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We have investigated the qssq̄q (q ¼ u or d) system to find possible pentaquark explanations for the Ξ
resonances. The bound state calculation is carried out within the framework of the quark delocalization
color screening model. The scattering processes are also studied to examine the possible resonance states.
The current results indicate that the Ξð1950Þ state can be interpreted as a ΛK̄� state with JP ¼ 1=2−. Three
states are identified that match the Ξð2250Þ, which are a Σ�K̄� state with JP ¼ 3=2−, a Σ�K̄� state with
JP ¼ 5=2−, and a Ξ�ρ state with JP ¼ 5=2−. This may explain the conflicting experimental values for the
width of the Ξð2250Þ state. A new Ξ resonance is predicted, whose mass and width are 2066–2079 MeV
and 186–189 MeV, respectively. These results contribute to understanding the nature of the Ξ resonances
and to the future search for new Ξ resonances. Moreover, it is meaningful to further investigate the Ξ
resonances from an unquenched picture on the basis of pentaquark investigation.
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I. INTRODUCTION

The study of strange baryons forms a bridge between
light-flavor baryons and heavy-flavor baryons, playing a
critical role in our comprehension of the baryon spectrum.
Through the efforts of experimental collaborations and the
accumulation of experimental data, information about
strange baryons has been continually unveiled [1–14].
However, compared with Λ and Σ baryons in the S ¼ −1
sector, the information regarding Ξ baryons in the S ¼ −2
sector is even more obscure. So far, only the ground octet
and decuplet states with four-star ratings, Ξð1320Þ with
JP ¼ 1=2þ and Ξð1530Þ with JP ¼ 3=2þ, as well as the
three-star-rated Ξð1820Þ with JP ¼ 3=2−, have determined
spin-parity quantumnumbers [15].Our understanding of the
remaining eight Ξ resonances is still insufficient.
Understanding these Ξ resonances and explaining their

properties and structures has always been a focal point of
theoretical work, helping us gain a better comprehension of
strong interactions and QCD (quantum chromodynamics).

The most direct approach is to understand these states from
the perspective of traditional three-quark configuration.
The Ξ spectrum has been investigated as a three-quark
configuration in the framework of various quark models
[16–25], the Skyrme model [26], lattice QCD [27], QCD
sum rules [28–30], and large-Nc analysis [31–35].
According to the numerical results, the interpretation of
Ξð1318Þ, Ξð1530Þ, Ξð1820Þ, and Ξð1950Þ as three-quark
excited states is consistent with the Ξ baryon spectrum
obtained by most of the aforementioned approaches. In
addition, interpreting Ξð1620Þ as a JP ¼ 1=2− state is
supported in Ref. [26] using the Skyrme model and in
Ref. [28] using the QCD sum rules. In Ref. [22], the spin-
parity quantum numbers of JP ¼ 1=2− are also favored for
Ξð1620Þ by studying its property of strong decay. As for
Ξð1690Þ, in the Skyrme model [26], it is predicted to have
JP ¼ 1=2−. The same JP ¼ 1=2− prediction for Ξð1690Þ
can be found in other theoretical works by using different
quark models [22–24] and the QCD sum rules [30]. A JP ¼
1=2þ Ξ state derived from the nonrelativistic quark model
also matches well with Ξð1690Þ [16]. In Ref. [24], Ξð1950Þ
might correspond to several different Ξ resonances, and
Ξð2030Þ seems to have JP ¼ 3=2þ, although this conflicts
with the spin quantum number provided by moment
analysis [14]. In the analysis of Ref. [36], based on the
experimental measurements, it is proposed that Ξð1950Þ
might correspond to three Ξ resonances, which are
the JP ¼ 1=2− decuplet, the JP ¼ 5=2þ octet and the JP ¼
5=2− octet.
In recent years, many states that are difficult to explain

using traditional hadronic states have been observed by
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experimental collaborations. In particular, the Pc and Pcs
states have been widely regarded as promising candidates
for pentaquarks in research [13,37–42]. Additionally, the
Λð1405Þ state has also attracted extensive attention [2–6].
While the pole position and the structure of theΛð1405Þ are
still in controversy, many works support a two-pole nature
and present a possible molecular explanation [43–49]. This
progress inspires us to explore Ξ resonances from a broader
perspective, suggesting possibilities beyond the traditional
three-quark configuration, including pentaquark configu-
rations, dynamical effects, or unquenched pictures.
Some theoretical studies have delved into the interpre-

tation of Ξ resonances beyond the conventional three-quark
configuration. In the framework of the one-boson-exchange
model, the Ξð1620Þ can be explained as a K̄Λ molecular
state, and a K̄Σmolecular state is also predicted [50]. Using
the same model, it is suggested that Ξð2030Þ can be
assigned as a P-wave K̄Σ=ρΞ=K̄Λ=ϕΞ=ωΞmolecular state
with JP ¼ 5=2þ [51]. In Ref. [52], femtoscopic data is used
to constrain the parameters of a low-energy effective QCD
Lagrangian, and the primary composition of the Ξð1620Þ is
suggested to be ηΞ. Additionally, the decays and the
production of the Ξð1620Þ are studied in the framework
of the effective Lagrangian approach. The radiative decays
of the Ξð1620Þ state are studied by assuming that it is a
ΛK̄ − ΣK̄ molecular state in Ref. [53]. In Ref. [54], the
production of the Ξð1620Þ in the K−p scattering process is
investigated, where the Ξð1620Þ is considered as a K̄Λ
molecular state. The production of the Ξð1690Þ state from
the K−p → KþK−Λ reaction is also studied within the
effective Lagrangian approach in Ref. [55]. Based on the
Bethe-Salpeter equation approach [56], it is suggested that
the quantum numbers JP ¼ 1=2− be assigned to the
Ξð1620Þ and the Ξð1690Þ states. Using a similar approach
[57], the Ξð1620Þ state can be explained as ΛK̄, and ΣK̄
bound states with JP ¼ 1=2−, respectively. In Ref. [58], the
Ξð1620Þ and the Ξð1690Þ states are studied as molecular
states from S ¼ −2 meson-baryon interaction using an
extended unitarized chiral perturbation theory. In Ref. [59],
Ξð1950Þ is explained as a K̄ K̄ N state using Faddeev-type
AGS equations.
By constructing the dynamical baryon-meson scattering

processes in the strangeness S ¼ −2 sector, many results
have been achieved in the framework of the chiral uni-
tary approach. According to the findings presented in
Refs. [60–65], signals associated with the Ξð1620Þ state
are dynamically generated, and the spin-parity quantum
numbers of the Ξð1620Þ are identified to be JP ¼ 1=2−.
Regarding the nature of this resonance, in Refs. [61–63],
results support that Ξð1620Þ couples strongly to the Ξπ and
the ΛK̄ channels. In Ref. [64], Ξð1620Þ is considered to
strongly couple to the Ξπ channel. It is demonstrated in
Ref. [65] that the spectrum of the Ξð1620Þ state is distorted
by the effect of the nearby ΛK̄ threshold. In Ref. [66], a
JP ¼ 1=2− resonance state with a mass of about 1550 MeV

and a decay width of 120–200 MeV is dynamically
generated, which is inconsistent with the Ξð2120Þ state.
Meanwhile, in the similar framework [62–64,67–69], a Ξ
state with JP ¼ 1=2− can be dynamically generated near
the ΣK̄ threshold, which can be identified with the Ξð1690Þ
resonance. In Refs. [64,70], Ξð1820Þ with JP ¼ 3=2− can
be dynamically generated in the meson-baryon scattering
process using the coupled-channel unitary approach. A
similar conclusion can also be found in Ref. [71] within the
χ-BS(3) approach, while in Ref. [72], the chiral unitary
approach for baryon-meson interaction gives rise to a
narrow state and a wide state around Ξð1820Þ, indicating
that the Ξð1820Þ may actually be two states. For other Ξ
resonances, Ξð1950Þ is identified with a spin-parity
JP ¼ 1=2− state [64]. A narrow JP ¼ 3=2− state with
mass ∼2050 MeV is found and related to the Ξð2120Þ
state in Ref. [69]. In Ref. [73], two states are generated that
can be associated with the Ξð1950Þ and the Ξð2120Þ,
using the formalism that produces doublets of degenerate
JP ¼ 1=2−; 3=2− states.
Studying hadron-hadron scattering processes is crucial

for understanding resonances. In addition to the above
theoretical methods, the quark delocalization color screen-
ing model (QDCSM) provides an alternative approach for
studying multiquark systems. It offers a robust description
of the NN and YN interactions and the properties of the
deuteron [74–77]. Moreover, building on the foundation of
the Kohn-Hulthén-Kato (KHK) variational method [78],
the model is employed to compute hadron-hadron scatter-
ing phase shifts and investigate exotic hadronic states
[79–81]. In Ref. [80], hidden-charm pentaquark resonances
are investigated in the hadron-hadron scattering process,
and three of the obtained states are consistent with the Pc
states later reported by the LHCb Collaboration in 2019.
Using this model, we have investigated the pentaquark

interpretations of the Λc baryons [82] and Ωc baryons [83],
successfully obtaining masses and widths that agree with
experimental values. Therefore, we extend the application
of this model to investigate the qssq̄q system, aiming to
explore potential molecular interpretations of Ξ resonances.
In this work, we investigate the energy spectrum of the
pentaquark system. The scattering processes are studied to
assess the presence of resonance states and provide
information about the characteristics of the identified states.
This paper is organized as follows: In the next section,

we provide a detailed overview of QDCSM, the scattering
process, and the construction of the wave function. In
Sec. III, numerical results and discussions are given,
followed by a summary in Sec. IV.

II. THEORETICAL FORMALISM

A. Quark delocalization color screening model

Herein, the QDCSM is employed to investigate the
properties of the qssq̄q system. The QDCSM is an
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extension of the native quark cluster model [84–87] and has
been developed to address multiquark systems [83,88–90].
In this section, we mainly introduce the salient features of
this model.
The general form of the pentaquark Hamiltonian is

given by

H ¼
X5
i¼1

�
mi þ

p2i
2mi

�
− Tc:m þ

X5
j>i¼1

VðrijÞ; ð1Þ

where mi is the quark mass, pi is the momentum of the
quark, and Tc:m: is the center-of-mass kinetic energy. The
dynamics of the pentaquark system is driven by a two-body
potential:

VðrijÞ ¼ VCONðrijÞ þ VOGEðrijÞ þ VχðrijÞ: ð2Þ

Themost relevant features ofQCDat its low-energy regime—
color confinement (VCON), perturbative one-gluon exchange
interaction (VOGE), and dynamical chiral symmetry breaking
(Vχ)—have been taken into consideration.
Here, a phenomenological color screening confinement

potential (VCON) is used as

VCONðrijÞ ¼ −acλci · λcj ½fðrijÞ þ V0�;

fðrijÞ ¼
8<
:

r2ij; i; j occur in the same cluster

1−e
−μqiqj r

2
ij

μqiqj
; i; j occur in different cluster

ð3Þ

where ac, V0, and μqiqj are model parameters, and λc stands
for the SU(3) color Gell-Mann matrices. Among them, the
color screening parameter μqiqj is determined by fitting the
deuteron properties, the nucleon-nucleon scattering phase
shifts, and the hyperon-nucleon scattering phase shifts,
with μqq ¼ 0.45, μqs ¼ 0.19, and μss ¼ 0.08 fm−2, respec-
tively, satisfying the relation μ2qs ¼ μqqμss [91].
In the present work, we mainly focus on the low-lying

negative-parity qssq̄q pentaquark states of the S-wave, so
the spin-orbit and tensor interactions are not included. The
one-gluon exchange potential (VOGE), which includes
Coulomb and chromomagnetic interactions, is written as

VOGEðrijÞ ¼
1

4
αsqiqjλ

c
i · λ

c
j

·

�
1

rij
−
π

2
δðrijÞ

�
1

m2
i
þ 1

m2
j
þ 4σi · σj

3mimj

��
; ð4Þ

where σ denotes the Pauli matrices and αsqiqj is the quark-

gluon coupling constant.
The dynamical breaking of chiral symmetry results in the

SU(3) Goldstone boson exchange interactions that appear

between constituent light quarks u, d, and s. Hence, the
chiral interaction is expressed as

VχðrijÞ ¼ VπðrijÞ þ VKðrijÞ þ VηðrijÞ: ð5Þ

Among them,

VπðrijÞ ¼
g2ch
4π

m2
π

12mimj

Λ2
π

Λ2
π −m2

π
mπ

�
YðmπrijÞ

−
Λ3
π

m3
π
YðΛπrijÞ

�
ðσi · σjÞ

X3
a¼1

ðλai · λaj Þ; ð6Þ

VKðrijÞ ¼
g2ch
4π

m2
K

12mimj

Λ2
K

Λ2
K −m2

K
mK

�
YðmKrijÞ

−
Λ3
K

m3
K
YðΛKrijÞ

�
ðσi · σjÞ

X7
a¼4

ðλai · λaj Þ; ð7Þ

VηðrijÞ ¼
g2ch
4π

m2
η

12mimj

Λ2
η

Λ2
η −m2

η
mη

�
YðmηrijÞ

−
Λ3
η

m3
η
YðΛηrijÞ

�
ðσi · σjÞ½cos θpðλ8i · λ8jÞ

− sin θpðλ0i · λ0jÞ�; ð8Þ

where YðxÞ ¼ e−x=x is the standard Yukawa function. The
physical η meson is considered by introducing the mixing
angle θp instead of solely using the octet η8 meson. The λa

symbols are the SU(3) flavor Gell-Mann matrices. The
values of mπ , mk and mη are the masses of the SU(3)
Goldstone bosons, which adopt the experimental values
[15]. The chiral coupling constant gch, is determined from
the πNN coupling constant through

g2ch
4π

¼
�
3

5

�
2 g2πNN

4π

m2
u;d

m2
N
: ð9Þ

Assuming that flavor SU(3) is an exact symmetry, it will
only be broken by the different mass of the strange quark.
The other symbols in the above expressions have their
usual meanings. All the parameters shown in Table I are
fixed by masses of the ground-state baryons and mesons.

TABLE I. Model parameters used in this work: mπ ¼ 0.7,
mK ¼ 2.51, mη ¼ 2.77, Λπ ¼ 4.2, ΛK ¼ 5.2, Λη ¼ 5.2 fm−1,
g2ch=ð4πÞ ¼ 0.54.

b mq ms V0qq
V0qq̄

ac
(fm) (MeV) (MeV) (fm−2) (fm−2) (MeV fm−2)
0.518 313 573 −1.288 −0.201 58.03

αsqq αsqs αsss αsqq̄ αssq̄
0.565 0.524 0.451 1.793 1.783
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Table II shows the masses of the baryons and mesons used
in this work. Since it is very difficult to fit well all ground-
state hadrons with limited parameters, we give priority to
fitting lighter baryons and mesons when setting parameters.
As a result, the mass gaps between theoretical and
experimental values of heavier baryons and mesons are
larger.
In the QDCSM, quark delocalization was introduced to

enlarge the model variational space to take into account the
mutual distortion or the internal excitations of nucleons in
the course of interaction. It is realized by specifying the
single-particle orbital wave function of the QDCSM as a
linear combination of left and right Gaussians, the single-
particle orbital wave functions used in the ordinary quark
cluster model:

ψαðSi; ϵÞ ¼ ðϕαðSiÞ þ ϵϕαð−SiÞÞ=NðϵÞ;
ψβð−Si; ϵÞ ¼ ðϕβð−SiÞ þ ϵϕβðSiÞÞ=NðϵÞ;
NðSi; ϵÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ϵ2 þ 2ϵe−S

2
i =4b

2
p

: ð10Þ

It is worth noting that the mixing parameter ϵ is not an
adjusted one, but determined variationally by the dynamics
of the multiquark system itself. In this way, the multiquark
system chooses its favorable configuration in the interact-
ing process. This mechanism has been used to explain the
crossover transition between the hadron phase and quark-
gluon plasma phase [92].

B. Resonating group method for bound-state
and scattering process

The resonating group method (RGM) [93,94] and gen-
erating coordinates method [95,96] are used to carry out a
dynamical calculation. The main feature of the RGM for

two-cluster systems is that it assumes that two clusters are
frozen inside, and it only considers the relative motion
between the two clusters. So, the conventional ansatz for
the two-cluster wave functions is

ψ5q ¼ A½½ϕBϕM�½σ�IS ⊗ χðRÞ�J; ð11Þ

where the symbol A is the antisymmetrization operator,
and A ¼ 1 − P14 − P24 − P34. ½σ� ¼ ½222� gives the total
color symmetry, and all other symbols have their usual
meanings. ϕB and ϕM are the q3 and q̄q cluster wave
functions, respectively. From the variational principle, after
variation with respect to the relative motion wave function
χðRÞ ¼ P

L χLðRÞ, one obtains the RGM equation:

Z
HðR;R0ÞχðR0ÞdR0 ¼ E

Z
NðR;R0ÞχðR0ÞdR0; ð12Þ

where HðR;R0Þ and NðR;R0Þ are the Hamiltonian and
norm kernels. By solving the RGM equation, we can get
the energies E and the wave functions. In fact, it is not
convenient to work with the RGM expressions. Then, we
expand the relative motion wave function χðRÞ by using a
set of Gaussians with different centers:

χðRÞ ¼ 1ffiffiffiffiffiffi
4π

p
�

6

5πb2

�
3=4X

i;L;M

Ci;L

·
Z

exp

�
−

3

5b2
ðR − SiÞ2

�
YL;MðŜiÞdΩSi ; ð13Þ

where L is the orbital angular momentum between two
clusters, and Si, i ¼ 1; 2;…; n are the generator coordi-
nates, which are introduced to expand the relative motion
wave function. By including the center-of-mass motion

ϕCðRCÞ ¼
�

5

πb2

�
3=4

e−
5R2

C
2b2 ; ð14Þ

the ansatz Eq. (11) can be rewritten as

ψ5q ¼ A
X
i;L

Ci;L

Z
dΩSiffiffiffiffiffiffi
4π

p
Y3
α¼1

ϕαðSiÞ
Y5
β¼4

ϕβð−SiÞ

· ½½χI1S1ðBÞχI2S2ðMÞ�ISYLMðŜiÞ�J
· ½χcðBÞχcðMÞ�½σ�; ð15Þ

where χI1S1 and χI2S2 are the products of the flavor and spin
wave functions, and χc is the color wave function. These
will be shown in detail later. ϕαðSiÞ and ϕβð−SiÞ are the
single-particle orbital wave functions with different refer-
ence centers:

TABLE II. The masses of the baryons and mesons. Exper-
imental values are taken from the Particle Data Group (PDG) [15]
(in MeV).

Hadron IðJPÞ MExp MTheo

N 1=2ð1=2þÞ 939 939
Δ 3=2ð3=2þÞ 1232 1232
Λ 0ð1=2þÞ 1115 1123
Σ 1ð1=2þÞ 1189 1238
Σ� 1ð3=2þÞ 1385 1360
Ξ 1=2ð1=2þÞ 1318 1374
Ξ� 1=2ð3=2þÞ 1535 1496
η 0ð0−Þ 582 284
ω 0ð1−Þ 782 842
K 1=2ð1−Þ 495 495
K� 1=2ð1−Þ 892 892
π 1ð0−Þ 139 139
ρ 1ð1−Þ 770 890
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ϕαðSiÞ ¼
�

1

πb2

�
3=4

e−
1

2b2
ðrα−2

5
SiÞ2 ;

ϕβð−SiÞ ¼
�

1

πb2

�
3=4

e−
1

2b2
ðrβþ3

5
SiÞ2 : ð16Þ

With the reformulated ansatz Eq. (15), the RGM Eq. (12)
becomes an algebraic eigenvalue equation:

X
j

CjHi;j ¼ E
X
j

CjNi;j; ð17Þ

where Hi;j and Ni;j are the Hamiltonian matrix elements
and overlaps, respectively. By solving the generalized
eigenproblem, we can obtain the energy and the corre-
sponding wave functions of the pentaquark systems.
For a scattering problem, the relative wave function is

expanded as

χLðRÞ ¼
X
i

Ci
ũLðR; SiÞ

R
YL;MðR̂Þ; ð18Þ

with

ũLðR;SiÞ¼
�
αiuLðR;SiÞ; R≤RC

½h−Lðk;RÞ− sih
þ
L ðk;RÞ�RAB; R≥RC

; ð19Þ

where

uLðR; SiÞ ¼
ffiffiffiffiffiffi
4π

p �
6

5πb2

�
3=4

Re−
3

5b2
ðR−SiÞ2

· iLjL

�
−i

6

5b2
Si

�
: ð20Þ

Here, h�L are the Lth spherical Hankel functions; k is the
momentum of the relative motion with k ¼ ffiffiffiffiffiffiffiffiffiffiffi

2μEie
p

; μ is the
reduced mass of two hadrons of the open channel; and Eie
is the incident energy of the relevant open channels, which
can be written as Eie ¼ Etotal − Eth, where Etotal denotes
the total energy, and Eth represents the threshold of the
open channel. RC is a cutoff radius beyond which all the
strong interaction can be disregarded. Additionally, αi
and si are complex parameters that are determined by
the smoothness condition at R ¼ RC, and Ci satisfiesP

i Ci ¼ 1. After performing the variational procedure,
an Lth partial-wave equation for the scattering problem can
be deduced as

X
j

LL
ijCj ¼ ML

i ði ¼ 0; 1;…; n − 1Þ; ð21Þ

with

LL
ij ¼ KL

ij −KL
i0 −KL

0j þKL
00;

ML
i ¼ KL

00 −KL
i0; ð22Þ

and

KL
ij ¼

�
ϕ̂Aϕ̂B

ũLðR0; SiÞ
R0 YL;MðR0ÞjH − Ej

·A
�
ϕ̂Aϕ̂B

ũLðR; SjÞ
R

YL;MðRÞ
�	

: ð23Þ

By solving Eq. (A11), we can obtain the expansion
coefficients Ci, and then the S-matrix element SL and
the phase shifts δL are given by

SL ¼ e2iδL ¼
X
i

Cisi: ð24Þ

Resonances are unstable particles usually observed as
bell-shaped structures in scattering cross sections of their
open channels. For a simple narrow resonance, its funda-
mental properties correspond to the visible cross section
features: massM is at the peak position, and decay width Γ
is the half-width of the bell shape. The cross section σL and
the scattering phase shifts δL have the relations

σL ¼ 4π

k2
ð2Lþ 1Þ sin2 δL: ð25Þ

Therefore, resonances can also usually be observed in the
scattering phase shift, where the phase shift of the scatter-
ing channels rises through π=2 at a resonance mass. We can
obtain a resonance mass at the position of the phase shift of
π=2. The decay width is the mass difference between the
phase shift of 3π=4 and π=4.

C. Wave function of qssq̄q system

For the spin wave function, we first construct the spin
wave functions of the q3 and q̄q clusters with SU(2)
algebra, and then the total spin wave function of the
pentaquark system is obtained by coupling the spin
wave functions of two clusters together. The spin wave
functions of the q3 and q̄q clusters are Eqs. (26) and (27),
respectively.
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ð26Þ

ð27Þ

For a pentaquark system, the total spin quantum number
can be 1=2, 3=2, or 5=2. Considering that the Hamiltonian
does not contain an interaction which can distinguish the
third component of the spin quantum number, the wave
function of each spin quantum number can be written as
follows:

χσ11
2
;1
2

ð5Þ ¼ χσ1
2
;1
2

ð3Þχσ0;0ð2Þ;

χσ21
2
;1
2

ð5Þ ¼ −
ffiffiffi
2

3

r
χσ1
2
;−1

2

ð3Þχσ1;1ð2Þ þ
ffiffiffi
1

3

r
χσ1

2
;1
2

ð3Þχσ1;0ð2Þ;

χσ31
2
;1
2

ð5Þ ¼
ffiffiffi
1

6

r
χσ3
2
;−1

2

ð3Þχσ1;1ð2Þ −
ffiffiffi
1

3

r
χσ3
2
;1
2

ð3Þχσ1;0ð2Þ

þ
ffiffiffi
1

2

r
χσ3

2
;3
2

ð3Þχσ1;−1ð2Þ;
χσ43
2
;3
2

ð5Þ ¼ χσ1
2
;1
2

ð3Þχσ1;1ð2Þ;
χσ53
2
;3
2

ð5Þ ¼ χσ3
2
;3
2

ð3Þχσ0;0ð2Þ;

χσ63
2
;3
2

ð5Þ ¼
ffiffiffi
3

5

r
χσ3
2
;3
2

ð3Þχσ1;0ð2Þ −
ffiffiffi
2

5

r
χσ3

2
;1
2

ð3Þχσ1;1ð2Þ;
χσ75
2
;5
2

ð5Þ ¼ χσ3
2
;3
2

ð3Þχσ1;1ð2Þ: ð28Þ

Similarly to constructing spin wave functions, we first
write down the flavor wave functions of the q3 clusters,
which are

ð29Þ
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Then, the flavor wave functions of q̄q clusters are

χf0;0ð2Þ ¼
ffiffiffi
1

2

r
ðd̄dþ ūuÞ;

χf1
2
;1
2

ð2Þ ¼ d̄s;

χf1
2
;−1

2

ð2Þ ¼ −ūs;

χf1;1ð2Þ ¼ d̄u;

χf1;0ð2Þ ¼
ffiffiffi
1

2

r
ðd̄d − ūuÞ;

χf1;−1ð2Þ ¼ −ūd: ð30Þ

As for the flavor degree of freedom, the isospin I of
pentaquark systems we investigated in this work is
I ¼ 1=2. The flavor wave functions of pentaquark systems
can be expressed as

χf11
2
;1
2

ð5Þ ¼ χf0;0ð3Þχf1
2
;1
2

ð2Þ;
χf21
2
;1
2

ð5Þ ¼ χf1
2
;1
2

ð3Þχf0;0ð2Þ;

χf31
2
;1
2

ð5Þ ¼ −
ffiffiffi
2

3

r
χf1
2
;−1

2

ð3Þχf1;1ð2Þ þ
ffiffiffi
1

3

r
χf1

2
;1
2

ð3Þχf1;0ð2Þ;

χf41
2
;1
2

ð5Þ ¼
ffiffiffi
2

3

r
χf1;1ð3Þχf1

2
;−1

2

ð2Þ −
ffiffiffi
1

3

r
χf1;0ð3Þχf1

2
;1
2

ð2Þ: ð31Þ

Studies show that color screening is an effective descrip-
tion of the hidden-color channel coupling [97,98].
Therefore, we only consider the color-singlet channel
(two clusters are color-singlet), which can be obtained
by 1 ⊗ 1:

χc ¼ 1ffiffiffi
6

p ðrgb − rbgþ gbr − grbþ brg − bgrÞ

·
1ffiffiffi
3

p ðr̄rþ ḡgþ b̄bÞ: ð32Þ

Finally, we can acquire the total wave functions by
combining the wave functions of the orbital, spin, flavor,
and color parts together according to the quantum numbers
of the pentaquark systems.

III. THE RESULTS AND DISCUSSIONS

In the present calculation, we systematically investigate
the S-wave qssq̄q (q ¼ u or d) pentaquark systems in the
framework of the QDCSM. The quantum numbers
I ¼ 1=2, JP ¼ 1=2−; 3=2−, and 5=2− are considered.
The effective potential of each channel is studied and
presented in Figs. 1, 4, and 6 as the first step. In order to
find out if there exists any bound state, we carry out a
dynamic bound-state calculation of both single-channel
and coupled-channel states. The numerical results are

listed in Tables III, V, and VII. Moreover, to verify
whether the quasibound channel forms a resonance state
or scattering state after channel coupling, the scattering
process is also studied, which can be seen in Figs. 2, 3, 5,
and 7. The summary of the obtained states is presented in
Table VIII.

FIG. 1. The effective potentials of the qssq̄q system with
JP ¼ 1

2
−.

FIG. 2. The phase shifts of the open channel Ξπ with JP ¼ 1
2
−.
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A. JP = 1
2
− sector

The formation of states requires an attractive interaction;
hence, we first calculate the effective potential between
baryons and mesons. The effective potential is quantified as
VðSiÞ ¼ EðSiÞ − Eð∞Þ, where Si represents the distance
between baryons and mesons. Here, EðSiÞ denotes the
energy of the system at the generator coordinate Si, and
Eð∞Þ corresponds to the energy when the clusters are
sufficiently far apart. EðSiÞ is determined through the
following expression:

EðSiÞ ¼
hΨ5qðSiÞjHjΨ5qðSiÞi
hΨ5qðSiÞjΨ5qðSiÞi

; ð33Þ

where Ψ5qðSiÞ represents the wave function of a certain
channel, while hΨ5qðSiÞjHjΨ5qðSiÞi and hΨ5qðSiÞjΨ5qðSiÞi
are the diagonal matrix element of the Hamiltonian and the
overlap, respectively. The effective potentials of the qssq̄q
system with JP ¼ 1=2− are presented in Fig. 1. There are
11 physical channels, which are ΛK̄,ΛK̄�, ΣK̄, ΣK̄�, Σ�K̄�,
Ξη, Ξπ, Ξω, Ξρ, Ξ�ω, and Ξ�ρ. Among them, the
interaction of Ξπ and Ξω exhibits very weak attraction
at medium range. Although Σ�K̄� exhibits attractive inter-
action, the repulsive interaction at close range is very

strong. In this case, it is difficult for Σ�K̄� to form a bound
state. As for ΛK̄�, Ξρ, Ξ�ω, and Ξ�ρ, it is likely for these
channels to form single-channel bound states. However,
ΛK̄, ΣK̄, ΛK̄�, and Ξη channels are likely to be scattering
states considering their purely repulsive interactions.
To verify whether channels with attractive interactions

form bound states, a dynamic calculation was conducted,
and numerical results are detailed in Table III. The first
column, labeled “Channel” identifies the relevant physical
channels. The second and third columns, χfi and χσj ,
represent the flavor and spin wave functions of the corre-
sponding physical channels, respectively, which are pre-
sented in Sec. II C. The fourth and fifth columns, labeled
EExp
th and ETheo

th , represent the theoretical threshold and
experimental threshold of the system, respectively. The
sixth column, labeled E, displays the energy of each single
channel. The binding energies EB ¼ ETheo − ETheo

th are
recorded in the seventh column only when EB < 0 MeV;
otherwise, “Ub” indicates that the system is unbound. After
channel coupling, the lowest coupled-channel energy and
the lowest threshold are listed in the last row.
It is worth noting that only the lowest energy of each

channel is presented in the table. This is because the
formation of a bound state depends on whether the lowest
energy falls below the threshold. As is listed in Table III,
four channels form quasibound states in the single-channel
calculation: ΛK̄�, Ξρ, Ξ�ω, and Ξ�ρ. The channel ΛK̄�
forms a loosely bound state with a binding energy of
only −1 MeV. The binding energies of Ξρ, Ξ�ω, and Ξ�ρ
are −20 MeV, −8 MeV, and −14 MeV, respectively.
According to the effective potential, the attractions of
Σ�K̄�, Ξπ, and Ξω are very weak, and the single-channel
calculation results for these four channels are unbound. The
attractive interaction of Ξρ, Ξ�ω, and Ξ�ρ is stronger than
that of ΛK̄�; hence, the binding energies of Ξρ, Ξ�ω, and
Ξ�ρ are deeper. As for channels with purely repulsive
interaction—ΛK̄, ΣK̄�, Σ�K̄�, and Ξη—they are all

FIG. 3. The phase shifts of different open channels with
JP ¼ 1

2
−.

TABLE III. The single-channel and the coupled-channel en-
ergies of the qssq̄q pentaquark systems with JP ¼ 1

2
− (in MeV).

Channel χfi χσj EExp
th ETheo

th ETheo EB

ΛK̄ i ¼ 1 j ¼ 1 1610 1613 1617 Ub
ΛK̄� i ¼ 1 j ¼ 2 2007 2010 2009 −1
ΣK̄ i ¼ 4 j ¼ 1 1684 1727 1731 Ub
ΣK̄� i ¼ 4 j ¼ 2 2081 2124 2128 Ub
Σ�K̄� i ¼ 4 j ¼ 3 2277 2247 2250 Ub
Ξη i ¼ 2 j ¼ 1 1900 1679 1683 Ub
Ξπ i ¼ 3 j ¼ 1 1457 1534 1537 Ub
Ξω i ¼ 2 j ¼ 2 2100 2238 2242 Ub
Ξρ i ¼ 3 j ¼ 2 2088 2286 2266 −20
Ξ�ω i ¼ 2 j ¼ 3 2318 2360 2352 −8
Ξ�ρ i ¼ 3 j ¼ 3 2306 2408 2394 −14
Coupling 1457 1534 1536 Ub
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unbound. The numerical results of the single-channel
calculation are consistent with the analysis of interaction.
While four quasibound states have been identified, none

of them corresponds to the system’s lowest threshold. In
this scenario, due to interactions with other channels after
channel coupling, their energies might be elevated above
their respective thresholds, resulting in scattering states, or
they may remain below their respective thresholds, forming
resonance states. This process will be further investigated
in subsequent scattering processes. Furthermore, if the
energy of the coupled channel is lower than the lowest
threshold Ξπ, a stable bound state is genuinely achieved
in the current system. After conducting the channel
coupling calculation, the lowest coupled-channel energy
is 1536 MeV, which exceeds the lowest threshold Ξπ of
1534 MeV. Therefore, the qssq̄q system with JP ¼ 1=2−

does not form a bound state.
To examine whether the four quasibound channels form

scattering states or resonance states, the scattering process
is studied. The details of scattering process can be found in
Sec. II B. In Fig. 2, the scattering phase shifts of the open
channel Ξπ with varying degrees of channel coupling are
shown. We separately calculate the phase shifts of the open
channel Ξπ in different coupling scenarios: (1) without
coupling (solid line with circular symbols), (2) coupling the
Ξπ with a quasibound channel ΛK̄� (dashed line with
square symbols), (3) coupling the Ξπ with a quasibound
channel Ξρ (dotted line with triangular symbols), and
(4) coupling the Ξπ with four quasibound channels
(dash-dotted line with diamond symbols).
As one can see, the phase shift of the open channel Ξπ

without coupling remains stable as the incident energy
increases. When the open channel Ξπ is separately coupled
with the channels ΛK̄� and Ξρ, the phase shifts exhibit
sharp increases at incident energies of 472 MeV and
733 MeV, respectively. This indicates that ΛK̄� and Ξρ
are resonance states, where the resonance energy corre-
sponds to the incident energy with a phase shift of π=2 plus
the threshold of the open channel Ξπ. The width of decay to
Ξπ corresponds to the difference in incident energies with
phase shifts of π=4 and 3π=4. After coupling the Ξπ with
the four quasibound channels, the phase shift exhibits sharp
increase at an incident energy of 472 MeV and increases
again at an incident energy of 740 MeV. It indicates that the
ΛK̄� and Ξρ form resonance states, which is consistent with
the previous coupling result. The obtained resonance
energies are slightly different from that in the coupling
of one quasibound channel and the open channel. This is
caused by the coupling process not being exactly the same,
but this does not affect the conclusion of the resonance
states.
However, after the incident energy exceeds 750MeV, the

phase shift remains stable. No sharp increase in phase shift
is shown at the incident energies corresponding to the Ξ�ω
and Ξ�ρ channels. We examined a series of eigenvalues

obtained after channel coupling, where the lowest-energy
states predominantly composed ofΛK̄� or Ξρ remain below
their respective thresholds, while those predominantly
composed of Ξ�ω or Ξ�ρ are above their corresponding
thresholds. Therefore, in the current system, there exist two
resonance states, ΛK̄� and Ξρ, while Ξ�ω and Ξ�ρ are
scattering states.
On the basis of the phase shift of Ξπ, the ΛK̄� resonance

state’s theoretical resonance mass and its decay width to Ξπ
are 2006 MeVand 0.1 MeV, respectively. The correction of
the resonance mass is based on the following equation:

MCorr ¼ MTheo þ
X
n

pn½EExp
th ðnÞ − ETheo

th ðnÞ�; ð34Þ

where MCorr and MTheo are the corrected and theoretical
masses, pn is the proportion of the nth physical channel,
and EExp

th ðnÞ and ETheo
th ðnÞ are the experimental and theo-

retical thresholds of the nth physical channel. Moreover,
the composition of this resonance state is overwhelmingly
predominated by the ΛK̄� channel. In this scenario, the
influence of other physical channels is exceedingly feeble.
Hence, based on the phase shift of the Ξπ, the corrected
mass of the ΛK̄� resonance state is 2003 MeV. In the same
way, the Ξρ resonance state’s theoretical mass, corrected
mass, and decay width to the Ξπ are 2278 MeV, 2079 MeV,
and 0.2 MeV, respectively.
Further, the scattering phase shifts of other possible open

channels are calculated with the coupling of the four
quasibound channels and the open channel. The results
are shown in Fig. 3. The ΛK̄� and Ξρ resonance states can
be simultaneously observed through the scattering phase
shifts of the ΛK̄, ΣK̄, and Ξη channels. Since the threshold
of ΣK̄� is higher than the resonance energy of the ΣK̄, only
the Ξρ is observed in the scattering phase shift of ΛK̄�.
The thresholds of Σ�K̄� and Ξω are higher than the energies
of the two resonance states; thus, no resonance state is
observed.
By analyzing the scattering phase shifts, the theoretical

resonance masses and the decay widths to different open
channels are obtained. The numerical results, including the
corrected masses, are presented in Table IV. In addition, the
widths of some baryons and mesons might significantly
impact the results, particularly hadrons with large widths.
To evaluate the effect, we have incorporated the widths of
hadrons into our analysis. The total width Γtotal can be
estimated by Γtotal ¼ Γc þ Γd, where Γc is the width to open
channels through channel coupling in Table IV, and Γd is
the width caused by the decaying baryon and meson within
the obtained pentaquark state. According to Refs. [99,100],
the way to calculate Γd is as follows.
Taking the ΛK̄� state, for example, the width ΓdðΛK̄�Þ

depends on the decaying K̄�. The width can be related
approximately to the K̄� width ΓfK̄� ¼ 51 MeV in free
space by only accounting for the reduction in phase space
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available to the decaying bound K̄�, whose mass has been
reduced to roughly

MbK̄� ≈MfK̄� −
mK̄�

mΛ þmK̄�
EB; ð35Þ

where EB is the binding energy of the bound state. Then,

ΓbK̄� ðMbK̄� Þ ≈ ΓfK̄�
k2lb ρðMbK̄�Þ
k2lf ρðMfK̄� Þ ; ð36Þ

where k is the pion momentum in the rest frame of the
decaying K̄�, l ¼ 1 is the pion angular momentum, and

ρðMÞ ¼ π
kEπEK̄

M
ð37Þ

is the two-body decay phase space at mass M when each
decay product has c.m. energy Ei, i ¼ π; K̄. According to
the above formulas, the width ΓdðΛK̄�Þ can be obtained as
ΓdðΛK̄�Þ ¼ ΓbK̄� , which falls in the range of 47–49 MeV.
Due to the resonance energies obtained in different open-
channel scattering processes not being exactly the same, the
binding energy in Eq. (35) has a range, leading to a range of
the width as well. Furthermore, the total decay width
ΓtotalðΛK̄�Þ ¼ ΓcðΛK̄�Þ þ ΓdðΛK̄�Þ is obtained, which is
59–61 MeV.
As listed in Table IV, the corrected mass of the ΛK̄� is

1991–2004 MeV. This state can be associated with the
Ξð1950Þ state. In fact, the experimental information regard-
ing Ξð1950Þ is still not sufficiently clear. According to the
PDG’s description of the mass of the Ξð1950Þ state [15],
they list experimental data reported between 1875 and
2000 MeV and suggest that there may be more than one Ξ
near this mass. In addition, the decay width of the ΛK̄�
resonance is also well consistent with the experimental data
of the Ξð1950Þ state. Therefore, our calculations suggest
that the Ξð1950Þ can be interpreted as a JP ¼ 1=2− ΛK̄�
state. Among other theoretical works, in Ref. [64], S ¼ −2
meson-baryon scattering in the S-wave is studied within

a coupled-channel unitary approach, explaining the
Ξð1950Þ as a dynamically generated state with spin-parity
JP ¼ 1=2−. The spin-parity assignment of JP ¼ 1=2− for
the Ξð1950Þ state is also suggested in Ref. [73].
As for the Ξρ resonance state, the corrected mass is

2066–2079 MeV. Based on the width Γd caused by
the decaying ρ, the total decay width of the Ξρ state is
186–189 MeV. Although its mass is near the Ξð2030Þ and
the Ξð2120Þ, its decay width is much wider than the
Ξð2030Þ and the Ξð2120Þ states. Furthermore, its spin is
also in conflict with the experimental finding of Ξð2030Þ,
which suggests that J ≥ 5=2 [14]. Therefore, the Ξρ
resonance state obtained in this work cannot serve as a
candidate for the Ξð2030Þ or the Ξð2120Þ states.

B. JP = 3
2
− sector

Similarly to the procedure in the previous section, the
effective potential of the qssq̄q system with JP ¼ 3=2− is
also studied. As is shown in Fig. 4, there are ten channels in
this sector. The attractive interactions of the Ξρ, Ξ�ω, and
Ξ�ρ channels are relatively strong, while the ΣK̄�, Σ�K̄�,
Ξω, and Ξ�π channels exhibit comparatively weak attrac-
tive interactions. The interactions of theΛK̄�, Σ�K̄, and Ξ�η
channels with JP ¼ 3=2− are purely repulsive, indicating
that they cannot form any bound state.

TABLE IV. The masses and widths of resonance states with the
difference scattering processes (in MeV). MTheo

res and MCorr
res stand

for the theoretical and corrected masses, respectively. Γc is the
width of the resonance state decaying to an open channel through
channel coupling.

JP ¼ 1=2− ΛK̄ ΣK̄ ΣK̄� Ξη Ξπ

ΛK̄� MTheo 1994 2007 � � � 2007 2006
MCorr 1991 2004 � � � 2004 2003
Γc 8.2 3.7 � � � 0.3 0.1

Ξρ MTheo 2265 2273 2270 2274 2278
MCorr 2066 2074 2071 2075 2079
Γc 5.5 10.8 23.5 2.5 0.2 FIG. 4. The effective potentials of the qssq̄q system with

JP ¼ 3
2
−.
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The single-channel energies of the qssq̄q system with
JP ¼ 3=2− and the lowest coupled-channel energies are
listed in Table V. According to the numerical results, there
are four single-channel bound states, which are Σ�K̄�, Ξρ,
Ξ�ω, and Ξ�ρ. The binding energy of Σ�K̄� is relatively
small, at just −4 MeV. This is also consistent with the
weakly attractive interaction displayed by Σ�K̄� in the
calculation of the effective potential. The binding energies
of Ξρ, Ξ�ω, and Ξ�ρ are −15 MeV, −9 MeV, and
−27 MeV, respectively. We will further discuss whether
the four quasibound channels form resonance states or
scattering states after channel coupling. Before that, one
can see that the lowest energy of the coupled channel is
1660 MeV, still higher than the JP ¼ 3=2− system’s
lowest threshold Ξ�π of 1657 MeV. Therefore, no
bound state is formed in the S-wave qssq̄q system with
JP ¼ 3=2−.
Four quasibound states are listed in Table V: Σ�K̄�, Ξρ,

Ξ�ω, and Ξ�ρ. Figure 5 shows the scattering phase shifts of
different open channels. A sharp increase of phase shift is
observed in the scattering process of each open channel.
Based on the resonance energies, these resonance signals
correspond to the same resonance state, Σ�K̄�. The other
three channels, Ξρ, Ξ�ω, and Ξ�ρ, which form bound states
in single-channel calculations, are ultimately identified as
scattering states. The widths decaying into various open
channels, along with the theoretical and corrected reso-
nance masses, are listed in Table VI.
Considering the width Γd caused by the decaying Σ� and

K̄�, the total decay width of the Σ�K̄� state is given by
Γtotal ¼ Γc þ Γd, where Γc can be found in Table VI and
Γd ¼ ΓbΣ� þ ΓbK̄� . On this basis, the corrected mass and
total width of the Σ�K̄� resonance state are obtained as
2257–2269 MeV and 116–122 MeV. This resonance mass
is consistent with the Ξð2250Þ state. According to the PDG
[15], there are four sets of experimental values on the
Ξð2250Þ at present: Ref. [101]:

Ref: ½101�∶ M ¼ 2189� 7 MeV;Γ ¼ 46 MeV;

Ref: ½102�∶ M ¼ 2214� 5 MeV;Γ ¼ ?

Ref: ½103�∶ M ¼ 2295� 15 MeV;Γ < 30 MeV;

Ref: ½104�∶ M ¼ 2244� 52 MeV;Γ ¼ 130� 80 MeV:

Given the conflicting experimental values for decaywidth,
there may be more than one Ξð2250Þ. The mass and width
of the Σ�K̄� with JP ¼ 3=2− (M ¼ 2257–2269 MeV,
Γ ¼ 116–122 MeV) are consistent with the experimen-
tal values in Ref. [104] (M ¼ 2244� 52 MeV, Γ ¼
130� 80 MeV). All in all, this JP ¼ 3=2− Σ�K̄� resonance
state can serve as a candidate for the two-star Ξð2250Þ state.
In other theoretical work, using the chiral unitary approach,

TABLE V. The single-channel and the coupled-channel ener-
gies of the qssq̄q pentaquark systems with JP ¼ 3

2
− (in MeV).

Channel χfi χσj EExp
th ETheo

th ETheo EB

ΛK̄� i ¼ 1 j ¼ 4 2007 2010 2014 Ub
ΣK̄� i ¼ 4 j ¼ 4 2081 2124 2128 Ub
Σ�K̄ i ¼ 4 j ¼ 5 1880 1850 1855 Ub
Σ�K̄� i ¼ 4 j ¼ 6 2277 2247 2243 −4
Ξω i ¼ 2 j ¼ 4 2100 2238 2241 Ub
Ξρ i ¼ 3 j ¼ 4 2088 2286 2271 −15
Ξ�η i ¼ 2 j ¼ 5 2118 1801 1804 Ub
Ξ�π i ¼ 3 j ¼ 5 1675 1657 1661 Ub
Ξ�ω i ¼ 2 j ¼ 6 2318 2360 2351 −9
Ξ�ρ i ¼ 3 j ¼ 6 2306 2408 2381 −27
Coupling 1675 1657 1660 Ub

FIG. 5. The phase shifts of different open channels with
JP ¼ 3

2
−.

TABLE VI. The mass and width of the resonance state with the
difference scattering processes (in MeV).

JP ¼ 3=2− ΛK̄� ΣK̄� Σ�K̄ Ξω Ξ�η Ξ�π

Σ�K̄� MTheo 2230 2234 2245 2239 2227 2229
MCorr 2260 2264 2275 2269 2257 2259
Γc 4.0 11.0 5.5 2.1 8.7 8.5
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the Ξð2250Þ is interpreted as a dynamically generated state
with a spin-parity assignment of JP ¼ 3=2− [64].
One may notice that despite Ξρ, Ξ�ω, and Ξ�ρ forming

bound states in the single-channel calculation, they ulti-
mately transition into scattering states. Similar situations
also occur in the JP ¼ 1=2− sector, where single-channel
bound states with higher energies fail to form resonance
states. By solving the coupled-channel Schrödinger equa-
tion, we can obtain a series of eigenenergies. Taking the
Σ�K̄� with JP ¼ 3=2− as an example, in coupled-channel
calculation, Σ�K̄� is influenced not only by interactions
from lower energies, but also by interactions from higher
energies. Overall, the energy of the Σ�K̄� may remain stable
or even be suppressed. However, for states with higher
energies, there are more eigenenergies below them than
above them, making it easier for them to be elevated above
their thresholds and become scattering states.

C. JP = 5
2
− sector

In the JP ¼ 5=2− sector, there are only three channels
that need to be considered: Σ�K̄�, Ξ�ω, and Ξ�ρ. As shown
in Fig. 6, the baryon-meson interaction of the Σ�K̄� channel
is purely repulsive. The effective potentials of the Ξ�ω
channel and Ξ�ρ channel exhibit attractions, with the
attraction in the Ξ�ω channel being very weak, and the
attraction in the Ξ�ρ channel being relatively strong.
The results of the single-channel and coupled-channel

calculations are listed in Table VII. Σ�K̄� and Ξ�ω channels
are unbound in the single-channel calculations, while the
Ξ�ρ channel forms a quasibound state with a relatively deep
binding energy of −55 MeV. It is noteworthy that after the
channel coupling, the lowest energy of the qssq̄q system
with JP ¼ 5=2− is 2229 MeV, which is below the lowest
threshold Σ�K̄�. Therefore, a bound state is obtained here.
According to numerical results, the predominant compo-
sition of this bound state is Σ�K̄�, with a minor presence of
Ξ�ω, while the contribution of Ξ�ρ is negligible. On this
basis, the corrected mass of this qssq̄q bound state with
JP ¼ 5=2− is 2233 MeV.
Since a bound state is obtained without considering

D-wave coupling, the total decay width equals the width
caused by the decaying hadron. Moreover, given that it
contains two non-negligible compositions, it should be

Γd ¼
P

n pnΓdðnÞ, where pn and ΓdðnÞ are the proportion
and the width of the nth physical channel. For the
composition Σ�K̄�, the width ΓdðΣ�K̄�Þ depends on the
decaying Σ� and K̄�. Hence, the width ΓdðΣ�K̄�Þ can be
obtained as ΓdðΣ�K̄�Þ ¼ ΓbΣ� þ ΓbK̄� . As for the other
composition Ξ�ω, the situation is different from the
previous calculation. The dominating decay mode of ω
is a three-body decay, but Eq. (37) is used in a two-body
decay process. However, due to the narrow decay width of
ω, which is only 8.7 MeV, in the calculation of Eq. (36), the
difference between the width of decaying bound ω and the
width of ω in free space is very small. We can approx-
imately consider the width of ω in free space as the width of
the decaying bound ωΓbω. Therefore, ΓdðΞωÞ¼ΓbΞþΓbω.
The total decay width of the Σ�K̄� bound state is 53 MeV.
As mentioned in the last paragraph, the corrected mass of
this bound state is 2233 MeV, which is consistent with the
Ξð2250Þ state. At the same time, the decay width of this
bound state is consistent with one of the experimental
values, 46� 27 MeV [101].
Moreover, to determine the property of the quasibound

state Ξ�ρ, the scattering shift of the Σ�K̄� is shown in Fig. 7.
The scattering shift increase at the incident energy around
70 MeV indicates that the Ξ�ρ channel forms a resonance
state. According to the calculations, the corrected mass and
the total width of the Ξ�ρ are 2240 MeV and 161 MeV,

FIG. 6. The effective potentials of the qssq̄q system with
JP ¼ 5

2
−.

TABLE VII. The single-channel and the coupled-channel
energies of the qssq̄q pentaquark systems with JP ¼ 5

2
− (in

MeV).

Channel χfi χσj EExp
th ETheo

th ETheo EB

Σ�K̄� i ¼ 4 j ¼ 7 2277 2247 2252 Ub
Ξ�ω i ¼ 2 j ¼ 7 2318 2360 2364 Ub
Ξ�ρ i ¼ 3 j ¼ 7 2306 2408 2353 −55
Coupling 2277 2247 2229 −18

FIG. 7. The phase shift of the open channel Σ�K̄� with JP ¼ 5
2
−.
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respectively. The mass and width of the obtained JP ¼
5=2− Ξ�ρ state are very consistent with the experimental
value of the Ξð2250Þ state in Ref. [104] (M ¼ 2244�
52 MeV;Γ ¼ 130� 80 MeV). Additionally, one may
notice that after mass correction, the energy of Ξ�ρ falls
below the experimental threshold of Σ�K̄�. This is because
in our calculations, the theoretical mass difference between
Σ�K̄� and Ξ�ρ is larger than the experimental mass differ-
ence between Σ�K̄� and Ξ�ρ, causing the Ξ�ρ with a
relatively deep binding energy to still be above the
theoretical threshold of Σ�K̄�. But the correction mass of
the Ξ�ρ is below the experimental threshold of Σ�K̄�.
Finally, the obtained states in this work are summarized

in Table VIII. It can be seen that in the current systems, the
widths Γd caused by the decaying hadrons are larger than
the widths caused by the channel coupling Γc. In particular,
the pentaquark states containing ρ mesons have a total
width of more than 140 MeV, primarily contributed by the
decaying ρ meson. The pentaquark states containing ρ
mesons show the property of wide resonance states after
taking into account the width effects of baryons and
mesons. The widths of other obtained pentaquark states
also show significant increases after considering the effect
of the decaying hadrons.
According to our results, the ΛK̄� state with JP ¼ 1=2−

can serve as a candidate for the Ξð1950Þ state. Both the
Σ�K̄� state with JP ¼ 3=2− and the Ξ�ρ state with JP ¼
5=2− are consistent with the experimental values about the
Ξð2250Þ state given in Ref. [104]. Moreover, the Σ�K̄� state
with JP ¼ 5=2− can explain the relatively narrow Ξð2250Þ
reported in Ref. [101]. On this basis, three states are
obtained that can explain the Ξð2250Þ. This might also
explain the conflicting experimental values for the width of
the Ξð2250Þ state.
Additionally, we obtain a Ξρ state with JP ¼ 1=2−,

which cannot serve as a candidate for the reported Ξ
resonances at present. Therefore, we here predict a new Ξ
with JP ¼ 1=2−, whose mass and width are 2066–
2079 MeV and 186–189 MeV, respectively. The Ξππ
channel is the most promising for observing this new Ξ
state, because its width is the largest, which is due to the

decaying ρ meson. It is also possible to observe the new Ξ
state in the ΞK̄ and ΞK̄� decay channels, but the probability
of observing it in other decay channels is relatively small.
The Ξ family is not as abundant as other strange baryon
families, such as the Λ and Σ families. However, with the
accumulation of experimental data and improvements in
experimental precision, there is a strong potential for
discovering more Ξ resonances. Continued efforts in this
area are likely to yield fruitful results.
In the current work, beyond the Ξð1530Þ, the subsequent

Ξ state is the Ξð1950Þwith JP ¼ 1=2−. The mass difference
of approximately 420 MeV is significant between these
states. This can be understood by noting that the Ξð1530Þ
state in this work is a conventional hadron with quark
constituents of qss, while the Ξð1950Þ is a pentaquark state
with quark constituents of qssq̄q. Considering that the
constituent mass of the q quark (q̄ antiquark) in the model
is 313 MeV, and that the pentaquark system has more
complex interactions compared to the three-quark system,
the significant mass gap between the Ξð1530Þ and the
Ξð1950Þ states can be explained by the differences in their
quark compositions. Although we have not obtained
pentaquark explanations for other Ξ resonances with
relatively small mass gaps with the Ξð1530Þ state, the Ξ
resonances can also be studied from the perspective of
traditional three-quark excited states or three- and five-
quark mixed states. For example, the Ξð1620Þ and the
Ξð1690Þ states are interpreted as three-quark excited states
in the framework of the Skyrme model [26] and the QCD
sum rules [28,30].

IV. SUMMARY

In this work, we investigate the qssq̄q system in the
framework of the QDCSM. The S-wave pentaquark system
with I ¼ 1=2 and JP ¼ 1=2−, 3=2−, and 5=2− is consid-
ered. The effective potnetial is studied to describe the
baryon-meson interactions. The single-channel bound-state
calculation and scattering process study are carried out to
search and confirm resonance states. Meanwhile, the
coupled-channel dynamic bound-state calculation is per-
formed to find bound states. In addition, both the width to
the open channels through channel coupling and the width
caused by the decaying baryons and mesons are estimated.
Based on the current results, the conclusion can be drawn as
follows:
(1) In our calculations, the Ξð1950Þ state can be

interpreted as a ΛK̄� state with JP ¼ 1=2−.
(2) We obtain three states that match the mass of the

Ξð2250Þ. Among them, the Σ�K̄� state with JP ¼
3=2− and the Ξ�ρ state with JP ¼ 5=2− are con-
sistent with the broad width reported in Ref. [104],
while the Σ�K̄� state with JP ¼ 5=2− matches the
relatively narrow width reported in Ref. [101]. We
propose the existence of three Ξð2250Þ states, which

TABLE VIII. The states obtained in this work (in MeV). Γc
represents the width to other open channels through channel
coupling. Γd is the width resulting from the decaying baryon and
meson within the pentaquark state. Γtotal is the total width.

JP
Main

composition Mass Γc Γd Γtotal

1=2− ΛK̄� 1991–2004 12 47–49 59–61
1=2− Ξρ 2066–2079 43 143–146 186–189
3=2− Σ�K̄� 2257–2269 40 76–82 116–122
5=2− Σ�K̄� 2233 � � � 53 53
5=2− Ξ�ρ 2240 12 149 161
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might also explain the conflicting experimental
values for the width.

(3) A new Ξ resonance with mass and width of 2066–
2079 MeV and 186–189 MeV, respectively, is
predicted to exist. This resonance is identified as
the Ξρ state with JP ¼ 1=2−.

Compared with the Λ and Σ resonances, there is
currently a lack of theoretical research and experimental
data on the Ξ resonances. We aim for our systematic
calculations to provide valuable insights into understanding
the properties of the Ξ resonances and discovering new Ξ
resonances. It is also necessary to understand the Ξ
resonances from the perspective of three-quark excited
states. Additionally, considering the mixing of three-quark

and five-quark states from an unquenched picture is an
important aspect.
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