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We present a detailed study of the Bardeen-Cooper-Schrieffer (BCS) gap equation “replicae” or excited
vacuum states, orthogonal to the ground-state one, in the chiral-quark sector of the Hamiltonian Coulomb-
gauge model of chromodynamics. Analyzing the number of negative eigenmodes of the energy density’s
Hessian we believe that we have identified all of the (negative energy-density) vacua of this nonlinear
system, namely the ground BCS state and one (or two) replicae for slightly massive (or massless) quarks,
given the interaction strength typical of the strong interactions. The meson spectrum over each of the
replicae looks similar, so the differences are not significant enough given model uncertainties, but matrix
elements are more sensitive and allow to distinguish them. We propose to look for such excited vacua in
lattice gauge theory by trying to identify excitations with scalar quantum numbers which have energies
proportional to the lattice volume (unlike conventional mesons for which the mass stabilizes to a constant
upon taking the infinite volume limit).
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I. INTRODUCTION

False vacua are an intriguing concept. The possibility that
a tunneling event may suddenly “open the ground under our
feet” or more practically, that such sudden phase transitions
may have happened in the history of the universe, and
certainly happen in condensed matter systems, is of great
interest.
In the strong interactions, spontaneous chiral symmetry

breaking happens as the ground state, driven in equal–time
quantization by a scalar quark-antiquark condensate, is not
annihilated by the chiral charge. The gap equation [1,2]
that describes that condensate and sets the vacuum
state of the interaction theory in terms of the degrees of
freedom of the noninteracting Hamiltonian, was discovered
to have more than one solution two decades ago [3].
The phenomenon was also reported for fermion-scalar

Dyson-Schwinger integral equations with strong enough
couplings [4].
The spectrum of single mesons built over those “repli-

cae” of the vacuum in the chiral symmetry breaking sector
of the Standard Model has been found to be definite
positive [5], so that few-body excitations over those vacua
appear as conventional hadron spectra. In this article we
show that collective modes include a negative eigenvalue
and thus lead to vacuum instability that takes the excited
vacuum to the ground state by a continuous, monotonous,
energy-decreasing trajectory. The number and nature of
relevant solutions are also clarified, as we find two replicae
in the chiral limit, with one of them collapsing if a small
quark mass is added, leaving only one replica. This is of
course contingent on the strength of the interaction model,
and we have performed computations with the standard
Cornell strength of the interquark potential when applied to
a well-known field theory with the global quantum num-
bers of quantum chromodynamics (QCD). (In a previous
harmonic oscillator analysis [5] some of us found a tower of
replicae, possibly infinite, but with energies not necessarily
below the perturbative vacuum state.)
We work in the equal-time quantization formalism. It is

known that, although widely used in sum rule investiga-
tions [6], in other formalisms such as light–front quanti-
zation, a quark condensate is not a natural concept, and it
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has been proposed that its appearance is restricted to
hadrons [7] and not to the full space. Our approach in this
is traditional [8], the condensate being invariant under
translations.
The BCS formalism applied to a Hamiltonian theory, in

the spirit of the NJL (Nambu-Jona-Lasinio) model but for
generic nonlocal two-body interactions is quickly reviewed
to settle the necessary notation (see Sec. II).
In this formalism, different vacua are exactly orthogonal

in an infinite volume, and have exponentially suppressed
overlaps for volumes above ∼ð4π=3Þð2.5 fmÞ3. This gives
rise to theory conundrums in which we do not wish to
delve, but a quick summary, for context, is presented in
Sec. III. Suffice it to say that a complete transition over all
space volume from one to another vacuum would require
cosmological times.
This BCS theory is then applied in Sec. IV to the specific

Hamiltonian of the North Carolina State University group,
a field theory featuring a Cornell (funnel or Coulombþ
linear) potential.
Our numerical solutions to the BCS gap equation

(the well-known ground-state one dating to Adler and
Davies [1] as well as the replicae) are presented in Sec. V.
Further new content is presented in Sec. VI where we

discuss the replicae as saddle points of the energy density,
and find the number of negative eigenvalues over each of
the relevant vacua; from this analysis we can confidently
conjecture that we have already found all the possible vacua
of this model (and, since the interaction strength is typical
of the strong interactions, it is dubious that QCD would
have many more than the ones at hand).
We can numerically slice the energy density surfaces in

the (infinite-dimensional) BCS gap-angle function space to
visually show (Sec. VII) the relative placement of the
different states discussed, confirming their ordering.
In Sec. VIII we show how the spectrum of hadrons over

the excited vacua is not that different from the spectrum
over the ground-state vacuum, which is inconvenient to
discern on which state the actual hadrons are built.
We should note that we have referred all states to their

respective vacua, that is, should a bubble of the false
vacuum be produced, we would, to the depicted meson
mass, directly sum the energy (proportional to the volume)
of that bubble. Second, once the zero-energy points have
been set at the same level as in our graphs, the meson spectra
do look similar. This is probably because the ultimate cause
of the level splittings is the confining potential, which is the
same in all the cases, rather than the quark mass, but we do
not wish to make strong claims about precise level splittings
given the attending model uncertainties.
Whereas the spectrum, at the model level of precision, is

not reliable to distinguish the replica, the hadron wave
functions (and condensate) are much more sensitive func-
tions of the gap angle and therefore of the choice of vacuum
state, as shown in Sec. IX, and can be used to distinguish

the replicae and ascertain that traditional hadron physics is
closest in order of magnitude to the ground-state BCS
vacuum, even with all its attending deficiencies.
Seeing that we have exhausted our model-based insights,

we propose, in Sec. X, a strategy for further work to see
whether full QCD as treated on the lattice can produce the
replicae given the difficulty to study them in experiment
without further model-independent information.
Section XI then wraps the discussion up.
A short note based on this work has been presented at an

international conference [9]. The present article constitutes
the full write up of the investigation.

II. CHIRAL VACUUM IN BCS APPROXIMATION
AND POSSIBILITY OF EXCITED STATES

The ground state of the interaction-free quark
Hamiltonian j0i is not the ground state of a fully interacting
Hamiltonian, that we can denote by jΩi.
In terms of the degrees of freedom in which the

Hamiltonian is formulated, the theory has a nonvanishing
quark condensate hΩjΨ̄ΨjΩi ≠ 0, formed by quark-anti-
quark 3P0 Cooper pairs (in analogy to superconductor
theory). So, following with the analogy, it is standard to use
the BCS many-body technique to variationally approximate
the nonchiral ground state (or simply BCS vacuum) jΩi.
A slick way of writing it down starts from the momentum

expansion of the quark field (for another basis, see [10,11])

Ψðx⃗Þ ¼
X
cλ

Z
d3k
ð2πÞ3 ½ucλðk⃗Þbcλðk⃗Þ þ vcλð−k⃗Þd†cλð−k⃗Þ�eik⃗·x⃗

ð1Þ

with ucλ, vcλ the bare particle and antiparticle Dirac spinors,
bcλ, dcλ the bare particle, antiparticle annihilation operators,
λ the spin state and c ¼ 1, 2, 3 the color index (mostly
suppressed in what follows).
We can expand Ψ in terms of any complete basis, so we

choose to expand it using a new quasiparticle basis

Ψðx⃗Þ ¼
X
λ

Z
d3k
ð2πÞ3 ½Uλðk⃗ÞBλðk⃗Þ þ Vλð−k⃗ÞD†

λð−k⃗Þ�eik⃗·x⃗:

ð2Þ

The two bases are related by a linear Bogoliubov-Valatin
transformation (see [12,13] for an in-depth treatment),

Bλðk⃗Þ ¼ αkbλðk⃗Þ − βkd
†
λðk⃗Þ; ð3Þ

Dλð−k⃗Þ ¼ αkdλð−k⃗Þ þ βkb
†
λðk⃗Þ: ð4Þ

The coefficients αk, βk only depend on jk⃗j, and are real
c-numbers. This linear transformation is canonical if and
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only if the new operators obey the same anticommutation
relations than the original ones

fBk; B
†
k0 g ¼ fDk;D

†
k0 g ¼ δkk0 : ð5Þ

This implies jαkj2 þ jβkj2 ¼ 1 and we can implement this
transformation as a rotation, parametrized by a Bogoliubov
angle θðkÞ≡ θk, a function of k. This parametrization
yields the following relation between the two bases from
Eq. (3),

Bλðk⃗Þ ¼ cos
θk
2
bλðk⃗Þ − λ sin

θk
2
d†λðk⃗Þ;

Dλð−k⃗Þ ¼ cos
θk
2
dλð−k⃗Þ þ λ sin

θk
2
b†λðk⃗Þ: ð6Þ

It is often more convenient to work in terms of the BCS gap
angle ϕk ≡ ϕðkÞ, which is related to the earlier one by
ϕ ¼ θ þ α, where α is the perturbative mass angle satisfy-

ing, (in terms of the quark mass mq and Ek ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

q þ k2
q

,

the energy at momentum k) sin α ¼ mq=Ek. Then the
rotated quasiparticle spinors can be expressed in terms
of the original spinors as follows

Uλðk⃗Þ ¼ cos
θk
2
uλðk⃗Þ − λ sin

θ

2
vλð−k⃗Þ

¼ 1ffiffiffi
2

p
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ sinϕk
p

ξλffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − sinϕk

p
σ⃗ · k̂ξλ

!
; ð7Þ

Vλð−k⃗Þ ¼ cos
θk
2
vλð−k⃗Þ þ λ sin

θ

2
uλðk⃗Þ

¼ 1ffiffiffi
2

p
 
−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − sinϕk

p
σ⃗ · k̂iσ2ξλffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ sinϕk
p

iσ2ξλ

!
ð8Þ

with ξλ a two-dimensional Pauli spinor.
The trivial perturbative vacuum, defined by bλj0i ¼

dλj0i ¼ 0, is related to the BCS vacuum, defined by
BλjΩi ¼ DλjΩi ¼ 0, by the transformation

jΩi ¼ exp

 
−
X
λ1;λ2

Z
d3k
ð2πÞ3 ðσ⃗ · k̂Þλ1λ2 tan

θk
2

× b†λ1ðk⃗Þd
†
λ2
ð−k⃗Þ

!
j0i ð9Þ

up to an important normalization that will come to the fore
in the next Sec. III.
If we expand the exponential, we see the operators b†d†

create a current quark-antiquark pair, exposing the BCS
vacuum as a coherent state of qq̄ excitations producing a
3P0 condensate [notice the σ⃗b· k factor in Eq. (9)].

To find the optimal jΩi vacuum, we minimize the
expectation value of the energy density, using the gap
angle ϕk as a variational function,

δhΩjHjΩi
δϕk

¼ 0: ð10Þ

This leads to a dynamical mass gap equation that is
nonlinear and will need to be numerically solved. A model
implementation will be shown shortly, in Eq. (26). The
solutions ϕiðkÞ≡ ϕi

k of this equation, substituted with θk ¼
ϕk − arctanðmq=kÞ in Eq. (9), are interpreted as possible
vacua of the theory, so the numerical task is to solve this
nonlinear integral equation. Its nonlinear character is
precisely what allows the existence of other solutions
besides the BCS vacuum.
If the interactions are turned off and only the free

Hamiltonian (mass and kinetic terms for the quarks) is
considered, the gap equation trivially returns ϕ ¼ 0 in the
massless case, which continuously deforms into a vacuum

gap function with sinϕðkÞ ¼ mq=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

q þ k2
q

for finite

mass. This we will call the “perturbative” vacuum (in
S-matrix theory it is often named the “asymptotic”
vacuum instead).
The number and nature of the solutions of the gap

equation is unknown a priori and needs to be found
through numerical exploration.

III. INEQUIVALENT REPRESENTATIONS
OF THE OPERATOR ALGEBRA

A. Orthogonality in the infinite-volume limit

In this section we take notice that, in the infinite volume
limit, the trivial vacuum and the BCS vacuum are orthogo-
nal hΩj0i ¼ 0. This observation also extends to the replicae,
so that hΩjΩ0i ¼ 0, etc. Moreover, the entire Fock spaces
built over each of the vacua are mutually orthogonal. This is
typical of infinitely-many body problems as discussed in
early literature of the field [14].
In a finite volume there exists a unitary operator U that

effects the transformation of Eq. (6) on the states,
jn0i ¼ Ujni. The states of the type jni constructed by
applying b†, d† over j0i and those of type jn0i from
applying B†, D† over jΩi lead to typical overlaps of the
form (from Eq. (6) and from Eq. (13.50) in [14])

hn0jni ∝ hΩj0i ∝
Y
k;λ

cos
θk
2

∝ exp
�
2
X
k

log
�
cos

θk
2

��
∝ exp

�
V

1

π2

Z
k2 log

�
cos

θk
2

�
dk

�
∝ expð−V × jcjÞ ð11Þ
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in view of the continuum-limit correspondenceP
k →

V
ðð2πÞ3

R
d3k.

That overlap in Eq. (11) falls exponentially with volume
as shown in the last line, and quickly vanishes, for every
θk=2 Bogoliubov profile barring θk ¼ 0 which makes the
constant jcj multiplying V in the exponent become null:
this is just the noninteracting case jΩi ¼ j0i where there is
no Bogoliubov rotation and all vacua are the same as the
perturbative trivial one.
Another way to understand this orthogonality at the

operator level is by noting that the relation Bk ¼
UðθÞbkU−1ðθÞ which would effect the Bogoliubov trans-
formation from the bare to the dressed quark operators
requires [15]

UðθÞ ¼ exp

�
−
X
λ

Z
d3k
ð2π3Þ

θk
2
ðbkλd−kλ − b†kλd

†
−kλÞ
�

¼ exp

�
−2V

Z
d3k
ð2π3Þ log cos

θk
2

�
× exp

�
−
X
λ

Z
d3k
ð2π3Þ tan

θk
2
b†kλd

†
−kλ

�
× exp

�
−
X
λ

Z
d3k
ð2π3Þ tan

θk
2
bλkd−kλ

�
ð12Þ

with the first exponential after the last equality carrying
V → δð3Þð0Þ which drives the transformed state jΩi ¼
UðθÞj0i to have zero overlap with the initial one upon
taking the infinite volume limit (the operatorUðθÞ is said to
be improperly unitary).
The situation is depicted in Fig. 1. It displays the energy

of a bubble of replica vacuum (above the ground state BCS
vacuum) as function of the radius of the said bubble,

together with the overlap of both vacua states quantized
over the volume of the bubble alone, so that expð−VÞ
remains finite. It is clear from the figure that for radii above
2.5 fermi the overlap is significantly smaller. The precise
number depends on the details of the model used, and we
will soon turn to modeling in Sec. IV.
As discussed by Barton [14], there is a symmetry reason

why, if we accept say j0i or alternatively jΩi as having
norm 1, the other one, and also any other potential vacua
such as the jΩ0i replica cannot have the same norm.
Instead, the false vacuum states built over the ground

state one belong to the continuous spectrum of the
momentum operator and are subject to delta-distribution
normalization hpjp0i ¼ δð3Þðp − p0Þ; since translation
invariance for an adequate vacuum state requires p ¼ 0,
we see a volume [δð3Þð0Þ] divergence in the normalization.
No translation invariance states normalizable to 1 are
available for mixing with the initially chosen ground state.
The excited vacua generate disjoint or inequivalent copies
of the entire Fock space.

B. Semiclassical treatment of transitions

No fully nonperturbative and quantum solution to the
issue of orthogonality of the Fock spaces generated by
improperly unitary transformations such as the Bogoliubov
rotation is known to us. This means that, in practice, total
transitions jΩi → jΩ0i among any of the states here
discussed require a time exponentially diverging with the
volume.
Phenomenologically, that orthogonality raises problems

with transitions that actually occur in the laboratory and
that are believed to have taken place in the early universe.
For example, solids can transition from the superconduct-
ing state (that is in the BCS-paired state) to the normal state
with finite resistivity. But if no operator connects the two
states, how is the transition to be phenomenologically
described?
An accepted working recipe to address transitions

between orthogonal vacua in systems with infinitely many
degrees of freedom was proposed by Coleman [16]. In a
nutshell, one closes the eyes to the fact that no operator
connects the two inequivalent Fock spaces and proceeds in a
finite volume where the transition is permitted. Then, the
walls of this finite–volume bubble expand with speed c
transforming more of the false vacuum into the true one (and
simultaneously, any of the excited particles over the false
vacuum into particles over the true vacuum). Semiclassical
equations can be written for this false to true vacuum
transition.
In what concerns us here, this way of thinking means that

a finite-volume bubble of false vacuum characterized by a
higher energy density than the ground state can tunnel to it
by surmounting the surface energy necessary to create the
inhomogeneous condensate inside/outside the bubble.

FIG. 1. The first vacuum replica has an energy over the BCS
vacuum, the zero point, which grows linearly with the volume,
hence with the cube of the radius in a spherical bubble.
Simultaneously, its overlap with the ground state hΩjΩ0i drops
exponentially with the quantization volume, and for radii larger
than 2.5 fermi it becomes negligible.
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Wewill numerically find below that, at least in the model
of QCD which we are handling here, that the false vacuum
is unstable in the classical sense, to collective Bogoliubov
rotations; but metastable to few-body excitations, with
hadrons built over the vacuum having positive mass.
The false vacuum outside the bubble can then roll toward

the ground state (since such false vacuum is a saddle point
with directions in θk function space that have negative
second derivative of the energy density) quickly expanding
the bubble size.
Considering the entire spatial volume, the transition is

never really completed: one evolves over a continuum of
interpolating states which have one of the vacuum-wave
function angles ϕ over a certain volume and another ϕ0 over
the rest.

IV. MODEL IMPLEMENTATION:
GLOBAL–COLOR HAMILTONIAN FIELD

THEORY WITH A CORNELL-LIKE POTENTIAL

The discussion is illustrated by QCD in the Coulomb
gauge, that can be modeled along the lines of [17], that
features a Cornell-like model for the longitudinal color
interaction and a Yukawa-type gluon exchange for the
transverse-gluon mediated interactions. This is related to
other work by several groups [18–21], etc. The QCD
Coulomb gauge Hamiltonian

H ¼ Hq þHg þHqg þ VC; ð13Þ

with

Hq ¼
Z

d3xΨðx⃗Þ†ð−iα⃗ · ∇!þ βmqÞΨðx⃗Þ; ð14Þ

Hg ¼ Tr
Z

d3x½Π⃗aðx⃗Þ · Π⃗aðx⃗Þ þ B⃗aðx⃗Þ · B⃗aðx⃗Þ�; ð15Þ

Hqg ¼ g
Z

d3xJ⃗aðx⃗Þ · A⃗aðx⃗Þ; ð16Þ

VC ¼ −
1

2

Z
d3xd3yρaðx⃗ÞVðjx⃗ − y⃗jÞρaðy⃗Þ; ð17Þ

is simplified into a model Hamiltonian by reducing the
field-theoretical kernel to a c-function potential V. Here, Ψ
and mq are the (bare) quark field and mass, ρaðx⃗Þ ¼
Ψ†

xTaΨx and J⃗aðx⃗Þ ¼ Ψ†
xTaα⃗Ψx are respectively the color

density and current, with Ta the generators of SU(3), g is
the QCD coupling, A⃗a are the gauge fields, Π⃗a are the
conjugate fields and B⃗a are the non-Abelian magnetic fields
defined by

B⃗a ≡ ∇⃗ × A⃗a þ 1

2
fabcA⃗b × A⃗c ð18Þ

with fabc the structure constants of SU(3). For a complete
analysis of the Coulomb gauge Hamiltonian see [22].
Let us focus on the potential VC of Eq. (17). A model of

the strong interaction should reflect the phenomenon of
confinement, that is, the absence of isolated color charged
particles (such as gluons or quarks) in the spectrum. In this
work, we model confinement through the potential VC. The
VC part is taken as a Cornell potential, i.e., a Coulomb
potential due to the exchange of a gluon plus a linear part
which is responsible for confinement:

VCornellðkÞ ¼ −4π
αs
k2

− 8π
σ

k4
ð19Þ

where αs is the coupling in QCD and σ is a string tension
constant, which can be inferred from experimental data
(for example, of charmonium spectrum) in lattice QCD
calculations.
In particular, we use a modified Cornell potential

numerically fitted to pure Yang-Mills variational compu-
tations (see [23])

VCðpÞ ¼

8>>><>>>:
CðpÞ≡− 8.07

p2

log−0.62
�

p2

m2
g
þ0.82

�
log0.8
�

p2

m2
g
þ1.41

� if p>mg

LðpÞ≡− 12.25m1.93
g

p3.93 if p<mg

ð20Þ

where the low momentum component is (numerically)
close to a pure linear potential and the other term represents
a renormalized high energy Coulomb tail.
Because chiral symmetry is a feature of quarks, not

gluons, Hg is omitted and we substitute Hqg by a generic
transverse hyperfine interaction VT due to the exchange of
a transverse gluon, according to

VT ¼ 1

2

Z
d3xd3yJ⃗ai ðx⃗ÞUijðx⃗; y⃗ÞJ⃗aj ðy⃗Þ; ð21Þ

Uijðx⃗; y⃗Þ ¼
�
δij −

∇i∇j

∇2

�
x⃗
Uðjx⃗ − y⃗jÞ; ð22Þ

UðpÞ ¼
�CðpÞ if p > mg

− Ch
p2þm2

g
if p < mg

ð23Þ

with a Yukawa type interaction at low momentum and Ch a
constant determined by matching the high and low momen-
tum regions. This interaction is sensible for transferred
momenta not much larger than the dynamical mass of the
gluon mg ∼ 600 MeV, which we are using, in practice, as
the scale of the theory. Both longitudinal and transverse
gluon potentials in momentum space are plot in Fig. 2.
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To find the possible vacua of this theory, the extremal
points of the Hamiltonian expected value from Eq. (10), we
employ the model Hamiltonian yielding

ρ≡ hΩjHjΩi
V

¼
Z

d3k
ð2πÞ3

�
−6ðkck þmqskÞ

− 2

Z
d3q
ð2πÞ3 V̂ðjk⃗− q⃗jÞð1− sksq − ckcqxÞ

þ 4

Z
d3q
ð2πÞ3 Ûðjk⃗− q⃗jÞð1þ sksqÞ þ cqckŴðjk⃗− q⃗jÞ

	
ð24Þ

where ρ is the energy density of the system such thatR
d3x ρ ¼ H, sk ≡ sinϕðk⃗Þ, ck ≡ cosϕðk⃗Þ and

Ŵðjk⃗− q⃗jÞ≡xðjk⃗j2þjq⃗j2Þ− jk⃗jjq⃗jð1þx2Þ
jk⃗− q⃗j2

Ûðjk⃗− q⃗jÞ ð25Þ

with x ¼ k̂ · q̂.

The mass gap equation is then

ksk −mqck ¼
2

3

Z
d3q
ð2πÞ3 V̂ðjk⃗ − q⃗jÞ½skcqx − cksq�

−
4

3

Z
d3q
ð2πÞ3 ðcksqÛðjk⃗ − q⃗jÞ

− cqskŴðjk⃗ − q⃗jÞÞ: ð26Þ

The angular integrals of the kernel can be separately
evaluated

ksk −mqck ¼
1

6π2

Z
∞

0

dq q2½skcqV1 − cksqV0

− 2ðcksqU0 − cqskW0Þ� ð27Þ

where

In ¼
Z

1

−1
dx Iðjk⃗ − q⃗jÞxn ð28Þ

with I ¼ V, U, W from Eqs. (24) and (25). Let us first
consider the chiral limit mq ¼ 0. In this limit, it is
straightforward to check that we have the trivial solution
sinϕk ¼ 0. This solution is clearly the perturbative vacuum
j0i (there is no Bogoliubov rotation). The nontrivial
solutions on the other hand need to be found numerically.
In addition, in this limit mq → 0 the mass gap equation is
symmetric under the exchange of the sign of (sinϕk), that
is, if sinϕk is a solution, then − sinϕk is a solution as well.
We break this ambiguity by choosing, as need arises,
sinϕk → 0þ to be positive at either very large or very small
momentum.

V. NUMERICAL SOLUTIONS: BCS ANGLES
AND QUARK MASSES

Three solutions ϕ0
k, ϕ

1
k, ϕ

2
k to the discretized gap equation

in the chiral limit mq → 0 are numerically found by linear
iteration of the system with Newton’s method, as described
elsewhere [24].
It is straightforward to calculate the associated mass

functions MðkÞ for the quasiparticles (the bare particles at
large momentum have a slowly running mass mq) and
constituent masses Mð0Þ. The relation between this con-
stituent mass function and the gap angle is

sinϕðkÞ ¼ MðkÞ
E

ð29Þ

with E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2ðkÞ þ k2

p
. For the case mq ¼ 0, the gap

angles are presented in Fig. 3 and the dressed massesMðkÞ
in Fig. 4. The solutions have an increasing number of nodes
with the ground state BCS state having none, the first
replica having exactly one zero, and the second one having

FIG. 2. The upper plot represents the Coulomb-like potential
[Cornell potential from Eq. (20)] in momentum space, while the
lower plot is the transverse one from Eq. (21), matching a
Coulombic and a Yukawa-like tail that represents massive gluon
exchange.
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precisely two. Some version of a nonlinear Sturm-Liouville
theorem must be at play.
The addition of a small current quark mass mq ¼

1 MeV collapses the second replica and we only have
two solutions to the interacting gap equation, instead of
three (Figs. 5 and 6): the BCS solution ϕ0

k and the first
replica ϕ1

k. Although we thoroughly examined the solution
space, we were not able to reproduce the second replica
that we find in the chiral limit, which seems to be a critical
point for that solution.
The constituent quark mass MðkÞ characterizes the

degree of symmetry breaking. We can analyze how the
increase of the current quark mass mq affects the chiral
symmetry breaking. We plot the dressed quark mass MðkÞ
in the BCS vacuum ϕ0

k for different values of mq (Fig. 7).
We can see for a small value of mq ¼ 5 MeV, which is
characteristic of the u and d quarks, the degree of chiral

FIG. 3. The first three (nontrivial) solutions of the mass gap
equation in the chiral limit mq ¼ 0. We have analogous solutions
under the exchange sinϕk ↔ − sinϕk, but we choose here only
those in the first quadrant for small k (the other ones, in the
massive case, appear only for unphysical mq < 0).

FIG. 4. Constituent mass function of the quark MðkÞ in the
chiral limit mq ¼ 0. From top to bottom, they correspond to the
ϕ0
k, ϕ

1
k and ϕ2

k solutions, here chosen to have Mð0Þ > 0.

FIG. 5. The first two (nontrivial) solutions of the mass gap
equation with mq ¼ 1 MeV. We show ϕ1

k with a sign change to
compare it with the chiral limit in Fig. 3.

FIG. 6. Constituent mass function of the quark, MðkÞ, with
mq ¼ 1 MeV. Upper plot: ϕ0

k, lower plot: ϕ
1
k.
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symmetry breaking remains close to the chiral limit
mq ¼ 0. When we increase the current quark mass to
mq ¼ 30; 100 MeV, characteristic of the s quark, the
degree of chiral symmetry breaking has rapidly increased
and when we arrive to masses of about the c quark, with
mq ¼ 1500 MeV, the symmetry is totally absent at low
momentum, as seen in Fig. 7.
Further detail on the dependence of the mass-gap

solutions on the quark mass may be found in [25]. For
large quark masses or high excitations one approaches a
quasiclassical regime in which the vacuum angle is not very
relevant, and just produces corrections to the dominant,
larger mass scales present there [26].
In Fig. 8 we then show the mass function MðkÞ for the

three replicae in the chiral limit, which allows us to
confidently state that the numeric side of the computation
is under control: the graphs use different cutoffs from 4 to
10 GeV and clearly, convergence has been achieved.
The confining scale is fixed in our work, as it agrees with

hadron spectroscopy, but we can state that there does not
seem to be much model dependence on our generic
statements as the harmonic oscillator potential was also
studied in earlier work [5] with very comparable results.

VI. THE REPLICAE AS SADDLE POINTS
OF THE ENERGY DENSITY

The stability, metastability or instability of the replicae is
an interesting point that has been previously discussed in
the literature. Once the gap function has been fixed, the
finding of [27] with which we concur (Sec. VIII below) is
that the spectrum built thereover has no tachyons, with
replicated hadrons all having non-negative, and certainly
real, masses.
What we instead examine in this section is what happens

at the level of the gap function itself, whether the vacuum
configuration can deform to another one via a collective
state, and not a few-body quasiparticle excitation.

To be specific, we frame our calculation in the chiral
limitmq ¼ 0, since a small quark mass does not change the
overall picture for the first replica, but it does not allow to
study the second.
The mass gap equation solutions are extremal points of

the energy density δhΩjHjΩi=δϕiðkÞ ¼ 0, and to study the
stability of each solution we need to calculate the second
functional derivative of the vacuum energy density

Fðk; qÞ ¼ δ2hΩjHjΩi
δϕqδϕk

: ð30Þ

FIG. 7. Constituent quark mass function of the lowest BCS
solution ϕ0

k for different current quark masses. From bottom to
top, mq ¼ 0; 5; 30; 100; 1500 MeV. We plot MðkÞ −mq as the
subtraction is convenient to compare the intensity of chiral
symmetry breaking.

FIG. 8. Cutoff dependence of the quark mass function MðkÞ
for each of the replicae. Good convergence is seen before
Λ ¼ 10 GeV.
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The fastest way to asses the positivity (or otherwise) of
such a quadratic form is to look at the sign of the
eigenvalues of its matrix evaluated at each solution ϕi

k
of Eq. (26). If all the eigenvalues are strictly positive, i.e.,
the matrix is definite positive, the solution corresponds to a
minimum. If the eigenvalues are all negative, it is a
maximum. Finally, if the eigenvalues are mixed, the
solution is a saddle point. In the first case and interpreting
ϕk as a classical effective field, there would not be any
classical trajectory to decay from that solution to another

and the vacuum would be metastable. However, in the last
two cases there would be classical trajectories to decay and
the vacuum would be unstable. The eigenvalue equation for
this matrix reads

Z
d3q
ð2πÞ3 Fðk; qÞψ iðqÞ ¼ λiψ iðkÞ ð31Þ

which in the model of Eq. (24) leads to

λiψ iðkÞ ¼ 6ðkck þmqskÞψ iðkÞ − 4

Z
d3q½V̂ðjk⃗ − q⃗jÞðsksq þ cqckxÞ þ 2Ûðjk⃗ − q⃗jÞsksq þ 2ckcqŴðjk⃗ − q⃗jÞ�ψ iðkÞ

þ 4

Z
d3q
ð2πÞ3 ½V̂ðjk⃗ − q⃗jÞðckcq þ sqskxÞ þ 2Ûðjk⃗ − q⃗jÞckcq þ 2sksqŴðjk⃗ − q⃗jÞ�ψ iðqÞ: ð32Þ

We solve the eigenvalue problem numerically, finding
the results summarized in Table I. As we expected, the BCS
vacuum ϕ0

k is a minimum, so it is stable and thereon we
usually model the QCD hadronic spectrum. The perturba-
tive vacuum is a saddle point and therefore, unstable. The
fact that it has exactly three negative eigenvalues (the paths
pointing toward each of the solutions of the interacting gap
equation, the vacuum and the two replicae that have
negative energy density) is very suggestive that we have
found all negative-energy solutions to the nonlinear gap
equation in the interacting theory, for which we have no
known theorem specifying the number and nature of such
solutions.
Although the traditional picture of the Mexican hat

suggests the idea that the perturbative vacuum has to be
a maximum, that picture is just a graphical assistance to
visualize the idea of the two classes of vacua. Actually, we
are working in the space function L2 for the gap function
sinϕðkÞ, which is an infinite dimensional space and the
vacuum picture is not as neat as a Mexican hat. However,
the instability of the perturbative vacuum triggers sponta-
neous symmetry breaking of the theory and its (classical)
decay to the BCS vacuum. Finally, we find both replicae ϕ1

k
and ϕ2

k are also saddle points and hence they seem to be

classically unstable to collective perturbations that dislo-
cate the entire vacuum function ϕðkÞ by creating an infinite
number of quark-antiquark pairs with specific weights in
the directions of the negative eigenvalues.
At a second, few–body level, examining the creation of

meson-like qq̄ states over the replica,

hΩij
�
H;
Z

d3kΨB†
kD

†
−k

	
jΩii ð33Þ

is a matrix with only positive eigenvalues, where jΩii
i ¼ 1, 2 is the first replica and second respectively. This
means all the meson excitations found over the replicae
have positive mass squared (no tachyons). We postpone the
numerical results for this spectrum until after we have
further discussed the collective negative eigenvalues in the
next Sec. VII.

VII. FROM REPLICA TO REPLICA SLICING
THE FUNCTION SPACE

In this section we look at the relative energy density of
the replicae, to ascertain their relative stability as deter-
mined by energetic considerations alone. We fix the chiral
limit mq ¼ 0 where all solutions are active. (A small quark
mass entails a small increase in MðkÞ, with no significant
effect on the general properties of the remaining vacuum
states, but we lose one replica).
A visual way to represent the relative placement of the

solutions to the gap equation is to slice the infinitely
dimensional function space with a one-parameter curve that
passes through two or more of those solutions, interpolating
between them.
A detailed appraisal can be obtained by a simple linear

interpolation between pairs of solutions,

TABLE I. Summary of the nature of the mass gap equation
solutions (“vacua”). Eq. (32) is discretized over a radial mo-
mentum grid of 600 points to yield mostly positive eigenvalues,
but we list here whether any of them is negative.

Vacuum Critical point # negative eigenvalues

BCS Minimum 0
1st replica Saddle point 1
2nd replica Saddle point 2
Perturbative Saddle point 3
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ϕðkÞ ¼ αϕiðkÞ þ ð1 − αÞϕjðkÞ i ≠ j: ð34Þ

The result of the exercise is shown in Fig. 9, that plots
hHiðαÞ, the energy density along that path. The character-
istic depth of the ground-state BCS solution with respect to
the perturbative vacuum is, as seen in the figure, 2.5 ×
105 GeV4 ≃ 1

4
ð100 MeVÞ4, with the two replicae much

closer to the zero level of the perturbative j0i.
We can see therefrom that there is a deepest or ground

state (simply denoted as BCS), two replicae with higher
energy, and the perturbative ground state that minimizes the
free Hamiltonian, which has the highest energy density of
the four. Most interestingly, there is no potential barrier
separating the various states: in a finite volume, the system

can roll down from configuration to configuration until the
minimum is reached.
We can depict all states together if we employ a more

complicated interpolating function that slices through
function space stopping at each of the replicae. A poly-
nomial function that can serve this purpose is

fðαÞ ¼ Aα3 þ Bα2 þ CαþD ð35Þ

where A, B, C,D are combinations of the solutions ϕi so as
to satisfy the following conditions for the interpolation
to pass by each of the relevant states under study. First,
fðα ¼ 0Þ ¼ j0i starts at the trivial vacuum; then, when
α ¼ 1=2 f is the BCS vacuum; for α ¼ 1 we reach the first
replica and when α ¼ 3=2 the second one.

FIG. 9. Vacuum energy density (in GeV4) as function of a parameter α that linearly interpolates between pairs of replica states,
εðαÞ ¼ hHiðαÞ. We see that the commonly used BCS ground state has indeed the lowest energy, and that the two replicae lie between
this and the perturbative vacuum (ground state of the free Hamiltonian).
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A convenient choice is then

fðαÞ ¼
�
4

3
ðϕ2

k −ϕpert
k Þ− 4ðϕ1

k −ϕpert
k Þþ 4ðϕ0

k −ϕpert
k Þ
	
α3

þ½−2ðϕ2
k −ϕpert

k Þþ 8ðϕ1
k −ϕpert

k Þ− 10ðϕ0
k −ϕpert

k Þ�α2

þ
�
2

3
ðϕ2

k −ϕpert
k Þ− 3ðϕ1

k −ϕpert
k Þþ 6ðϕ0

k −ϕpert
k Þ
	
α

þϕpert
k ð36Þ

We have to numerically calculate the energy density as
an integral over the interpolating ϕ function,

ρ ¼ −
3

π2

Z
∞

0

dkðk3ck þmqk2skÞ

−
1

4π4

Z
∞

0

dk k2
Z

∞

0

dq q2½V0ð1 − sksqÞ − V1ckcq

− 2U0ð1þ sksqÞ − 2ckcqW0� ð37Þ

in ϕðkÞ ¼ ½fðαÞ�ðkÞ for α∈ ½0; 3=2�. We subtract the trivial
vacuum contribution ρt ¼ h0jHj0i=V to control the UV
divergence and thus the three solutions to the interacting
gap equation will take negative values of the energy
density,

ρreg ¼ −
3

π2

Z
∞

0

dkðk3ðck − 1Þ þmqk2skÞ

þ 1

4π4

Z
∞

0

dk k2
Z

∞

0

dq q2½V0sksq þ V1ðckcq − 1Þ

þ 2U0sksq þ 2W0ðckcq − 1Þ�: ð38Þ

The numerical result is presented in Fig. 10.
For comparison, we add a second interpolation with the

following form:

fðαÞ ¼ Aα2 þ Bαþ Cþ D
αþ 1

ð39Þ

The reader may note that in the figure, not all the
solutions to the gap equation appear as minima. They are all
in fact extrema of the energy–density expectation value ε,
but since the excited states appear as saddle points (which
will be ascertained shortly) they can appear as local
maxima depending on the sliver of function space taken.
In the upper plot of Fig. 10 there appear other maxima/

minima which do not correspond to any of the solutions ϕi:
ε has nonvanishing derivatives in other directions not
shown. They are just an artifact of the parametrization.
This is why having a second one to compare (lower plot) is
useful as it clarifies the position of the actual replicae.
Since such replicae appear in these sinϕ-space cut as two

local maxima, because the parametrization links them to the
ground state which has smaller energy (so they do not need
to appear as maxima in other cuts, as they are saddle
points), and the energy density is a smooth function, there
naturally is an apparent minimum between them, but this is
not a physically relevant state as it does not solve the gap
equation (it is not a critical point in other directions in
function space).
Having exhausted the discussion about the collective

excitations modifying the gap function, we now proceed to
the few-body excitations over each of the replicae.

VIII. SPECTRUM OVER THE REPLICA VACUA

We now address the excitation spectrum of mesons on
top of the ground state and of the replicae, producing
“replicated hadrons” that differ from ordinary ones in the
underlying BCS ground state. The situation is visually
explained in Fig. 11, that shows two similar sets of hadrons
excited over two different vacua.
We employ the RPA (random phase approximation), that

is the instantaneous generalization of the Schrödinger
equation to a degree of freedom with forward and backward
propagation components, used in nuclear physics to prop-
erly describe the zero mode associated with translations of
the nucleus as a whole, and in this hadron physics field to
properly implement chiral symmetry breaking for the
Goldstone bosons, the pions [28].

FIG. 10. Polynomial interpolations between the solutions to the
mass gap equation found in the chiral limit. Upper plot: from
Eq. (35). Lower plot: we add the interpolation from Eq. (39) for
comparison. The excited replicae, which are saddle points of ε,
can appear as maxima in such cuts of function space that link
them with the ground state.
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Omitting the color index, the pion creation operator is

Q†ðRPAÞ ¼
X
αβ

Z
dk⃗

ð2πÞ3 ½Xαβðk⃗ÞB†
αðk⃗ÞD†

βð−k⃗Þ

− Yαβðk⃗ÞBαðk⃗ÞDβð−k⃗Þ� ð40Þ

featuring two wave functions X and Y

Xðk⃗Þ ¼ 1ffiffiffiffiffiffi
4π

p iðσ2Þαβffiffiffi
2

p δijffiffiffi
3

p XνðkÞ

Yðk⃗Þ ¼ 1ffiffiffiffiffiffi
4π

p iðσ2Þαβffiffiffi
2

p δijffiffiffi
3

p YνðkÞ: ð41Þ

The angular wave function for an s-wave meson is simply
Y0
0ðk̂Þ ¼ 1ffiffiffiffi

4π
p , the spin wave function iσ2=

ffiffiffi
2

p
coincides

with the Clebsch-Gordan coefficient yielding S ¼ 0, and
the color one δij=

ffiffiffi
3

p
is simply a normalized singlet. This

projects the eigenvalue equation over the pion’s JPG ¼ 0−þ
quantum numbers. The radial wave functions for the
forward and backward propagating components are
denoted as Xν and Yν, respectively. The quasiparticle
annihilation operator Q satisfies QjRPAi ¼ 0 for an
unspecified RPA ground state that is more correlated than
the BCS one.
The meson mass can be obtained as the eigenvalue of the

coupled system of equations for X and Y,

hRPAjQRPA½H;B†
αðk⃗ÞD†

βð−k⃗Þ�jRPAi ¼ Mν
πXðk⃗Þ

hRPAjQRPA½H;Bαðk⃗ÞDβð−k⃗Þ�jRPAi ¼ −Mν
πYðk⃗Þ: ð42Þ

These are reduced to a linear system, under the usual
bosonization approximation (in practice, setting the RPA
vacuum to be the BCS vacuum once the commutators have
been computed),

Z
∞

0

dq
6π2

q2½Kðk; qÞXνðqÞ þ K0ðk; qÞYνðqÞ�

þ 2ϵXνðkÞ ¼ Mν
πXνðk⃗ÞZ

∞

0

dq
6π2

q2½Kðk; qÞXνðqÞ þ K0ðk; qÞYνðqÞ�

þ 2ϵYνðkÞþ ¼ −Mν
πYνðk⃗Þ ð43Þ

featuring the kernels [17]

Kðk;qÞ¼ ð1þ skcqÞV0þ2ð1− sksqÞU0þckcqðV1−2W0Þ
K0ðk;qÞ¼ ð1− skcqÞV0þ2ð1þ sksqÞU0−ckcqðV1−2W0Þ

ð44Þ

and also the quark/antiquark self-energy obtained from the
one-body piece of the Hamiltonian

ϵk ¼ mqsk − kck −
Z

∞

0

dp⃗
6π2

½skspðV0 þ 2U0Þ

þ ckcpðV1 þ 2W0Þ�: ð45Þ

By itself this self-energy is infrared divergent, but in
combination with the two-body pieces, it yields a finite
two-body RPA system due to cancellations induced by a
Ward identity, due to the model’s global color symmetry.
These two radial-momentum equations are numerically

solved with an integrator and an eigensolver. Each eigen-
value corresponds to a meson with the quantum numbers of
the pion built over the vacuum state of each of the replicae.
In Table II we present the energy eigenvalues (in MeV)

obtained in the RPA approximation, for mesons over the
ground state and also over the replicae, and finally, over the
perturbative vacuum, all for mq ¼ 0.
Although the experimental pseudoscalar spectrum with

light quarks has only three states up to πð1800Þ, we have
quoted the next two eigenvalues yielding possible quark-
antiquark mesons πð2500Þ and πð3000Þ. One would expect
those to be very broad as they have numerous open decay
channels.

FIG. 11. We sketch the spectrum of vector-meson excitations as
energy levels above both the ground-state BCS vacuum jΩi and
the perturbative vacuum j0i: the two “parallel” spectra are quite
similar as visible in Table IV below.

TABLE II. Experimental meson spectrum from [29] (last row)
and theoretical model computations over the different ground
states with pseudoscalar quantum numbers 0−þ. All masses in
MeV, are computed in the chiral limit mq ¼ 0 so that the pion is a
strict Goldstone boson over any vacuum that spontaneously
breaks chiral symmetry.

Vacuum π πð1300Þ πð1800Þ � � � � � �
jΩi ≃0 1278 1968 2513 2967
jΩ0i ≃0 1302 1997 2542 2995
jΩ00i 0.4 1304 1999 2544 2997
j0i 500 1486 2018 2136 2656
Experimental 138 1300� 100 1812� 12 � � � � � �
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The model yields quite accurately a massless pion,
implementing Goldstone’s theorem in the presence of
chiral symmetry breaking. The pion mass is vanishing
over the actual ground BCS state Ω as well as over its two
replicae in the chiral limit (the 0.4 MeV value over the
second replica is compatible with zero within the numerical
error of the computation of order 1–2 MeV, whose
reduction is unnecessary in view of the much larger
systematic model uncertainties).
Over the perturbative vacuum, however, since it is

chirally symmetric, the pion is not massless but rather it
acquires some 500 MeV of mass corresponding to a light
quark-antiquark excitation with reduced chromomagnetic
energy (the spins are antialigned) nor centrifugal energy
(the orbital angular momentum is L ¼ 0).
A fun fact is that, from this table with the pseudoscalar

spectrum alone, it would be hard to discern whether our
physical vacuum is the actual ground state or whether
our laboratory would be standing over a replica, as the
differences are smaller than the model’s systematic
uncertainties.
The spectrum is depicted in Fig. 12.
We now switch the quark mass on, to either mq ¼

1 MeV or mq ¼ 5 MeV. In this case we only have one
replica, as already discussed. These masses are insignifi-
cant to make a difference for the excitations above a GeV,

so we calculate only the first, ground-state 0−þ pion.
Table III gives this reduced spectrum.
We can see that the ground–state BCS jΩi vacuum, with

mq ¼ 1 MeV, yields a satisfactory mass, although for too
small a current mass. The Gell-Mann-Oakes-Renner rela-
tion [30,31] guarantees that any small pion mass can be
reproduced by a small enough quark mass, and the RPA
provides a dynamical implementation of the theorem, so
the success here is unsurprising. The replica needs an even
smaller quark mass to produce the physical pion.
If the Tamm-Dancoff (or simply Schrödinger) approxi-

mation is adopted, in which the backpropagating compo-
nent Y is neglected, then the GMOR relation fails in the
model and we obtain pion masses (in MeV) of 531 and
576 for mq ¼ 1 and mq ¼ 5, respectively, over the BCS
ground state.
That is a poor approximation for the pion because in the

chiral limit, Y ¼ X as shown in Fig. 13.
We also quickly discuss the vector mesons built over all

these background states. The best known of those is the
ρð770Þ whose mass comes reasonably close to the exper-
imental one, for mq ¼ 0, for all the replicae and even the
vacuum of the free Hamiltonian. (See Table IV). We will

FIG. 12. The pseudoscalar spectrum (including the pion) in the
field theory employing the Cornell model (lines, blue online,
from right to left the underlying vacuum is j0i, jΩ00i, jΩ0i, jΩi),
compared with the experimental ones (leftmost, magenta online)
and those from the harmonic oscillator potential ground states
(round dots).

TABLE III. Dependence of the pion mass with the quark mass
and the choice of vacuum function ϕi (compare with the
experimental isospin-averaged mass mπ ¼ 138 MeV).

Vacuum mq ¼ 0 mq ¼ 1 mq ¼ 5

jΩi 0 150 390
jΩ0i 0 468 751

FIG. 13. Radial wave functions X and Y as functions of the
momentum k. The two sets of symbols fall on the same curve
showing Y ¼ X for mq ¼ 0.

TABLE IV. Energy eigenvalues, in MeV, for vector mesons
(ρð770Þ and s, d wave excitations) over the perturbative vacuum
j0i, the BCS one jΩi, and its two replicae. (Rounded off to
1 MeV for the ground state meson, 5 MeV for its first excitation,
and 10 MeV for the rest.)

Vacuum ρð770Þ ρð1450Þ ρð1570Þ ρð1700Þ ρð1900Þ
jΩi 749 1325 1500 1940 2090
jΩ0i 796 1195 1410 1730 1940
jΩ00i 811 1195 1440 1740 1990
j0i 812 1195 1440 1740 1990
Experim.a 775� ð< 1Þ 1465� 25 1570� 62 1720� 20 1909� 32

aData from the Particle Data Group compilation [29].
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not spell here the somewhat laborious RPA equations for
the coupled s- and d-wave channels which can be found in
our previous work [17,28].
As the table shows, the vector mesons constructed over

the various ϕi vacua have masses with overall similar
agreement to the experiment, so it would be difficult to
distinguish over which vacuum our experiments reside
from the meson spectrum alone.
We again plot a Grotrian diagram with this spectrum

in Fig. 14.
To complete this section, we note that a cursory

variational computation was performed to obtain
nucleon masses with the methods of [32]. We obtained
mass differences MNðΩ0Þ −MNðΩÞ ∼ −100 MeV and
MNðΩ00Þ −MNðΩ0Þ ∼ −300 MeV, albeit with large errors
due to the Monte Carlo computation of the three-body
matrix elements, so all we dare state is that the decrease of
the constituent quark mass over the replicae pushes the
baryon masses to somewhat lighter values as compared
with the ground-state BCS vacuum.

IX. VACUUM CONDENSATE AND DECAY
CONSTANT

Once the mass gap has been solved, we can calculate the
vacuum quark-antiquark condensate given by

hq̄qi≡ hΩjΨ̄ð0ÞΨð0ÞjΩi ¼ −
3

π2

Z
∞

0

dk k2 sinϕk: ð46Þ

This condensate is quadratically UV divergent for finite
mq ≠ 0, so beyond the chiral limit we need to regulate this
by subtracting the trivial vacuum contribution

hq̄qireg ¼ −
3

π2

Z
∞

0

dk k2
�
sinϕk −

mq

Ek

�
ð47Þ

and measure the condensate with respect to that zero point.

We have numerically calculated the quark condensate for
each solution ϕi by means of Eq. (47). In the chiral limit
mq ¼ 0 there is no need for the subtraction and can also
compute over the second replica: we have

hq̄qiϕ0 ¼ −ð178 MeVÞ3; ð48Þ

hq̄qiϕ1 ¼ ð73 MeVÞ3; ð49Þ

hq̄qiϕ2 ¼ −ð61 MeVÞ3; ð50Þ

hq̄qiϕpert ≡ 0: ð51Þ

Turning off the hyperfine interaction of Eq. (21), the value
of the condensate in the BCS ground state decreases in
absolute value to about −ð120 MeVÞ3. In turn, adding a
small quark mass mq ¼ 1 MeV we find, after mass sub-
traction, the increased values

hq̄qiϕ0 ¼ −ð189 MeVÞ3; ð52Þ

hq̄qiϕ1 ¼ −ð111 MeVÞ3: ð53Þ

First, we can compare the quark condensate in the
BCS solution ϕ0

k with recent lattice estimations of this
value [6]. Our result is smaller than the latest lattice
calculations of hq̄qiϕ0 ¼ −ð272 MeVÞ3. We therefore
conclude an improved model may be needed to reach
the lattice estimation for the condensate, including higher
order terms in the kernel of VC. This is unsurprising for a
model approach.
We have also recovered the small quark mass because it

will help us understand the sign of the quark condensate.
First, consider the constituent massesMðkÞ we have shown
in Figs. 4 and 6. We can see in these figures the dressed
mass has negative parts, seemingly unphysical. However,
MðkÞ has to be understood as an auxiliary function for a
confined quark, not a physical mass. In fact, the masses of
the physical mesons have been calculated over the BCS
vacuum and over the replicae and are positive as already
seen in Sec. VIII. Now consider the quark condensate
calculated in Eq. (47). We can see it has an explicit minus
sign and the result is expected to be negative, which is what
happens in all the solutions except for the first replica in the
chiral limit, as patent in Eq. (49). We can understand the
change in the sign making use of the Gell-Mann-Oakes-
Renner relation

−hq̄qimqðμÞ ¼ m2
πf2π ð54Þ

where mπ and f2π are respectively the mass and decay
constant of the pion and μ is the renormalization scale.
This relation yields several interesting results. From it, one
understands that what is a physical quantity is not the

FIG. 14. The vector spectrum in the field theory employing the
Cornell model (lines, blue online) over the various reference
vacuum states, compared with the experimental ones and those
from the harmonic oscillator potential (round dots).
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condensate or the quark mass, but the product of them
[eventually, mqðμÞ → Mðk ¼ μÞ]. In that case, the left
side of the identity has to be positive, so if we have a
positive condensate, the dressed mass has to be negative.
And this is exactly what happens for the first replica in the
chiral limit, as we can see in Fig. 4, the dressed mass has
mainly negative values. Notice the opposite happens with
mq ¼ 1 MeV, the quark condensate is negative [Eq. (53)]
because the dressed quark mass is positive (Fig. 6).
We now proceed to discuss the pion decay constant (see,

e.g., [33,34] for further discussion on such decay con-
stants). Although the eigenvalue problem is independent of
the wave function normalization, we need to work it out to
compute matrix elements. Giving the pion operators a
canonical behavior yields the normalization of the wave
functions in Eq. (43),

hRPAjQRPAQ
†
RPA −Q†

RPAQRPAÞjRPAi
¼ h½πa; πb†�i ¼ ð2πÞ3δ3ðp⃗ − q⃗Þ ð55Þ

that yields an expression to be normalized, with the pion
at rest,

X
λ1;2μ1;2i1;2j1;2

Z Z
d3k1d3k2
ð2πÞ6

1

4π

ðσ2Þλ1μ1ðσ2Þλ2μ2δi1j1δi2j2
6

½Xν�ðk1ÞXνðk2Þð2πÞ6δ12−Yν�ðk1ÞYνðk2Þð2πÞ6δ12� ð56Þ

that finally results in an expression, in terms of a certain N
factor that collects the various contributions,Z

∞

0

dkk2ðjXνðkÞj2 − jYνðkÞj2Þ ¼ ð2πÞ3N2: ð57Þ

Normalizing now X → X=N, Y → Y=N, the canonical
commutation relation is satisfied. With this we are ready
to compute the decay constant.
Lorentz invariance dictates the following parametrization

of the matrix element of the axial current, controlling the
pion’s weak decay,

hΩjAμð0ÞjPðp⃗Þi ¼
1ffiffiffiffiffiffi
Ep

p fπpμ: ð58Þ

The pion decay constant is therein fπ , pμ the pion
four-momentum, Ep its relativistic energy and Aμðx⃗Þ ¼
Ψ̄ðx⃗Þγμγ5Ψðx⃗Þ. The associated chiral charge is

Q5 ¼
Z

dx⃗A0ðx⃗Þ ¼
Z

dx⃗Ψ†ðx⃗Þγ5Ψðx⃗Þ ð59Þ

and for a pion at rest, Eq. (58) becomes

fπ ¼
1ffiffiffiffiffiffiffi
MP

p hΩjΨ†ð0Þγ5Ψð0Þjπ†ð0Þi: ð60Þ

A straightforward computation yields

hΩRPAj½Ψ†ð0Þγ5Ψð0Þ; Q†ðRPAÞ�jΩRPAi

¼
Z

∞

0

dp

ffiffiffiffiffiffiffiffi
24π

p

ð2πÞ3 sp½X
νðpÞ − YνðpÞ� ð61Þ

and we can finally read off the pion decay constant in terms
of the two pion wave functions

fRPAπ ¼ 1

π
ffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ3

p ffiffiffiffiffiffiffi
Mπ

p
Z

∞

0

dk skðXνðkÞ − YνðkÞÞ: ð62Þ

Near the chiral limit, when Y ≃ X implements a
massless pion as an exact Goldstone boson, the zero in
this expression is necessary to compensate the zero in
Eq. (57), that here appears in the denominator normalizing
X and Y. The result, although numerically delicate, is finite
in the chiral limit.
Table V shows the numerical values obtained over

the various vacua, where the normalization is such that
the physical experimental value would correspond to
fπ ¼ 93 MeV.
The apparent ratio of the physical value to the computed

one over the BCS vacuum is a large error factor of order
3–4, as has been known [24] (remember that an errorOðε2Þ
in an eigenvalue entails a larger error OðεÞ in the eigen-
vector, and thus, in its transition matrix elements). Still, the
order of magnitude is at least right if computing on this
ground state BCS vacuum, whereas the replicae provide
even smaller values of fπ , now off by orders of magnitude:
it is recomforting to find that the ground-state BCS state is
the one with the correct units at least.
To further explore the interplay of the various pion

observables, we can plot the GMOR relation

M2
π ¼

�
−
2mqhqqi

f2π

�
ð63Þ

that sets the constant of the Mπ ∝
ffiffiffiffiffiffimq

p proportionality.
This is done in Fig. 15.

TABLE V. Dependence of the computed decay constant with
the vacuum chosen and the quark mass.

Vacuum mq ¼ 0 mq ¼ 1 mq ¼ 5

jΩi 21 23 30
jΩ0i 1 2 2
jΩ00i 0.08 � � � � � �
j0i ≃0 � � � � � �
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While the model’s pion mass has the correct functional
dependence on the quark massMπ ∝

ffiffiffiffiffiffimq
p as demonstrated

early on [35], the curves ascend too quickly. The first line
has meson masses obtained via the matrix element of the
axial current, proceeding in the direction fπ → Mπ , in the
GMOR formula. The second line comes from the pion mass
calculated explicitly at various quark masses. Both curves
have similar shapes and diverge away from each other for
larger mq.
Comparing with the experimental data (the position of

the 497 MeV kaon mass at lattice-extracted quark masses is
marked in the figure, and lies to the right of the ascending
curves), we observe a model difference among the pseu-
doscalar mass values (with fixed mq) either directly
calculated or extracted from fπ and the condensate, in
consonance with the low values for fπ that the model
yields. Indeed, the kaon takes its correct mass in the model
at quark masses that are at least a factor of 2 too small when
compared with lattice gauge theory extractions. This is fine
in a model, the quark mass is a fitting parameter: but it
would be interesting to know why the decay constant
comes out too small.
A possible reason is that the instantaneous potential has a

scale fixed by mg, the gluon scale. An important result by
Zwanziger [36] is that the Coulomb potential grows with r
faster than the static quark-antiquark potential as measured
in the lattice (or the bottomonium experimental spectrum),
because the static potential in Coulomb gauge includes the
Coulomb potential and the average contribution of physical

transverse gluons that lowers the original Coulomb string
tension.
That is, the color potential that yields the spectrum at

large distances where the linear tail is measurable is less
intense than the fundamental potential in the Hamiltonian.
Thus, increasing the string tension or equivalentlymg raises
fπ (but then the potential should be partially screened
through some dynamical mechanism to recreate the spec-
trum). We see no point in working this scenario out in
model terms and remain content to have a good spectrum at
the price of too small a decay constant, while the decay
constant over the replicae comes out much smaller.

X. HOW TO SEARCH FOR REPLICAE?

A. In heavy ion collisions

Taking as zero of the energy density the BCS ground
state, we found for the first and second replicae the
following energy densities,

ρ1 ¼ ð0.1181mgÞ4 ¼ 3.30 MeV=fm3; ð64Þ

ρ2 ¼ ð0.1182mgÞ4 ¼ 3.31 MeV=fm3; ð65Þ

where mg ¼ 600 MeV is the scale for the theory and they
are measured from the BCS ground state ϕ0

k.
We can then calculate at what temperature a gas of pions

(that are the first excitation appearing over jΩii) can
populate the excited vacua. This will give us some insight
in how much temperature would be necessary to reach the
replicas and if the needed temperature is lower than the
phase transition from gas to plasma, allowing the gas to
occupy the replicas.
We use the energy density of the gas of pions calculated

in the frame of reference where the gas is at rest (see [37]
and references therein)

ρgasðTÞ ¼ g
Z

d3k
ð2πÞ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ k2
p

e
ffiffiffiffiffiffiffiffiffiffi
m2

πþk2
p

=T − 1
ð66Þ

where g ¼ 3 is the degeneration for the pion isospin triplet,
mπ is the pion mass and T is the temperature. We can easily
calculate this integral numerically for a given temperature
and then represent this energy density as energy levels
(horizontal lines) superposed over the replica landscape of
Fig. 10. Then we can just read off at what temperature T the
gas is energetic enough to populate the replicae, and this is
shown in Fig. 16. We can see both replicae can be occupied
for temperatures near T ¼ 117–120 MeV. This result is
compatible with the gas jumping to the replicae before
reaching the quark-gluon plasma phase, since the transition
is of order Tc ≈ 170 MeV. Moreover, it shows these
replicae could have been populated in the early stages of
the universe, and then perhaps decay with the decrease of
temperature to the BCS vacuum.

FIG. 15. The Gell-Mann-Oakes-Renner relation for the pseu-
doscalar mesons over the ground-state BCS vacuum. The curves
ascend too quickly. (The lower one is obtained from the calculated
mass spectrumMðmÞ and the upper one from the GMOR relation
from our computed fπ and regularized condensate, they converge
at low quark mass). The green marks show the experimental value
of the Kaon K− mass and the flavor–averaged quark mass interval
mq ∈ ð90; 107Þ MeV, obtained from tabulated strange and light
quark masses at a scale of 2 GeV. Ideally, the curves would have
passed through that interval, but fπ in the model is too small.
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Because the replicated vacua break the same chiral
symmetry as the ground state, although less intensely so,
we expect no first order phase transition in populating
them, but a smooth crossover which is consistent with
phenomenology of heavy ion collisions [38] in approach-
ing a chirally restored phase. Any replicae serve as
stepping stones, as bubbles of less-intensely broken
achiral phase can appear before full chiral symmetry
restoration.
At large temperature, a replica cannot duplicate the

number of hadron degrees of freedom, as the entire
spectrum over the replica substitutes the spectrum over
the ground state with analogous hadrons over both.
However, at lower temperatures near those 120 MeV, the
energy density needed to change the collision medium to
the replica vacuum is detracted from the rest of the hadron
gas: if produced, the replica acts as an energy reservoir. As
the system expands and cools, that energy appears rela-
tively late in the evolution and is directly fed to pions (not
to heavy resonances which play no role in chiral symmetry
breaking). One could for example look for individual
collision events in which the pion temperature recorded
from their momentum spectrum would be higher than that
of heavier species with, for example, strangeness or maybe
charm. This behavior is opposite to the usual situation in
which the heavier degrees of freedom, which decouple first
at higher temperatures, are hotter, and thus it becomes a
telltale sign of the replica.

B. In lattice gauge theory

Before drawing strong conclusions however, one would
like to find out whether these replicae carry over from
Hamiltonian model of QCD to full QCD; this is not obvious
because of the nonlinear nature of the theory. It is then
interesting to search for them in a lattice gauge theory
computation.
Such search can be based on the characteristic features of

a replica which are as shown above in Fig. 1,

(i) They appear as a continuum of excited scalar states
with energy E ¼ ρV proportional to the lattice
volume.

(ii) Any matrix elements with the ground state or
conventional hadrons thereon are exponentially
suppressed with that volume.

(iii) Therefore, eliminating the volume, the overlaps
fall exponentially with the energy of the scalar
excitation, Γany ∝ e−E.

A way to address them is to start from the Euclidean
correlator

C≡X
t

CðtÞ ¼
X
t

hOðtÞŌð0Þi ð67Þ

propagating during a time t an operatorOwith the quantum
numbers of a scalar state (for example a four-pion state).
Inserting the spectral decomposition of the time-evolution
operator one has

CðtÞ ¼ hOðtÞŌð0Þi ¼
X
k

h0jÔjkie−tEkhkjÔ†j0i

∝ e−tEHð1þOðe−tΔEÞÞ; ð68Þ

with EH the mass of the ground state hadron in that
channel, and those of the excited states reachable via the
subleading terms with ΔE.
Fitting the exponential tails allows to extract the ground

state and eventually excited ones. Although such calcu-
lations are performed at finite volume, once the lattice is
large enough to contain the hadron inside, finite size effects
that affect the extracted hadron masses exponentially
diminish with further volume increases.
However, the replicae if they are present in the

theory would appear as scalar contributions with energy

FIG. 16. Energy-density levels of a gas of pions
superposed over hHiðαÞ for the parametrization of Eq. (36).
From top to bottom, each horizontal red line increases the
temperature by 3 MeV.

FIG. 17. Schematic view of the positively sloped linear behav-
ior (solid lines) with volume of the correlator exponents for
the replicae, with a constant energy density as opposed to the
constant energy plateau of ordinary hadrons built over the
minimum-energy vacuum state (two shown, dashed lines).
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proportional to the volume. Hence, the part of the fully
resummed correlator C which overlaps with the replicae
would have a term whose exponent would scale linearly
with the volume, while the states built over the ground-state
vacuum would show an energy plateau after finite-size
effects disappear (as the energy is fixed to be the mass of
one hadron). That is, ordinary hadrons yield a decaying
contribution to the correlator CH ∝ e−constant×t whereas the
replicae give a contribution CR ∝ e−constant×tV whose expo-
nent is proportional to both the time and the spatial volume:
they are rather evanescent quantities. The distinction is
illustrated in Fig. 17.
In this way, the existence of the replicae could be probed

in an Euclidean lattice calculation.

XI. CONCLUSIONS

We have presented an updated in-depth study of the
vacuum replicae of the chiral-symmetry breaking vacuum
in Hamiltonian models of Coulomb gauge-QCD. We have
employed a previously well-studied model with relativistic
spinors and a linear þ Coulomb potential in momentum
space, but the results are qualitatively the same as those
obtained with a spherical harmonic oscillator as the con-
fining potential, reported in earlier work [5]. In particular,
we obtain the same number of replicae below the pertur-
bative vacuum and extract spectra that behave in a similar
way over each of the ground- and excited-state vacua. We
concur with earlier work in the fact that the replicae are
stable to few-body excitations (all hadrons over each of the
replicae have real, non-negative masses).
Beyond a somewhat more realistic interaction, where we

have advanced more significantly is in the understanding of
the collective nature of the replicae in the function space of
the chiral-symmetry breaking gap angle (the Bogoliubov
angle θk or equivalently, the BCS mass gap angle ϕk). Here
we have seen that the replicae, as well as the perturbative
vacuum, present negative-eigenvalue modes which make
them unstable to collective excitations along those direc-
tions, with the overlaps falling exponentially with the
quantization volume.
The study of those eigenvalues suggests that our numeri-

cal exploration has found all the possible solutions of the
BCS gap equation with negative energy density in the
Coulomb gauge North Carolina State model [21].
We have also observed that, while the spectra of hadrons

built over the ground state and over the replica are not too

dissimilar (note that the perturbative vacuum is chirally
symmetric, so over that one the spectrum does show
different features), matrix elements which involve the
gap angle ϕðkÞ such as decay constants, condensates
and others, allows to distinguish two ground states much
better.
Beyond our field-theory approach, we have shown how

a future lattice study may be carried out to try to confirm
that these replicae are a feature of full chromodynamics.
Since the model field theory captures the chiral symmetry
breaking aspects of the full field theory and the replicae
appear in the spontaneous chiral-symmetry breaking
equations, we expect them to be generic. It would be
interesting to know whether the covariant Dyson-
Schwinger approach [39–41] to chiral-symmetry break-
ing, which also features a gap equation (that for the
fermion propagator) presents more than one solution with
realistic interactions, beyond the simple scalar model
considered so far [4]. Should this be accomplished, we
believe that the replicae can leave observable signals in
systems at large temperature such as relativistic heavy-ion
collisions or in the early universe.
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