
Extended NJL model for baryonic matter and quark matter

Cheng-Jun Xia (夏铖君)
*

Center for Gravitation and Cosmology, College of Physical Science and Technology,
Yangzhou University, Yangzhou 225009, China

(Received 13 May 2024; accepted 13 June 2024; published 16 July 2024)

By considering baryons as clusters of three quarks, we extend the Nambu-Jona-Lasinio model to
describe baryonic matter, quark matter, and their transitions in a unified manner, where the Dirac sea and
spontaneous chiral symmetry breaking are considered. In particular, a density-dependent structural
function αS is introduced to modulate the four(six)-point interaction strengths to reproduce the baryon
masses in vacuum and medium. Vector interactions are considered with the exchange of ω and ρ mesons,
where the density-dependent coupling constants are fixed by reproducing nuclear matter properties as well
as the Λ-hyperon potential depth in nuclear medium. As density increases, quarks will emerge as quasifree
particles and coexist with baryons. This phase is interpreted as quarkyonic matter, where quarks are
restricted to the lowest energy states in the presence of baryons, i.e., quarks are still confined. Similar to the
treatment of α clustering in nuclear medium, a Pauli blocking term is added to baryon masses so that
baryons eventually become unbound in the presence of a quark Fermi sea. Then at large enough densities
baryons vanish and a Mott transition takes place, we consider such a transition as deconfinement phase
transition. Depending on the strengths of Pauli blocking term and quark-vector meson couplings, both first-
order and continues phase transitions are observed for quarkyonic, chiral, and deconfinement phase
transitions. The corresponding compact star structures are then investigated and confronted with various
astrophysical constraints.
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I. INTRODUCTION

Cold strongly interacting matter are expected to undergo
a deconfinement phase transition at large enough densities,
converting hadronic matter into quark matter. Due to the
infamous sign problem in lattice QCD and the inability to
carry out reliable pertubative QCD calculations, so far it is
still unclear at which density does deconfinement phase
transition take place or whether it is of first order or a
smooth crossover [1,2]. Such a situation may be improved
in the era of multimessenger astronomy, where recent
Bayesian analysis [3–6] and binary neutron star merger
simulations [7–9] have shed light on identifying a possible
deconfinement phase transition in massive compact stars.
For a first-order deconfinement phase transition [10], the

properties of hadronic matter and quark matter are dis-
tinctively different. A quark-hadron mixed phase is thus
expected in hybrid stars, which may exhibit various
geometrical structures based on the surface tension of
quark-hadron interface and consequently impact hybrid
star structures [11–22]. Alternatively, the hadron-quark
crossover at finite densities was proposed, which predicts
a stiff equation of state (EOS) to support massive hybrid
stars [23–36]. As demonstrated by Fukushima and

Kojo [37], the crossover from hadronic matter to quark
matter can be bridged by quarkyonic matter, which is
comprised of “a quark Fermi sea” and “a baryonic Fermi
surface” [38–40].
At densities below and around the nuclear saturation

density n0 ≈ 0.16 fm−3, it was shown that treating nucleons
as the basic building blocks gives satisfactory description
for finite nuclei and nuclear matter, e.g., relativistic mean
field (RMF) models [41], nonrelativistic density functional
methods [42], and microscopic many-body theories [43].
However, in nuclear medium the effects of quark degrees
of freedom will emerge, such as the European Muon
Collaboration (EMC) effect with the nuclear structure
functions differ from those of free nucleons [44]. By
treating nucleons as three quarks confined in bags with
the interaction mediated by mesons, the quark-meson-
coupling model was proposed, where the EMC effect in
the valence region could be understood [45].
When density becomes larger, it is nevertheless insuffi-

cient to treat baryons as independent particles, where the
number of exchanged quarks between baryons increase and
baryons may overlap with each other [37,38,46,47]. It was
shown that quark wave functions simultaneously exist in
different baryons to support the attractive interactions in the
intermediate range [48], while the short range repulsion is
provided by the Pauli principle [49]. In such cases, to unveil*Contact author: cjxia@yzu.edu.cn
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the microscopic dynamics of baryonic matter, quark matter,
and their transitions, a unified description based on quark
degrees of freedom is essential, where extensive efforts
were made in the past decades. For example, Horowitz and
Piekarewicz investigated the hadron-quark transition based
on a nonrelativistic one dimensional string-flip model [50].
A microscopic approach of color molecular dynamics was
proposed by Maruyama and Hatsuda [51], where quarks
are clusterized into baryons at low density and a deconfined
quark matter is formed at high density via crossover [52].
By treating nucleon as a quark-diquark state using the
Nambu-Jona-Lasinio (NJL) model, it was shown that the
effects of confinement leads to a scalar polarizability of
the nucleon and a less attractive effective interaction
between nucleons, helping to achieve saturation of the
nuclear matter ground state [53]. The hadronic SU(3)
nonlinear σ model was extended to quark degrees of free-
dom, suggesting that the deconfinement phase transition is
of first order [10]. A direct modeling of quarkyonic matter
was recently proposed, where the pressure and sound
velocity increase rapidlywith density [54,55]. By synthesiz-
ing theWalecka model and quark-meson model, a complete
fieldmodel was developed [56,57], whichwell describes the
chiral symmetry restoration in quarkyonic matter.
In our previous study, by combining RMF models and

equivparticle models with density-dependent quark masses,
we have investigated nuclear matter, quarkyonic matter,
and quark matter in a unified manner [58,59]. Nevertheless,
the dynamic chiral symmetry restoration was not
addressed, and the contribution of Dirac sea was neglected.
To better describe strongly interacting matter at vast density
ranges, it is favorable to start from quark degrees of
freedom directly and consider baryons as clusters made
of three valence quarks. As density increases, similar to the
melting of light clusters in nuclear medium [60], the
deconfinement phase transition can be viewed as a Mott
transition of quark clusters [61]. In this work, we thus
extend the NJL model to describe baryonic matter, quark
matter, and their transitions in a unified manner, where the
Dirac sea and spontaneous chiral symmetry breaking are
accounted for. To reproduce the baryon masses in vacuum
and medium, the four(six)-point interaction strengths in
NJL model are modulate by a density-dependent structural
function. The repulsive interaction is treated with the
exchange of ω and ρ mesons, where density-dependent
couplings are fixed by reproducing nuclear matter proper-
ties as well as the Λ-hyperon potential depth in nuclear
medium.
The paper is organized as follows. In Sec. II, we present

the theoretical framework for the extended NJL model with
the model parameters fixed based on various constraints.
Several types of phase transitions and the properties of
dense stellar matter are then examined, where the corre-
sponding compact star structures are confronted with
various astrophysical constraints in Sec. III. We draw
our conclusion in Sec. IV.

II. THEORETICAL FRAMEWORK

A. Lagrangian density

In the mean-field approximation, the Lagrangian density
of an extended SU(3) NJL model is given by

L ¼
X
i

ψ̄ iðiγμDμ
i −MiÞψ i −

1

4
ωμνω

μν þ 1

2
m2

ωω
2

þ 1

2

X
i¼u;d;s

½∂μσi∂μσi −m2
σσ

2
i � −

1

4
ρ⃗μν · ρ⃗μν

þ 1

2
m2

ρρ
2 þ 4Kn̄sun̄sdn̄

s
s: ð1Þ

Here ψ i represents the Dirac spinor for different fermions i,
where in this work we have included baryons (p, n, Λ),
quarks (u, d, s) and leptons (μ, e). By replacing the quark
condensations with σu;d;s fields, the four-point interaction
becomes nonlocal, while the six-point (‘t Hooft) interaction
remains local. In principle, the diquark coupling terms can
also be included to treat pairings among baryons and
quarks, which should be explored in our future study.
Vector meson fields are also introduced to account for the
repulsive interactions, where the field tensors are

ωμν ¼ ∂μων−∂νωμ; ρ⃗μν ¼ ∂μρ⃗ν−∂νρ⃗μ: ð2Þ

The covariant derivative in Eq. (1) takes the form

iDμ
i ¼ i∂μ − figω

X
q¼u;d;s

Nq
iω

μ − figρτ⃗i · ρ⃗μ; ð3Þ

where Nq
i is the number of valence quarks q in particle i

and τ⃗i the isospin. The factor fi modulates the coupling
strengths between particle i and vector mesons, while gω
and gρ are fixed according to nuclear matter properties with
fp ¼ fn ¼ 1. In this work, we consider baryons as clusters
of quarks with their effective masses given by

Mi ¼
X

q¼u;d;s

Nq
i ½mq0 þ αSðMq −mq0Þ� þ BnQb ð4Þ

and quark masses by

Mq ¼ mq0 − gσσq þ 2K
n̄sun̄sdn̄

s
s

n̄sq
ð5Þ

with the effective quark scalar density

n̄sq ¼ nsq þ αS
X

i¼p;n;Λ
Nq

i n
s
i ; ð6Þ

where nsi is fixed by Eq. (12). A density dependent
structural function αS is introduced for baryons, which
mimics the dampened interaction strength as chiral
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condensates diminish within baryons [53,62,63]. The last
term in Eq. (4) accounts for the effects of Pauli blocking
and interactions between quarks and baryons with nQb ¼
ðnu þ nd þ nsÞ=3 being the baryon number density of
quarks [58,59], which resembles the treatments of α
clustering inside nuclear matter [64,65]. The total baryon
number density is then

nb ¼ np þ nn þ nΛ þ nQb ; ð7Þ

where the number density of particle i is determined by
Eq. (11). The masses of leptons remain constant withMe ¼
0.511 MeV and Mμ ¼ 105.66 MeV [66].
Due to time-reversal symmetry and charge conservation,

the boson fields take mean values with only the time
component and the third component in the isospin space.
We then define ω≡ ω0, ρ≡ ρ0;3, and τi ≡ τi;3 for sim-
plicity. Based on the Lagrangian density in Eq. (1), the
meson fields of uniform dense matter are determined by

m2
σσq ¼ gσn̄sq; ð8Þ

m2
ωω ¼ gω

X
i

fi
X

q¼u;d;s

Nq
i ni; ð9Þ

m2
ρρ ¼ gρ

X
i

fiτini: ð10Þ

At vanishing temperatures, the number density and scalar
density of fermion i in uniform dense matter are

ni ¼ hψ̄ iγ
0ψ ii ¼

giν3i
6π2

; ð11Þ

nsi ¼ hψ̄ iψ ii ¼
giM3

i

4π2

�
xi

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2i þ 1

q
− arcshðxiÞ

− yi

ffiffiffiffiffiffiffiffiffiffiffiffiffi
y2i þ 1

q
þ arcshðyiÞ

�
: ð12Þ

Here we take xi ≡ νi=Mi with νi being the Fermi momen-
tum, yi ≡ Λ=Mi with Λ being the 3-momentum cutoff to
regularize the vacuum part of quarks (Λ ¼ 0 for baryons
and leptons), and the degeneracy factors gn;p;Λ ¼ ge;μ ¼ 2

and gu;d;s ¼ 6. Note that the baryonic Dirac sea does not
exist since quarks no longer form clusters in the Dirac sea
due to Pauli blocking. Meanwhile, it is worth mentioning
that in the quarkyonic phase with baryons and quarks
coexisting in a same volume, only baryons can be exited to
higher energy states while quarks are restricted to the
lowest energy states as they are still confined.

The energy density of uniform dense matter is fixed by

E ¼
X
i

giMi
4

16π2

�
xið2x2i þ 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2i þ 1

q
− arcshðxiÞ

�

−
X

i¼u;d;s

giMi
4

16π2

�
yið2y2i þ 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
y2i þ 1

q
− arcshðyiÞ

�

þ 1

2

�
m2

ωω
2 þm2

ρρ
2 þ

X
i¼u;d;s

m2
σσ

2
i

�
− 4Kn̄sun̄sdn̄

s
s

− E0: ð13Þ

Here a constant E0 is introduced to ensure E ¼ 0 in the
vacuum. Note that the energy contributions of mesons are
obtained with m2

ϕϕ
2=2 (ϕ ¼ σ, ω, ρ), while in practice we

substitute Eqs. (8)–(10) into Eq. (13) so that the meson
fields ϕ are not calculated explicitly and the meson masses
only appear in combination with the couplings as g2ϕ=m

2
ϕ.

The chemical potentials of baryon b, quark q, and lepton l
are fixed by

μb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν2b þM2

b

q
þ fbð3gωωþ gρτbρÞ þ ΣR

b ; ð14Þ

μq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν2q þM2

q

q
þ fqðgωωþ gρτqρÞ þ ΣR

q ; ð15Þ

μl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν2l þM2

l

q
; ð16Þ

with the “rearrangement” terms given by

ΣR
b ¼

X
i

fi

�
ωni

X
q¼u;d;s

Nq
i
dgω
dnb

þ ρτini
dgρ
dnb

�

þ
X

i¼n;p;Λ

"
dαS
dnb

X
q¼u;d;s

Nq
i ðMq −mq0Þ

#
nsi ; ð17Þ

ΣR
q ¼ 1

3
B

X
i¼n;p;Λ

nsi þ
1

3
ΣR
b : ð18Þ

Then the pressure P is obtained with

P ¼
X
i

μini − E: ð19Þ

B. Model parameters

In this work we adopt the RKH parameter set of NJL
model, i.e., Λ ¼ 602.3 MeV, mu0 ¼ md0 ¼ 5.5 MeV,
ms0 ¼ 140.7 MeV, GS ¼ g2σ=4m2

σ ¼ 1.835=Λ2, and K ¼
12.36=Λ5 [67]. This parameter set well reproduces
the meson properties, i.e., mπ ¼ 135.0 MeV, mK ¼
497.7 MeV, mη0 ¼ 957.8 MeV, mη ¼ 514: MeV, and
fπ ¼ 92.4 MeV [67]. The corresponding vacuum quark
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condensates are n̄su ¼ n̄sd ¼ −1.843 fm−3 and n̄ss ¼
−2.227 fm−3, indicating the quark masses Mu ¼ Md ¼
367.6 MeV and Ms ¼ 549.5 MeV.
To reproduce the masses of nucleons and Λ hyperons in

vacuum, we take αS ¼ 0.849 at nb ¼ 0, which givesMp ¼
Mn ¼ 938.9 MeV and MΛ ¼ 1113.7 MeV by applying
Eq. (4). Meanwhile, as was done in traditional RMF
models [41], in addition to the repulsive interaction exerted
by vector mesons, we take αS ¼ 0.57 at nb¼nS¼0.16 fm−3

so that a strong attractive interaction (Mp ¼ Mn ¼
519.2 MeV) is present to accommodate the spin-orbit
splittings in finite nuclei, which is essential to reproduce
the nuclear magic numbers. We then write out the following
formula

αS ¼ aS expð−nb=nSÞ þ bS; ð20Þ

which reproduce the values αSð0Þ ¼ 0.849 and αSðnSÞ ¼
0.57 with aS, nS and bS presented in Table I. In Fig. 1 we
present the masses of nucleons, Λ hyperons, and quarks in
symmetric nuclear matter (SNM), which are obtained with
Eqs. (4) and (5). Evidently, the masses of nucleons and Λ
hyperons decrease quickly at nb ≲ nS due to the structural
function (20). At larger densities, the masses of u quarks, d
quarks, and nucleons further decrease and approach to their
current masses with vanishing quark condensates, while the

s-quark condensate n̄ss remains large at nb ≲ 1 fm−3 so that
the masses of s quarks and Λ hyperons are still sizable
in Fig. 1.
To fix the coupling constants of vector mesons, we

adopt the well-constrained nuclear matter properties at n0 ¼
0.16 fm−3 and non ¼ 0.1 fm−3, i.e., εðn0Þ ¼ −16 MeV,
Sðn0Þ ¼ 31.7� 3.2 MeV [68,69], εðnonÞ ¼ −14.1�
0.1 MeV, and SðnonÞ ¼ 25.5� 1.0 MeV [70,71]. In prac-
tice, with the nucleon masses being mN ¼ Mpð0Þ ¼
Mnð0Þ ¼ 938.9 MeV, we reproduce the energy per baryon
EðnonÞ=non ¼ mN þ εðnonÞ ¼ 924.8 MeV and Eðn0Þ=
n0¼mN þ εðn0Þ¼ 922.9MeV for SNM and EðnonÞ=non ¼
mN þ εðnonÞ þ SðnonÞ ¼ 950.3 MeV and Eðn0Þ=n0 ¼
mN þ εðn0Þ þ Sðn0Þ ¼ 954.6 MeV for pure neutron mat-
ter (PNM) adopting the following density dependent
coupling constants, i.e.,

g2ω=m2
ω ¼ 4GS½aV expð−nb=nVÞ þ bV �; ð21Þ

g2ρ=m2
ρ ¼ 4GS½aTV expð−nb=nTVÞ þ bTV �: ð22Þ

The coefficients in Eqs. (21) and (22) used in this work are
indicated in Table I. Note that the meson masses mσ, mω,
andmρ are left undetermined in this work, which should be
fixed in our future study according to the properties of finite
nuclei. Currently, they only appear in combination with the
couplings, i.e., g2σ=m2

σ ¼ 4GS, and g2ω;ρ=m2
ω;ρ as indicated in

Eqs. (21) and (22).
In Fig. 2 we then present the energy per baryon of SNM

and PNM, which are obtained with Eq. (13) adopting
the parameter sets indicated in Table I. Evidently, the
binding energies of both SNM and PNM reproduce the
central values of the binding energies εðn0Þ ¼ −16 MeV,
εðnonÞ¼−14.1�0.1MeV and symmetry energies Sðn0Þ ¼
31.7� 3.2 MeV, SðnonÞ ¼ 25.5� 1.0 MeV [68–71]. The
corresponding saturation properties such as the incom-
pressibility K and slope L of nuclear symmetry energy are
indicated in Table II, which are consistent with the state-of-
art constraints K ¼ 240� 20 MeV [72] and L ¼ 58.7�
28.1 MeV [68,69]. Note that constraints on higher order
terms of nuclear saturation properties can be attained
based astrophysical observations, heavy-ion collisions,
measurements of the neutron skin thicknesses, and nuclear
theories [73–77].
Beside nucleons, the contribution of Λ hyperons is also

considered in this work. Based on previous investigations
ofΛ hypernuclei, it was shown that aΛ potential well depth
UΛðn0Þ ¼ −30 MeV in SNM is required to accommodate
the single Λ binding energies [78–81]. In the framework of
the extended NJL model, the potential depth UΛðn0Þ ¼
−30 MeV indicates fΛ ¼ 1.0626 for the vector meson
couplings. The corresponding potential depth of Λ hyper-
ons is then fixed by UΛðnbÞ ¼ μΛ −MΛð0Þ with νΛ ¼ 0,
where the corresponding values are presented in Fig. 3.
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FIG. 1. Masses of nucleons, Λ hyperons, and quarks in SNM
as functions of the total baryon number density nb, which
are determined by adopting the density dependent structural
function (20).

TABLE I. The adopted parameter sets for the density dependent
coupling constants in Eqs. (20)–(22).

aS ¼ 0.4413715 nS ¼ 0.16 fm−3 bS ¼ 0.4076285
aV ¼ 3.566049 nV ¼ 0.214 fm−3 bV ¼ 1.062771
aTV ¼ 0.5014459 nTV ¼ 0.1 fm−3 bTV ¼ 0.0117601
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The onset densities of Λ hyperons in SNM and PNM are
then nonset ¼ 0.72 and 0.44 fm−3, respectively.

III. RESULTS AND DISCUSSIONS

Based on the formulae and model parameters presented
in Sec. II, we then investigate the properties of dense stellar
matter, where baryonic matter, quark matter, and quar-
kyonic matter can be treat in a unified manner. For compact
star matter at a fixed total baryon number density nb, the
densities of fermions are obtained with Eqs. (14)–(16)
fulfilling the β-stability condition, i.e.,

μi ¼ Biμb − qiμe; ð23Þ

where μb is the baryon chemical potential with Bi (Bp ¼
Bn ¼BΛ ¼ 1, Bu ¼Bd¼Bs¼ 1=3, and Be ¼Bμ ¼ 0) being
the baryon number of particle type i. Due to charge screen-
ing, the charge neutrality condition needs to be satisfied as
well, i.e., X

i

qini ¼ 0; ð24Þ

where qn ¼ 0, qp ¼ 1, qu ¼ 2=3, qd ¼ −1=3, and qe ¼
qμ ¼ −1 are the charge number of each particle type. The
EOSs of compact star matter are obtained with the energy
density E fixed by Eq. (13) and pressure P by Eq. (19).
We first examine the phase structure of dense stellar

matter taking fu ¼ fd ¼ fs ¼ 0.5, which approximately
corresponds to the vector coupling GV ≈ fqbVGS ¼
0.55GS in traditional NJL models. Two scenarios for the
Pauli blocking term in Eq. (4) are considered, i.e., B ¼ 0

and 1 GeV=fm3. For uniform compact star matter, the
thermodynamical potential density is Ω ¼ −P. The stable
phase at a fixed baryon chemical potential μb is fixed by
minimizing the thermodynamical potential density Ω or
maximizing the pressure P.
In Fig. 4 we present the obtained pressure as functions

of baryon chemical potential. Various first-order phase
transitions are identified, where the solid stars indicate
the coexistence points of those first-order phase transi-
tions according to Maxwell construction of mixed
phases. In principle, the Maxwell construction is valid
only when the surface tension is large enough so that
geometrical structures are unfavorable, which is often not
the case [11,13–17,19–22]. A more detailed investigation
on the structures and properties of the mixed phases is
thus necessary and should be carried out in our future
study, while for now we restrict ourself to the Maxwell
construction scenarios. In this work, we consider the
following phase transitions:
(1) Quarkyonic phase transition: emergence of quasifree

quarks in baryonic matter, where quarks are still
confined and only baryons can be exited to higher
energy states.

(2) Chiral phase transition: quark condensate n̄sq (q ¼ u,
d, s) vanishes and quark mass Mq is reduced to its
current mass mq0.

(3) Deconfinement phase transition: at large enough
densities baryons become unbound and start to
dissolve, i.e., Mott transition.

All three types of phase transitions are identified in dense
stellar matter, which become of first order if we adopt
certain parameter sets. For example, as indicated in Fig. 4,
the quarkyonic phase transition is of first order if we take
B ¼ 0, which becomes of third order for B ¼ 1 GeV=fm3.
Meanwhile, the chiral and deconfinement phase transitions
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FIG. 2. Energy per baryon E=nb of nuclear matter as functions
of the total baryon number density nb, which are obtained
adopting the parameter sets indicated in Table. I.
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FIG. 3. Potential depth of Λ hyperons in symmetric nuclear
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become of first order only when we take large B,
e.g., B ¼ 1 GeV=fm3.
The quarkyonic and deconfinement phase transitions are

better illustrated in Fig. 5, where the number densities of
various fermions are plotted. In particular, due to the
requirement of charge neutrality, d quarks emerge at
nb ¼ n0=2 if we take B ¼ 0, which leads to a first-order
phase transition with the reduction of energy per baryon. In
such cases, the corresponding uniform baryonic matter and
quarkyonic matter become unstable, then the onset density
for d-quarks is decreased due to the coexistence of the
baryonic matter (nb ≈ 0.016 fm−3) and quarkyonic matter
(nb ≈ 0.24 fm−3). A mixed phase at nb ≈ 0.016–0.24 fm−3

is then predicted by Maxwell construction, corresponding

to the bulk separation of the quarkyonic and baryonic
phases. Such an early emergence of quarkyonic phase is
thus unfavorable according to the nuclear saturation proper-
ties. In fact, as indicated in Fig. 8, such an early onset of
quarkyonic phase predicts too small radii for neutron stars,
which is in strong tension with various astrophysical
observations. If we adopt B ¼ 1 GeV=fm3, due to strong
repulsive interactions between baryons and quarks, then d
quarks emerge at much larger densities at nb ¼ 0.17 fm−3,
while the quarkyonic phase transition becomes of third
order. Similar scenarios are observed if we adopt larger fq.
Meanwhile, it is found that the onset densities of Λ

hyperons are much larger with nonset ¼ 0.51 and 0.64 fm−3

when we take B ¼ 0 and 1 GeV=fm3, respectively. Due to
the strong Λ − ω coupling, Λ hyperons eventually vanish at
larger densities. In such cases, Λ hyperons have little
impacts on the EOSs of compact star matter, so that the
hyperon puzzle can be avoided [82].
As we further increase the density, baryons eventually

become unbound and the corresponding number densities
decrease quickly. A deconfinement phase transition then
takes place as baryons vanish at nb ≈ 7ð1.3Þ fm−3 when we
take B ¼ 0ð1Þ GeV=fm3, which is of third (first) order. At
largest densities, as indicated in Fig. 5, the quark number
densities in strange quark matter become approximately the
same with nu ¼ nd ¼ ns, which favors the formation of
color-flavor locked phase [83]. This is nevertheless out of
the scope of our current study and should be examined in
future. Note that the density for deconfinement phase
transition increases significantly as fq (q ¼ u, d, s)
approaches to 1.
In between the quarkyonic and deconfinement phase

transitions, a chiral phase transition takes place, where the
quark condensates n̄su and n̄sd vanish. It is found that
the chiral phase transition is usually a smooth crossover
when we take B ¼ 0, which becomes of first order if
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FIG. 4. Pressure P as functions of baryon chemical potential μb
adopting various parameter sets with fu ¼ fd ¼ fs ¼ 0.5, B ¼ 0

and 1 GeV=fm3. A first-order quarkyonic transition is observed if
we take B ¼ 0, while first-order chiral and deconfinement
transitions are identified if B ¼ 1 GeV=fm3.
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B ¼ 1 GeV=fm3. As quark condensates determine the
masses of baryons and quarks based on Eqs. (4) and (5),
in Fig. 6 we then present their masses as order parameters
for chiral phase transitions. Evidently, after quarkyonic
phase transition takes place, the masses of u and d quarks
decrease quickly with density and approach to their current
masses, indicating the chiral phase transition with vanish-
ing n̄su and n̄sd. Note that in this phase, there are still vector
interactions from baryon as indicated in Eq. (18), while
Pauli blocking term in Eq. (4) also plays a role.
The baryon masses decrease with density as well, where

the mass of Λ hyperons becomes even smaller than
s-quarks. This is mainly attributed to the structural function
αS (< 1) adopted in this work, where three quarks form
a bound state with large binding energies. The mass of
s quarks will decrease at much larger densities with
vanishing s-quark condensate n̄ss, which may be accom-
panied with a first-order deconfinement phase transition if
we take B ¼ 1 GeV=fm3. The effects of Pauli blocking
term in Eq. (4) become evident at large densities, where the
masses of baryons increase drastically with nQb if we adopt
B ¼ 1 GeV=fm3. Consequently, as indicated in Fig. 5,
baryons begin to dissolve with the corresponding number
densities approaching zero.
In Fig. 7, we present the velocity of sound vs¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dP=dE

p
,

quark fraction nQb =nb, and the corresponding EOSs pre-
dicted by the extended NJL model, where various combi-
nations of parameters fq ¼ 0.5, 0.7, 1 and B ¼ 0,
1 GeV=fm3 are adopted. At P≲ 1 MeV=fm3, a first-order
core-crust phase transition takes place. Since the saturation
properties of nuclear matter indicated in Table II resemble
those of DD-LZ1 in RMF models, we adopt the DD-LZ1
EOS for neutron star crusts [84,85], where the core-crust
transition pressure is fixed by Maxwell construction. This
nevertheless should be improved in our future study, where

the EOSs and structures for neutron star crusts should be
fixed in the extended NJL model in a unified manner. At
larger pressures, quarkyonic phase transition takes place
with nonzero nQb , which is generally of third order except for
the case with a first-order quarkyonic phase transition
obtained by adopting fq ¼ 0.5 and B ¼ 0. As density
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increases, quark condensates n̄su and n̄sd eventually approach
to zero at P≳ 10 MeV=fm3, indicating the occurrence of
chiral phase transitions. Most chiral phase transitions are of
first order, which becomes a smooth crossover if we take
fq ¼ 0.5 andB ¼ 0with a large quark fraction.As indicated
in the upper andmiddle panels of Fig. 7, finally a deconfine-
ment phase transition takes place with nQb =nb ¼ 1 if we
adopt the parameter sets (fq, B in GeV=fm3): (0.5, 0), (0.5,
1), and (0.7, 0), where the EOSs are dominated by quark
matter with nu ≈ nd ≈ ns and velocity of sound reduced.
Meanwhile, within the density range indicated in Fig. 7,
baryonic matter still dominates if we adopt the parameter
sets (0.7, 1), (1, 0), and (1, 1), where the EOSs coincidewith
each other at large densities with a large velocity of sound.
Based on the EOSs presented in Fig. 7, we then examine

the corresponding compact star structures by solving the
Tolman-Oppenheimer-Volkov equation

dP
dr

¼ðEþPÞðMþ4πr3PÞ
2Mr− r2=G

and
dM
dr

¼ 4πEr2 ð25Þ

with the gravity constant G ¼ 6.707 × 10−45 MeV−2. The
obtainedM-R relations of compact stars are then presented
in Fig. 8. Various observational constraints on compact star

structures are indicated by the shaded areas, i.e., the
masses and radii fixed by pulse profile modeling of
PSR J0030þ 0451 and PSR J0740þ 6620 [86–89] as
well as the gravitational wave measurements from of
the binary neutron star merger event GW170817 [90].
Additionally, there are precise mass measurements for PSR
J1614-2230 (1.928� 0.017M⊙) [91] and PSR J0348þ
0432 (2.01� 0.04M⊙) [92] by analyzing the orbital motion
of pulsars in a binary system [93], which is not indicated in
Fig. 8 since PSR J0740þ 6620 also reaches the two-solar-
mass constraint.
The M-R relations of compact stars predicted by the

extended NJL model adopting the parameter sets (0.7, 1),
(1, 0), and (1, 1) agree well with the observational con-
straints, while the radii for two-solar-mass compact stars
predicted by the parameter sets (0.5, 1) and (0.7, 0) lie in the
lower ends of the PSR J0740þ 6620 constraints [87,89].
Additionally, if the parameter set (0.5, 0) is adopted, the radii
of the corresponding compact stars become too small
according to the observational constraints, suggesting that
the first-order quarkyonic phase transition at small densities
is in tension with pulsar observations.

IV. CONCLUSION

In this work, we propose an extended NJL model to
describe baryonic matter, quark matter, and their transitions
in a unified manner. The baryons are treated as clusters
made of three quarks, while a density-dependent structural
function αS is introduced to modulate the four(six)-point
interaction strengths to reproduce the baryon masses in
vacuum and medium [53,62,63]. Additional vector inter-
actions are introduced using vector mesons ω and ρ, where
the baryon-meson couplings are density dependent and are
fixed by reproducing nuclear matter properties [68–71] and
Λ-hyperon potential depth in nuclear medium [78–81]. A
dampening factor fq ≡ fu ¼ fd ¼ fs is introduced to
modulates the coupling strengths between quarks and
vector mesons, where in this work we take fq ¼ 0.5,
0.7, and 1. Similar to the melting of light clusters in
nuclear medium [60], we have introduced a Pauli blocking
term to baryon masses so that baryons eventually become
unbound in the presence of a quark Fermi sea [58,59]. Then
the deconfinement phase transition can be viewed as a Mott
transition of quark clusters [61].
Employing the extended NJL model, we then investigate

the properties of dense stellar matter. As the density of
nuclear matter increases, quarks emerge as quasifree
particles and coexist with baryons in the same volume.
This phase is considered as quarkyonic matter, where
quarks can not be exited to higher energy states in the
presence of baryons due to confinement [38,39,54].
Depending on the strengths of Pauli blocking term B
and quark-vector meson couplings fq, both first-order
and continues phase transitions are observed for
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FIG. 8. Mass-radius relations of compact stars obtained
with the EOSs presented in Fig. 7. The shaded regions indicate
the mass-radius constraints from the binary neutron star
merger event GW170817 [90], PSR J0030þ 0451 and PSR
J0740þ 6620 [86–89].

TABLE II. The saturation properties of nuclear matter pre-
dicted by the extended NJL model introduced in this work.

n0 (fm−3) ε (MeV) K (MeV) S (MeV) L (MeV)

0.158 −16.0 234.5 31.5 42.4
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quarkyonic, chiral, and deconfinement phase transitions. In
particular, we find quarkyonic phase transition is generally
of third order but becomes of first order if we adopt
fq ¼ 0.5 and B ¼ 0, which predicts compact stars that are
too compact according to observational constraints. Similar
situation takes place for chiral phase transitions, which are
generally of first order but becomes a smooth crossover if
we take fq ¼ 0.5 and B ¼ 0. At largest densities, a
deconfinement phase transition takes place with baryons
melted, where both first-order and continues transitions are
identified. Adopting Maxwell construction for the first-
order phase transitions, we then obtain the EOSs of dense
stellar matter. The corresponding compact star structures
are then fixed by solving the Tolman-Oppenheimer-Volkov

equation, which are confronted with various astrophysical
constraints [86–90]. Our prediction generally agrees well
with observations, while the parameter set fq ¼ 0.5 and
B ¼ 0 predicts too small radii for compact stars.
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