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We introduce our novel Bayesian parton density determination code, PartonDensity.jl. The motivation for
this new code, the framework, and its validation are described. As we show, PartonDensity.jl provides both a
flexible environment for the determination of parton densities and a wealth of information concerning the
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I. INTRODUCTION

This paper describes a novel approach to the determi-
nation of parton density functions (PDFs) of hadrons and
presents the PartonDensity.jl programming code that imple-
ments this approach.
Our analysis method significantly differs from those

pursued by other groups [1–10], allowing us to tackle
datasets that have not been included in PDF determinations
so far. There are two distinct features that set our code apart,
as described in the following.
First of all, we use Bayesian techniques to determine the

parton density functions.1 This formulation allows us to
include in a coherent and transparent way known con-
straints and results from previous theoretical and exper-
imental analyses in prior probability distributions. The
result of a Bayesian analysis is a multivariate posterior
probability distribution of all model parameters, including
nuisance parameters used to describe systematic uncertain-
ties in the data. Correlations between any subset of
parameters can be studied, providing vastly more informa-
tion than results obtained otherwise. Systematic error
propagation is simply achieved by integrating the posterior

over the nuisance parameters. In addition, the information
content of the data is easily judged by comparing the
posterior to the input priors.
Secondly, we have implemented a forward modeling

approach, where event numbers in kinematic bins are
predicted and compared to observed event counts, which
are always bin-by-bin uncorrelated with known Poisson
distribution. This is in contrast to the analyses of unfolded
cross sections, where a Gaussian statistical hypothesis is
implied and where the data are always correlated in a way
that is often not known. Another advantage of forward
modeling is that it can correctly handle the low statistics
case with empty or sparsely populated bins.
In principle, the Bayesian and forward modeling

approaches can be used independently of each other.
The current version of our code allows for the analysis
of inclusive e�p scattering data, made available in the form
of binned event counts. An extension to allow for the
Bayesian analysis of differential cross sections extracted at
the QED-Born level is in development and will be reported
separately. We note that it is also possible to use the forward
modeling approach within any likelihood-based analysis
framework, not just the Bayesian formalism described here.
The PartonDensity.jl software package2 is implemented in

the modern Julia [13] language and uses several Julia pack-
ages for the analysis, the most important of which is the
Bayesian Analysis Toolkit (BAT.jl) [14]. We have published
an analysis of the ZEUS data [15,16] using PartonDensity.jl

in [17]. In this work, we present our analysis method in
more detail and demonstrate its validity through the
application to relevant simulated pseudodata, for which
the true PDFs are known.
This paper is organized as follows. In Sec. II, we begin

with a general introduction to the Bayesian analysis
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approach. In Sec. III, we describe our forward model, or
how the e�p binned event counts are computed from a set
of parametrized input PDFs. In the development of the
code, a large amount of effort was dedicated to speeding up
the necessary calculations, and we briefly report on these in
Sec. IV. In Sec. V, we discuss our PDF parametrizations and
prior parameter constraints. Finally, validation tests on
pseudodata and goodness-of-fit tests are described in
Secs. VI and VII, respectively.

II. BAYESIAN ANALYSIS APPROACH

A. Introduction

We use a Bayesian approach to obtain the joint posterior
distribution pðθjD;MÞ of a set of model parameters θ,
conditional to the dataset D being analyzed. It is also
conditional to the particular model choices M such as,
among others, the modeling of systematic uncertainties in
the data and the specific form of the PDFs chosen.
Because it is not possible to obtain an analytic expression

for the posterior, Monte Carlo techniques are used to create
parameter samples that are distributed according to
pðθjD;MÞ. Nuisance parameters that are needed in the
modeling of the data but are of no interest are removed by
integrating the posterior over these. In this way, systematic
uncertainties are automatically propagated in a consistent
fashion by integrating over the systematic parameters in
the model.
The resulting samples then enable us to study single- and

multi-dimensional marginal distributions of the parameters
of interest and extract all kinds of statistical estimators like
mean values, credibility intervals, and so forth.
The posterior parameter distribution is obtained from

Bayes’ theorem,

pðθjD;MÞ ¼ pðDjθ;MÞpðθjMÞ
pðDjMÞ : ð1Þ

Here pðθjMÞ is the prior distribution of the parameters θ,
and pðDjθ;MÞ is the probability to observe the data D,
given a particular set of parameter values θ. In Eq. (1) it is
evaluated as a function of θ for fixed data D and is called
the likelihood function (it is not a probability density),
denoted as

LDðθÞ ¼ pðDjθÞ; D fixed:

Here and in the following, we will always imply the model
choiceM, but for clarity, it will be dropped in the notation.
An important feature of Bayes’ theorem is the fact that

the support of the posterior can never exceed that of the
prior. This makes it straightforward to impose hard con-
straints on allowed parameter values, such as the require-
ment that a parameter is positive definite.

The normalization of the posterior is given by the
so-called evidence,

pðDÞ ¼
Z

LDðθÞpðθÞ dθ: ð2Þ

The evidence is a scalar value that is often challenging to
compute as it results from a multidimensional integral.
However, as it is independent of the parameter vector θ, its
value is not needed to study the relative credibility of
parameter values. Sampling algorithms like Markov Chain
Monte Carlo (MCMC) make it possible to draw samples
distributed according to the posterior distribution based on
the non-normalized posterior density

p̃ðθjDÞ ¼ LDðθÞpðθÞ: ð3Þ

This yields posterior samples that can be used to produce
the desired marginal parameter distributions, which can
always be normalized afterward.

B. Implementation of MCMC

In our experience, prior parameter distributions with
hard constraints, like positive definite parameters that may
assume values close to zero can negatively impact MCMC
convergence and efficiency. Several of the parameters of
our model fall into this category. Furthermore, the momen-
tum sum rule (see below) introduces a strict correlation
between the momentum parameters that restricts the sup-
port of the posterior density to a subspace of the full
parameter space. Densities with such a support typically
cause sampling algorithms to fail completely, as the
posterior density is zero almost everywhere in the para-
meter space. The methods to circumvent this obstacle are
described below.
We solve the problem of sampling from a complicated

distribution by performing a change of variables with the
aim of creating a parameter space that is straightforward to
sample from. Thus, instead of sampling the density p̃ðθjDÞ
directly, we introduce a suitable transformation θ ¼ fðxÞ
and sample the density

p̃ðxjDÞ ¼ LD½fðxÞ�N ðxÞ; ð4Þ

where N ðxÞ is a multivariate Normal distribution of the
appropriate dimension. The posterior p̃ðxjDÞ is unbounded
and has full support over its parameter space, and so is
much easier to sample. Samples of the original parameters
θ are then obtained by simply applying the parameter
transformation f to generated samples of the parameters x
in the alternate space.
The challenge lies in finding suitable transformations f.

For univariate components of the prior distribution, their
quantile functions and the cumulative distribution function
of the normal distribution provide the necessary building
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blocks [14]. For the Dirichlet distribution that we use to
satisfy the momentum sum rule in the prior (see Sec. III B),
a suitable transformation is given in [18].

C. Marginalization and uncertainty propagation

In many model analyses one is interested not in the full
posterior distribution but in the marginal probability dis-
tribution of only one or a few parameters. For example, the
probability distribution of a single parameter θi is obtained
from

pðθijDÞ ¼
Z

pðθjDÞdθj≠i:

In practice, this calculation is performed quite simply by
histogramming the θi values from all posterior samples,
ignoring the other parameters. From such a histogram,
several estimators can be computed to report the results.
Commonly used quantities are
(a) Mode of θi. The value θ�i where the marginalized

posterior probability density has a maximum. Modes
are usually computed for fully marginalized posteriors
pðθijDÞ (“marginal mode“), for the entire posterior
(“global mode”), or for any number of parameters,
with the rest marginalized. Note that the parameter
values that maximize the full posterior distribution
usually do not coincide with those that maximize
marginalized distributions.

(b) Mean of θi. This is the expectation value,

hθii ¼
Z

θmax

θmin

pðθijDÞθidθi;

with the parameter bounds denoted by ½θmin; θmax�.
(c) Median of θi. The value θ̂i that splits the probability

content of pðθijDÞ in two:

Z
θ̂i

θmin

pðθijDÞdθi ¼
Z

θmax

θ̂i

pðθijDÞdθi ¼ 0.5:

(d) Central interval. The ð1 − 2αÞ central interval ½θ−; θþ�
is defined such that a fraction α of the probability is
contained on either side of the interval:

Z
θ−

θmin

pðθijDÞdθi ¼
Z

θmax

θþ
pðθijDÞdθi ¼ α:

(e) Smallest interval. The α smallest interval(s) is defined
such that a fraction α of the probability is contained in
a set of intervals where the set size is minimized. This
is realized as a Lebesgue integral:

Z
pðθijDÞ≥pmin

pðθijDÞdθi ¼ α;

where pmin is to be determined. This procedure can
result in several intervals in θi in the case of multi-
modal distributions.

(f) Uncertainty propagation. Having full access to the
posterior allows for the evaluation of the probability
distribution of any function of the parameters. In
contrast to standard techniques used for error propa-
gation, there is no need here for any assumptions like
distributions being Gaussian shaped. As an example,
consider that we have a function fðxjθÞ of interest, for
instance, a parton distribution that depends on a subset
of the θ parameters. The distribution of fðxÞ is then
given by

pðfðxÞjDÞ ¼
Z

pðfðxjθÞÞpðθjDÞdθ;

which can be evaluated in a straightforward way from
the posterior samples. We give examples of such
uses below.

D. BAT.jl—The Bayesian Analysis Toolkit

For the Bayesian inference process, we use the software
package BAT.jl [14], which is a high-performance toolkit for
Bayesian analysis tasks, coded in the Julia programming
language [13]. The package provides multiple algorithms
for posterior sampling, integration, and mode finding, as
well as automatic plotting and reporting functionality.
The BAT.jl package also has the ability to automatically

generate suitable space transformations between user-
defined probability distributions and standard multivariate
normal or uniform distributions. This enables us to auto-
matically perform prior-space transformations as described
in Sec. II B and sample the posterior via the Metropolis-
Hastings algorithm in an unconstrained space where the
prior has become a normal distribution in all dimensions.
The samples are then automatically transformed back into
the original space.
A full description of the algorithms and tuning of the

BAT.jl toolkit can be found in [14].

III. ANALYSIS STRUCTURE

As mentioned in the Introduction, we focus in this initial
release of our PDF determination code on the analysis of
electron(positron)-proton deep inelastic scattering (DIS)
data. The data are generally reported in bins of the scaling
variables x and Q2, which are computed from the recon-
structed four momenta of the incoming proton and the
incoming and scattered leptons (for more details see,
e.g., [16]). In this section, we describe how the event
numbers observed in these data are predicted, starting from
a set of proton PDFs parametrized at some input scale Q2

0.
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A. Computation of the e�p cross sections

To compute the e�p deep inelastic cross sections, we
start from a set of quark, antiquark, and gluon distributions
xfiðxÞ, parametrized at a fixed value of Q2

0. The aim of the
analysis is to determine from the data the posterior joint
distribution of these parameters.
In the above, fiðxÞ is the number density of partons of

type i in the proton, and xfiðxÞ is the momentum density of
these partons.
The next step is to evolve these distributions in pertur-

bative QCD [19–23] from the input scale to larger values
of Q2. We use the QCDNUM program [24] to evolve the
PDFs in the Modified Minimal Subtraction (MS)-scheme at
next-to-next-to-leading order (NNLO) [25–34].
In the analysis, we impose the momentum sum rule and

the valence quark counting rules. The momentum sum rule
states that the fractional momenta of all partons in the
proton add up to unity:

X
i

Z
1

0

xfiðxÞdx ¼
X
i

Δi ¼ 1: ð5Þ

We introduce here the notation Δi for the total momentum
fraction carried by the parton species i.
The quark counting rules fix the net number of quarks in

the proton so that its quantum numbers are conserved:

Z
1

0

½qiðxÞ − q̄iðxÞ�dx ¼

8><
>:

2 for i ¼ u;

1 for i ¼ d;

0 for i ¼ s; c; b; t:

ð6Þ

Here and in the following we use the notation q, q̄, and g to
denote quark, antiquark, and gluon densities.
It is important to point out that the QCD evolution

equations guarantee that sum rules that are imposed at the
starting scale Q2

0 will be satisfied at all scales.
The neutral current DIS cross section for e�p scattering

is given in terms of generalized structure functions of the
proton as (y is the inelasticity variable, see Ref. [16])

d2σe
�p
NC

dxdQ2
¼ 2πα

xQ4
ðYþF̃2 ∓ Y−xF̃3 − y2F̃LÞ; ð7Þ

where Y� ¼ 1� ð1 − yÞ2, and α is the fine-structure
constant.
The generalized structure functions are related to the

vector and axial-vector coupling constants ve and ae by

F̃i ¼ Fγ
i − kZveF

γZ
i þ k2Zðv2e þ a2eÞFZ

i ; i ¼ 2;L

xF̃3 ¼ kZaexF
γZ
3 þ k2Z2veaexF

Z
3 ; ð8Þ

where

kZðQ2Þ ¼ Q2

ðQ2 þm2
ZÞ4 sin2 θw cos2 θw

:

In our analysis, we use sin2 θw ¼ 0.231 and mZ ¼
91.1876 GeV for the electroweak mixing angle and the
Z-boson mass, respectively [35].
In leading order (LO) QCD, the structure functions are

linear combinations of parton densities of different flavor
(note that FL ¼ 0 at LO):

fFγ
2; F

γZ
2 ; FZ

2g ¼ x
X
i

fe2i ; 2eigV; g2Agðqi þ q̄iÞ

xfFγ
3; F

γZ
3 ; FZ

3g ¼ x
X
i

f0; 2eigA; 2gVgAgðqi − q̄iÞ; ð9Þ

where ei is the charge of the quark species i and gV and gA
are the weak vector and axial-vector couplings of the quark
to the Z boson.
We use the QCDNUM package to compute the structure

functions at NNLO which involves convolutions of parton
densities with various coefficient functions [36–41]. Note
in this respect that the coefficients in Eq. (9) are the same
for all up-type (down-type) quarks with ei ¼ 2

3
ð1
3
Þ. Thus we

can compute NNLO structure functions separately for the
sum of up-type and down-type quarks and multiply these
by the coefficients afterward. This allows for an efficient
calculation of the cross section based on the NNLO
computation of only six structure functions.

B. Forward model

In the forward modeling approach, we compute the
expected number of events ν in a bin ðΔx;ΔQ2Þ as an
integral of the differential cross section over the full
kinematic phase space D. Introducing the short-hand
notation u ¼ fx;Q2g this integral can be written as

ν ¼ L
Z
Δu0

�Z
D
Aðu0juÞ d

2σðuÞ
du

du

�
du0; ð10Þ

where the primed (unprimed) variable refers to the recon-
structed (true) kinematics. Here L is the integrated lumi-
nosity of the dataset being analyzed, and A is a
transformation kernel that takes into account the detector
effects and radiative corrections to the QED Born-level
differential cross sections, computed as described in
Sec. III A. The forward model described here can be
implemented for other experiments or independently of
PartonDensity.jl as long as the transfer matrix A is provided by
the experimental groups as part of their data release.
We assume here that this information is cast in the form

of a matrix A that provides a mapping from the Born-level
cross section integrated over bins in the kinematic domain
to events accumulated in the experimental bins. Denoting
by νi the counts in an experimental bin i and by λj the
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integrated cross section in a kinematic bin j, Eq. (10) is
written as

νi ¼ L
X
j

Aijλj: ð11Þ

Experimental systematic uncertainties are encoded in a set
of deviation matrices. The total systematic deviation is then
given by a linear combination of these deviations with
weights that are included in the set of model parameters θ.
In Sec. VI A, we will describe in more detail how the
forward modeling is implemented in our present analysis
framework.
Because we are analyzing event counts, it is trivial to

write down the likelihood as a product of Poisson distri-
butions:

LDðθÞ ¼
Y
bins

νne−ν

n!
; ð12Þ

where n is the number of events observed in a bin and ν is
that predicted by the forward model, using a particular set
of model parameter values θ.
Analyzing binned event counts has the advantage that the

data points are uncorrelated and have known probability
distributions and that there are no problems with including
sparsely populated or empty bins. To our knowledge, these
features are currently unique to our approach.

IV. TECHNICAL DEVELOPMENTS

We now describe the main numerical and programming
steps carried out while developing our analysis code.

A. The SPLINT package

Integrating the cross sections with standard numerical
methods like two-dimensional Gauss quadrature turns out
to be quite CPU-time-consuming because a sizable sample
of NNLO structure functions has to be computed for each
integration. To solve this problem, we added to the
QCDNUM distribution the SPLINT package to construct cubic
interpolation splines of structure functions and cross
sections. Sampling from splines is much faster than ab initio
computation, while SPLINT provides fast routines for cubic
spline integration.
A cubic interpolation spline SðuÞ in the variable u is a

piecewise cubic polynomial defined on a strictly ascending
set of node points fuig. The four polynomial coefficients in
each node bin are adjusted such that the spline coincides at
each node ui with an input value fi, and is continuous in the
first and second derivative; the third derivative is allowed to
be discontinuous at the node points. These conditions lead
to a set of linear equations in the coefficients, which can be
solved if boundary conditions are given on the slopes at the
two end points of the spline. We use a spline algorithm that

fixes the third derivatives to values estimated from divided
differences. A one-dimensional spline SðuÞ becomes a two-
dimensional spline Sðu; vÞ by parametrizing the u coef-
ficients as cubic splines in v.
The SPLINT package constructs splines on a selected set

of QCDNUM x −Q2 evolution grid points. Alignment of the
nodes to the evolution grid avoids QCDNUM interpolation of
a user-given input function fðx;Q2Þ when constructing the
spline. A coarser node grid gives a faster spline construc-
tion but also a less precise spline approximation so that
some tuning is necessary to balance speed versus accuracy;
see Sec. IV B.
Spline interpolation becomes interesting when many

samples are needed of functions that are expensive to
compute, such as structure functions and cross sections. For
this purpose SPLINT has a special routine for structure
function input that makes use of the very fast list-process-
ing capabilities of QCDNUM. Apart from creating splines,
the SPLINT package also has routines to integrate these over
rectangular bins taking, if necessary, into account the
kinematic limit Q2 ≤ xs, where

ffiffiffi
s

p
is the center-of-mass

energy of the e�p collisions.
Inside SPLINT, the splines are functions of the internal

QCDNUM variables u ¼ − ln x and t ¼ lnQ2, which intro-
duces a Jacobian e−uet in the integrals. As a consequence,
spline integration is expressed in terms of the fundamental
(γ-function) integrals

E�ðz; nÞ ¼
Z

z

0

wne�wdw: ð13Þ

Partial integration of Eq. (13) yields simple recursion
relations between the E� at successive values of n so that
they can be computed rapidly for all powers 0–3 needed for
the term-by-term integration of a cubic polynomial inside a
node bin. When a node bin crosses the kinematic limit, we
have to integrate both over rectangles and right-angled
triangles in the u − t plane. The triangular domains are
handled by SPLINT integration over u and Gauss integration
over t.
To validate the procedure, we integrated splines over

arbitrary rectangles, with and without crossing the kin-
ematic limit, both with SPLINT and with a two-dimensional
Gauss integration routine. In all cases, the relative differ-
ence was found to be < 10−9 with SPLINT running about a
factor of 300 faster than Gauss.
For a more detailed description of the integration

algorithm in SPLINT we refer to the write-up, which is
available from the QCDNUM website.3

B. The tuning of QCDNUM and SPLINT

In the range x > 10−3 and 100 < Q2 < 3 × 104 GeV2

we have tuned the QCDNUM evolution grid and the SPLINT

3https://www.nikhef.nl/user/h24/qcdnum.
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spline nodes with the aim to obtain a relative accuracy on
the cross sections of better than 5 × 10−4, with the code still
running at an acceptable speed. For this tuning, the cross
sections are computed at

ffiffiffi
s

p ¼ 300 GeV.
In [24] it is recommended to run the QCDNUM evolution

on a 100 × 50 x-Q2 grid with break points at x ¼
f0.2; 0.4; 0.6; 0.8g where the grid density doubles toward
larger x at each break point. Comparison with evolution on
a 300 × 150 grid shows a relative PDF accuracy of better
than 10−4, except at very large x where the parton
distributions vanish.
Because structure functions are slowly varying in x and

Q2, a coarse 22 × 7 node grid is sufficient to yield
interpolation splines with a relative accuracy better than
5 × 10−4, and the same is true for the cross section spline on
a 100 × 25 node grid; see Fig. 1. The latter grid must be
dense since the cross section is strongly varying.
In Table I, we show the CPU time needed when running

the tuned code on a 2018 MacBook Pro with an Intel
processor. Starting from a set of input PDFs, computing
429 integrated cross sections takes less than 10 ms on such
a machine.

C. The QCDNUM.jl wrapper

We have developed the QCDNUM.jl package4 which is the
Julia interface to the QCDNUM fast QCD evolution and
convolution routines. The QCDNUM program is written in
FORTRAN77, and the interface gives us access to this fast,
versatile, and well-tested software in the BAT analysis
framework (see Sec. II D).
With QCDNUM.jl, we provide a lightweight but easily

usable wrapper, with all the original QCDNUM functionality
available to a Julia programmer. Example programs are
provided in the documentation, allowing those familiar
with QCDNUM to quickly adapt their code. As part of the
Julia interface, we also provide a well-documented, high-
level interface to implement and visualize the evolution of
PDFs that may be appealing to both new and old users of
QCDNUM.
The implementation in Julia offers several further advan-

tages. Thanks to BinaryBuilder.jl,5 QCDNUM is

automatically compiled and installed in a cross-platform
manner, with no actions needed from the user. It is also
possible to interface code relying on QCDNUM with Julia ’s
rich functionality and ever-growing modern package eco-
system. The existing tools for working with Julia code, such
as Jupyter notebooks, enable more accessible and repro-
ducible code. As such, the QCDNUM.jl package is a useful
addition to the community bringing the use of QCDNUM to a
broader audience and modern coding practices.

D. PartonDensity.jl package

We implement a full forward model and interface to BAT

in PartonDensity.jl
6 to enable the simulation of data and

inference of PDF parameters. Included are the interfaces
to QCDNUM and SPLINT, as well as the different PDF
parametrizations described in this work.We also implement
the forward modeling transfer matrices from the ZEUS
experiment, described in Sec. VI A. Within this framework,
we provide prior and likelihood definitions that can be used
with BAT, as well as tools for visualization. The software is
well documented and designed in a modular way to allow
extension to other PDF parametrizations and datasets of
interest.
Several forms of standard output are available from our

code. One useful feature is a text-file summary of the
posterior distribution, an example of which is shown in the
upper panel of Fig. 2. The marginalized posteriors and
global mode values are given for all parameters. Many
graphical representations of the output are available in
standard form, and others can be easily generated. As an
example, we show in the lower panel of Fig. 2 a two-by-two
correlation plot that can be made for any subset of the
parameters.

V. PARTON DENSITY PARAMETRIZATIONS

The PDF determination procedure requires a well-
defined set of parametrizations for the different parton
densities at the input scale Q2

0 of the evolution. A variety of
forms are currently used by the different fitting teams
[1–10] which are all of the type

xfiðxÞ ¼ AixλiFiðxÞð1 − xÞKi : ð14Þ

FIG. 1. Estimate of the relative error on the differential cross
section versus x at Q2 ¼ 100 GeV2. Above x ¼ 0.95 the cross
section vanishes, and a relative error becomes ill defined.

TABLE I. CPU cost of computing integrated cross sections.

Subtask Grid CPU time [ms]

Evolution 100 × 50 3.6
Structure function splines (6×) 22 × 7 2.9
Cross section spline 100 × 25 2.2
Integration over 429 bins 0.8

4https://github.com/cescalara/QCDNUM.jl.
5https://binarybuilder.org. 6https://github.com/cescalara/PartonDensity.jl.
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FIG. 2. Upper panel: example of a statistical summary of a 26-dimensional posterior distribution. Lower panel: parameter correlation
distributions for a subset of the model parameters. The marginal distributions are shown on the diagonal. Taken from the pseudodata
analysis described in Sec. VI.
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Each parton species i has its own set of parameters and
function F. The behavior of a PDF as x → 1 is largely
controlled by its parameter K, while λ controls the behavior
as x → 0. The function FðxÞ interpolates between these
two extreme regions, and the parameter A fixes the
normalization.
In Sec. III A it is mentioned that the quark and gluon

distributions xfiðxÞ are required to satisfy the momentum
sum rule and quark counting rules as given in Eqs. (5)
and (6), respectively. We therefore wish to construct para-
metrizations that are flexible, positive-definite, easily
evaluated, and quickly integrated. We also wish, at this
stage in the development of the Bayesian framework, to
restrict the number of PDF parameters as much as possible.
Given these requirements, we have fully implemented in
PartonDensity.jl a beta-distribution parametrization that pro-
vides a suitable starting point in a future exploration of a
variety of alternatives.

A. Parametrization based on beta distributions

To parametrize the quark densities, it is convenient to
write them as valence (qv) and sea (qs) distributions,

qþ q̄ ¼ ðq − q̄Þ þ 2q̄ ¼ qv þ qs:

We parametrize the valence momentum densities as

xqvi ðx;Q2
0Þ ¼

�
Aixλið1 − xÞKi for i ¼ u; d

0 otherwise:
ð15Þ

The integral of the number density, qviðx;Q2
0Þ is finite for

λi > 0. Similarly, for the antiquark distributions, we have

xq̄iðx;Q2
0Þ ¼ Aixλq̄ð1 − xÞKq̄ for i ¼ ū; d̄; s̄; c̄; b̄; ð16Þ

where all antiquark flavors share the same x dependence,
but have different normalizations Ai. For this parametriza-
tion, we require −1 < λq̄ < 0 so that xq̄ is integrable and
increasing at low x. Finally, we parametrize the gluon
density as the sum of valence and sea contributions:

xgðx;Q2
0Þ ¼ xgvðxÞ þ xgsðxÞ

¼ Av
gxλ

v
gð1 − xÞKg þ As

gxλ
s
gð1 − xÞKq̄ ; ð17Þ

where we set −1 < λsg < λvg and set further restrictions on
these parameters in order to obtain an integrable gluon
density with a valence (sea) contribution that decreases
(increases) toward low x. Here Kg is an independent
parameter, while Kq̄ is shared with the xq̄i densities defined
in Eq. (16).
For a Beta-distribution xfðxÞ ¼ Axλð1 − xÞK we can

replace the normalization constant by the momentum
integral through the relation

Δ ¼ A
Γðλþ 1ÞΓðK þ 1Þ
Γðλþ K þ 2Þ : ð18Þ

The valence sum rule, introduced in Eq. (6), relates the
normalizations to the shape parameters by

Ai ¼ Nv
i
Γðλi þ Ki þ 1Þ
ΓðλiÞΓðKi þ 1Þ i ¼ u; d; ð19Þ

with Nv
u ¼ 2 and Nv

d ¼ 1.
Using the property Γðzþ 1Þ ¼ zΓðzÞ we find from

Eqs. (18) and (19) the following relation between the total
momentum Δ carried by the u or d valence quarks and the
shape parameters:

Δi ¼ Nv
i

λi
λi þ Ki þ 1

i ¼ u; d: ð20Þ

B. Prior parameter constraints

Given a set of free PDF parameters, the challenge is to
include as many physically motivated constraints on the
priors as possible.
For this, it is advantageous to replace the normalization

constants, A, which are not straightforward for interpreta-
tion, with the momentum fractions, Δ, either by numeri-
cally integrating the PDFs or by using Eq. (18) in case the
PDFs are parametrized in terms of beta distributions.
In that case Eq. (20) offers two alternatives for the

parameters of the up and down valence distributions:
(i) leave the shape parameters λ and K free and thereby
fix the momentum fraction Δ or (ii) leave Δ free and
thereby fix one of the two shape parameters.
The first alternative allows one to specify the shape

of the valence densities, but it is not trivial to ensure that
Δd þ Δu < 1 and Δd < Δu over the full support of
the prior.
In the analysis of the ZEUS high-x data, we have chosen

to fix the low-x shape parameter λ and leave free the high-x
shape parameter K and the momentum fraction Δ. In this
way we include in the model parameters the complete set of
PDF momenta, subject to the sum rule constraint of Eq. (5)
given in Sec. III A.
It is convenient to use a Dirichlet distribution as a joint

prior for the momenta [18]. A Dirichlet distribution
Dirðα1;…; αkÞ of k independent variables ui ∈ ½0; 1� lives
on a (k − 1)-dimensional manifold defined by

P
ui ¼ 1 so

that the momentum sum rule is automatically satisfied. It is
a multivariate generalization of the beta distribution; for
instance Betaðα1; α2Þ of one variable u is the same as
Dirðα1; α2Þ of two variables ðu1; u2Þ with u1 þ u2 ¼ 1.
With a suitable choice of the shape parameters α, it is

possible to satisfy expectations such as that, asymptotically,
gluons and quarks carry approximately the same momen-
tum, that valence up quarks carry about twice the
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momentum of valence down quarks, and that the heavier
quarks carry little momentum.
The spectator counting rules of Brodsky and Farrar [42]

give a first expectation for the ranges of the shape
parameters Ku; Kd; Kq̄, and Kg. Furthermore, a body of
PDF results available from the literature indicate the
preferred range for these parameters.

VI. VALIDATION

To validate our Bayesian tools, we analyzed sets of
simulated data and compared the posterior distributions to
the parameter input values. Because the tools were initially
developed for the analysis [17] of the ZEUS high-x and
large-Q2 data [15], our simulations were restricted to the
kinematic range covered by these data. An adequate
representation is obtained by using the simple beta para-
metrization described in the previous sections, at an input
scale of Q2

0 ¼ 100 GeV2. Some details of the ZEUS
experiment are given below.

A. The ZEUS experiment and systematics

In [15], the ZEUS Collaboration has published e�p
deep-inelastic scattering data covering the range 0.03 ≤
x ≤ 1 and 650 ≤ Q2 ≤ 20000 GeV2. These data are
unique in providing measurements up to x ¼ 1 in the
high Q2 regime where higher-twist effects are absent so
that a clean analysis can be performed based on the
perturbative QCD evolution equations. In [17], it is shown
that the data mainly constrain the parameters of the
valence up quark, as will also become apparent in the
figures and results given below.
The data are presented as counts in 153 bins, separately

for the e−p and eþp datasets.
To enable forward modeling, ZEUS has provided in [16]

the transfer matrix A as defined by Eq. (11) in Sec. III B.
This matrix is written as the product of two matrices, R and
T, which account for radiative and reconstruction effects,
respectively. Also provided are variations on T to enable the
evaluation of systematic uncertainties. The QED-Born level
binning of 429 bins is finer than the experimental binning.
The R matrices are 429 × 429 diagonal and correct the

Born-level cross sections for OðαÞ QED effects.
A reconstruction-matrix element Tij gives the proba-

bility that an event generated in x-Q2 bin j is reconstructed
in experimental bin i so that T has a dimension of
153 × 429.
The uncertainties that need to be accounted for in the

ZEUS data are the following.
(1) The uncertainty in the luminosity of each of the eþp

and e−p datasets;
(2) The uncertainties related to the imperfect under-

standing of detector effects such as acceptance,
energy resolution, etc. These are completely corre-
lated between the two datasets. Variational matrices

T 0 are provided for eight sources of uncertainty in
each of the e−p and eþp datasets.

It turns out that the ZEUS luminosity uncertainty of
1.8% is the most important source of uncertainty in this
analysis.
From the matrices provided, we can construct for each

source of systematic error the deviation matrix

A0 ¼ RðT 0 − TÞ;

which corresponds to a 1 standard deviation uncertainty,
assuming that the systematic errors are Gaussian distrib-
uted. Denoting the 1 standard deviation uncertainty on the
luminosity by β0, and including weight factors β0;…; β8 in
the set of model parameters θ, Eq. (11) can be written as, in
matrix notation,

ν ¼ Lð1þ 0.018 · β0Þ
�
Aþ

X
k

βkA0
k

�
λ; ð21Þ

where the sum runs over the eight sources of systematic
error and the β parameters are taken to be normally
distributed with unit width.

B. Simulated data

To validate the analysis framework, we generated
pseudodata by computing event predictions ν and event
counts n that are Poisson distributed with mean ν, with the
input parameters given in Table II. The input parameters
are chosen such that the simulated pseudodata are similar
to the actual ZEUS data. All β parameters are set to zero so
that there are no systematic biases in the simulated
data. To study convergence, we have also generated
pseudodatasets with the ZEUS luminosity increased by
a factor of 50 so that the likelihood tends toward a delta
function.

C. Fits to the simulated data

Unless otherwise stated, we use the priors listed in
Table III in the fits7 to the pseudodata. The matrices for
describing the transformation from QED Born-level cross
sections to the observed level are taken from the ZEUS
Collaboration [16] for all tests described in this paper. Tests
were performed both with the systematic β parameters
fixed to zero, or with them left free. Including the
systematic parameters, we have a total of 26 free param-
eters in our fit. The runtime, in this case, is ∼250 k
samples/hour on a single core.

7In a Bayesian analysis, parameters are not fitted in the usual
sense. In the context of this paper, a fitted (or free) parameter is
one that has a prior distribution assigned to it. Fixed parameters,
on the other hand, have single-valued priors, thereby reducing the
dimension of the parameter space to be explored.
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Figure 3 shows two-dimensional prior and posterior
distributions for the parameters ðΔu; KuÞ and ðΔd; KdÞ
obtained from the nominal and high-luminosity pseudo-
datasets. As we have already observed in [17], a compari-
son of posterior to prior shows a very significant knowledge
update for the valence up-quark parameters, and less so for
those of the valence down-quark. The knowledge update on
the parameters of the gluon and sea distributions (not
shown) is also rather limited, as is expected from an
analysis of high-x data.
A comparison of the left- and right-hand plots in Fig. 3

shows that the posterior converges to the true values,
indicating that there is no appreciable bias introduced by
our analysis procedure. We have verified that this is the case
for all fitted parameters, although convergence with
increasing statistics is slow or absent for those that are
ill constrained by the data.
Parameters that are well constrained by the data should

be relatively insensitive to the choice of prior. Many
different datasets were analyzed using shifted prior choices
to determine if these significantly affected the results. Two
such tests for the up-valence parameters are shown in
Fig. 4. In the left-hand plot, the momentum fractionΔu was
strongly biased upward borrowing momentum from the
gluon while the prior for Ku also had an upward bias. In the
right-hand plot, the gluon momentum was strongly biased
upward, together with a downward bias of Ku. In both
cases, the posterior well reproduced the true values of Δu
and Ku.

As a further example of the information made available
by the full posterior probability density we plot in Fig. 5
various correlations among the momentum components of
the proton obtained from the analysis of the high-lumi-
nosity dataset. Here Δsea is the fractional momentum of the
sea (anti)quarks, summed over all quark flavors. Again, it is
seen that the true values are nicely reproduced and also that
the momentum carried by the valence up quark is very well
constrained and weakly sensitive to the other components.
The momenta carried by the sea quarks and the gluon
density are anticorrelated, as is to be expected since the sea

TABLE III. Priors used in the analysis of the pseudodatasets.
There are nine parameters in the vector Δ and ten in β. The
normal distributions are truncated to the range indicated, and their
mean and standard deviation are given in brackets.

Prior Range

Δ Dir(20, 10, 20, 20, 5, 2.5, 1.5, 1.5, 0.5) [0, 1]
Ku Normal(3.5, 0.5) [1, 6.5]
Kd Normal(3.5, 0.5) [1, 6.5]
λvg Uniform [0, 1]
λsg Uniform ½−1;−0.1�
Kg Normal(4, 1.5) [1, 8.5]
λq̄ Uniform ½−1;−0.1�
Kq̄ Normal(4, 1.5) [1, 9.5]
β Normal(0, 1) ½−5; 5�

FIG. 3. The prior and posterior probability distributions of
ðΔu; KuÞ (upper) and ðΔd; KdÞ (lower) from the nominal (left)
and high-luminosity (right) pseudo-data sets. The red crosses
indicate the known true parameter values used in generating the
pseudo-data.

FIG. 4. The posterior probability distributions of ðΔu; KuÞ from
two fits to the simulated pseudodata with strongly biased priors
(see text). True values are indicated by the red crosses. The legend
is the same as that of Fig. 3.

TABLE II. Parameter values used in the data simulation.

Δ × 103

uV dV gV gS 2ū 2d̄ 2s̄ 2c̄ 2b̄
228 104 249 249 104 52 10 5 0.5

Ku Kd λvg λsg Kg λq̄ Kq̄ β
3.70 3.70 0.50 −0.50 5.0 −0.50 6.0 0

FRANCESCA CAPEL et al. PHYS. REV. D 110, 014024 (2024)

014024-10



is generated from gluon splitting. For another correlation
plot, we refer to Fig. 2 in Sec. IV D.
The results shown up to now were obtained from fits

where the systematic parameters were kept fixed to zero.
Leaving these parameters free showed that the data hardly
constrain them and that they remain uncorrelated, except
for the eþp and e−p luminosity parameters that show a
strong correlation, as expected. However, a fit with free
systematic parameters is always preferable since that allows
for error propagation by marginalizing the posterior over
them. However, with the pseudodatasets studied here, this
had a minor effect.
We mentioned in Sec. V B an alternative scheme where,

instead of fitting all parton momenta, those of the up and
down valence quarks are fixed by fitting, instead, their low-
x λ shape parameters. In such a fit, we have removed the
priors on Δu;d and introduced those on λu;d as normal
distributions of unit width centered at 0.5 and truncated to a
range [0.2, 0.8]. It turned out that the results were very
similar to those from the standard parametrization.
In Fig. 6 (note the vertical logarithmic scale) we show

input parton distributions used in the generation of the
pseudodata compared to those computed from 100 param-
eter sets randomly sampled from the posterior distribution
of the dataset at nominal luminosity. Again, it is seen that
the valence up-quark distribution is faithfully reproduced.
The valence down-quark distribution is poorly constrained
and has a wide spread. The general features of the
gluon and up-antiquark distributions are correctly
reproduced.

VII. GOODNESS-OF-FIT TESTS

A standard Bayesian analysis does not provide good-
ness-of-fit tests that compare a single model to data. In fact,
a single-model Bayesian analysis yields, as a result, the
posterior probability distribution of the model parameters,
and no statement is made concerning the validity of the
model itself. To investigate model dependence, a choice is
to be based on posterior probabilities calculated for several
alternative models [43]. Such model selection is beyond the
scope of this paper and will be used in a future extension of
the framework to investigate the sensitivity to different
parametrizations of the input PDFs.
Although not strictly Bayesian, it is possible, and maybe

welcome, to provide a goodness-of-fit test based on a single
posterior probability distribution. We consider two pos-
sibilities below.

A. Posterior predictive check

In a posterior predictive check, the actual data are
compared to pseudodata distributions generated from
parameter sets that are sampled from the posterior distri-
bution. The quality of the model can then be judged by
observing good or bad overlap of the pseudodata and
observed data.
A graphical example of such a test is shown in Fig. 7

which shows good agreement. This is not surprising since
the data themselves were generated from a given parameter

FIG. 5. Correlations between parton momenta from the analysis
of the high-luminosity pseudodata. True values are indicated by
the red crosses. The legend is the same as that of Fig. 3.

FIG. 6. True parton momentum densities (red curves) compared
to those computed from 100 samples of the posterior distribution
(gray curves) from the simulated pseudodata at nominal lumi-
nosity. The red lines represent the known true densities.
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set, as is described in Sec. VI. Here the figure confirms that
the input parameters are well reproduced and that the
analysis framework does not introduce significant bias in
the result.

B. Posterior mode χ 2 test

A simple goodness-of-fit test is provided by computing
the Pearson χ2, defined by

χ2P ¼
X
i

ðni − νiÞ2
νi

;

where the sum runs over all bins i with observed event
numbers ni, and expected number of events νi as calculated
from the posterior global mode parameter values. In the
presence of a sizable amount of sparsely populated or
empty bins, χ2P does not follow a standard χ2 distribution. In
this case, it is better to calculate χ2P from a large set of
simulated pseudodata. In Fig. 8 we show a histogram of the
χ2P distribution obtained from many e�p pseudodatasets
that have νi fixed and ni Poisson distributed around ν.
From such histograms, it is straightforward to compute p
values by normalizing the histogram and summing the bin
contents above the observed value of χ2P. In our tests, we
have found a fairly flat distribution of p values, as
expected.
We have seen in our studies that the maximum posterior

probability results do not coincide with a minimum value of
χ2P. This is not surprising since a maximum posterior is not
necessarily a maximum likelihood. Nevertheless, the dis-
tribution in Fig. 8 closely resembles that of a standard χ2

and, as explained in [43,44], small p values can be
understood from a Bayesian perspective as implying that
the model is open to improvement.

VIII. SUMMARY AND OUTLOOK

We have developed a novel parton density analysis code
that allows for a full Bayesian posterior probability
determination and also supports a forward modeling
approach. The open-source code has been thoroughly
tested and is now available for distribution. In this paper,
we report on its structure, the technical developments that
have been made in realizing the code, and a series of
validation tests that have been performed. We believe that
the code is reliable, well-documented, and easy to use.
To date, the code has been used exclusively for the

analysis of high-x and high-Q2 e�p deep inelastic scatter-
ing data. We look forward to also extending the analysis to
other datasets, including those reported as differential cross
sections at the QED Born level, although such an analysis
cannot benefit from the statistical rigor offered by the
forward modeling approach. In fact, the information
needed to enable such an approach is often not made
available in proper form by the experiments.
An important step in achieving this is to make the

analysis code run much faster. Here there is ample room
for improvement by parallelizing computations through
threading or forking, by improving the MCMC sampling
efficiency, and by speeding up the QCD evolution of
the PDFs.
We also intend to extend the framework to investigate

more flexible PDF parametrizations using Bayesian model
selection techniques.
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