

ð2q−Þ2 tr½ð=lþmcÞϵðλ; qÞð=l − =qþmcÞ

× γ−ð=l0 − ΔþmcÞΓH�
λ̄
ðl0;Δ − l0Þð=l0 þmcÞγ−�; ð19Þ

containing the physical information on the polarization-
dependent part of the photon-quarkonia wave function
overlap. Together with Eq. (1), Eqs. (18) and (19) comprise
the main formulas that will be used below to write the
γ�p → Hp amplitudes in a form suitable for numerical
computations. For the explicit evaluation of the traces we
have used FeynCalc [64].
We start with the computation of the amplitude for scalar

quarkonium. Inserting the first line of (9) into (19) yields

Aλ¼0ðl⊥; l1⊥; zÞ ¼ −4mcQzz̄ðz − z̄Þ;
Aλ¼�1ðl⊥; l1⊥; zÞ ¼ −2mc½ðz − z̄Þ2ðϵλ⊥ · l⊥Þ − ðϵλ⊥ · l1⊥Þ�;

ð20Þ

where l1⊥ ≡ l0⊥ − zΔ⊥. As a cross check, note that the
traces (20) are odd under joint l⊥ → −l⊥, l1⊥ → −l1⊥ and
z → z̄ transformation. In other words, the reduced ampli-
tude Aλðr⊥;Δ⊥Þ in (18) is odd under r⊥ → −r⊥. This is
consistent with Oðr⊥;Δ⊥Þ being odd under r⊥ → −r⊥ in
the full amplitude (1).
We now plug (20) into (18) and Fourier transform to

coordinate space. After separating the explicit polarization
dependence, the reduced amplitudes are found to be

A0ðr⊥;Δ⊥Þ ¼ eqc

Z
z
e−iδ⊥·r⊥ALðr⊥Þ;

Aλ¼�1ðr⊥;Δ⊥Þ ¼ eqcλeiλϕr

Z
z
e−iδ⊥·r⊥ATðr⊥Þ; ð21Þ

where

ALðr⊥Þ≡ −
2

π
mcQðz − z̄ÞK0ðεr⊥ÞϕSðr⊥; zÞ;

ATðr⊥Þ≡ i
ffiffiffi
2

p

2π

mc

zz̄

�
ðz − z̄Þ2εK1ðεr⊥ÞϕSðr⊥; zÞ

− K0ðεr⊥Þ
∂ϕS

∂r⊥

�
: ð22Þ

8In the case λ̄ ¼ �1 we have redefined M0ϕT ;Tðk⊥; zÞ →
MT ϕT ;Tðk⊥; zÞ.

9For the J ¼ 2 tensor meson anF-wave component is possible,
in principle. Due to the small velocities of the quarks in the rest
frame of the meson, this component should be small, to agree
with the PDG classification of the χc2 as a P-wave.
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In the amplitude (1) we are left with the r⊥ integral and the
z integral. We use the Jacobi–Anger expansion to compute
the ϕr integral and find

hMλ¼0i≡ q−M̃λ¼0 ≡ q−M̃L;

hMλ¼�1i≡ q−M̃λ¼�1 ≡ q−λeiλϕΔM̃T; ð23Þ

where in the first equality we have separated the flux factor
and in the second equality the explicit polarization depend-
ence (together with the overall phase). The remainder
consists of two different scalar functions

M̃L ¼ 8πNceqc
X∞
k¼0

ð−1Þk
Z
z

Z
∞

0

r⊥dr⊥O2kþ1ðr⊥;Δ⊥Þ

×ALðr⊥Þsgnðz − z̄ÞJ2kþ1ðr⊥δ⊥Þ;

M̃T ¼ 4πiNceqc
X∞
k¼0

ð−1Þk
Z
z

Z
∞

0

r⊥dr⊥O2kþ1ðr⊥;Δ⊥Þ

×ATðr⊥Þ½J2kðr⊥δ⊥Þ − J2kþ2ðr⊥δ⊥Þ�; ð24Þ

which are our main expressions to be used in the numerical
computations in Sec. V. The sign function appears due to
the definition of δ⊥ as the modulus of the vector δ⊥: δ⊥ ¼
1
2
jz − z̄jΔ⊥.
In the limit Δ⊥ → 0 the above amplitudes scale as

M̃LjΔ⊥→0 ∼ Δ2⊥; M̃T jΔ⊥→0 ∼ Δ⊥: ð25Þ

The scaling exponents are universal and they do not depend
on specific details of the odderon exchange amplitude
Oðr⊥; b⊥Þ.
The quantities O2kþ1ðr⊥;Δ⊥Þ appearing in Eq. (24) are

the azimuthal harmonics of the odderon amplitude,

O2kþ1ðr⊥;Δ⊥Þ ¼ 2πið−1Þkþ1

Z
∞

0

b⊥db⊥O2kþ1ðr⊥; b⊥Þ

× J2kþ1ðΔ⊥b⊥Þ; ð26Þ

where O2kþ1ðr⊥; b⊥Þ is extracted from Oðr⊥; b⊥Þ as its
Fourier series coefficients

Oðr⊥;b⊥Þ ¼ 2
X∞
k¼0

O2kþ1ðr⊥; b⊥Þ cosðð2kþ 1ÞϕrbÞ;

O2kþ1ðr⊥; b⊥Þ ¼
1

2π

Z
2π

0

dϕrbOðr⊥; b⊥Þ cosðð2kþ 1ÞϕrbÞ;

ð27Þ

with ϕrb ¼ ϕr − ϕb.
The calculation for axial-vector quarkonia follows the

same steps as for scalar case. Detailed derivations of the
formulas can be found in Appendix B. We end up with
three different scalar functions:

M̃B ¼ 4πiNceqc
X∞
k¼0

ð−1Þk
Z
z

Z
∞

0

r⊥dr⊥O2kþ1ðr⊥;Δ⊥Þ

×ABðr⊥Þ½J2kðr⊥δ⊥Þ − J2kþ2ðr⊥δ⊥Þ�;
B ¼ TL; LT

M̃TT ¼ 8πNceqc
X∞
k¼0

ð−1Þk
Z
z

Z
∞

0

r⊥dr⊥O2kþ1ðr⊥;Δ⊥Þ

×ATTðr⊥Þsgnðz − z̄ÞJ2kþ1ðr⊥δ⊥Þ; ð28Þ
with respective reduced amplitudes

ALTðr⊥Þ≡
ffiffiffi
2

p

π
QK0ðεr⊥Þ

∂ϕA;T

∂r⊥
;

ATLðr⊥Þ≡
ffiffiffi
2

p

π

1

zz̄
1

MA

�
−m2

cK0ðεr⊥Þ
∂ϕA;L

∂r⊥

þ εK1ðεr⊥Þ∇2⊥ϕA;L

�
;

ATTðr⊥Þ≡−
i
π

z− z̄
zz̄

�
∂ϕA;T

∂r⊥
εK1ðεr⊥Þ−m2

cK0ðεr⊥ÞϕA;T

�
:

ð29Þ
Here the notation M̃TT stands for the amplitude with
transition from transversely polarized photon to transversely
polarized axial quarkonia. In principle, both the polarization-
preserving and polarization-flipping transitions would be
possible. However, we find that the polarization-flipping
transition vanishes, and so M̃TT describes only a polariza-
tion-preserving transition. Similar notation is used for other
contributing amplitudes. When both the photon and the
axial-vector quarkonium are longitudinally polarized, the
corresponding amplitude also vanishes; see Appendix B for
more details.
In the near forward limit, the axial-vector amplitudes

scale as

M̃TL;LT jΔ⊥→0 ∼ Δ⊥; M̃TT jΔ⊥→0 ∼ Δ2⊥: ð30Þ
The procedure is again similar for tensor quarkonia, with

detailed steps to be found in Appendix B. The final results
for the amplitudes are

M̃B¼−4πNceqc
X∞
k¼0

ð−1Þk
Z
z

Z
∞

0

r⊥dr⊥

×O2kþ1ðr⊥;Δ⊥ÞABðr⊥Þ
×sgnðz− z̄Þ½J2kþ3ðr⊥δ⊥ÞþJ2k−1ðr⊥δ⊥Þ�;

B¼LT2;TTf;

M̃B¼4πiNceqc
X∞
k¼0

ð−1Þk
Z
z

Z
∞

0

r⊥dr⊥O2kþ1ðr⊥;Δ⊥Þ

×ABðr⊥Þ½J2kðr⊥δ⊥Þ−J2kþ2ðr⊥δ⊥Þ�;
B¼TT2p;LT;TL;
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M̃B¼8πNceqc
X∞
k¼0

ð−1Þk
Z
z

Z
∞

0

r⊥dr⊥O2kþ1ðr⊥;Δ⊥Þ

×ABðr⊥Þsgnðz− z̄ÞJ2kþ1ðr⊥δ⊥Þ; B¼TTp;LL;

M̃TT2f¼4πiNceqc
X∞
k¼0

ð−1Þk
Z
z

Z
∞

0

r⊥dr⊥O2kþ1ðr⊥;Δ⊥Þ

×ATT2fðr⊥Þ½J2kþ4ðr⊥δ⊥Þ−J2k−2ðr⊥δ⊥Þ�; ð31Þ

where

ALT2ðr⊥Þ≡ 2

π
ðz − z̄ÞQK0ðεr⊥Þ

�
∂
2ϕT ;T2

∂r2⊥
−

1

r⊥
∂ϕT ;T2

∂r⊥

�
;

ATT2pðr⊥Þ≡ −
i

ffiffiffi
2

p

π

1

zz̄

�
ðz2 þ z̄2ÞεK1ðεr⊥Þ

×

�
∂
2ϕT ;T2

∂r2⊥
−

1

r⊥
∂ϕT ;T2

∂r⊥

�

þm2
cK0ðεr⊥Þ

∂ϕT ;T2

∂r⊥

�
;

ATT2fðr⊥Þ≡ i2
ffiffiffi
2

p

π
εK1ðεr⊥Þ

�
∂
2ϕT ;T2

∂r2⊥
−

1

r⊥
∂ϕT ;T2

∂r⊥

�
;

ALTðr⊥Þ≡ −
i
π
QMT ð3 − 4ðz2 þ z̄2ÞÞK0ðεr⊥Þ

∂ϕT ;T

∂r⊥
;

ATTpðr⊥Þ ¼ −
MTffiffiffi
2

p
π

z − z̄
zz̄

�
m2

cK0ðεr⊥ÞϕT ;Tðr⊥; zÞ

− ðz − z̄Þ2εK1ðεr⊥Þ
∂ϕT ;T

∂r⊥

�
;

ATTfðr⊥Þ ¼ −
2

ffiffiffi
2

p
MT

π
ðz − z̄ÞεK1ðεr⊥Þ

∂ϕT ;T

∂r⊥
;

ALLðr⊥Þ ¼ −
2

ffiffiffi
2

p
Qffiffiffi

3
p

π
ðz − z̄ÞK0ðεr⊥Þð3∇2⊥ − 2m2

cÞ

× ϕT ;Lðr⊥; zÞ;

ATLðr⊥Þ ¼
i

π
ffiffiffi
3

p 1

zz̄

�
εK1ðεr⊥Þðz − z̄Þ2ð3∇2⊥ − 2m2

cÞϕT ;L

−m2
cK0ðεr⊥Þ

∂ϕT ;L

∂r⊥

�
: ð32Þ

In this case the LL-type transition is allowed. Also, both the
polarization-preserving and the polarization-flipped con-
tributions are allowed, thus explaining the above used
notation: p ¼ preserving, f ¼ flipped.
In the near forward limit, the tensor meson amplitudes

scale as

M̃LT2;TTfjΔ⊥→0 ∼ Δ2⊥; M̃TT2p;LT;TLjΔ⊥→0 ∼ Δ⊥;

M̃TTp;LLjΔ⊥→0 ∼ Δ2⊥; M̃TT2fjΔ⊥→0 ∼ Δ3⊥: ð33Þ

These amplitudes, as well as those for scalar and axial-
vector mesons given in Eqs. (25) and (30), vanish for
Δ⊥ → 0 at least as fast as10

Mλλ̄jΔ⊥→0 ∼ Δjλ−λ̄j
⊥ : ð34Þ

Such a rule emerges when the helicity change in the t
channel at t → 0 is due to the z component of the angular
momentum of the t-channel state. The rule then follows
from the conservation of the angular momentum along z.
However, the conservation of the z component of the
angular momentum provides only a lower limit on the
power of Δ⊥. The amplitude cannot decrease any slower in
the forward limit but it can decrease faster, i.e., when the
coefficient of the relevant tensor obtained from an expan-
sion of the amplitudes in Δi vanishes independently of the
“canonical” scaling of this tensor.

C. The γ�p → Hp cross section

Using the M̃λλ̄ amplitudes obtained in Sec. II B for the
process γ�ðqÞpðPÞ → HðΔÞpðP0Þ, the cross section for
longitudinal (L) and transverse (T) photons is given by

dσLðγ�p → HpÞ
djtj ¼ 1

16π

XJ
λ̄¼−J

jM̃λ¼0;λ̄ðγ�p → HpÞj2;

dσTðγ�p → HpÞ
djtj ¼ 1

16π

1

2

X
λ¼�1

XJ
λ̄¼−J

jM̃λλ̄ðγ�p → HpÞj2:

ð35Þ

Inserting the scalar quarkonium amplitudes (23) into (35)
gives

dσLðγ�p → SpÞ
djtj ¼ 1

16π
jM̃Lj2;

dσTðγ�p → SpÞ
djtj ¼ 1

16π
jM̃T j2; ð36Þ

where M̃B (B ¼ L, T) are given in Eq. (24). For axial-
vector quarkonia we find

dσLðγ�p → ApÞ
djtj ¼ 1

8π
jM̃LT j2;

dσTðγ�p → ApÞ
djtj ¼ 1

16π
ðjM̃TLj2 þ jM̃TT j2Þ; ð37Þ

with M̃B (B ¼ LT, TL, TT) given in (28). We have used
(B3) (see Appendix B) to relate M̃λλ̄ to M̃A. For the tensor
quarkonia, the cross sections are

10We thank the anonymous referee for drawing our attention to
this point.
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dσLðγ�p→ T pÞ
djtj ¼ 1

16π
ðjM̃LLj2 þ 2jM̃LT j2 þ 2jM̃LT2j2Þ;

dσTðγ�p→ T pÞ
djtj ¼ 1

16π
ðjM̃TLj2 þ jM̃TTpj2 þ jM̃TTfj2

þ jM̃TT2pj2 þ jM̃TT2fj2Þ; ð38Þ

with M̃B (B ¼ LL, LT, LT2, TL, TTp, TTf, TT2p,
TT2f) collected in (31) and the relationship to M̃λλ̄
in (B7).

D. Odderon amplitude and its evolution with x

Here we discuss the odderon amplitude Oðr⊥; b⊥Þ used
later in Sec. V for numerical predictions of the cross section
for exclusive χcJ production. The initial Oðr⊥; b⊥Þ at xP ¼
x0 ¼ 0.01 is approximated by the matrix element of the
C-odd three-gluon operator. This matrix element has been
evaluated numerically and tabulated in Ref. [65] using a
phenomenological nonperturbative three-quark light-cone
wave function [66,67] supplemented by the first correction
of perturbative QCD [24]. We refer to these references for
further details. Specifically, we use the table for the first
azimuthal harmonic a1ðr⊥; b⊥Þ of theOðr⊥; b⊥Þ defined in
Eq. (5) of Ref. [65]. As explained in Appendix D the
definition ofOðr⊥; b⊥Þ in [65] is the same as in this work.11

The first azimuthal moment is defined in [65] through
Oðr⊥; b⊥Þ ¼ cosðϕrbÞa1ðr⊥; b⊥Þ þ � � �. Thus, from (27)
we have the relationship

O1ðr⊥; b⊥Þ ¼
1

2
a1ðr⊥; b⊥Þ: ð39Þ

We do not account for higher-order harmonics such as
O3ðr⊥; b⊥Þ which has been determined to be very small
[65] at x0 and suppressed further by evolution [14,17].
Presently, yet higher Fourier components are unknown; we
expect their effects to be well within the current uncertainty
of the leading Fourier harmonic.
To determineOðr⊥; b⊥Þ for xP < x0 we solve the impact

parameter dependent [68,69] extension of the Balitsky–
Kovchegov (BK) equation [with running coupling kernel
(rcBK)] to the coupled nonlinear evolution equations for
the Pomeron and the odderon derived in Refs. [11,12] and
analyzed in Refs. [13–15]. These equations describe the
evolution with rapidity Y ¼ lnðx0=xPÞ of the real and
imaginary parts of the dipole S-matrix. For the real part
(the Pomeron), we use the initial condition from [70]. The
coupled BK equations for the Pomeron-odderon system are
solved in the “local approximation” [70,71], where the

impact parameter b⊥ becomes an external parameter. This
approximation may be less justified for the odderon than
for the Pomeron since the former amplitude peaks at
smaller b⊥ [65]. The t dependence of three-gluon exchange
is then obtained via Fourier transform, Eq. (7). Technical
details of the implementation and additional numerical
results can be found in Sec. III of Ref. [17].
Figure 2 shows the first azimuthal harmonic of the

odderon amplitude iO1ðr⊥;Δ⊥Þ as a function of Δ2⊥ for a
dipole of size r⊥ ¼ 0.3 fm. We have divided by the
parameter σ0=2 ¼ 16.36 mb ¼ 42.027 GeV−2 (area of
the proton) [70] to compensate for the dimensionality of
iO1ðr⊥;Δ⊥Þ. At xP ¼ 10−2 this corresponds to the per-
turbative exchange of three gluons (with negative C parity)
while for smaller xP the BK resummation has been
performed as described above. We note, first of all, the
small magnitude of O1ðr⊥;Δ⊥Þ < 10−2 ≪ 1, i.e., that
scattering of perturbative (small) dipoles via C-odd
exchanges is predicted to be very weak. However, we also
observe that the C-odd amplitude peaks at fairly largeΔ2⊥ ≃
1 GeV2 and that it decreases by merely a factor of∼2 asΔ2⊥
increases further to ≃3 GeV2. This is a manifestation of the
“Landshoff mechanism” [72]; see also [73–75] whereby
large t scattering via three-gluon exchange is less likely to
break up the proton than scattering via two gluon
exchange.12 In simple terms this is due to the fact that a
large momentum transfer can be shared by the exchanged
gluons, and so a comparable transverse momentum can be
transmitted to up to three partons in the proton, resulting in
a smaller increase of their invariant mass than in case of

FIG. 2. The first azimuthal harmonic of the odderon amplitude
iO1ðr⊥;Δ⊥Þ as a function of Δ2⊥ for r⊥ ¼ 0.3 fm and αS ¼ 0.25.
Different line styles correspond to different values of xP .

11However, our own numerical investigation and private com-
munication with the authors of Ref. [65] revealed that their plots of
Oðr⊥; b⊥Þ and their tabulated values actually correspond to minus
the function defined in their Eq. (3) and in our Eq. (D11). We
therefore reversed the signs of their table entries for a1ðr⊥; b⊥Þ.

12The proton model light-cone wave function employed here,
however, includes a perturbative correction [24] due to the
emission of a gluon from one of the valence quarks, or the
internal exchange of a gluon, not considered in the quoted papers
by Donnachie and Landshoff.
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two-gluon exchange. Such a contribution has been illus-
trated in Fig. 1. The light-cone Fock space amplitudes of
the proton are strongly suppressed if the invariant mass of
the parton system is far from ∼NcΛQCD. On the other hand,
an amplitude which depends weakly on momentum trans-
fer, in impact parameter space would peak at small b⊥.
Amplitudes with negative parity must vanish at b⊥ ¼ 0,
however, and hence are expected to have small magnitude.
Figure 2 also shows the decrease of the odderon

exchange amplitude with xP by approximately a factor
of 2 from xP ¼ 10−2 to xP ¼ 10−4. The initial decrease of
the odderon amplitude has been understood to originate
from gluon Regge trajectory suppressions in the BJKP
equation [11,13,15]. In Appendix E we have checked that
by omitting the unitarity corrections, the odderon still
decreases but at a smaller rate. Importantly, the sign of
the odderon amplitude is preserved by the evolution
equation, which is simply a consequence of the fact that
its evolution equation is linear in Oðr⊥; b⊥Þ.

III. THE PRIMAKOFF CONTRIBUTION

In this section we focus on the Primakoff process,
wherein the exclusive γ�p → Hp production proceeds
via photon rather than odderon exchange. Typically, the
cross section for a QCD process far exceeds its QED
counterparts, and so the latter can be safely neglected. This
is, however, not so in case of the odderon because its QCD
cross section starts at order α6S and so the QED contribution
becomes a competitive background in odderon searches, in
particular for low momentum transfer.
We treat the Primakoff process in the high-energy

approximation of eikonal scattering, replacing the odderon
amplitude Oðr⊥;Δ⊥Þ in Eq. (1) with [17,33]

Oðr⊥;Δ⊥Þ → 8πiqcα sin

�
Δ⊥ · r⊥

2

�
F1ðΔ⊥Þ
Δ2⊥

; ð40Þ

at leading order in the electromagnetic coupling
α ¼ e2=4π. The amplitude can be written as

hMλλ̄ðγ�p→HpÞi≡−
eF1ðl⊥Þ

l2⊥
nμM

μ
λλ̄
ðγ�γ�→HÞ; ð41Þ

where Mμ
λλ̄
ðγ�γ� → HÞ is the γ�ðλ; qÞγ�ðμ;lÞ → Hðλ̄;ΔÞ

amplitude (in the high-energy limit) that is obtained by
inserting (40) into (1). In (41), l≡ P − P0 is the momen-
tum transfer from the proton, with l⊥ ¼ Δ⊥ in the dipole
frame and F1ðl⊥Þ is the Dirac charge form factor of the
proton with F1ð0Þ ¼ 1; see Appendix D for more detail.
Since (40) represents single photon exchange it is more
convenient to start from the expression in Eq. (18) for
the reduced amplitude and perform the r⊥ integral. This
leads to

1

q−
nμM

μ
λλ̄
ðγ�γ� → HÞ

¼ −8πiq2cαNc

Z
z

Z
l⊥

�
Aλλ̄ðl⊥ − z̄Δ⊥; l⊥; zÞ
ðl⊥ − z̄Δ⊥Þ2 þ ε2

−
Aλλ̄ðl⊥ þ zΔ⊥; l⊥; zÞ
ðl⊥ þ zΔ⊥Þ2 þ ε2

�
ϕHðl⊥; zÞ

zz̄
: ð42Þ

The term eF1ðl⊥Þ=l2⊥ in Eq. (41) is understood as a part of
the usual Weizsäcker-Williams photon field

AμðlÞ ¼ ð2πÞδðl−Þ 1

l2⊥
eF1ðl⊥Þnμ; ð43Þ

where nμ is the light-cone gauge vector.

A. jtj → 0 limit

In the high-energy approximation it is possible to express
the jtj → 0 limit of the Primakoff cross section for a C-even
quarkonia H with spin J ≠ 1 in terms of the two-photon
decay width ΓðH → γγÞ

lim
jtj→0

jtj dσðγp → HpÞ
djtj ¼ 8παð2J þ 1ÞΓðH → γγÞ

M3
H

: ð44Þ

Equation (44) is a model independent result and not
affected by QCD corrections. Hence it represents a strin-
gent constraint on the model predictions and a useful cross
check. The key point for obtaining (44) is the relation of the
high-energy impact factor for the quarkonia photoproduc-
tion to the quarkonia’s two-photon decay amplitude. We
provide a derivation of (44) in Appendix C. For axial-vector
quarkonia, like χc1, ΓðA → γγÞ, vanishes and Eq. (44)
implies only that limjtj→0jtjdσðγp → ApÞ=djtj ¼ 0, as is
consistent with the Landau–Yang (LY) theorem [76,77],
but does not constrain the value of the cross section at
jtj → 0. In Appendix C we thus provide a separate and
general analysis of the jtj → 0 limit for the axial quarkonia.
In practice, we will use (44) to deduce ΓðH → γγÞ from

the computation of its left-hand side. This will be required
in Sec. IV where we perform a fit of the quarkonia wave
functions. Therefore, we now focus on obtaining explicit
expressions of the γ�p → Hp amplitudes in the jtj → 0

(and Q2 → 0) limit.
Starting with the scalar quarkonia we use (42) and insert

the appropriate expressions for the reduced amplitudes
Aλ;λ̄ðl⊥; l1⊥; zÞ found in Sec. II B. The relevant reduced
amplitude in the Q2 → 0 limit concerns only the second
line of (20). The expression in the square bracket in (42) is
conveniently factored as
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Aλ¼�1ðl⊥ − z̄Δ⊥; l⊥; zÞ
ðl⊥ − z̄Δ⊥Þ2 þ ε2

−
Aλ¼�1ðl⊥ þ zΔ⊥; l⊥; zÞ

ðl⊥ þ zΔ⊥Þ2 þ ε2

→ 2mc
ðϵλ⊥ · Δ⊥Þ
ðl2⊥ þm2

cÞ2
½l2⊥ þ ðz − z̄Þ2m2

c�; ð45Þ

where we have setQ2 ¼ 0, performed an expansion around
Δ⊥ → 0 to linear order, as well as the angular average
according to li⊥l

j
⊥ → l2⊥δij=2. We now insert (45) into (42)

and use second line of (23) to extract M̃T as

M̃T → 8
ffiffiffi
2

p
πiq2cαNcmc

eF1ðΔ⊥Þ
Δ⊥

×
Z
z

Z
l⊥

l2⊥ þ ðz − z̄Þ2m2
c

ðl2⊥ þm2
cÞ2

ϕSðl⊥; zÞ
zz̄

: ð46Þ

Performing similar steps for axial quarkonia we find that
for the square brackets in (42) the OðΔ⊥Þ contributions
vanish for λ̄ ¼ 0 and for λ̄ ¼ �1. A nonvanishing contri-
bution is found for λ̄ ¼ �1 at OðΔ2⊥Þ leading to

M̃TT →−16πq2cαNceF1ðΔ⊥Þ
Z
z

Z
l⊥

ðz− z̄Þ2m2
c

ðl2⊥þm2
cÞ2

ϕAðl⊥;zÞ
zz̄

;

ð47Þ

while the λ̄ ¼ 0 contribution is OðΔ3⊥Þ. Such a special Δ⊥
dependence of the axial quarkonia amplitude is explained
in Appendix C 2 from general considerations.
For the calculation of the jtj → 0 limit for the tensor

quarkonia we also need

li⊥l
j
⊥lm⊥ln⊥ →

1

8
l4⊥ðδijδmn þ δimδjn þ δinδjmÞ: ð48Þ

Computing for various tensor polarizations λ̄ we find that
λ̄ ¼ �1 does not contribute in the jtj → 0 limit. As for the
λ̄ ¼ �2 and λ̄ ¼ 0 cases, we extract the amplitude (31) as

M̃TT2;p→16
ffiffiffi
2

p
πiq2cαNc

eF1ðΔ⊥Þ
Δ⊥

Z
z

Z
l⊥

l2⊥
ðl2⊥þm2

cÞ2

× ½ðz2þ z̄2Þl2⊥þm2
c�
ϕT ;T2ðl⊥;zÞ

zz̄
;

M̃TT2;f→0;

M̃TL→−
16ffiffiffi
3

p πiq2cαNc
eF1ðΔ⊥Þ

Δ⊥

Z
z

Z
l⊥

m2
c

ðl2⊥þm2
cÞ2

×

�
l2⊥−2ðz− z̄2Þ

�
3

2
l2⊥þm2

c

��
ϕT ;Lðl⊥;zÞ

zz̄
: ð49Þ

B. Adding the Pauli form factor

In general, the γ�p → Hp amplitude can be related to the
γ�γ� → H amplitude by separating out the Dirac current
with the Dirac (F1) and Pauli (F2) form factors

Mλλ̄ðγ�p→HpÞ¼Mμ
λλ̄
ðγ�γ�→HÞgμν

l2
ūh0 ðP0Þ

×

�
eF1ðl⊥Þγνþ iσνρlρ

eF2ðl⊥Þ
2mN

�
uhðPÞ;

ð50Þ

where uhðPÞ is a proton spinor with helicity h and
σνρ ¼ i½γν; γρ�=2. The dominant contribution of the first
term in the high-energy limit is with γþ, while in the second
term the dominant contribution is with σþi. Thus, we can
write in a covariant way

Mλλ̄ðγ�p → HpÞ ≈ PμM
μ
λλ̄
ðγ�γ� → HÞ 1

q · P
ūh0 ðP0Þ

×

�
eF1ðl⊥Þ

l2
=qþ iσνρqνlρ

eF2ðl⊥Þ
2mNl2

�

× uhðPÞ: ð51Þ

The above spinor vertices in the high-energy limit
become13

ūh0 ðP0Þ=quhðPÞ ≈W2δhh0 ;

ūh0 ðP0ÞiσνρqνlρuhðPÞ ≈ l⊥heihϕlW2δh;−h0 : ð52Þ

With the relation hMλλ̄i ¼ q−M̃λλ̄ ¼ q−Mλλ̄=W
2, we

have

hMλλ̄ðγ�p→HpÞi¼−nμM
μ
λλ̄
ðγ�γ�→HÞ

�
eF1ðl⊥Þ

l2⊥
δhh0

þeF2ðl⊥Þ
l2⊥

l⊥
2mN

heihϕlδh;−h0

�
; ð53Þ

where the first term reproduces (41). Thanks to the differ-
ence in the helicity structure in the high-energy limit there
is no interference between the F1 and F2 contributions in
(53). For the same reason there is no intereference of the F2

term with the odderon exchange amplitude. The addition of
F2 to the Primakoff cross section therefore amounts to a
simple replacement

F2
1ðl⊥Þ → F2

1ðl⊥Þ þ
l2⊥
4m2

N
F2
2ðl⊥Þ: ð54Þ

13The calculation steps are very similar to the one performed in
Appendix A and also available in [47].
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Thanks to the additional l⊥ dependence, the F2 contribu-
tion is negligible at jtj ¼ l2⊥ → 0 but in practice becomes
up to about 50% correction at finite jtj [78].

IV. BOOSTED GAUSSIAN MODEL FOR THE χ cJ
WAVE FUNCTIONS

In this section we perform a fit of the scalar part of the C-
even quarkonia wave function ϕH;iðk⊥; zÞ. We adopt a
Boosted Gaussian ansatz [79] originally written in coor-
dinate space as

ϕH;Bðr⊥;zÞ¼NH;Bzz̄exp

�
−
m2

cR2
H

8zz̄
−
2zz̄r2⊥
R2

H
þ1

2
m2

cR2
H

�
;

ð55Þ

where RH is the radii parameter and NH;i are normaliza-
tion parameters for different quarkonia species and polar-
izations that are to be determined below. For H ¼ S we
have only one normalization, NS, for H ¼ A, we have
B ¼ T, L, denoting transverse and longitudinal polariza-
tions. For H ¼ T , the index B spans over B ¼ T2, T, L.
The wave function is normalized as

1 ¼ Nc

X
hh̄

Z
z

Z
r⊥
jΨH

λ̄;hh̄
ðr⊥; zÞj2: ð56Þ

In practice, we convert (56) to momentum space and
express the helicity sum as a Dirac trace as

1 ¼ Nc

Z
k⊥

Z
z

1

zz̄
tr½ðk −mcÞγ0ΓH;†

λ̄
ðk; k0Þ

× γ0ðkþmcÞΓH
λ̄
ðk; k0Þ�jϕH;Bðk⊥; zÞj2: ð57Þ

To constrain the parameters RH and NH;i, we use (57)
and the H → γγ decay width for χc0 and χc2. The χc1 → γγ

decay is forbidden due to the LY theorem. In this case our
assumption is that the R parameter of χc1 is equal to that
for χc2.
The decay rate for H ¼ S, T can be obtained from

the correspondence in Eq. (44). For scalar quarkonia we
first insert the amplitude (46) into (36) to find the jtj → 0
limit of the cross section. We then extract the decay rate via
(44) as

ΓðS → γγÞ ¼ πα2

4
M3

SF
2
S;

FS ≡ 4q2cmcNc

Z
z

Z
k⊥

k2⊥ þ ðz − z̄Þ2m2
c

ðk2⊥ þm2
cÞ2

ϕSðk⊥; zÞ
zz̄

;

ð58Þ

which agrees perfectly with Eq. (13) in Ref. [80] after
adjusting the conventions. We have additionally confirmed
that in the NRQCD limit (58) agrees with the known result
in [81] (see Appendix C).
For the actual fit, the LO result in (58) is supplemented

by the NLO QCD corrections [81,82]. This amounts to a
replacement:

ΓðS → γγÞ →
�
1þ αS

π

�
π2

3
−
28

9

��
ΓðS → γγÞ

≈ ð1þ 0.06αSÞΓðS → γγÞ: ð59Þ

For the experimental value of χc0 → γγ decay width we use
the most recent PDG value: Γðχc0 → γγÞ ¼ 2.203 ×
10−6 GeV [34]. Using mc ¼ 1.4 GeV and Mχc0 ¼
3.414 GeV and αSð2mcÞ ≈ 0.25, we determine N χc0 ¼
1.148 and Rχc0 ¼ 1.539 GeV−1. As expected, the radius
parameter R of the χc0 is similar to that of the J=ψ [79].
For T we insert the amplitude (49) into (38) and extract

the decay rate via (44) as

ΓðT → γγÞ ¼ πα2

20
M3

T ðF2
T ;L þ F2

T ;T2Þ;

FT ;L ¼ 4
ffiffiffi
2

p
ffiffiffi
3

p q2cNc

Z
z

Z
k⊥

m2
c½k2⊥ − 2ðz − z̄Þ2ð3

2
k2⊥ þm2

cÞ�
ðk2⊥ þm2

cÞ2
ϕT ;Lðk⊥; zÞ

zz̄
;

FT ;T2 ¼ 8q2cNc

Z
z

Z
k⊥

k2⊥½ðz2 þ z̄2Þk2⊥ þm2
c�

ðk2⊥ þm2
cÞ2

ϕT ;T2ðk⊥; zÞ
zz̄

; ð60Þ

where FT ;L (FT ;T2) originates from the λ̄ ¼ 0 (λ̄ ¼ �2)
polarizations. We find only a partial agreement of our result
(60) and Eqs. (22)–(24) of [80]. The third line of (60) can
be brought in agreement with Eq. (24) in [80] after
appropriate adjustments in conventions and also after a
judicious identification of MT with the pair invariant mass
M0. However, the square brackets of the second line in (60)

contain a term k2⊥ while in (23) of [80] they rather have
−m2

c. Using (60) in the NRQCD limit we find the λ̄ ¼ 0

contribution vanishes with the λ̄ ¼ �2 contribution satu-
rating the NRQCD limit completely and in accordance
with the known result [81]. Taking the NRQCD limit of
(22)–(24) in [80] gives an incorrect result as it leads to a
finite contribution from the λ̄ ¼ 0 polarization.
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The QCD corrections [81,82] turn out to be sizeable in
this particular channel [81,82]

ΓðT → γγÞ →
�
1 −

16αS
3π

�
ΓðT → γγÞ

≈ ð1 − 1.7αSÞΓðT → γγÞ: ð61Þ

Using Mχc2 ¼ 3.556 GeV and the PDG value Γðχc2 →
γγÞ ¼ 5.614 × 10−7 GeV [34], we find N χc2;T2 ¼
0.609 GeV−1 ¼ N χc2;L, N χc2;T¼0.592GeV−1 and Rχc2 ¼
1.482 GeV−1. In these numerical estimates we used
αS ¼ 0.25 in the NLO correction factors.
Finally, for χc1 we assume Rχc1 ¼ Rχc2 , allowing us to

fix the parameters N χc1;T;L via normalization. We find
N χc1;T ¼ 1.388 and N χc1;L ¼ 1.401.
From the above fits we may compute charge radii of the

χcJ states via the following formula [83]:

hr2ci ¼ Nc

X
hh̄

Z
z

Z
r⊥
ðAH

λ̄
z̄2r2⊥ÞjΨH

λ̄;hh̄
ðr⊥; zÞj2: ð62Þ

ðAH
λ̄
Þ−1 denotes the expectation value of r2⊥=r2 ¼ sin2θ in

the state

jJ; λ̄i ¼
X
m;ms

CðJ; λ̄jL;m;S;msÞjL;mijS;msi; ð63Þ

where CðJ; λ̄jL;m; S;msÞ denotes the Clebsch–Gordan
coefficient for L ¼ S ¼ 1. This gives Aχc0 ¼ 3=2,
Aχc1
0 ¼ 5=4, Aχc1

1 ¼ 5=3, Aχc2
0 ¼ 15=8, Aχc2

1 ¼ 5=3, and

Aχc2
2 ¼ 5=4. For χc0 we then find

ffiffiffiffiffiffiffiffi
hr2ci

p
¼ 0.270 fm,

which is close to the value obtained in Ref. [83] from
potential models. For χc1 we find

ffiffiffiffiffiffiffiffi
hr2ci

p
¼ 0.277 fm for

λ̄ ¼ �1, while
ffiffiffiffiffiffiffiffi
hr2ci

p
¼ 0.236 fm was obtained for λ̄ ¼ 0.

For χc2 we have
ffiffiffiffiffiffiffiffi
hr2ci

p
¼ 0.263 fm for λ̄ ¼ �2,

ffiffiffiffiffiffiffiffi
hr2ci

p
¼

0.262 fm for λ̄ ¼ �1, and
ffiffiffiffiffiffiffiffi
hr2ci

p
¼ 0.237 fm for λ̄ ¼ 0.

Thus, all charge radii are of comparable magnitude and less
than 0.3 fm, which appears reasonable.

V. NUMERICAL RESULTS

In this section we will first show numerical results for
the γ�p → χcJp cross section based on the formulas in
Secs. II B and III, for EIC kinematics. Using the γ�p→χcJp
cross sections, we will also compute the electroproduction
cross section eðkÞpðPÞ → χcJðΔÞeðk0ÞpðP0Þ through the
standard formula [84–87]

dσep
dxPdQ2djtj ¼

α

2πQ2xP

�
2ð1 − yÞ dσL

djtj þ
�
1þ ð1 − yÞ2 − 2ð1 − yÞQ

2
min

Q2

�
dσT
djtj

�
; ð64Þ

where Q2
min ¼ m2

ey2=ð1 − yÞ accounts for projectile mass
corrections, with me being the electron mass. y is the
inelasticity, given by

y≡ q · P
k · P

¼ W2 þQ2 −m2
N

S −m2
N

; ð65Þ

where S≡ ðkþ PÞ2 is the ep collision energy, W2 ≡ ðqþ
PÞ2 is the γ�p collision energy, and mN is the proton mass.
Recall that the odderon amplitude evolves with Pomeron-
xP , which is related to the conventional Bjorken-x variable
xB ¼ Q2=ð2q · PÞ ¼ Q2=ðW2 þQ2 −m2

NÞ via

xP ≡ xB
β
; β≡ Q2

2q · l
¼ Q2

Q2 þM2
H þ jtj : ð66Þ

In the numerical computations, we augment the
Primakoff cross section by taking into account the Pauli
form factor F2 as explained in Sec. III B. For χc0 and χc2 we
take into account the available QCD corrections to the
Primakoff cross section via (44). The total cross section is
based on taking the coherent sum of the Primakoff and the
odderon exchange amplitudes in which case their relative

sign becomes crucial. Our careful analysis in Appendix D
reveals that the Primakoff and odderon amplitudes are in
phase, that is, they interfere constructively for each value of
the odderon evolution parameter xP, as we have also
explained in Sec. II D. The contribution of F2 does not
interfere with the coherent sum of the odderon and
Primakoff amplitudes. The interference between the
QCD correction to the Primakoff amplitude (available
for χc0;2) and the odderon exchange is determined through
the relative phase of the odderon and the Primakoff
amplitude at tree level. For the odderon component we
use the solutions of the rcBK evolution, keeping only the
k ¼ 0 harmonic of the Fourier series (27), as explained in
Sec. II D. For the Primakoff component we use the recent
fits of F1 and F2 from [78]. Our standard choice for the
QCD coupling αS is αSð2mcÞ ≈ 0.25 unless stated
otherwise.
We start with the numerical results for the γ�p → χcJp

cross sections shown in Fig. 3 as functions of jtj, for
different values of xP . We have setQ2 ¼ 0.01 GeV2. Since
Q2 is low, we focus on the transverse cross section
dσT=djtj. At small jtj the cross section is, of course,
dominated by the Primakoff process (photon exchange).
However, we note that our predictions for the Primakoff
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cross sections are substantially lower than those shown in
Fig. 4(c) of Ref. [88]. This emphasizes the importance of
the constraint (44) from the two photon decay rate.
The QCD odderon exchange amplitude reaches a com-

parable magnitude at jtj ≈ 1 GeV2, depending on xP and J.
The lowest crossover from the Primakoff dominated to the
odderon dominated regime at jtj < 1 GeV2 is seen for χc1
and χc2 where the Primakoff-like background is lower than
for χc0. In the regime of jtj where the individual Primakoff
and odderon cross sections are of similar magnitude, thanks
to their constructive interference, the coherently summed
cross section is four times greater than the Primakoff cross
section alone. At high-momentum transfer odderon
exchange dominates due to its slower fall off with jtj.
For Fig. 4 we have integrated dσT=djtj over the range

0.5 < jtj < 1.5 GeV2 as appropriate for the EIC design
detector [44]. We show the result as a function of W. As a
consequence of small-x evolution, the odderon cross
section drops with increasing W. As the Primakoff cross
section is constant, at the lower end of W the coherent sum
is about five times greater than the Primakoff component

alone. Interestingly, σT displays a negative slope due to the
decreasing odderon amplitude towards smaller x.
We find that the decrease of the odderon cross section

with W is driven mostly by the nonlinear corrections in the
unitarized evolution for the odderon. In Appendix E (see
Fig. 9, right) we have computed σT based on linear
evolution of the BKP odderon and found a slower decrease
with W as anticipated from the asymptotics of the BLV
solution with an intercept equal to one [9].
We also calculate the differential ep → χcJep cross

section for top EIC energy,
ffiffiffi
S

p ¼ 140 GeV, and use
the following kinematic cuts: 0.01 < y < 0.95 [44],
xP < 0.01, and Q2

min < Q2 < ð2 × 3.5 GeVÞ2. The result-
ing jtj dependence of the cross section is shown in Fig. 5.
With these cuts the crossover from photon to odderon
exchange occurs at about jtj ≈ 1 GeV2 where the total cross
section is several times greater than the Primakoff proc-
ess alone.
The total χcJ cross sections are shown in Fig. 6. They

have been integrated over jtj over the range 0.5 GeV2 <
jtj < 1.5 GeV2 where according to Fig. 5 the odderon

FIG. 3. The γ�p → χcJp cross sections as functions of jtj for the transverse photon. The label “sum” stands for the coherent sum of the
odderon and the Primakoff contributions. We have set Q2 ¼ 0.01 GeV2. Different line styles in the odderon and the summed cross
section correspond to different values of xP . The comparison of the Primakoff contribution with the full and dashed orange lines shows
the impact of F2.

FIG. 4. The γ�p → χcJp cross sections as functions ofW for the transverse photon. The label “sum” stands for the coherent sum of the
odderon and Primakoff contributions. We have set Q2 ¼ 0.01 GeV2 and integrated in jtj over 0.5 < jtj < 1.5 GeV2.
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contribution is appreciable. Both the photon and odderon
exchange contributions level off towards top EIC energy
since our kinematic cuts are energy independent, and
neither exchange involves a positive intercept.
χc1 has the highest branching ratio BRðχc1 → J=ψγÞ ¼

34.3% [34]. As an example, let us estimate the total number
of χc1 ’s per month at the EIC. From Fig. 6 the total cross
section is about σep ≈ 20 fb at

ffiffiffi
S

p ¼ 140 GeV.Multiplying
by the expected luminosity at theEIC (L ¼ 1034 cm−2 s−1 ¼
10−5 fb−1 s−1) gives about 2 × 10−4 events=second or
≈518 events=month. After taking into account BRðχc1 →
J=ψγÞ results in about 177 events=month. J=ψ’s are
detected through the J=ψ → eþe− or → μþμ− decays, and
the combined corresponding branching ratio is about
BRðJ=ψ → lþl−Þ ¼ 12%, after which we end up with
about 21 events=month.
In the final Fig. 7, we summarize the expected number of

exclusive χcJ events per month, NχcJ , at the EIC design
luminosity for two ranges of momentum transfer jtj. The
result is obtained according to:

NχcJ ¼ L × σepðep → χcJepÞ × BRðχcJ → J=ψγÞ
× BRðJ=ψ → lþl−Þ: ð67Þ

The most statistics is expected for χc1 and χc2 tensor
quarkonia with about a factor of 2–3 excess events over
the Primakoff process in the interval 0.5 GeV2 < jtj <
1.5 GeV2. The large χc0 cross section in Fig. 6 is
compensated by a small branching ratio BRðχc0 →
J=ψγÞ ¼ 1.4% [34].
The presented estimates of χcJ production cross sections

carry some theoretical uncertainties. For the photon
exchange contribution they are smaller than for the odderon
exchange. The coupling of the photon to the proton is well
constrained experimentally [78], and so the main sources of
uncertainty are the γ�γ� → χcJ amplitudes. They depend on
the details of the quarkonia wave functions and are
sensitive to unknown higher-order QCD corrections. For
χc0 and χc2 the differential cross section dσ=djtj for the
Primakoff process obeys a stringent constraint at small
jtj ≪ 1 GeV2 imposed by Eq. (44) that holds at all orders
in QCD. Hence, for these charmonia the uncertainties
mentioned above affect mostly the details of the t-shape
of dσ=djtj. They are expected to be small as the χcJ wave
functions are probed mostly at short distances ∼1=mc,
where they are well constrained by the γγ decay width. The
value of the coupling αSð2mcÞ ≃ 0.25 is not large and
the t → 0 limit of the QCD corrections is known, so the

FIG. 5. The ep → χcJep (J ¼ 0, 1, 2) cross sections as functions of jtj at the top EIC energy of
ffiffiffi
S

p ¼ 140 GeV.

FIG. 6. Total electroproduction cross section of the χcJ quarkonia as a function of the ep center of mass energy
ffiffiffi
S

p
. Kinematic cuts are

explained in the text.
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uncertainties from QCD corrections at t ≠ 0 should be
small as well. For χc1 the theoretical uncertainty of the
Primakoff cross section is larger than for χc0 and χc2, as the
constraint (44) cannot be imposed due to the LY theorem
and, in consequence, the vanishing γγ decay width of χc1.
In this case measurements of the differential cross sections
dσ=djtj for jtj ≪ 1 GeV2 where the photon exchange
dominates should greatly reduce the uncertainty associated
with this contribution at jtj ∼ 1 GeV2, where we expect to
isolate a significant odderon signal.
In the odderon exchange, in addition to uncertainties

from unknown details of the quarkonia wave function and
from higher-order QCD corrections, there are uncertainties
associated with the model for the proton wave function, and
from the value of αS. The model of the proton employed
here obeys general constraints coming from the measure-
ments of the proton size, exclusive J=ψ production of the
proton [33] and open charm electroproduction at Hadron–
Electron Ring Accelerator (HERA) [65]. Those constraints,
however, originate from measurements in the C-even
sector, and the emerging C-odd correlators have never
been probed experimentally. Furthermore, the perturbative
odderon is strongly sensitive to the numerical value of αS,
the amplitude being Oðα3SÞ at the lowest order. To quantify
the uncertainty in the value of αS we take an interval
0.2 < αS < 0.25. The lower value αS ¼ 0.2 comes from a
fit of the proton and C-even exchange models to open
charm electroproduction at HERA [65]. Therein the aver-
age value of the hard scale μ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ 4m2

c

p
is about

5 GeV, so the obtained value αS ¼ 0.2 is fully consistent
with the running of αSðμÞ. In our case the bulk of exclusive
χcJ production in ep collisions occurs at small photon
virtualities and moderate jtj, and so αSð2mcÞ ≈ 0.25 is more
appropriate. The range 0.2 < αS < 0.25 results in an
uncertainty about a factor of 2.5 between the minimal
and maximal values of the odderon amplitude, when NLO
effects in the proton wave function are included.
For the combined Primakoff and odderon contributions,

the αS-induced uncertainty is negligible for jtj ≪ 1 GeV2,

where the Primakoff process dominates. This uncertainty is
about a factor of 2 when Primakoff and odderon (with
αS ¼ 0.25) amplitudes are close to each other, and up to a
factor of about 6 when the odderon strongly dominates over
the Primakoff channel. Since the uncertainty coming from
αS is sizeable, we assume that it is the dominant uncertainty
for the odderon exchange and take it as our estimate of the
theoretical uncertainty. We consider the choice of αS ¼
0.25 to be realistic, as the scale 2mc is already fairly high.
Another choice is μ ¼ mc, leading to αS ≈ 0.35, as obtained
for exclusive J=ψ photoproduction using the same model
for the proton at leading order [33]. Thus, we consider the
lower value of αS ¼ 0.2 to be a conservative choice.

VI. SUMMARY AND CONCLUSIONS

In this paper we have derived amplitudes for exclusive
scalar, axial-vector, and tensor quarkonium production,
Eqs. (22), (24), (28), (29), (31), and (32), respectively, in
electron-proton scattering. We have provided first estimates
of the cross sections for exclusive production of χcJ
quarkonia with positive C-parity at the EIC. This process
requires a C-odd exchange in the t channel. In the limit of
heavy quarks and/or high-transverse momentum transfer
this could be the exchange of a photon, a Primakoff
process, or the exchange of a color-symmetric three-gluon
ladder, the odderon. Our estimates suggest that for jtj ≈
1 GeV2 the two amplitudes are of similar magnitude and
that there are strong interference effects. Importantly, the
relative phase is not affected by QCD evolution of the
odderon towards small x, and so it is determined by the
three-gluon exchange amplitude at moderately small x0. In
turn, the matrix element of the eikonal color current
operator dabcJþaJþbJþc at x0, for transverse momenta of
order maxðR−1

χc ; jtj1=2Þ (Rχc being here roughly the size of
χc), can be computed in a truncated Fock space for the
proton that encompasses the states that are relevant in that
kinematic regime.
We find that photon and odderon exchanges interfere

constructively, leading to an enhancement of the differential

FIG. 7. A summary of expected Primakoff (orange) vs total (magenta) number of exclusive χcJ → J=ψγ → lþl−γ events per month at
the top EIC energy of

ffiffiffi
S

p ¼ 140 GeV for three different jtj cuts. The remaining kinematic cuts are the same as in Fig. 6. The two
different bins for the total number of events correspond to αS ¼ 0.25 and αS ¼ 0.2, respectively.
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cross section for χcJ production around jtj ≈ 1 GeV2 by up
to a factor of 4 over the pure photon exchange contribution.
Given that both the normalization and the t dependence of
the Primakoff process are reasonably well determined, this
presents a very exciting opportunity to potentially discover at
the EIC the hard C-odd exchange predicted by QCD.
Furthermore, we find that towards top EIC energy,

ffiffiffi
S

p ¼
140 GeV, the total electroproduction cross section of χcJ
quarkonia (with kinematic cuts specified in the previous
section) levels off as neither photon nor odderon
exchange involves a positive intercept. Therefore, it would
be important to measure the energy dependence [89] of the
cross section from

ffiffiffi
S

p ¼50GeV up to top EIC energyffiffiffi
S

p ¼140GeV, where photon and odderon amplitudes are
similar, and where constructive interference of amplitudes
leads to a total cross section for production of χc1 and χc2
quarkonia which exceeds the Primakoff component by a
factor of ≈3–4.
The predictions for the odderon exchange process of

course involve a number of uncertainties such as the matrix
element in the proton of dabcJþaJþbJþc or the value of the
strong coupling αS. The associated cross section scales
approximately like α6S. Most importantly, the discovery of
the hard QCD C-odd exchange requires fixing the nor-
malization of the Primakoff background from measure-
ments at low

ffiffiffiffiffijtjp
< 0.5 GeV; the relation (44) of the

t → 0 limit of the cross section to the γγ decay width
provides an important constraint on theoretical predictions
for this background. The t dependence of the Primakoff
cross section is then determined by the Dirac and Pauli
electromagnetic form factors of the proton which are well
known. Hence, one may then look for excess events above
this background, and for a change of slope of the differ-
ential cross section dσ=dt, at higher jtj ∼ 1 GeV2 and
beyond.
Our estimates indicate very weak dipole-proton (hard)

scattering with C-odd exchange; this is largely since these
amplitudes are also parity odd and vanish for impact
parameter b⊥ → 0, unlike parity even amplitudes, as well
as due to the fact that they fall off more rapidly towards
large b⊥. The total electro-production cross section of χcJ
quarkonia at top EIC energy is estimated to have a
magnitude of 10–20 fb (for J ¼ 1) and 60 fb (for
J ¼ 2). Thus, it was not possible to observe these proc-
esses at the HERA accelerator. However, in view of the
projected high luminosity of the EIC, data collection over a
time span of several months to a year may be sufficient for
the discovery of the hard odderon. A promising alternative
would be to allow low-mass excitations of the proton, while
requiring a large rapidity gap to the C ¼ þ1 quarkonia.
Such rapidity gap, diffractive processes have greater cross
sections than exclusive ones. Furthermore, they would
extend the reach to higher jtj where odderon exchange
would more clearly dominate over photon exchange.
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APPENDIX A: COMPUTATION OF THE
LIGHT-CONE WAVE FUNCTIONS

In order to compute the light-cone wave functions, the
key element is a vertex contraction between spinors, e.g.,
ūhðkÞΓvh̄ðk0Þ (Γ is some general Dirac vertex). For the
spinors we use the LB basis, defined through

uhðkÞ ¼
1

21=4
ffiffiffiffiffi
k−

p ð
ffiffiffi
2

p
k− þ γ0mþ α⊥ · k⊥Þχh

¼ 1

21=4
ffiffiffiffiffi
k−

p ð
ffiffiffi
2

p
k− þ γ0mþ k⊥γ0Þχh;

vhðkÞ ¼
1

21=4
ffiffiffiffiffi
k−

p ð
ffiffiffi
2

p
k− − γ0mþ α⊥ · k⊥Þχ−h

¼ 1

21=4
ffiffiffiffiffi
k−

p ð
ffiffiffi
2

p
k− − γ0mþ k⊥γ0Þχ−h; ðA1Þ

where αi ¼ γ0γi. In accordance with the conventions used
in this work, we have switched plus and minus light-cone
coordinates in the above expression as compared to the
original LB convention [47]. Thus the spinors χh are
eigenstates of γþγ−, namely

1

2
γþγ−χh ¼ χh;

1

2
γ−γþχh ¼ 0: ðA2Þ

Explicitly, we have χþ ¼ ð−1; 0; 1; 0Þ= ffiffiffi
2

p
, χ− ¼

ð0; 1; 0; 1Þ= ffiffiffi
2

p
. The spinors (A1) can now be written as

uhðkÞ ¼
1

21=4
ffiffiffiffiffi
k−

p ðkþmÞγ0χh;

vhðkÞ ¼
1

21=4
ffiffiffiffiffi
k−

p ðk −mÞγ0χ−h: ðA3Þ

By defining a projection matrix
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χhh̄ ≡ γ0χ−h̄χ̄hγ
0; ðA4Þ

one obtains

ūhðkÞΓvh̄ðk0Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2k−k0−
p tr½ðkþmÞΓðk0 −mÞχhh̄�; ðA5Þ

and so the computation of the light-cone wave function
comes down to the computation of the above Dirac trace.
We use this method to compute all the wave functions
considered in this work. Using (A4), the explicit forms of
the projection matrices are found to be

χ�� ¼ � 1

2
ffiffiffi
2

p γ−ðγ1 ∓ iγ2Þ;

χ�∓ ¼ 1

2
ffiffiffi
2

p γ−ð1 ∓ γ5Þ: ðA6Þ

APPENDIX B: DERIVATION
OF THE AMPLITUDES FOR AXIAL

AND TENSOR QUARKONIA

In this appendix we present the steps of the derivation of
the amplitudes from Sec. II B for the axial-vector and tensor
quarkonia.
In the case of axial quarkonia we plug the second line

of (9) into the traces in (19) to obtain

Aλ¼0;λ̄¼0ðl⊥; l1⊥; zÞ ¼ 0;

Aλ¼0;λ̄¼�ðl⊥; l1⊥; zÞ ¼ 4Qzz̄ðϵλ̄�⊥ × l1⊥Þ;

Aλ¼�;λ̄¼0ðl⊥; l1⊥; zÞ ¼
4

MA
ðm2

cðϵλ⊥ × l1⊥Þ þ l21⊥ðϵλ⊥ × l⊥ÞÞ;

Aλ¼�;λ̄¼�ðl⊥; l1⊥; zÞ ¼ 2ðz − z̄Þððϵλ⊥ · ϵλ̄�⊥ Þðl⊥ × l1⊥Þ
− ðl⊥ · l1⊥ þm2

cÞðϵλ⊥ × ϵλ̄�⊥ ÞÞ: ðB1Þ

The last line is understood to contain four different
combinations of photon and quarkonia transverse

polarizations. We used the following notations for the
2D cross products: x⊥ × y⊥ ≡ x1y2 − x2y1 ¼ −ϵþ−x⊥y⊥ .
The nonzero reduced amplitudes are

Aλ¼0;λ̄¼�ðr⊥;Δ⊥Þ ¼ eqce−iλ̄ϕr

Z
z
e−iδ⊥·r⊥ALTðr⊥Þ;

Aλ¼�;λ̄¼0ðr⊥;Δ⊥Þ ¼ eqceiλϕr

Z
z
e−iδ⊥·r⊥ATLðr⊥Þ;

Aλ¼�;λ̄¼�ðr⊥;Δ⊥Þ ¼ eqcλδλλ̄

Z
z
e−iδ⊥·r⊥ATTðr⊥Þ; ðB2Þ

where AA are given in Eq. (29). Notice that the first term
from the fourth line of (B1) is proportional to r⊥ × r⊥ ¼ 0
in coordinate space and so it does not contribute to
ATTðr⊥Þ. In the last line of Eq. (B2), out of four possible
combinations of photon and axial quarkonia transverse
polarizations, only the two polarization preserving tran-
sitions survive since this amplitude is proportional to the
2D cross product, ϵλ⊥ × ϵλ̄�⊥ ¼ ð−i=2Þðλþ λ̄Þ ¼ −iλδλλ̄ of
the polarization vectors of the incoming photon and out-
going axial-vector quarkonia. Accordingly, the two polari-
zation flipping transitions vanish, unlike in case of vector
quarkonia.
Computing now the ϕr integral we separate the helicity

dependence and obtain the amplitudes

hMλ¼0;λ̄¼�1i≡ q−M̃0;λ̄¼�1 ≡ q−e−iλ̄ϕΔM̃LT;

hMλ¼�1;λ¼0i≡ q−M̃λ¼�1;0 ≡ q−eiλϕΔM̃TL;

hMλ¼�1;λ̄¼�1i≡ q−M̃λ¼�1;λ̄¼�1 ≡ q−λδλλ̄M̃TT; ðB3Þ

where M̃B are given in Eq. (28).
For the tensor quarkonia, we proceed along similar steps

as above, only this time there is a total of 15 overlaps that
need to be computed. Starting from the traces (19), we plug
in the third line of (9) and find

Aλ¼0;λ̄¼�2ðl⊥; l1⊥; zÞ ¼ −8Qzz̄ðz − z̄Þðϵ��⊥ · l1⊥Þ2;
Aλ¼�1;λ̄¼�2ðl⊥; l1⊥; zÞ ¼ −4ðϵ��⊥ · l1⊥Þ½ðϵλ⊥ · ϵ��⊥ Þðl⊥ · l1⊥ þm2

cÞ
þ ðz − z̄Þ2ðϵλ⊥ · l⊥Þðϵ��⊥ · l1⊥Þ − ðϵλ⊥ · l1⊥Þðϵ��⊥ · l⊥Þ�;

Aλ¼0;λ̄¼�1ðl⊥; l1⊥; zÞ ¼ 2
ffiffiffi
2

p
QMT zz̄ð3 − 4ðz2 þ z̄2ÞÞðϵλ̄⊥ · l1⊥Þ;

Aλ¼�1;λ̄¼�1ðl⊥; l1⊥; zÞ ¼ −
ffiffiffi
2

p
MT ðz − z̄Þ½ðϵλ⊥ · ϵλ̄�⊥ Þðl⊥ · l1⊥ þm2

cÞ
− ð3 − 4ðz2 þ z̄2ÞÞðϵλ⊥ · l⊥Þðϵλ̄�⊥ · l1⊥Þ − ðϵλ⊥ · l1⊥Þðϵλ̄�⊥ · l⊥Þ�;

Aλ¼0;λ̄¼0ðl⊥; l1⊥; zÞ ¼
8

ffiffiffi
2

p
Qffiffiffi
3

p zz̄ðz − z̄Þ
�
3

2
l21⊥ þm2

c

�
;

Aλ¼�1;λ̄¼0ðl⊥; l1⊥; zÞ ¼
2

ffiffiffi
2

p
ffiffiffi
3

p
�
2ðz − z̄Þ2ðϵλ⊥ · l⊥Þ

�
3

2
l21⊥ þm2

c

�
þ ðϵλ⊥ · l1⊥Þm2

c

�
: ðB4Þ
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The results for λ̄ ¼ 0 have been simplified using

ðϵþ�⊥ · u⊥Þðϵ−�⊥ · v⊥Þ þ ðϵ−�⊥ · u⊥Þðϵþ�⊥ · v⊥Þ ¼ −u⊥ · v⊥; ðB5Þ

which holds for general 2D vectors u⊥ and v⊥. Inserting (B4) in (18) we obtain the reduced amplitudes

Aλ¼0;λ̄¼�2ðr⊥;Δ⊥Þ ¼ eqce−iλ̄ϕr

Z
z
e−iδ⊥·r⊥ALT2ðr⊥Þ;

Aλ¼�1;λ̄¼�2ðr⊥;Δ⊥Þ ¼ eqcλeiðλ−λ̄Þϕr

Z
z
e−iδ⊥·r⊥ðδλ;λ̄=2ATT2pðr⊥Þ þ δλ;−λ̄=2ATT2fðr⊥ÞÞ;

Aλ¼0;λ̄¼�1ðr⊥;Δ⊥Þ ¼ eqcλ̄e−iλ̄ϕr

Z
z
e−iδ⊥·r⊥ALTðr⊥Þ;

Aλ¼�1;λ̄¼�1ðr⊥;Δ⊥Þ ¼ eqceiðλ−λ̄Þϕr

Z
z
e−iδ⊥·r⊥ðδλλ̄ATTpðr⊥Þ − δλ;−λ̄ATTfðr⊥ÞÞ;

Aλ¼0;λ̄¼0ðr⊥;Δ⊥Þ ¼ eqc

Z
z
e−iδ⊥·r⊥ALLðr⊥Þ;

Aλ¼�1;λ̄¼0ðr⊥;Δ⊥Þ ¼ eqcλeiλϕr

Z
z
e−iδ⊥·r⊥ATLðr⊥Þ: ðB6Þ

From (B6) we see that for the transverse polarizations of the photon and the tensor quarkonia both the polarization-
preserving (λ → λ̄=2, for the case λ̄ ¼ �2 and λ → λ̄ for the case λ̄ ¼ �1) and polarization-flipped (λ → −λ̄=2, λ → −λ̄)
transitions are allowed, which explains the notation (p ¼ preserving, f ¼ flipped).
In the final step we compute the amplitudes

hMλ¼0;λ̄¼�2i≡ q−M̃λ¼0;λ̄¼�2 ≡ q−e−iλ̄ϕΔM̃LT2;

hMλ¼�1;λ̄¼�2i≡ q−M̃λ¼�1;λ̄¼�2 ≡ q−λe−iλϕΔδλ;λ̄=2M̃TT2p þ q−λe3iλϕΔδλ;−λ̄=2M̃TT2f;

hMλ¼0;λ̄¼�1i≡ q−M̃λ¼0;λ̄¼�1 ≡ q−e−iλ̄ϕΔM̃LT;

hMλ¼�1;λ̄¼�1i≡ q−M̃λ¼�1;λ̄¼�1 ≡ q−δλλ̄M̃TTp þ q−δλ;−λ̄e
2iλϕΔM̃TTf;

hMλ¼0;λ̄¼0i≡ q−M̃λ¼0;λ̄¼0 ≡ q−M̃LL;

hMλ¼�1;λ̄¼0i≡ q−M̃λ¼�1;λ̄¼0 ≡ q−ðδλ1 − δλ;−1ÞeiλϕΔM̃TL; ðB7Þ

where the explicit helicity dependence was also factored out. The scalar functions M̃B are given by Eq. (31).

APPENDIX C: THE PRIMAKOFF
CONTRIBUTION IN SPECIFIC

KINEMATIC LIMITS

1. The proof of formula (44)

We begin by considering the amplitude for the decay
process Hðλ̄;ΔÞ → γðλ; qÞγðλ0;lÞ, where H ¼ S, T . In
what follows, it will be useful to separate out the exchanged
photon polarization from the amplitude as

Mλλ0λ̄ðH → γγÞ ¼ ϵμðλ0;lÞMμ
λλ̄
ðH → γγÞ: ðC1Þ

Inserting (C1) into the standard formula for the decay width
[34] we get

ΓðH → γγÞ ¼ 1

2J þ 1

1

32πMH

XJ
λ̄¼−J

X
λλ0

jMλλ0 λ̄ðH → γγÞj2;

¼ −
1

2J þ 1

1

32πMH

XJ
λ̄¼−J

X
λ

gii0Mi
λλ̄
ðH → γγÞ

×Mi0�
λλ̄
ðH → γγÞ: ðC2Þ

Next, we consider the amplitude for exclusive photopro-
ductionMλλ̄ðγp→HpÞ; see (50). The cross section reads [34]

dσHðγp → HpÞ
djtj

¼ 1

2

XJ
λ̄¼−J

X
λ

Z
dϕl

2π

1

16πW4
jMλλ̄ðγp → HpÞj2; ðC3Þ
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whereW2 ¼ ðqþ PÞ2 ≃ 2q · P ≫ M2
H; P

2; jl2j in the high-
energy limit.14 Moreover l ≈ ðxPPþ; 0;l⊥Þ with ϕl the
azimuthal angle of l⊥. We also have xP ≈M2

H=W
2 [see

Eq. (66)], and l2 ¼ t ≈ −l2⊥.
Taking the high-energy limit leads to (51). Here we pick

up the leading F1 term when W2 ≫ jtj

Mλλ̄ðγp → HpÞ

¼ PμM
μ
λλ̄
ðγγ → HÞ eF1ðl⊥Þ

l2

1

q · P
ūðP0Þ=quðPÞ: ðC4Þ

To make the connection (44) we rewrite (C4) using QED
gauge invariance lμM

μ
λλ̄
ðγγ → HÞ ¼ 0 in the high-energy

limit (the Collins–Ellis trick [90])

PμM
μ
λλ̄
ðγγ → HÞ ≈ −

1

xP
liMi

λλ̄
ðγγ → HÞ; ðC5Þ

so that

Mλλ̄ðγp→HpÞ¼−
2eF1ðl⊥Þ

t
W2

M2
H
liMi

λλ̄
ðγγ→HÞ: ðC6Þ

Finally, the result in (C3) is isotropic in ϕl after the
polarization sum. We can perform the angular average
leading to

1

2

XJ
λ̄¼−J

X
λ

Z
dϕl

2π
jliMi

λλ̄
ðγγ → HÞj2

¼ −
1

4
l2⊥

XJ
λ̄¼−J

X
λ

gii0Mi
λλ̄
ðγγ → HÞMi0�

λλ̄
ðγγ → HÞ

¼ ð2J þ 1Þ8πMHl2⊥ΓðH → γγÞ; ðC7Þ

where in the last line we used (C2). Inserting (C7) into (C3)
via (C6) gives Eq. (44), which is the desired result. In the
derivation we assumed scattering off a proton target, but the
formula is valid for any charged particle.

2. The jtj → 0 limit for axial-vector quarkonia and its
connection to the Landau–Yang theorem

Thanks to the Collins–Ellis trick, the γ�γ� → H ampli-
tude for scalar and tensor quarkonia has a finite OðΔ⊥Þ
contribution. The Collins–Ellis trick is a rather general and
robust procedure in the high-energy limit and so from this
perspective the case of axial quarkonia seems special in that
the OðΔ⊥Þ contribution vanishes, with the amplitude
scaling as OðΔ2⊥Þ; check (47). In the following we
demonstrate that OðΔ2⊥Þ scaling follows from a general

argument which does not rely on a particular choice of
axial-quarkonium wave function.
We take Eq. (41) as a starting point and further factor out

the polarization vectors from the helicity amplitude as

nνMν
λλ̄
ðγ�γ�→AÞ¼ ϵμðλ;qÞnνEρðλ̄;Δ0ÞMμνρðγ�γ� →AÞ:

ðC8Þ

The covariant amplitude Mμνρðγ�γ� → AÞ depends only
on the vectors qμ and lν. Because A is an axial-vector
quarkonium,Mμνρðγ�γ� → AÞ has to be proportional to the
ϵ tensor. In general the covariant decomposition is as
follows:

Mμνρðγ�γ�→AÞ¼
�
qρ−lρþ−q2þl2

ðqþlÞ2 ðq
ρþlρÞ

�

×ϵμνqlMAFTTðq2;l2Þ

þ
�
lμ−

q ·l
q2

qμ
�
ϵνρql

ffiffiffiffiffiffiffiffi
−q2

q
FLTðq2;l2Þ

þ
�
qν−

q ·l
l2

lν

�
ϵμρql

ffiffiffiffiffiffiffiffi
−l2

p
FTLðq2;l2Þ

ðC9Þ

(see, e.g., [60] and references therein). The decomposition
(C9) is QED gauge invariant, that is, qμMμνρðγ�γ� →
AÞ ¼ 0 and lνMμνρðγ�γ� → AÞ ¼ 0, and we also have
ðqρ þ lρÞMμνρðγ�γ� → AÞ ¼ 0. Here the notation FTT ,
FTL, and FLT refers to the γ�γ� polarizations in the
center-of-mass frame. Only the form-factor FTT is con-
strained by the LY theorem FTTð0; 0Þ ¼ 0 [76,77]; see also
Ref. [60]. Due to the Bose symmetry of the full amplitude
(C9) we must have FTTðq2;l2Þ ¼ −FTTðl2; q2Þ and
so FTTðq2;l2Þ ∝ q2 − l2 for small q2 and l2. On the
other hand, the form-factors FLT and FTL scale as
FLTðq2;l2Þ ∝

ffiffiffiffiffiffiffiffi
−q2

p
, FTLðq2;l2Þ ∝

ffiffiffiffiffiffiffiffi
−l2

p
in order to

avoid kinematic singularities [60,91].
Contracting (C9) with the longitudinal polarization

vector Eρð0;Δ0Þ, only the piece proportional to the gauge
vector nρ from (12) survives. Further contracting with the
transverse photon polarization ϵμðλ ¼ �1; qÞ and the gauge
vector nν we obtain

nνMν
λ¼�1;λ̄¼0

ðγ�γ� →AÞ

¼−
M0

Δ0 ·n
ðq ·nÞϵϵðλ;qÞnql

��
1−

q2 −l2

Δ2
0

�
MAFTTðq2;l2Þ

þ
ffiffiffiffiffiffiffiffi
−l2

p
FTLðq2;l2Þ

�
; ðC10Þ

where we have used l · n ¼ 0. The form-factor FLTðq2;l2Þ
decouples after contracting ϵνρql with nνEρð0;Δ0Þ. Taking
into account the scalings of the form factors the square

14The amplitudes Mλλ̄ in this section and the amplitudes M̃λλ̄

of Eqs. (23), (B3), and (B7) are related through M̃λλ̄ ¼ Mλλ̄=W
2;

compare (C3) with (35).
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bracket in (C10) is OðΔ2⊥Þ while the ϵ tensor is OðΔ⊥Þ
leading to the overall OðΔ3⊥Þ scaling.
For the transverse polarization we find

nνMν
λ¼�1;λ̄¼�1

ðγ�γ� → AÞ
¼ ðq − lÞ · Eðλ̄;Δ0Þϵϵðλ;qÞnqlMAFTTðq2;l2Þ

þ ðϵðλ; qÞ · lÞϵnEðλ̄;Δ0Þql
ffiffiffiffiffiffiffiffi
−q2

q
FLTðq;l2Þ

þ ðq · nÞϵϵðλ;qÞEðλ̄;Δ0Þql
ffiffiffiffiffiffiffiffi
−l2

p
FTLðq2;l2Þ: ðC11Þ

The first term in (C11) isOðΔ3⊥Þ, the second term decouples
in the q2 → 0 limit, and the third term isOðΔ2⊥Þwhich is the
leading contribution in the Δ⊥ → 0 limit.

3. The NRQCD limit of the Primakoff cross sections

In this subsection we consider the nonrelativisitic QCD
(NRQCD) limit of the Primakoff process by taking the
heavy quark limit. We also take Q2 → 0 and focus on
transverse photon-proton scattering.
In the NRQCD limit all the momenta in the amplitude

are considered to be much smaller than the heavy quark
mass. Since the expressions obtained in the Secs. C 1
and C 2 already correspond to the jtj → 0 limit, we take
those as a starting point and further expand to second order
in ξ ¼ z − 1=2 and l⊥.
For scalar quarkonia, using (46) we obtain

M̃T → 8
ffiffiffi
2

p
πiq2cαNc

eF1ðΔ⊥Þ
Δ⊥

×
1

m3
c

Z
z

Z
l⊥
ðl2⊥ þ 4ξ2m2

cÞ
ϕSðl⊥; zÞ

zz̄
: ðC12Þ

In the next step we replace the light-cone wave function
(LCWF) ϕSðl⊥; zÞ by the nonrelativistic radial wave
function uðlÞ. Here l ¼ ðl⊥; l3Þ and l is its modulus, with
l3 ¼ 2ξmc as appropriate for the NRQCD limit. The
correspondence is given by [57]

Z
z

Z
l⊥

ϕSðl⊥; zÞ
zz̄

→
1

16π2
ffiffiffiffiffiffi
mc

p 1ffiffiffiffiffiffi
Nc

p
Z

d3l
uðlÞ
l2

: ðC13Þ

After performing the angular integrations in Eq. (C12) we
relate uðlÞ to the derivative of the radial wave function at
the origin, as in Eq. (3.18) of Ref. [57]:

Z
∞

0

dl l2uðlÞ ¼ 3

ffiffiffi
π

2

r
R0ð0Þ: ðC14Þ

This leads to

M̃T → 12
ffiffiffi
π

p
iq2cα

ffiffiffiffiffiffi
Nc

p eF1ðΔ⊥Þ
Δ⊥

1

m7=2
c

R0ð0Þ. ðC15Þ

The cross section is obtained from standard formulas; see
Eq. (36). We find

dσðγp → SpÞ
djtj →

9πq4cα3NcjR0ð0Þj2F2
1ð0Þ

m7
cjtj

: ðC16Þ

The result agrees with Eq. (8b) of Jia et al. [88].
For axial-vector quarkonia there is an additional factor offfiffiffiffiffiffiffiffi
3=2

p
on the rhs of Eq. (C13). Recalling that the leading

contribution in the jtj → 0 limit comes from the amplitude
M̃TT of (47), and using (37), we find that in the NRQCD
limit

dσðγp → ApÞ
djtj →

3πq4cα3NcjR0ð0Þj2F2
1ð0Þ

m9
c

; ðC17Þ

which also agrees with Eq. (8c) in Ref. [88].
For the tensor quarkonia with λ̄ ¼ �1;�2, the rhs of

Eq. (C13) is multiplied by a factor of
ffiffiffi
3

p
=MT . Using (49)

and (38) we find that the leading contribution comes from
the amplitude M̃TT2;p so that

dσðγp → T pÞ
djtj →

12πq4cα3NcjR0ð0Þj2F2
1ð0Þ

m7
cjtj

: ðC18Þ

This also agrees with Eq. (8d) in Ref. [88].

APPENDIX D: THE RELATIVE SIGN OF THE
EIKONAL PHOTON AND ODDERON

EXCHANGE AMPLITUDES

In this appendix we explain in detail our conventions for
covariant derivatives, field equations, and Wilson lines.
Consistent conventions are important for obtaining the correct
relative sign of the Primakoff and odderon amplitudes.
We write the covariant derivative in the fundamental

representation as

ðDμÞij ¼ δijð∂μ þ ieqcAμÞ þ igAμaðtaÞij: ðD1Þ

Here, i;j¼1;…;Nc are fundamental and a¼1;…;ðN2
c−1Þ

is an adjoint color index; Aμ; Aμa represent the electromag-
netic and color fields, respectively, and ta are the traceless
generators of color-SUðNcÞ, normalized as trðtatbÞ ¼ 1

2
δab.

qc denotes the fractional electromagnetic charge of the
fermion field on which this covariant derivative acts,
qc ¼ þ2=3 for c quarks.
From the Dirac equation for a massless fermion field,

iγμðDμÞijψ j ¼ 0, in a background with eikonal (“shock-
wave”)Aμ andAμa fields (whereAþ is the only nonvanishing
field component and independent of xþ), ψ j is proportional
to the Wilson line

Vðx⊥Þ ¼ P exp

�
−i

Z þ∞

−∞
dx−½eqcAþðx−; x⊥Þ

þ gAþaðx−; x⊥Þta�
�
: ðD2Þ
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The Yang–Mills and Maxwell equations for the shockwave
fields in covariant gauge are

∂μF
μν
a ¼ Jνa → −∇2⊥Aþ

a ¼ Jþa ; ðD3Þ

∂μFμν ¼ Jν → −∇2⊥Aþ ¼ Jþ; ðD4Þ
where Jþa and Jþ are the plus components of the color and
electromagnetic currents, respectively. Note that here Aþ
denotes the electromagnetic field sourced by the charges in
the proton, from which the projectile cc̄ dipole scatters.
We now define the S matrix for eikonal scattering of the

color singlet dipole, averaged over the colors of the c; c̄
quarks

Sðx⊥; y⊥Þ ¼
1

Nc
trhVðx⊥ÞV†ðy⊥Þi: ðD5Þ

h� � �i denotes the matrix element of the respective operator
between proton states jPþ;P⊥i and hPþ þ Δþ;P⊥ þ Δ⊥j,
stripped of the δ functions representing conservation of
light-cone and transverse momentum.
We can now define the amplitudes for single photon or

three-gluon exchange as follows. Setting the QCD coupling
g ¼ 0 and expanding the Wilson lines to linear order in Aþ
we have

Vðx⊥Þ ¼ 1 − ieqc

Z þ∞

−∞
dx− Aþðx−; x⊥Þ

≡ 1 − ieqcαðx⊥Þ: ðD6Þ
Then,

Ωðx⊥; y⊥Þ≡ −
1

2i
hVðx⊥ÞV†ðy⊥Þ − Vðy⊥ÞV†ðx⊥Þi

¼ eqchαðx⊥Þ − αðy⊥Þi ðD7Þ
corresponds to the scattering amplitude for single photon
exchange. With the field equation (D4) we can write
hαðx⊥Þi¼−h 1

∇2⊥
ρðx⊥Þi where the integrated electric charge

density is ρðx⊥Þ ¼
Rþ∞
−∞ dx−Jþðx−; x⊥Þ. Performing a

Fourier transform from the transverse coordinate to the
transverse momentum space, the matrix element of this
operator is simply the Dirac electromagnetic form factor of
the proton, eF1ðq2⊥Þ ¼ hρðq⊥Þi. This leads to

Ωðr⊥;Δ⊥Þ ¼ 8πiαqc
F1ðΔ2⊥Þ
Δ2⊥

sin

�
r⊥ · Δ⊥

2

�
: ðD8Þ

Here we introduced r⊥ ¼ x⊥ − y⊥. This is the expression
written in Eq. (40) of the main text. In impact parameter
space,

Ωðr⊥;b⊥Þ¼ 8παqc

Z
Δ⊥

sinðb⊥ ·Δ⊥Þ
−F1ðΔ2⊥Þ

Δ2⊥
sin

�
r⊥ ·Δ⊥

2

�
:

ðD9Þ
We now proceed to the three-gluon exchange amplitude

by setting qc ¼ 0 in the Wilson line (D2) followed by an
expansion of (5), namely

Oðx⊥; y⊥Þ ¼ −
1

2iNc
trhVðx⊥ÞV†ðy⊥Þ − Vðy⊥ÞV†ðx⊥Þi;

ðD10Þ
to third order in Aþa:

Oðr⊥; b⊥Þ ¼
g3

4Nc
dabc

Z
q1⊥q2⊥q3⊥

hρaðq1⊥Þρbðq2⊥Þρcðq3⊥Þi
q21⊥q22⊥q23⊥

× sinðb⊥ · ðq1⊥ þ q2⊥ þ q3⊥ÞÞ

×

�
sin

�
1

2
r⊥ · ðq1⊥ − q2⊥ − q3⊥Þ

�

þ 1

3
sin

�
1

2
r⊥ · ðq1⊥ þ q2⊥ þ q3⊥Þ

��
: ðD11Þ

For details, see Eq. (77) of Ref. [23], to be multiplied by a
factor of i [compare our Eq. (D10) to their Eq. (76)], and
their Appendix B. Here ρaðx⊥Þ ¼

Rþ∞
−∞ dx−Jþaðx−; x⊥Þ

denotes the color charge density integrated along the
eikonal path. We now write the C-conjugation odd part
of the color charge correlator as

hρaðq1⊥Þρbðq2⊥Þρcðq3⊥Þi ¼
1

4
dabcg3G−

3 ðq1⊥; q2⊥; q3⊥Þ:
ðD12Þ

In a three-quark model this correlator takes the form [23]

G−
3 ðq1⊥;q2⊥; q3⊥Þ ¼

Z
½dxi�

Z
½d2pi�ψðx1;p1⊥; x2; p2⊥; x3; p3⊥Þ½ψ�ðx1; p1⊥ þ ðx1 − 1Þq⊥; x2; p2⊥ þ x2q⊥; x3;p3⊥ þ x3q⊥Þ

− ψ�ðx1; p1⊥ − q1⊥ þ x1q⊥; x2; p2⊥ − q2⊥ − q3⊥ þ x2q⊥; x3; p3⊥ þ x3q⊥Þ
− ψ�ðx1; p1⊥ − q1⊥ − q3⊥ þ x1q⊥; x2;p2⊥ − q2⊥ þ x2q⊥; x3; p3⊥ þ x3q⊥Þ
− ψ�ðx1; p1⊥ − q1⊥ − q2⊥ þ x1q⊥; x2;p2⊥ − q3⊥ þ x2q⊥; x3; p3⊥ þ x3q⊥Þ
þ 2ψ�ðx1; p1⊥ − q1⊥ þ x1q⊥; x2; p2⊥ − q2⊥ þ x2q⊥; x3; p3⊥ − q3⊥ þ x3q⊥Þ�: ðD13Þ
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Here, q⊥ ¼ q1⊥ þ q2⊥ þ q3⊥ and

½dxi�≡ dx1dx2dx3δð1 − x1 − x2 − x3Þ;

½d2pi�≡ 1

ð16π3Þ2 d
2p1⊥d2p2⊥d2p3⊥δð2Þðp1⊥ þ p2⊥ þ p3⊥Þ

ðD14Þ

denote integrations over the quark light-cone momentum
fractions and transversemomenta. ψðx1;p1⊥;x2;p2⊥;x3;p3⊥Þ
is the light-cone wave function of the model proton. This
expression agrees with the C-odd three-gluon exchange
proton impact factor E3;0 by Bartels and Motyka [92] up to
a conventional factor of ð−iÞ3. The first term in Eq. (D13)
corresponds to the coupling of the three exchanged gluons
to the same quark in the proton, and it is equal to the Dirac
form factor F1ðq2⊥Þ; note the opposite sign as compared to
the photon exchange amplitude (D9). This contribution is
dominant when all jq⊥ij are much greater than the typical
quark-transverse momentum while jq⊥j is on the order of
that scale. For high-momentum transfer jtj ¼ q2⊥ on the
other hand, contributions due to gluon exchanges with two
or three quarks in the proton become dominant. Where this
transition occurs is determined by the light-cone wave
function ψ which encodes the structure of the proton,

specifically the single quark momentum distribution as well
as multiquark momentum correlations.
G−

3 can also be expressed [93] in terms of two-
gluon exchanges, G2ðq1⊥; q2⊥Þ ¼ 2δabhρaðq1⊥Þρbðq2⊥Þi=
g2ðN2

c − 1Þ, where two of the three gluons are “paired up,”
plus a genuine three-body contribution which enforces the
Ward identity (vanishing of G−

3 ) when either one of the
transverse momenta vanishes, q⊥i → 0:

G−
3 ðq1⊥; q2⊥; q3⊥Þ ¼ G2ðq1⊥ þ q2⊥; q3⊥Þ þG2ðq1⊥ þ q3⊥; q2⊥Þ þ G2ðq2⊥ þ q3⊥; q1⊥Þ

− 2

Z
½dxi�

Z
½d2pi�½ψ�ðx1; p1⊥ þ ðx1 − 1Þq⊥; x2; p2⊥ þ x2q⊥; x3; p3⊥ þ x3q⊥Þ

− ψ�ðx1; p1⊥ − q1⊥ þ x1q⊥; x2; p2⊥ − q2⊥ þ x2q⊥; x3; p3⊥ − q3⊥ þ x3q⊥Þ�
× ψðx1; p1⊥; x2; p2⊥; x3; p3⊥Þ: ðD15Þ

Once again, for small jq⊥j but large jq⊥ij the fourth term on
the right-hand side of this equation becomes −2F1ðq2⊥Þ.
A simple light-front quark model wave function from the

literature [66,67] predicts Oðr⊥; b⊥Þ < 0 at small impact
parameters; see Fig. 8. This corresponds to constructive
interference of photon and odderon exchange amplitudes.
Neither the fixed order OðαSÞ correction [65] to the matrix
element hρaðq1⊥Þρbðq2⊥Þρcðq3⊥Þi nor small-x resumma-
tion of Oðr⊥; b⊥Þ change this initial sign; the resulting
first harmonic O1ðr⊥;Δ⊥Þ at smaller x is shown above
in Fig. 2.
Finally, let us mention that a third C-conjugation odd

amplitude corresponds to the exchange of a single photon
plus two gluons in a color singlet state. This corresponds to
the expansion of Eq. (D5) to linear order in the electro-
magnetic and to quadratic order in the color field. This
contribution is expected to be small [33] and has not been
considered here.

APPENDIX E: BJKP–BLV ODDERON

In this work the small-x evolution of the odderon
exchange amplitude has been computed using the nonlinear
evolution of the odderon coupled to the BK equation
[11,12]—the “unitarized solution.” It is interesting to
compare to the BLV solution [9] obtained from the BKP
equation for the odderon, that is, without including the
unitarity corrections15—the “linear solution.” Starting from
the initial condition at Y ¼ 0 obtained in [65] and described
in Sec. II D, in Fig. 9 we show O1ðr⊥;Δ⊥Þ as a function of
Y ¼ logðx0=xPÞ (left) with fixed r⊥ ¼ 0.3 fm and Δ⊥ ¼
1 GeV and up to Y ¼ 10. The unitarized (full) and the
linear (dashed line) results for O1ðr⊥;Δ⊥Þ both drop as a
function of Y. For the unitarized solution this is more

FIG. 8. The odderon amplitude Oðr⊥; b⊥Þ obtained from a
light-front quark model [66,67], when the relative angle between
r⊥ and b⊥ ϕrb ¼ 0. At small b⊥ the sign is negative.

15Alternatively, one could solve for the BKP Green’s function
and reconstruct the odderon amplitude from it [94].
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pronounced due to the nonlinear corrections suppressing
the odderon exchange amplitude [14,59,95].
The impact of the unitarized vs linear evolution on theW

dependence of the odderon component of the cross section is
shown in Fig. 9 (right). As an example, we consider the
σTðγ�p → χc1pÞ cross section with the kinematic cuts as in
Fig. 4 from which we reproduced the result of unitarized
evolution. The range in Y shown in Fig. 9 (left) roughly
translates to the range inW shown on the right. Even though
linear evolution does lead to amuchmilderW dependence of
σT , the cross section does not seem to fully reach the BLV
asymptotics (a constant value) even forW ¼ 104 GeV.Note,
however, that from the standard saddle point analysis one
expects a 1=Y3 correction to the asymptotic behavior of the

nonforward BLV exchange cross section, as established for
the analogous case of the nonforward BFKL cross section
[96]. From the perspective of the EIC, taking the top

ffiffiffi
S

p ¼
140 GeV collision energy of the ep system,W can reach at
mostW ≈ 136 GeV (at y ¼ 0.95) resulting in a factor of 2–3
difference in the cross section at the high y end of the photon
flux. Due to the 1=y leading behavior of the photon flux,
however, the exclusive χcJ production at the EIC will be
dominated bymuch lowerW, close to the experimental lower
cutoff on W for exclusive events, say for 2 < Y < 4, where
the unitarity corrections to the odderon exchange cross
section are below 30%, i.e., small in comparison to the
theoretical uncertainty.

[1] L. Lukaszuk and B. Nicolescu, A possible interpretation of
pp rising total cross-sections, Lett. Nuovo Cimento 8, 405
(1973).

[2] J. Bartels, High-energy behavior in a non-Abelian gauge
theory (II): First corrections to Tn→m beyond the leading ln s
approximation, Nucl. Phys. B175, 365 (1980).

[3] J. Kwiecinski and M. Praszalowicz, Three gluon integral
equation and odd c singlet Regge singularities in QCD,
Phys. Lett. 94B, 413 (1980).

[4] T. Jaroszewicz, Infrared divergences and Regge behavior in
QCD, Acta Phys. Pol. B 11, 965 (1980).

[5] L. N. Lipatov, Reggeization of the vector meson and the
vacuum singularity in non-Abelian gauge theories, Sov. J.
Nucl. Phys. 23, 338 (1976).

[6] E. A. Kuraev, L. N. Lipatov, and V. S. Fadin, The Pomer-
anchuk singularity in non-Abelian gauge theories, Sov.
Phys. JETP 45, 199 (1977).

[7] I. I. Balitsky and L. N. Lipatov, The Pomeranchuk singu-
larity in quantum chromodynamics, Sov. J. Nucl. Phys. 28,
822 (1978).

[8] J. Bartels, V. S. Fadin, L. N. Lipatov, and G. P. Vacca, NLO
corrections to the kernel of the BKP-equations, Nucl. Phys.
B867, 827 (2013).

[9] J. Bartels, L. N. Lipatov, and G. P. Vacca, A new odderon
solution in perturbative QCD, Phys. Lett. B 477, 178
(2000).

[10] A. M. Stasto, Small x resummation and the Odderon, Phys.
Lett. B 679, 288 (2009).

[11] Y. V. Kovchegov, L. Szymanowski, and S. Wallon, Pertur-
bative odderon in the dipole model, Phys. Lett. B 586, 267
(2004).

[12] Y. Hatta, E. Iancu, K. Itakura, and L. McLerran, Odderon in
the color glass condensate, Nucl. Phys. A760, 172 (2005).

[13] L. Motyka, Nonlinear evolution of pomeron and odderon in
momentum space, Phys. Lett. B 637, 185 (2006).

[14] T. Lappi, A. Ramnath, K. Rummukainen, and H. Weigert,
JIMWLK evolution of the odderon, Phys. Rev. D 94,
054014 (2016).

[15] X. Yao, Y. Hagiwara, and Y. Hatta, Computing the gluon
Sivers function at small-x, Phys. Lett. B 790, 361 (2019).

FIG. 9. Left: a comparison of the unitarized vs linear evolution of the odderon amplitudeO1ðr⊥;Δ⊥Þ as a function of Y. Right: a plot
of the resulting W dependence of the odderon component of the γ�p → χc1p cross section.

BENIĆ, DUMITRU, KAUSHIK, MOTYKA, and STEBEL PHYS. REV. D 110, 014025 (2024)

014025-24

https://doi.org/10.1007/BF02824484
https://doi.org/10.1007/BF02824484
https://doi.org/10.1016/0550-3213(80)90019-X
https://doi.org/10.1016/0370-2693(80)90909-0
https://doi.org/10.1016/j.nuclphysb.2012.10.024
https://doi.org/10.1016/j.nuclphysb.2012.10.024
https://doi.org/10.1016/S0370-2693(00)00221-5
https://doi.org/10.1016/S0370-2693(00)00221-5
https://doi.org/10.1016/j.physletb.2009.07.053
https://doi.org/10.1016/j.physletb.2009.07.053
https://doi.org/10.1016/j.physletb.2004.02.036
https://doi.org/10.1016/j.physletb.2004.02.036
https://doi.org/10.1016/j.nuclphysa.2005.05.163
https://doi.org/10.1016/j.physletb.2006.04.039
https://doi.org/10.1103/PhysRevD.94.054014
https://doi.org/10.1103/PhysRevD.94.054014
https://doi.org/10.1016/j.physletb.2019.01.029


[16] C. Contreras, E. Levin, R. Meneses, and M. Sanhueza, QCD
odderon: Nonlinear evolution in the leading twist, Phys.
Rev. D 101, 096019 (2020).

[17] S. Benić, D. Horvatić, A. Kaushik, and E. A. Vivoda,
Exclusive ηc production from small-x evolved Odderon at
an electron-ion collider, Phys. Rev. D 108, 074005 (2023).

[18] S. Jeon and R. Venugopalan, A classical odderon in QCD at
high energies, Phys. Rev. D 71, 125003 (2005).

[19] S. Jeon and R. Venugopalan, Random walks of partons in
SU(N(c)) and classical representations of color charges in
QCD at small x, Phys. Rev. D 70, 105012 (2004).

[20] J. Zhou, Transverse single spin asymmetries at small x and
the anomalous magnetic moment, Phys. Rev. D 89, 074050
(2014).

[21] R. Boussarie, Y. Hatta, L. Szymanowski, and S. Wallon,
Probing the gluon sivers function with an unpolarized target:
GTMD distributions and the odderons, Phys. Rev. Lett. 124,
172501 (2020).

[22] Y. Hagiwara, Y. Hatta, R. Pasechnik, and J. Zhou, Spin-
dependent Pomeron and Odderon in elastic proton-proton
scattering, Eur. Phys. J. C 80, 427 (2020).

[23] A. Dumitru, G. A. Miller, and R. Venugopalan, Extracting
many-body color charge correlators in the proton from
exclusive DIS at large Bjorken x, Phys. Rev. D 98, 094004
(2018).

[24] A. Dumitru, H. Mäntysaari, and R. Paatelainen, Cubic color
charge correlator in a proton made of three quarks and a
gluon, Phys. Rev. D 105, 036007 (2022).

[25] G. Antchev et al. (TOTEM Collaboration), Elastic differ-
ential cross-section dσ=dt at

ffiffiffi
s

p ¼ 2.76 TeV and implica-
tions on the existence of a colourless C-odd three-gluon
compound state, Eur. Phys. J. C 80, 91 (2020).

[26] V. M. Abazov et al. (D0 Collaboration), Measurement of the
differential cross section dσ=dt in elastic pp̄ scattering atffiffiffi
s

p ¼ 1.96 TeV, Phys. Rev. D 86, 012009 (2012).
[27] A. Schafer, L. Mankiewicz, and O. Nachtmann, Diffractive

ηc; η0, J=ψ and ψ 0 production in electron—proton collisions
at HERA energies, in Workshop on Physics at HERA
(Hamburg Deutsches Elektronen-Synchrotron, 1992).

[28] J. Czyzewski, J. Kwiecinski, L. Motyka, and M.
Sadzikowski, Exclusive ηc photoproduction and electro-
production at HERA as a possible probe of the odderon
singularity in QCD, Phys. Lett. B 398, 400 (1997); 411, 402
(E) (1997).

[29] R. Engel, D. Y. Ivanov, R. Kirschner, and L. Szymanowski,
Diffractive meson production from virtual photons with odd
charge—parity exchange, Eur. Phys. J. C 4, 93 (1998).

[30] W. Kilian and O. Nachtmann, Single pseudoscalar meson
production in diffractive ep scattering, Eur. Phys. J. C 5, 317
(1998).

[31] E. R. Berger, A. Donnachie, H. G. Dosch, W. Kilian, O.
Nachtmann, and M. Rueter, Odderon and photon exchange
in electroproduction of pseudoscalar mesons, Eur. Phys. J. C
9, 491 (1999).

[32] J. Bartels, M. A. Braun, D. Colferai, and G. P. Vacca,
Diffractive ηc photoproduction and electroproduction with
the perturbative QCD odderon, Eur. Phys. J. C 20, 323
(2001).

[33] A. Dumitru and T. Stebel, Multiquark matrix elements in the
proton and three gluon exchange for exclusive ηc production

in photon-proton diffractive scattering, Phys. Rev. D 99,
094038 (2019).

[34] R. L. Workman et al. (Particle Data Group), Review of
particle physics, Prog. Theor. Exp. Phys. 2022, 083C01
(2022).

[35] S. R. Klein, Comment on “ηc production in photon-induced
interactions at the LHC”, Phys. Rev. D 98, 118501 (2018).

[36] L. A. Harland-Lang, V. A. Khoze, A. D. Martin, and M. G.
Ryskin, Searching for the odderon in ultraperipheral pro-
ton–ion collisions at the LHC, Phys. Rev. D 99, 034011
(2019).

[37] S. J. Brodsky, J. Rathsman, and C. Merino, Odderon-
Pomeron interference, Phys. Lett. B 461, 114 (1999).

[38] P. Hägler, B. Pire, L. Szymanowski, and O. V. Teryaev,
Hunting the QCD-Odderon in hard diffractive electropro-
duction of two pions, Phys. Lett. B 535, 117 (2002); 540,
324(E) (2002).

[39] P. Hagler, B. Pire, L. Szymanowski, and O. V. Teryaev,
Pomeron—odderon interference effects in electroproduc-
tion of two pions, Eur. Phys. J. C 26, 261 (2002).

[40] A. Schafer, L. Mankiewicz, and O. Nachtmann, Double
diffractive J=ψ and ϕ production as a probe for the odderon,
Phys. Lett. B 272, 419 (1991).

[41] A. Bzdak, L. Motyka, L. Szymanowski, and J. R. Cudell,
Exclusive J=ψ and γ hadroproduction and the QCD odd-
eron, Phys. Rev. D 75, 094023 (2007).

[42] L. Pentchev et al. (GlueX Collaboration), Exclusive thresh-
old J=ψ photoproduction with GlueX, in Presented at
DIS2023: XXX International Workshop on Deep-Inelastic
Scattering and Related Subjects (Michigan State University,
East Lansing, Michigan, USA, 2023).

[43] A. Accardi et al., Electron Ion Collider: The next QCD
frontier: Understanding the glue that binds us all, Eur. Phys.
J. A 52, 268 (2016).

[44] R. Abdul Khalek et al., Science requirements and detector
concepts for the electron-ion collider: EIC Yellow Report,
Nucl. Phys. A1026, 122447 (2022).

[45] N. N. Nikolaev and B. G. Zakharov, Color transparency and
scaling properties of nuclear shadowing in deep inelastic
scattering, Z. Phys. C 49, 607 (1991).

[46] A. H. Mueller, Soft gluons in the infinite momentum wave
function and the BFKL pomeron, Nucl. Phys. B415, 373
(1994).

[47] G. P. Lepage and S. J. Brodsky, Exclusive processes in
perturbative quantum chromodynamics, Phys. Rev. D 22,
2157 (1980).

[48] H. G. Dosch, T. Gousset, G. Kulzinger, and H. J. Pirner,
Vector meson leptoproduction and nonperturbative gluon
fluctuations in QCD, Phys. Rev. D 55, 2602 (1997).

[49] T. Lappi, H. Mäntysaari, and J. Penttala, Relativistic
corrections to the vector meson light front wave function,
Phys. Rev. D 102, 054020 (2020).

[50] E. R. Berger, A. Donnachie, H. G. Dosch, and O.
Nachtmann, Observing the odderon: Tensor meson photo-
production, Eur. Phys. J. C 14, 673 (2000).

[51] F. Fillion-Gourdeau and S. Jeon, Tensor meson production
in proton-proton collisions from the color glass condensate,
Phys. Rev. C 77, 055201 (2008).

[52] R. S. Pasechnik, A. Szczurek, and O. V. Teryaev, Non-
perturbative and spin effects in the central exclusive

PHOTON-ODDERON INTERFERENCE IN EXCLUSIVE … PHYS. REV. D 110, 014025 (2024)

014025-25

https://doi.org/10.1103/PhysRevD.101.096019
https://doi.org/10.1103/PhysRevD.101.096019
https://doi.org/10.1103/PhysRevD.108.074005
https://doi.org/10.1103/PhysRevD.71.125003
https://doi.org/10.1103/PhysRevD.70.105012
https://doi.org/10.1103/PhysRevD.89.074050
https://doi.org/10.1103/PhysRevD.89.074050
https://doi.org/10.1103/PhysRevLett.124.172501
https://doi.org/10.1103/PhysRevLett.124.172501
https://doi.org/10.1140/epjc/s10052-020-8007-6
https://doi.org/10.1103/PhysRevD.98.094004
https://doi.org/10.1103/PhysRevD.98.094004
https://doi.org/10.1103/PhysRevD.105.036007
https://doi.org/10.1140/epjc/s10052-020-7654-y
https://doi.org/10.1103/PhysRevD.86.012009
https://doi.org/10.1016/S0370-2693(97)00249-9
https://doi.org/10.1016/S0370-2693(97)01052-6
https://doi.org/10.1016/S0370-2693(97)01052-6
https://doi.org/10.1007/s100529800752
https://doi.org/10.1007/s100529800844
https://doi.org/10.1007/s100529800844
https://doi.org/10.1007/s100520050043
https://doi.org/10.1007/s100520050043
https://doi.org/10.1007/s100520100676
https://doi.org/10.1007/s100520100676
https://doi.org/10.1103/PhysRevD.99.094038
https://doi.org/10.1103/PhysRevD.99.094038
https://doi.org/10.1093/ptep/ptac097
https://doi.org/10.1093/ptep/ptac097
https://doi.org/10.1103/PhysRevD.98.118501
https://doi.org/10.1103/PhysRevD.99.034011
https://doi.org/10.1103/PhysRevD.99.034011
https://doi.org/10.1016/S0370-2693(99)00807-2
https://doi.org/10.1016/S0370-2693(02)01736-7
https://doi.org/10.1016/S0370-2693(02)02180-9
https://doi.org/10.1016/S0370-2693(02)02180-9
https://doi.org/10.1140/epjc/s2002-01054-9
https://doi.org/10.1016/0370-2693(91)91852-M
https://doi.org/10.1103/PhysRevD.75.094023
https://doi.org/10.1140/epja/i2016-16268-9
https://doi.org/10.1140/epja/i2016-16268-9
https://doi.org/10.1016/j.nuclphysa.2022.122447
https://doi.org/10.1007/BF01483577
https://doi.org/10.1016/0550-3213(94)90116-3
https://doi.org/10.1016/0550-3213(94)90116-3
https://doi.org/10.1103/PhysRevD.22.2157
https://doi.org/10.1103/PhysRevD.22.2157
https://doi.org/10.1103/PhysRevD.55.2602
https://doi.org/10.1103/PhysRevD.102.054020
https://doi.org/10.1007/s100520000377
https://doi.org/10.1103/PhysRevC.77.055201


production of tensor χcð2þÞ meson, Phys. Rev. D 81,
034024 (2010).

[53] J. P. Lansberg and T. N. Pham, Effective Lagrangian for
two-photon and two-gluon decays of P-wave heavy quar-
konium χðc0; 2Þ and χðb0; 2Þ states, Phys. Rev. D 79,
094016 (2009).

[54] H.-Y. Cheng, C.-K. Chua, and C.-W. Hwang, Covariant
light front approach for s wave and p wave mesons: Its
application to decay constants and form-factors, Phys. Rev.
D 69, 074025 (2004).

[55] A. D. Martin, M. G. Ryskin, and T. Teubner, The QCD
description of diffractive rho meson electroproduction,
Phys. Rev. D 55, 4329 (1997).

[56] A. D. Martin, M. G. Ryskin, and T. Teubner,Q2 dependence
of diffractive vector meson electroproduction, Phys. Rev. D
62, 014022 (2000).

[57] I. Babiarz, R. Pasechnik, W. Schäfer, and A. Szczurek,
Hadroproduction of scalar P-wave quarkonia in the light-
front kT -factorization approach, J. High Energy Phys. 06
(2020) 101.

[58] R. Fiore and V. R. Zoller, Charged currents, color dipoles
and xF(3) at small x, JETP Lett. 82, 385 (2005).

[59] L. Motyka and G. Watt, Exclusive photoproduction at the
Tevatron and CERN LHC within the dipole picture, Phys.
Rev. D 78, 014023 (2008).

[60] I. Babiarz, R. Pasechnik, W. Schäfer, and A. Szczurek,
Light-front approach to axial-vector quarkonium γ�γ� form
factors, J. High Energy Phys. 09 (2022) 170.

[61] C. R. Ji, P. L. Chung, and S. R. Cotanch, Light cone quark
model axial vector meson wave function, Phys. Rev. D 45,
4214 (1992).

[62] S. N. Gupta, J. M. Johnson, and W.W. Repko, Relativistic
two photon and two gluon decay rates of heavy quarkonia,
Phys. Rev. D 54, 2075 (1996).

[63] H. Mäntysaari, K. Roy, F. Salazar, and B. Schenke, Gluon
imaging using azimuthal correlations in diffractive scatter-
ing at the Electron-Ion Collider, Phys. Rev. D 103, 094026
(2021).

[64] V. Shtabovenko, R. Mertig, and F. Orellana, FeynCalc 9.3:
New features and improvements, Comput. Phys. Commun.
256, 107478 (2020).

[65] A. Dumitru, H. Mäntysaari, and R. Paatelainen, Stronger
C-odd color charge correlations in the proton at higher
energy, Phys. Rev. D 107, L011501 (2023).

[66] F. Schlumpf, Relativistic constituent quark model of electro-
weak properties of baryons, Phys. Rev. D 47, 4114 (1993);
49, 6246(E) (1994).

[67] S. J. Brodsky and F. Schlumpf, Wave function independent
relations between the nucleon axial coupling g(A) and
the nucleon magnetic moments, Phys. Lett. B 329, 111
(1994).

[68] K. J. Golec-Biernat and A. M. Stasto, On solutions of the
Balitsky-Kovchegov equation with impact parameter, Nucl.
Phys. B668, 345 (2003).

[69] J. Berger and A. Stasto, Numerical solution of the nonlinear
evolution equation at small x with impact parameter and
beyond the LL approximation, Phys. Rev. D 83, 034015
(2011).

[70] T. Lappi and H. Mäntysaari, Single inclusive particle
production at high energy from HERA data to proton-
nucleus collisions, Phys. Rev. D 88, 114020 (2013).

[71] H. Kowalski, T. Lappi, C. Marquet, and R. Venugopalan,
Nuclear enhancement and suppression of diffractive struc-
ture functions at high energies, Phys. Rev. C 78, 045201
(2008).

[72] P. V. Landshoff, Model for elastic scattering at wide angle,
Phys. Rev. D 10, 1024 (1974).

[73] A. Donnachie and P. V. Landshoff, Elastic scattering at
large t, Z. Phys. C 2, 55 (1979); 2, 372(E) (1979).

[74] A. Donnachie and P. V. Landshoff, Multi—gluon exchange
in pp elastic scattering, Phys. Lett. 123B, 345 (1983).

[75] A. Donnachie and P. V. Landshoff, p p and anti-p p elastic
scattering, Nucl. Phys. B231, 189 (1984).

[76] L. D. Landau, On the angular momentum of a system of two
photons, Dokl. Akad. Nauk SSSR 60, 207 (1948).

[77] C.-N. Yang, Selection rules for the dematerialization of a
particle into two photons, Phys. Rev. 77, 242 (1950).

[78] Z. Ye, J. Arrington, R. J. Hill, and G. Lee, Proton and
neutron electromagnetic form factors and uncertainties,
Phys. Lett. B 777, 8 (2018).

[79] H. Kowalski, L. Motyka, and G. Watt, Exclusive diffractive
processes at HERA within the dipole picture, Phys. Rev. D
74, 074016 (2006).

[80] Y. Li, M. Li, and J. P. Vary, Two-photon transitions of
charmonia on the light front, Phys. Rev. D 105, L071901
(2022).

[81] W. Kwong, P. B. Mackenzie, R. Rosenfeld, and J. L. Rosner,
Quarkoniumannihilation rates, Phys.Rev.D 37, 3210 (1988).

[82] R. Barbieri, M. Caffo, R. Gatto, and E. Remiddi, Strong
QCD corrections to p wave quarkonium decays, Phys. Lett.
95B, 93 (1980).

[83] Y. Li, P. Maris, and J. P. Vary, Quarkonium as a relativistic
bound state on the light front, Phys. Rev.D 96, 016022 (2017).

[84] C. F. vonWeizsacker, Radiation emitted in collisions of very
fast electrons, Z. Phys. 88, 612 (1934).

[85] E. J. Williams, Correlation of certain collision problems
with radiation theory, Kong. Dan. Vid. Sel. Mat. Fys. Med.
13N4, 1 (1935).

[86] V. M. Budnev, I. F. Ginzburg, G. V. Meledin, and V. G.
Serbo, The two photon particle production mechanism.
Physical problems. Applications. Equivalent photon
approximation, Phys. Rep. 15, 181 (1975).

[87] A. Caldwell and H. Kowalski, The J=ψ way to nuclear
structure, in 13th International Conference on Elastic and
Diffractive Scattering (Blois Workshop): Moving Forward
into the LHC Era (2009), pp. 190–192, arXiv:0909.1254.

[88] Y. Jia, Z. Mo, J. Pan, and J.-Y. Zhang, Photoproduction of
C-even quarkonia at the EIC and EicC, Phys. Rev. D 108,
016015 (2023).

[89] E. C. Aschenauer, S. Fazio, J. H. Lee, H. Mantysaari, B. S.
Page, B. Schenke, T. Ullrich, R. Venugopalan, and P. Zurita,
The Electron–Ion Collider: Assessing the energy depend-
ence of key measurements, Rep. Prog. Phys. 82, 024301
(2019).

[90] J. C. Collins and R. K. Ellis, Heavy quark production in very
high-energy hadron collisions, Nucl. Phys. B360, 3 (1991).

BENIĆ, DUMITRU, KAUSHIK, MOTYKA, and STEBEL PHYS. REV. D 110, 014025 (2024)

014025-26

https://doi.org/10.1103/PhysRevD.81.034024
https://doi.org/10.1103/PhysRevD.81.034024
https://doi.org/10.1103/PhysRevD.79.094016
https://doi.org/10.1103/PhysRevD.79.094016
https://doi.org/10.1103/PhysRevD.69.074025
https://doi.org/10.1103/PhysRevD.69.074025
https://doi.org/10.1103/PhysRevD.55.4329
https://doi.org/10.1103/PhysRevD.62.014022
https://doi.org/10.1103/PhysRevD.62.014022
https://doi.org/10.1007/JHEP06(2020)101
https://doi.org/10.1007/JHEP06(2020)101
https://doi.org/10.1134/1.2142861
https://doi.org/10.1103/PhysRevD.78.014023
https://doi.org/10.1103/PhysRevD.78.014023
https://doi.org/10.1007/JHEP09(2022)170
https://doi.org/10.1103/PhysRevD.45.4214
https://doi.org/10.1103/PhysRevD.45.4214
https://doi.org/10.1103/PhysRevD.54.2075
https://doi.org/10.1103/PhysRevD.103.094026
https://doi.org/10.1103/PhysRevD.103.094026
https://doi.org/10.1016/j.cpc.2020.107478
https://doi.org/10.1016/j.cpc.2020.107478
https://doi.org/10.1103/PhysRevD.107.L011501
https://doi.org/10.1103/PhysRevD.47.4114
https://doi.org/10.1103/PhysRevD.49.6246.2
https://doi.org/10.1016/0370-2693(94)90525-8
https://doi.org/10.1016/0370-2693(94)90525-8
https://doi.org/10.1016/j.nuclphysb.2003.07.011
https://doi.org/10.1016/j.nuclphysb.2003.07.011
https://doi.org/10.1103/PhysRevD.83.034015
https://doi.org/10.1103/PhysRevD.83.034015
https://doi.org/10.1103/PhysRevD.88.114020
https://doi.org/10.1103/PhysRevC.78.045201
https://doi.org/10.1103/PhysRevC.78.045201
https://doi.org/10.1103/PhysRevD.10.1024
https://doi.org/10.1007/BF01546237
https://doi.org/10.1007/BF01545902
https://doi.org/10.1016/0370-2693(83)91215-7
https://doi.org/10.1016/0550-3213(84)90283-9
https://doi.org/10.1016/B978-0-08-010586-4.50070-5
https://doi.org/10.1103/PhysRev.77.242
https://doi.org/10.1016/j.physletb.2017.11.023
https://doi.org/10.1103/PhysRevD.74.074016
https://doi.org/10.1103/PhysRevD.74.074016
https://doi.org/10.1103/PhysRevD.105.L071901
https://doi.org/10.1103/PhysRevD.105.L071901
https://doi.org/10.1103/PhysRevD.37.3210
https://doi.org/10.1016/0370-2693(80)90407-4
https://doi.org/10.1016/0370-2693(80)90407-4
https://doi.org/10.1103/PhysRevD.96.016022
https://doi.org/10.1007/BF01333110
https://doi.org/10.1016/0370-1573(75)90009-5
https://arXiv.org/abs/0909.1254
https://doi.org/10.1103/PhysRevD.108.016015
https://doi.org/10.1103/PhysRevD.108.016015
https://doi.org/10.1088/1361-6633/aaf216
https://doi.org/10.1088/1361-6633/aaf216
https://doi.org/10.1016/0550-3213(91)90288-9


[91] H. Aihara et al. (TPC/Two Gamma Collaboration), For-
mation of spin one mesons by photon-photon fusion, Phys.
Rev. D 38, 1 (1988).

[92] J. Bartels and L. Motyka, Baryon scattering at high energies:
Wave function, impact factor, and gluon radiation, Eur.
Phys. J. C 55, 65 (2008).

[93] A. Dumitru, V. Skokov, and T. Stebel, Subfemtometer scale
color charge correlations in the proton, Phys. Rev. D 101,
054004 (2020).

[94] G. Chachamis and A. Sabio Vera, Solution of the
Bartels-Kwiecinski-Praszalowicz equation via Monte Carlo
integration, Phys. Rev. D 94, 034019 (2016).

[95] Y. Hatta, B.-W. Xiao, and F. Yuan, Gluon tomography from
deeply virtual Compton scattering at small-x, Phys. Rev. D
95, 114026 (2017).

[96] J. R. Forshaw and M. G. Ryskin, Diffractive vector meson
production at large momentum transfer, Z. Phys. C 68, 137
(1995).

PHOTON-ODDERON INTERFERENCE IN EXCLUSIVE … PHYS. REV. D 110, 014025 (2024)

014025-27

https://doi.org/10.1103/PhysRevD.38.1
https://doi.org/10.1103/PhysRevD.38.1
https://doi.org/10.1140/epjc/s10052-008-0572-z
https://doi.org/10.1140/epjc/s10052-008-0572-z
https://doi.org/10.1103/PhysRevD.101.054004
https://doi.org/10.1103/PhysRevD.101.054004
https://doi.org/10.1103/PhysRevD.94.034019
https://doi.org/10.1103/PhysRevD.95.114026
https://doi.org/10.1103/PhysRevD.95.114026
https://doi.org/10.1007/BF01579812
https://doi.org/10.1007/BF01579812

