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We investigate the structure of ground-state heavy mesons within the light-front quark model, utilizing
wave functions derived from the single Gaussian ansatz (SGA) and the Gaussian expansion method
(GEM). By performing a χ2 fit to static properties such as mass spectra and decay constants, we determine
the model parameters for each approach. We then compare the impacts of both methods on the light-front
wave functions and structural observables. Our analysis reveals significant differences in the distribution
amplitudes ϕ2;MðxÞ near the end points, with GEM showing enhanced amplitudes and correct asymptotic
behavior ϕ2;Mðx → 1Þ ∝ ð1 − xÞ, consistent with perturbative QCD. This end point behavior is linked to
the short-range (high-momentum) wave function governed by color Coulomb interaction and relativistic
kinematics. GEM accurately reproduces a power-law damping ψ0ðk → ∞Þ ∝ 1=k2⊥, aligning with
perturbative QCD predictions. Furthermore, the electromagnetic form factors of pseudoscalar mesons
in the low-Q2 region fall off faster with GEM than with SGA. Overall, while both methods adequately
describe static properties, GEM provides a more accurate description of structural properties, being more
sensitive to details and asymptotic behaviors.
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I. INTRODUCTION

In quantum chromodynamics (QCD), the light-front
dynamics [1–3] has emerged as a promising tool for
handling relativistic effects, owing to its rational energy-
momentum dispersion relation, maximal number of
kinematic generators, and suppression of quantum fluc-
tuations of the vacuum. Within this framework, the light-
front quark model (LFQM) [4–7], based on light-front
dynamics and the constituent quark picture, has achieved
significant success in characterizing various hadron phe-
nomenologies [8–20].
One of the main objectives of LFQM analyses is to

derive light-front wave functions (LFWFs), from which
static and structural properties of hadrons can be deter-
mined. Within the constituent quark model, the LFWFs
can be computed by various approaches such as using a

simple ansatz for the LFWFs [9–11], employing the
Bethe-Salpeter amplitude [21–24], diagonalizing the
light-front [25,26] or nonrelativistic Hamiltonian [27].
Furthermore, there also exist other methods such as
the Dyson-Schwinger method [28–31], the light-front
holographic model [32], and the light-front Nambu–
Jona-Lasinio model [33].
Often, a single Gaussian ansatz (SGA) [9–11] or power-

law ansatz [12,13,34] is employed for the LFWFs, whose
parameters are fitted to the decay constants without con-
sidering the Hamiltonian [7,11,13]. Alternatively, the
LFWFs can be derived from the Bethe-Salpeter amplitude
on the light front [21], where the regulator parameter is
fitted to the data. Nevertheless, once the model parameters
are well tuned, the predictions of such models can be
sufficiently consistent with the data.
In another approach, LFWFs can be obtained by

directly diagonalizing the light-front Hamiltonian, as
exemplified in basis light-front quantization (BLFQ)
[25,26]. Here, basis functions are constructed as a
product of longitudinal and transverse components,
resulting in WFs with cylindrical symmetry [35], rather
than spherical symmetry. However, it should be noted that
LFWFs have a nontrivial ðx; k⊥Þ dependence and in
general cannot be separated [36]. Because of this con-
struction, the spherical symmetry of the WFs is not fully
realized. This contrasts with LFWFs within the SGA,
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which inherently exhibit spherical symmetry by con-
struction [37–39].
In a different approach, the effective Hamiltonian in the

instant form is constructed, and the parameters of the
ansatz WFs are determined using the variational principle.
Subsequently, the WFs are mapped into LFWFs [8,40].
While this approach has proven successful in describing
mass spectra and various observables [14,41,42], the SGA
has limitations in describing some data and asymptotic
behavior. For instance, within the SGA, the distribution
amplitudes (DAs) near the end points are suppressed
compared to lattice QCD data [19], and the falloff of
the calculated transition form factor is slower compared
to BABAR data [43]. It is, therefore, crucial to assess
the limitations of the ansatz by contrasting it with an
approach that aims to closely resemble the eigenstate of
the Hamiltonian.
One method to achieve that is the Gaussian expansion

method (GEM) [44–46], which has proven its flexibility in
many systems from atomic and nuclear physics [47]. This
method has also been applied to the nonrelativistic quark
model to obtain mass spectra and other observables, not
only for mesons [48–50] but also for the baryons [51] and
multiquark systems [52–58]. The GEM relies on the
construction of realistic WFs by utilizing Gaussian basis
functions with multiple range parameters. This allows to
approximate any shape of the WF and can be used to find
the eigenstates of a given Hamiltonian.
In this article, we investigate the structure of ground-state

heavy mesons within the LFQM, utilizing LFWFs obtained
through both SGA and GEM. We focus on heavy mesons
due to their suitability for probing the nonrelativistic
limit of the quark model. To accomplish this, we conduct
a χ2 fitting procedure on static properties such as the
mass spectra and the decay constants for each method,
determining the parameters associated with the effective
Hamiltonian. We then analyze the LFWFs and other related
quantities such as DAs and electromagnetic (EM) form
factors to understand the distinctions between the methods
and provide comparisons with the experimental and lattice
QCD data. By contrasting the results for both methods, we
shed light on the structure of the heavy mesons.
Our investigation reveals that both GEM and SGA yield

comparable accuracy in reproducing static properties.
However, we identify differences between the two methods
for the DAs and EM form factors, which are both more
sensitive to the details of the WFs. In particular, we observe
that the DAs near the end points for the GEM are
pronounced compared to those in SGA, exhibiting the
behavior ϕðx → 1Þ ∝ ð1 − xÞ [36]. Also, the S-wave WF in
the high-momentum region shows a power-law damping,
ψðk → ∞Þ ∝ 1=k2⊥, in line with predictions from pertur-
bative QCD [59]. We emphasize that the end point
behaviors are linked to the short-range region, influenced
by relativistic kinematics and Coulomb interaction. In the

low-Q2 region, the EM form factors of pseudoscalar
mesons fall off faster for the GEM than those for the SGA.
The article is structured as follows. In Sec. II, we explain

the basic components of LFQM and distinguish between
SGA and GEM methods. Additionally, we outline the
procedure for obtaining LFWFs and other properties. In
Sec. III, we discuss the numerical results obtained through
both methods. Finally, the article concludes with Sec. IV,
summarizing our findings.

II. METHOD

In this section, we first describe the model Hamiltonian
in the instant form.We then explain the differences between
the two methods: SGA and GEM. The asymptotic behav-
iors of theWFs are also discussed. After that, we outline the
procedure for constructing the LFWFs from the instant
from WFs calculated by the two methods. Additionally, we
present the observables considered in this work within the
LFQM and the fitting procedures used to determine the
model parameters.

A. Effective Hamiltonian

First of all, let us consider the relativistic Schrodinger
equation,

Hqq̄jΨqq̄i ¼ Mqq̄jΨqq̄i; ð1Þ

where Mqq̄ and Ψqq̄ are the eigenvalue and eigenfunction
for mesons made of quark and antiquark. The Hamiltonian
in the instant form is given by

Hqq̄ ¼ H0 þ Vqq̄ ð2Þ

with the usual nonrelativistic kinetic energy replaced by the
relativistic one as

H0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

q þ k2
q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

q̄ þ k2
q

; ð3Þ

with the quark (antiquark) mass mqðmq̄Þ and the relative
momentum k ¼ ðkz; k⊥Þ. However, in this case, we cannot
factorize the c.m. motion and we can only work in the rest
frame of mesons ðPc:m: ¼ 0Þ. This approach is often
referred to as the relativized quark model.
In this work, we focus on the ground state spin 0

(pseudoscalar, P) and spin 1 (vector, V) heavy mesons,
containing one or two heavy quarks, c or b. We adopt the
QCD-motivated interquark potential Vqq̄, which consists of
the sum of the confining, color Coulomb, and hyperfine
potentials, as given by

Vqq̄ ¼ aþ br −
4αs
3r

þ 32παsδ̃
3ðrÞ

9mqmq̄
ðSq · Sq̄Þ; ð4Þ
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where the term hSq · Sq̄i yields the values of 1=4 and −3=4
for the vector and pseudoscalar mesons, respectively.
Although the tensor potential may contribute via the
S- and D-wave mixing, its contribution is known to be
weak in the quark model [60], and therefore we neglect it in
the present work.
Overall the model has eight parameters, four of which

are the quark masses (mq;ms;mc;mb). The a and b are
parameters for the confining potential, and αs is the strong
running coupling, taken as a constant parameter. Here, we
smear the spin-spin interaction with a Gaussian function as

δ̃3ðrÞ ¼ Λ̃3

π3=2
e−Λ̃

2r2 ; ð5Þ

where Λ̃ determines the strength of the smearing effect,
and we introduce a phenomenological quark mass
dependence as Λ̃ ¼ Λμ1=2q with the reduced mass 1=μq ¼
1=mq þ 1=mq̄. This accommodates the fact that the size
gets smaller for heavier mesons. Not only the hyperfine
splitting but also the decay constants are affected due to
such a dependence [14]. In this work, the model parameters
in the Hamiltonian are determined through a χ2 fit, which
will be explained in Sec. II D.

B. SGA and GEM

In this study, we consider two approaches to solve
Eq. (1) with the Hamiltonian in the instant form: (i) single
Gaussian ansatz (SGA) and (ii) Gaussian expansion
method (GEM), whose resulting WFs are both mapped
subsequently into the LFWFs. Here, we use the same form
of the model Hamiltonian for both SGA and GEM but
allow a different set of parameters for each. In the
following, we explain the two methods in more detail.

1. Single Gaussian ansatz

The single Gaussian ansatz (SGA) relies on making an
ansatz for the meson WFs in the form of a single Gaussian
function [8,40]. The trial WF in position space is given by

ψðrÞ ¼ ð2νÞ3=4
π3=4

e−νr
2

; ð6Þ

and the WF in the momentum space, obtained through the
Fourier transformation, is given by

ψðkÞ ¼ 1

ð2πνÞ3=4 e
−k2=4ν; ð7Þ

where the S-wave spherical harmonic Y00 ¼ 1=
ffiffiffiffiffiffi
4π

p
is

already included. It is important to note that r represents the
relative coordinate between the quark and antiquark. While
the Hamiltonian parameters are adjusted by fitting the mass

spectra, the Gaussian parameter ν for each meson is
determined through the variational principle ∂Mqq̄=∂ν ¼ 0.
Once the model parameters of the Hamiltonian are well

tuned, the predictions from this approach can reasonably
agree with experimental data for a wide range of observ-
ables. However, it is important to note that a single
Gaussian is an eigenfunction of the harmonic oscillator
(HO) potential, not a general Hamiltonian. Because of this,
the SGA does not accurately reflect the correct shape and
asymptotic behavior of the WF for the Hamiltonian in
Eq. (2). Therefore, the eigenstate for a given Hamiltonian is
expected to deviate from a single Gaussian shape, even
though the size of the WF after fitting can be similar.

2. Gaussian expansion method

To overcome the limitations of the SGA, we employ the
Gaussian expansion method (GEM) [44–46] to solve the
relativistic Schrödinger equation in Eq. (1). This method
can be understood as a generalization of the SGA, as we
increase the number of Gaussian functions until the
necessary accuracy for approximating the solution of
Eq. (1) is achieved. Despite its similarity, it is important
to note that GEM is conceptually different from the use of
an ansatz, which does not aim to find the eigenstate of the
Hamiltonian.
In this method, we expand the WF in terms of a set of

Gaussian basis functions, ϕG
n , each with a different

Gaussian parameter νn as

ψ ¼
Xnmax

n¼1

cnϕG
n ; ð8Þ

where cn represents the expansion coefficient. Following
the notation in Ref. [44], the Gaussian basis function in
position space is given by

ϕG
n ðrÞ ¼

ð2νnÞ3=4
π3=4

e−νnr
2

; ð9Þ

and the basis function in the momentum space, obtained
through the Fourier transformation, is given by

ϕG
n ðkÞ ¼

1

ð2πνnÞ3=4
e−k

2=4νn : ð10Þ

In the GEM, it is necessary to determine two sets of
parameters: the coefficients cn and the Gaussian param-
eters νn. To obtain the cn expansion coefficients satisfying
∂Mqq̄=∂cn ¼ 0, we solve the generalized eigenvalue
problem,

Hqq̄c ¼ Mqq̄Sc; ð11Þ

where the elements of the Hamiltonian matrix are
Hqq̄;nm ¼ hϕG

n jĤjϕG
mi, and the elements of the overlap
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matrix are Snm ¼ hϕG
n jϕG

mi. To obtain the Gaussian
parameters νn, we consider a geometric progression [44],

νn ¼
1

r2n
; rn ¼ r1an−1; a ¼

�
rmax

r1

� 1
nmax−1 ð12Þ

which reduces them to only two (ν1, νnmax
) while keeping

a high accuracy of the calculation. Those two parameters
are optimized using the Optim.jl package [61] to satisfy

∂Mqq̄

∂ν1
¼ ∂Mqq̄

∂νmax
¼ 0: ð13Þ

We note that the basis functions are nonorthogonal Snm ≠
δnm and the states are normalized as

hψiψ ¼
X
n;m

c�nSnmcm ¼ 1: ð14Þ

C. LFWFs and observables

1. Mass spectra

In both SGA and GEM, we determine the mass spectra
of the ground state heavy mesons by solving Eq. (1) in their
rest frame. In this study, we calculate the mass spectra using
instant form dynamics, which is in line with the approach in
the nonrelativistic quark model but incorporates relativistic
kinetic energy [48–50]. This method contrasts with BLFQ
[25], where mass spectra are directly derived from LFWFs.

2. LFWFs

After diagonalizing the Hamiltonian, we need to map the
obtained WFs into the LFWFs [14,27]. For that we proceed
in the following way:
(1) The position-space WF ψðrÞ is first transformed into

the momentum-space WF ψðkÞ.
(2) The radial part of ψðkÞ can be supplied to LFWFs

Φðx; k⊥Þ via the kz → x variable transformation.
Note that the Jacobian factor ∂kz=∂x is necessary to
maintain the rotational symmetry.

(3) The spin and orbital part of the LFWFs are obtained
via the interaction-independent Melosh transforma-
tion [62].

Before proceeding further, we make some remarks about
this mapping procedure. In our relativized quark model, we
replace the kinetic energy term by the relativistic one. For
fully relativistic formulation based on the Dirac equation,
the effects of the small components induce (spin-
dependent) relativistic corrections that are important in
the mass spectrum. In the nonrelativistic formulation,
instead, we include the spin-spin, spin-orbit, and tensor
interactions explicitly in the Hamiltonian. Although the
relativistic effects are not fully included in the WF, our
spectrum reproduces the observed one by adjusting the

Hamiltonian parameters as we will see later. Then we map
the WF to LFWF by the Melosh transformation [62], which
is independent of the interaction and consistent with the
Bakamjian-Thomas construction [63]. It is not easy to
quantify the ambiguity coming from this approximation in
the final results, but our approach can be justified by
comparing the results with data. Thus, this approach
provides a well-controlled connection between the WF
and LFWF.
In the following, we provide a more detailed demon-

stration of the mapping. The LFWFs are expressed in terms
of the Lorentz invariant internal variables

xi ¼ pþ
i =P

þ; ð15Þ

k⊥i ¼ p⊥i − xiP⊥; ð16Þ

where Pμ ¼ ðPþ; P−;P⊥Þ and pμ
i denote the four-momen-

tum of the meson and the ith constituent quark, respec-
tively. Here we define the longitudinal momentum fraction
x≡ xq and the transverse momentum k⊥ ≡ k⊥q.
We perform the variable transformation ðkz; k⊥Þ →

ðx; k⊥Þ. In this case, x can be related with kz as

x ¼ Eq − kz
Eq þ Eq̄

; 1 − x ¼ Eq̄ þ kz
Eq þ Eq̄

; ð17Þ

where Ei ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

i þ k2
p

. Therefore, kz can be written as

kz ¼
�
x −

1

2

�
M0 þ

ðm2
q̄ −m2

qÞ
2M0

ð18Þ

with the so-called invariant meson mass M0 ¼ Eq þ Eq̄

expressed as

M2
0 ¼

k2⊥ þm2
q

x
þ k2⊥ þm2

q̄

1 − x
: ð19Þ

The radial part of LFWFs is given by

Φðx; k⊥Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2πÞ3

q ffiffiffiffiffiffiffi
∂kz
∂x

r
ψðkÞ; ð20Þ

where for ψðkÞ we take the WF from the SGA and GEM.
The Jacobian factor is expressed as

∂kz
∂x

¼ M0

4xð1 − xÞ
�
1 −

ðm2
q −m2

q̄Þ2
M4

0

�
; ð21Þ

which takes into account the variable transformation.
The spin and orbital angular momentum part, RJJz

λqλq̄
, of

LFWFs is obtained via the interaction-independent Melosh
transformation [62] from the spin and orbital angular
momentum part of the relativistic WF in the instant form
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assigned to the quantum number JPC. The RJJz
λqλq̄

has

covariant forms as

RJJz
λqλq̄

¼ 1ffiffiffi
2

p
M̃0

ūλqðpqÞΓMvλq̄ðpq̄Þ; ð22Þ

with M̃0 ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

0 − ðmq −mq̄Þ2
q

and the Dirac spinors of

quark uðpqÞ and antiquark vðpq̄Þ. The vertex ΓM for
the pseudoscalar and vector meson (with M ¼ V or P) is
given by

ΓP ¼ γ5; ð23Þ

ΓV ¼ −ϵðJzÞ þ
ϵ · ðpq − pq̄Þ

M0 þmq þmq̄
; ð24Þ

where the polarization vectors ϵμðJzÞ ¼ ðϵþ; ϵ−; ϵ⊥Þ are
defined by

ϵμð�1Þ ¼
�
0;
2ϵ⊥ð�Þ · P⊥

Pþ ; ϵ⊥ð�Þ
�
;

ϵμð0Þ ¼
�
Pþ

M0

;
−M2

0 þ P2⊥
M0Pþ ;

P⊥
M0

�
; ð25Þ

with ϵ⊥ð�1Þ ¼ ð1;�iÞ= ffiffiffi
2

p
. We note that the vertex ΓP

can contain not only the pseudoscalar coupling, but also
the pseudovector coupling. Although this pseudovector is
usually not important in the low-energy regime, it can affect
the asymptotic behavior of form factors as Q2 → ∞ [64].
The explicit forms of the spin and orbital WFs for the

pseudoscalar and vector mesons are given by

R00
λqλq̄

¼ 1ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ k2⊥

p
�

kL A

−A −kR

�
; ð26Þ

and

R11
λqλq̄

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ k2⊥

p
0
@Aþ k2⊥

D0
kR M1

D0

−kR M2

D0
− ðkRÞ2

D0

1
A;

R10
λqλq̄

¼ 1ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ k2⊥

p
0
@ kL M

D0
Aþ 2k2⊥

D0

Aþ 2k2⊥
D0

−kR M
D0

1
A;

R1−1
λqλq̄

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ k2⊥

p
0
@ − ðkLÞ2

D0
kL M2

D0

−kL M1

D0
Aþ k2⊥

D0

1
A; ð27Þ

respectively, where kRðLÞ¼kx�iky, A¼ð1−xÞm1þxm2,
D0 ¼ M0 þmq þmq̄, M1¼xM0þm1, M2¼ð1−xÞM0þ
m2, andM ¼ M2 −M1. Note thatR

JJz
λqλq̄

is normalized as

X
λq;λq̄

RJJz†
λqλq̄

RJ0J0z
λqλq̄

¼ δJJ0δJzJ0z : ð28Þ

The LFWF of the ground state heavy meson in momen-
tum space is therefore given by

ΨJJz
λqλq̄

ðx; k⊥Þ ¼ Φðx; k⊥ÞRJJz
λqλq̄

ðx; k⊥Þ; ð29Þ

and normalized as

X
λq;λq̄

Z
dxd2k⊥
2ð2πÞ3 jΨ

JJz
λqλq̄

ðx; k⊥Þj2 ¼ 1: ð30Þ

Furthermore, the LFWFs are often constructed as products
of ΨLðxÞ and ΨTðk⊥Þ. However, this construction often
lead to a breaking in spherical symmetry of the WF [25]. In
our case, the LFWFs are transformed from Gaussian basis
functions, thereby maintaining the spherical symmetry of
the LFWFs. One evidence is that hk2⊥ ¼ k2x þ k2yi and h2k2zi
would yield the same results when using the LFWFs in
Eq. (29). This consistency can be broken if LFWFs are
constructed as Ψ ¼ ΨLðxÞΨTðk⊥Þ. Interested readers may
refer to the previous study [37] for more details.

3. Decay constants

Now we provide formulas for the decay constants

of the pseudoscalar meson fP and vector meson fkð⊥Þ
V

with longitudinal and transverse polarizations. They are
defined by

h0jq̄γμγ5qjPðPÞi ¼ ifPPμ; ð31Þ

h0jq̄γμqjVðP; JzÞi ¼ fkVMVϵ
μðJzÞ; ð32Þ

h0jq̄σμνqjVðP; JzÞi ¼ if⊥V ½ϵμðJzÞPν − ϵνðJzÞPμ�; ð33Þ

where ϵμðJzÞ and MV represent the polarization vector and
the mass of the vector meson, respectively.
The explicit form of the decay constants computed in the

LFQM using the plus current ðμ ¼ þÞ is given by [14]

fM ¼
ffiffiffi
6

p Z
1

0

dx
Z

d2k⊥
ð2πÞ3

Φðx; k⊥Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ k2⊥

p OM; ð34Þ

where Φðx; k⊥Þ is the radial part of LFWFs and the
operators OM read

OP ¼ A; ð35Þ

Ok
V ¼ Aþ 2k2⊥

D0

; ð36Þ

O⊥
V ¼ Aþ k2⊥

D0

: ð37Þ
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The decay constants can also be calculated using the minus
ðμ ¼ −Þ and the transverse ðμ ¼ ⊥Þ components of cur-
rents. The equivalence of the decay constants with various
current components and polarizations has been demon-
strated within this LFQM in a previous work [37].

4. Twist-2 distribution amplitudes

Next, we focus on the twist-2 DAs which give dominant
contributions in the hard exclusive processes [65]. The DAs
are derived from matrix elements that connect free space
and meson states with lightlike separation, i.e., z2 ¼ 0. To
establish a link between the DAs and the LFWFs, we apply
the condition of the equal light-front time to the lightlike
vector zμ with zþ ¼ z⊥ ¼ 0. The twist-2 DAs for pseudo-
scalar mesons ϕ2;P computed by choosing the plus current
are given by [66]

h0jq̄ðzÞγþγ5qð−zÞjPðPÞi ¼ ifPPþ
Z

1

0

dx eiξP·zϕ2;PðxÞ;

ð38Þ

where ξ ¼ 2x − 1. The twist-2 DAs for the vector mesons

with longitudinal ϕk
2;V and transverse polarizations ϕ⊥

2;V are
computed as [67]

h0jq̄ðzÞγþqð−zÞjVðP; 0Þi

¼ fkVMVϵ
þð0Þ

Z
1

0

dxeiξP·zϕk
2;VðxÞ; ð39Þ

h0jq̄ðzÞσ⊥þqð−zÞjVðP;�1Þi

¼ if⊥V ½ϵ⊥ð�1ÞPþ−ϵþð�1ÞP⊥�
Z

1

0

dxeiξP·zϕ⊥
2;VðxÞ; ð40Þ

respectively.
In the LFQM, the ϕMðxÞ can be obtained by the

transverse momentum integration of the LFWF as [9]

ϕ2;MðxÞ ¼
ffiffiffi
6

p

fM

Z
d2k⊥
ð2πÞ3

Φðx; k⊥Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ k2⊥

p OM; ð41Þ

which are normalized as
R
1
0 ϕ2;MðxÞdx ¼ 1. In the model

calculation, it is difficult to precisely determine the scale μ,
but it is associated with the modeling interaction. The scale
dependence of DAs can be obtained by using the QCD
evolution equation [65].
Moreover, we provide the six-lowest ξ moments of the

DAs, defined as

hξni ¼
Z

1

0

dx ξn ϕ2;MðxÞ; ð42Þ

which can be compared with other models quantitatively.
These ξ moments can be related to the Gegenbauer

moments anðμÞ [9]. Although features of DAs are reflected
in the first few ξmoments, accurate parametrization to DAs
of heavy-light mesons may require more moments due to a
pronounced asymmetry [68].

5. Electromagnetic form factors

Furthermore, we want to test the two methods on the
transfer momentum ðQ2Þ-dependent quantities. For that
reason, we include the EM form factor of pseudoscalar
mesons,

hPðP0ÞjJμemð0ÞjPðPÞi ¼ ðPþ P0ÞμFðQ2Þ; ð43Þ

where Q2 ¼ −q2 ¼ −ðP0 − PÞ2. This EM form factor is
sensitive to the quark masses and provides further tests on
the details of the LFWFs. A more comprehensive study
involving elastic and transition form factors is left for
future work.
In LFQM, the EM form factor of pseudoscalar mesons is

computed by using the Drell-Yan-West frame ðqþ ¼ 0Þ
withQ2 ¼ q2⊥ and obtained by using the plus component of
current Jþ. The explicit expression is given by [40]

FðQ2Þ ¼ eqIþðQ2; mq;mq̄Þ þ eq̄IþðQ2; mq̄; mqÞ; ð44Þ

where the eqðeq̄Þ is the electric charge of the quark
(antiquark). The contribution of the quark and antiquark
is calculated by

IþðQ2; mq;mq̄Þ ¼
Z

dx d2k⊥
2ð2πÞ3 Φðx; k⊥ÞΦ�ðx; k0⊥Þ

×
A2 þ k⊥ · k0⊥ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2 þ k2⊥
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2 þ k02⊥
p ; ð45Þ

where Φ�ðx; k0⊥Þ is the radial part of the final LFWF of
mesons with k0⊥ ¼ k⊥ þ ð1 − xÞq⊥. The form factor com-
puted from the transverse current would also give the same
results in this LFQM [69]. Note that the EM form factor is
normalized as FðQ2 ¼ 0Þ ¼ eq þ eq̄, and the correspond-
ing charge radius is computed as

hr2emi ¼ −6
dFðQ2Þ
dQ2

����
Q2¼0

: ð46Þ

In the case of heavy quarkonia such as ηc and ηb, we only
consider the contribution from one of the quarks, as
otherwise the EM form factor vanishes because the
contributions from the quark and antiquark cancel each
other out. However, the EM form factors for neutral
mesons such as D0, B0, and B0

s do not vanish due to
different quark flavors.
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D. Fitting procedures

To determine the model parameters of the Hamiltonian in
Eq. (1), we perform a χ2 fit, as defined by

χ2 ¼
X
i

ðOobs
i −Omod

i Þ2
ðσobsi þ σmod

i Þ2 ; ð47Þ

where the minimization is performed using the Optim.jl
package [61]. The dataset Oobs

i in the fit includes exper-
imental data of both mass spectra and decay constants.
Additionally, we incorporate data from lattice QCD sim-
ulations for the decay constants [70–73]. When minimizing
χ2 to fit the data, it is also necessary to optimize the
Gaussian parameter for each iteration in the χ2 fit to ensure
the minimum of the energy. This is essential to satisfy the
variational principle, as otherwise, the results are not valid
due to not reaching the energy minimum.
Here, we adjust the model error σmod

i ¼ σerrOobs
i , where

σerr is the percentage error of the Oobs
i , to get χ2=Ndof ≈ 1.

The Ndof represents the number of degrees of freedom
obtained by subtracting the number of free parameters
ðNpar ¼ 8Þ from the number of data points ðNdata ¼ 32Þ.
We set σcerr ¼ 2%, σberr ¼ 1%, and σferr ¼ 5%, for the model
error of the mass of charmed mesons ðqc̄; sc̄; cc̄Þ, bottom
mesons ðqb̄; sb̄; cb̄; bb̄Þ, and decay constant for all of the

heavy mesons, respectively. The inclusion of this additional
σmod in the χ2 ensures an unbiased fit, especially when the
data precision varies significantly [74]. Note that σmod
becomes dominant when σexpt is negligibly small.
Furthermore, we use a relative σmod because mass spectra
and decay constants differ by up to an order of magnitude.
It should be noted that the fitted parameter sets for SGA

and GEM are significantly different. Indeed, Fig. 1 shows
that considering a fixed parameter set for both methods, the
decay constants may differ by up to 30%. This shows again
that the two approaches are conceptually different.
Consequently, we need to perform a fit to the data
independently for both methods. In GEM, using ten basis
functions yields an accuracy of about four digits.

III. RESULTS AND DISCUSSION

In this section, we first present the obtained model
parameters for SGA and GEM from fitting to static proper-
ties such mass spectra and decay constants. Subsequently,
we continue to discuss the difference between the two
methods for LFWFs and structural observables.

A. Model parameters

The results for the fitted model parameters for both SGA
and GEM are presented in Table I. Although the form of the

FIG. 1. (a) WF ϕηcðrÞ, (b) density of WF r2jϕηcðrÞj2, (c) mass, and (d) decay constant of ηcð1SÞ where the parameters are fixed from
using the SGA (n ¼ 1). The figures also show the results when we expand the basis function up to n ¼ 10while keeping the parameters
the same. Evidently, using the same parameters for n ¼ 10 would result in a poor prediction, especially in the decay constants, which
deviate significantly up to 30%. Thus, it is necessary to fit the parameters independently when using the GEM (n ¼ 10).

TABLE I. Model parameters for SGA and GEM which are independently fitted to the data by minimizing χ2. The parameters include
the constituent quark masses ðmq;ms; mc; mbÞ in unit of GeV, confinement potential parameters a [GeV] and b [GeV2], the strong

coupling αs which is dimensionless and the smearing parameter Λ [GeV1=2] with a quark mass dependence Λ̃ ¼ Λμ1=2q . Here we have
Ndata ¼ 32 data points andNpar ¼ 8 free parameters resulting inNdof ¼ Ndata − Npar ¼ 24. We obtain χ2=Ndof is 0.95 and 0.46 for GEM
and SGA, respectively.

Model mq ms mc mb αs Λ a b

SGA 0.2200 0.3678 1.6324 5.0557 0.4410 0.9639 −0.4235 0.1655
GEM 0.2200 0.3463 1.5147 4.8800 0.2850 1.4376 −0.1895 0.0924
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Hamiltonian is the same for both methods, the model
parameters obtained from the fit show differences. The
obtained mass spectra and decay constants for ground-state
heavy mesons, both included in our fitting process, are
shown in Fig. 2. Although χ2=Ndof for the SGA is smaller,
it is less than one for both methods with σmod ranging from
1%–5% as explained previously. This shows that the SGA
is simple yet powerful while the GEM can provide a more
accurate WF but requires more effort to obtain a more
refined model Hamiltonian to improve agreement with
the data.
Initially, we attempted to fit with unconstrained param-

eters for SGA and GEM. In this setup, we found reasonable
agreement with the data, but the obtained mq was rather
small, around 60 MeV, which is smaller than the typical
constituent quark mass mq ¼ 200–350 MeV. Because of
that, we tested other observables such as the EM radius
with this parameter set, and the obtained radius for Dþ was
around 0.480 fm2, much larger than the lattice QCD data of
around 0.150 fm2 discussed in Sec. III F. Furthermore, mq

was more tightly constrained with the observables for light
mesons, which were not included in the present work.
Because of these observations, we set the lower bound for
mq ¼ 220 MeV to the commonly used value in
Refs. [9,60] for our analysis.
The spatial dependence of the potentials for the SGA and

GEM are shown in Fig. 3 and compared with the Godfrey-
Isgur (GI) model [60] and Isgur-Scora-Grinstein-Wise
(ISGW) with αs ¼ 0.3 [76]. While both potentials in this

work are comparable with those of the literature, one can
see that the potential for the GEM is more enhanced at a
short distance and suppressed at a long distance as
compared to those for the SGA. It is worth noting that
the outcome for GEM is notably influenced by variations in
the model Hamiltonian, leading to distinct shape, as
illustrated in Fig. 3. In this case, the enhancement of the
WF at the origin for the GEM as shown in Fig. 1, which is
plausibly due to the use of relativistic kinetic energy, leads
to the best fit with different potential parameters.

FIG. 2. Fitted mass spectra (upper panel) and decay constants (lower panel) of ground-state heavy mesons using SGA (red) and GEM
(blue). In addition, we display data from experiments (light green) [75] and lattice QCD calculations (light blue) [13,70–73]. We
incorporated both observables in our fitting process.

FIG. 3. Spatial dependence of the confinement and color
Coulomb potentials for the SGA and GEM using the model
parameters in Table I. The potentials are comparable with those of
the GI [60] and ISGW potentials [76].
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B. Wave functions and their asymptotic behaviors

In Fig. 4 we show as an example the WF (upper panel)
and density (lower panel) of ηc for both SGA and GEM.
Unlike those obtained with the same parameters as shown
in Fig. 1, the WFs of both methods are now much closer to
each other. Nevertheless, we can identify some distinct
differences, in particular, the WF for the GEM is more
enhanced at the origin and extends to larger distances. If we
replace the kinetic energy with the nonrelativistic one while
keeping the parameters the same as those for the GEM, we
obtain that the WF denoted as the GEM-NR is rather
suppressed at the origin as shown in Fig. 4. This is mainly
because the relativistic kinetic energy provides weaker
repulsion near the origin than the nonrelativistic one.
Moreover, we plot the LFWFs ðΨ00

↑↓ −Ψ00
↓↑Þ=2 of the ηc

and D meson in the upper and lower panels of Fig. 5,
respectively, exemplifying the cases of equal and unequal
mass of constituents. The peak for the ηc LFWF, which
corresponds to ðkz; k⊥Þ ¼ 0, is at x ¼ 1=2 but the peak for
theDmeson LFWF is at x ¼ mq=ðmq þmq̄Þwith x carried
by the light quark. Note that the end points x ¼ 0 and x ¼ 1
correspond to kz ¼ −∞ and kz ¼ ∞, respectively.
Evidently, the LFWF for the GEM extends more to both
end points of x and the larger k⊥ region, which we discuss
in more detail in Sec. III D.

Since the GEM accurately approximates the eigenstate
of the Hamiltonian, while the SGA only captures the size of
the WF, it is important to check the asymptotic behavior
of the WF in two different limits: long distance (r → ∞)
and short distance (r → 0). Of special interest is the
short-distance behavior, which corresponds to the high-
momentum behavior (k → ∞), which is dictated by per-
turbative QCD.
In the long-distance limit r → ∞, the Schrödinger

equation for the S-wave with the power-law confinement
reduces to

∇2

2μ
ψðrÞ ¼ brpψðrÞ ð48Þ

with the reduced quark mass μ, the confinement parameter
b, and exponent p. If we assume a decaying WF
ψðrÞ ∝ expð−BrnÞ, we can obtain the asymptotic param-
eters n ¼ ðpþ 2Þ=2 and B ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μb=n2

p
. While a HO

confinement (br2) results in a Gaussian asymptote, the
linear confinement (br) considered here leads to

ψLinðr → ∞Þ ∝ exp

�
−

ffiffiffiffiffiffiffiffi
8μb
9

r
r3=2

�
; ð49Þ

which decays more slowly compared to the HO case, as
expected. Note that the Airy function is the eigenfunction

FIG. 4. WF (upper panel) and the density (lower panel) of the
WFs of ηcð1SÞ for both SGA, GEM, and GEM-NR. The GEM
and GEM-NR employ a relativistic and nonrelativistic kinetic
energy, respectively. As compared to the one for the SGA, theWF
for the GEM is more enhanced at short and long distances, but it
is more suppressed at an intermediate distance. The WF near the
origin for the GEM-NR is more suppressed than the one
for the GEM.

FIG. 5. LFWF ðΨ00
↑↓ − Ψ00

↓↑Þ=2 of the ηc (upper panel) and of
the D meson (lower panel) for both SGA (left half) and GEM
(right half). The LFWFs for the GEM are more extended to both
end points of x but suppressed at the intermediate x as compared
to those for the SGA. The dashed line represents kz ¼ 0 obtained
from Eq. (18).
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of the linear potential [77], and we reproduced here its
asymptotic limit.
In the short distance, the dominant interaction is the color

Coulomb potential, stemming from the one-gluon
exchange and the relativistic effect becomes important as
the relative momentum becomes large. As r → 0, the
Schrödinger equation is reduced to

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2 −∇2Þ

q
ψðrÞ ¼ 4αs

3r
ψðrÞ; ð50Þ

where we consider the equal-mass case m ¼ mq ¼ mq̄ for
simplicity. Near the origin, the WF has a power-law
behavior ψðr → 0Þ → rn, which is also observed when
using the Dirac Hamiltonian [78]. Such behavior is well
approximated by the GEM, as shown in Fig. 4, but differs
significantly in the SGA. Additionally, this asymptotic WF
is divergent, but the truncation of the number of basis
functions in the GEM regulates it.
To explicitly demonstrate a power-law behavior in the

model calculation, it is more effective to examine the WF in
momentum space, as this reveals the behavior more clearly.
The momentum-space WF is obtained via Fourier trans-
formation as given by

ψðkÞ ¼
Z

ψðrÞe−ik·r d3r ¼ 1

ik

Z
∞

0

eikr rnþ1dr

¼ 1

ikðnþ3Þ Γðnþ 2Þ; ð51Þ

where we have used the plane-wave expansion for the S
wave. We obtain

ψðk → ∞Þ ∝ 1

kðnþ3Þ : ð52Þ

Figure 6 shows the WF integrated over kz,

ψðk⊥Þ ¼
Z

∞

0

dkz ψðkz; k⊥Þ; ð53Þ

for ηc and as k → ∞. From the inset of the upper panel, it is
evident that the GEM gives a linear dependence up to about
k⊥ ¼ 50 GeV, which is eventually broken at higher
momenta. This is because the GEM uses Gaussian basis
functions, and the accuracy is limited by the narrowest
(widest) basis function in position (momentum) space, and
the number of basis functions. Our fit of the asymptotic WF
between k⊥ ¼ 5–20 GeV on a log-log scale reveals a linear
relationship with a slope of approximately −2. This
corresponds to a damping factor of 1=k2⊥, which also
implies that the ψðr → 0Þ ∝ 1=r. This finding is consistent
with the predictions of perturbative QCD [59] and the
Bethe-Salpeter method [36].

C. Mass spectra

The mass spectra for the ground state of heavy mesons
obtained by the SGA and GEM are presented in Table II.

FIG. 6. Upper panel: the k⊥ dependence of the WF ψðk⊥Þ
where the kz component has been integrated. The inset shows a
k⊥ dependence up to 100 GeV in a logarithmic scale. Lower
panel: a linear fit to a WF ψðk⊥Þ on a log-log scale. It implies that
ψðk → ∞Þ ∝ 1=k2⊥.

TABLE II. Numerical results of mass spectra [MeV] of the
ground state of heavy mesons for both SGA and GEM compared
with the experimental data in Ref. [75].

SGA GEM Experiment

MD 1909 1916 1869.66(05)
MD� 1992 1990 2010.26(05)
MDs

1988 2001 1968.35(7)
MD�

s
2064 2065 2112.2(4)

Mηc 3012 3019 2983.9(4)
MJ=ψ 3066 3059 3096.900(6)
MB 5290 5268 5279.34(12)
MB� 5325 5298 5324.70(21)
MBs

5356 5342 5366.88(14)
MB�

s
5390 5369 5415.4þ1.8

−1.5
MBc

6289 6297 6274.47(32)
MB�

c
6325 6323 � � �

Mηb 9420 9488 9398.7(2.0)
Mϒ 9459 9515 9460.30(26)
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Both methods yield similar results which are consistent
with the experimental data of the Particle Data Group [75].
Since the mass spectra originate from the average of short-
and long-distance effects of the WFs, a similar result from
both methods is expected.
Here we use different σmod

i for mesons containing the
charm (σcerr ¼ 2%) and bottom quark (σberr ¼ 1%) to obtain
a better fit with the data for all heavy mesons. If we employ
the same σerr ¼ 2%, the results for heavier mesons, such as
bottomonia, will be less accurate. On the other hand, if we
use absolute values such as σmod ¼ 50 MeV, the results for
the heavy-light meson become less accurate. The use for
the relative error in σmod becomes important if we include
light mesons in the fit since their masses are much smaller.
Furthermore, in this work, we analyze not only the mass
spectra but also other observables. In this case, the results
should have reasonable agreement with the data for other
observables as well. If we fit only the mass spectra, the
prediction for decay constants can be bad. Therefore, the
mass spectra provide a necessary, but not sufficient con-
dition to constrain the WF.

D. Decay constants

The decay constants obtained for both SGA and GEM
are tabulated in Table III, and compared with experimental
data, extracted from the leptonic and weak decays [75], and
lattice QCD data [70–73]. Note that there are some
discrepancies between both lattice QCD and experimental
data, because of which we employ σferr ¼ 5% in the fit.
Since there is no experimental data for f⊥V , we only
compare our results with other theoretical models [13].
We find that the results for both methods have reason-

able agreement with the data as shown in Table III.
Although in the nonrelativistic limit the decay constant
is related to the WF at the origin via the famous Van
Royen-Weisskopf formula [79], the results for both
methods are comparable once the range parameters of
the WFs are fitted to the data. Therefore, it is of great
interest to analyze momentum-dependent quantities,
instead of constant observables, to unveil the difference
between the two methods.
While fP < fkV is always held if the spin-spin interaction

is treated perturbatively [41], fP can be larger than f
k
V when

the spin-spin interaction is treated nonperturbatively and
the smearing parameter Λ̃ plays a crucial role in determin-
ing the hierarchy as discussed previously [14]. For instance,

fηb ¼ 691 MeV > fkϒ ¼ 688 MeV is obtained in SGA as

shown in Table II. In GEM, fηb < fkϒ is observed despite
the quark mass dependence added to the Λ̃ parameter. At

the moment, lattice QCD and experimental data for fkϒ have
some discrepancy. More precise data is therefore desirable
to resolve the hierarchy which is useful to further constrain
the WF.

Furthermore, from Eq. (34), we see that OP ¼ 2O⊥
V −

Ok
V resulting in fP ¼ 2f⊥V − fkV if the radial WFs of

pseudoscalar and vector mesons are the same [41]. Here

we find that fP > 2f⊥V − fkV when the spin-spin interaction
is treated nonperturbatively and it applies to both SGA
and GEM.

E. Twist-2 distribution amplitudes

In Fig. 7, we show the leading-twist DAs of pseudoscalar
mesons for both SGA and GEM. Overall, the results are
comparable, but they exhibit different behaviors near both
end points. For heavy-light mesons, the difference is more
evident near x ¼ 1. For instance in the case of the Bmeson,
the DAs in the two methods look quite different, and these
features are commonly observed in other mesons.
The ϕ2;BðxÞ for the GEM is more suppressed in the

region of 0.1 < x < 0.3 and more enhanced in the region of
x > 0.3. While the ϕ2;BðxÞ in GEM is more extended to the
x > 0.5 region, the ϕ2;BðxÞ for the SGA is concentrated in
the x < 0.5 region. The end point behavior at x ¼ 1 is
related to the high-momentum part of the WF and accord-
ingly a short-distance part of the WF. For the SGA, this
suppression can be directly inferred from the WF which is

TABLE III. Numerical results of decay constants [MeV] of
ground-state heavy mesons for both SGA and GEM, and
compared with experimental [75] as well as lattice QCD data
[70–73]. We also compare the results for f⊥V by Ref. [13].

SGA GEM Lattice QCD Experiment [13]

fD 224 225 211(14) 206.7(8.9) � � �
fkD� 251 249 245(20) � � � � � �
f⊥D� 227 213 � � � � � � 233
fDs

253 249 231(12) 257.5(6.1) � � �
fkD�

s

276 268 272(16) � � � � � �
f⊥D�

s
252 233 � � � � � � 303

fηc 376 355 394.7(2.4) 335(75) � � �
fkJ=ψ 384 378 405(6) 407(5) � � �
f⊥J=ψ 363 337 � � � � � � � � �
fB 200 213 179(18) 188(25) � � �
fkB� 207 240 196(24) � � � � � �
f⊥B� 198 213 � � � � � � 214
fBs

229 238 204(16) � � � � � �
fkB�

s

233 263 229(20) � � � � � �
f⊥B�

s
224 235 � � � � � � 297

fBc
426 412 427þ6

−2 � � � � � �
fkB�

c

423 449 � � � � � � � � �
f⊥B�

c
409 405 � � � � � � 374

fηb 692 659 667þ6
−2 � � � � � �

fkϒ 688 729 649(31) 715(5) � � �
f⊥ϒ 668 660 � � � � � � � � �
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rather suppressed at a short distance as shown in Fig. 4. On
the other hand, the WFs for the GEM are enhanced at a
short distance.
We also plot the asymptotic behavior of the ϕ2;ηcðxÞ in

Fig. 8. It is evident that the DA near x ¼ 1 for the GEM
shows a linear dependence as

ϕ2;ηcðx → 1Þ ¼ 2.13ð0.99 − xÞ; ð54Þ
while it behaves differently in the case of SGA. The linear
behavior is needed to yield a meson parton distribution
function of ð1 − xÞ2 near x ¼ 1, as predicted by perturba-
tive QCD [80]. It is worth noting that we fit the DA between
0.9 ≤ x ≤ 0.95. as they eventually start to deviate from the
linear form when it is much closer to x ¼ 1, similar to
Fig. 6. In the BLFQ approach [25], this asymptotic WF is
used as a basis function such as ΨLðxÞ ∝ xαð1 − xÞβ. This

produces the asymptotic behavior of DAs by construction,
but it may also break the spherical symmetry.
Furthermore, a previous study [19] has shown that the

DAs using SGA could not reproduce the enhancement near
the end points seen in lattice QCD data [81]. This clearly
shows the limitations of the SGA due to the fixed form of
the WF. These observations suggest the use of the eigen-
function of Hamiltonian instead of a single Gaussian
ansatz. In contrast, the superposition of Gaussian basis
functions with different range parameters in GEM can
produce a general WF with richer features. Furthermore, it
is worth noting that the enhancement near the end points of
DAs can alternatively be obtained using the power-law
ansatz [13], which is an asymptotic WF in the high
momentum region. However, this power-law ansatz has
also some limitations in its shape and has other problems
such as convergence issues.
In Table IV, we tabulate the six lowest ξ moments for the

pseudoscalar DAs computed within the SGA and GEM.We
find that the ξ moments for the GEM are generally a bit
larger than those from the SGA. Moreover, the ξ moments
for mesons containing a bottom quark have larger devia-
tions between both models. Such a large difference is
reflected in the DAs as shown in Fig. 7. We also compare
the ξ moments with the SGA and power-law ansatz
computed in Ref. [13]. For example, our computed odd
ξ moments for the B meson, hξ1i ¼ −0.629½−0.508� with
SGA [GEM], are comparable to those in Ref. [13], hξ1i ¼
−0.617½−0.531� with SGA [power law]. This shows that
our GEM results for the ξ moment are more in line with
those for the power-law ansatz. This can be understood as
they have more enhancements near x ¼ 1, which make
them less asymmetrical with respect to x ¼ 1=2 and yield
smaller absolute values of odd ξ moments.

FIG. 7. Twist-2 DAs ϕ2;PðxÞ of pseudoscalar heavy mesons with various quark flavor contents for both SGA (red) and GEM (blue).
Compared to the results for the SGA, we find the DAs for the GEM are more enhanced near both end points.

FIG. 8. DAs and their end point behavior ϕ2;ηcðx → 1Þ in two
methods. The inset displays the DA near x ¼ 1, with a behavior
ϕðx → 1Þ ∝ ð1 − xÞ obtained for the GEM, while that for the
SGA behaves differently.
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Since we now know the qualitative difference in the
predictions of both methods, it is also interesting to
compare the DAs for pseudoscalar and vector mesons
obtained by the GEM. The comparisons are provided in
Fig. 9 where we plot the ϕ2;PðxÞ;ϕk

2;VðxÞ, and ϕ⊥
2;VðxÞ. The

ϕ2;PðxÞ are similar to the ϕk;⊥
2;V ðxÞ for bottom mesons, partly

due to the heavy-quark symmetry, but there is some
noticeable difference for the case of charm mesons. One

can see that ϕk;⊥
2;V ðxÞ are generally comparable with each

other, but have higher peaks as compared to ϕ2;PðxÞ. When
we use Gaussian basis functions with different range
parameters (GEM), the resulting DAs always have a single
peak. This is rather different than those obtained by
expanding into the HO basis function where the mixture
of higher nS can lead to oscillatory DAs [42] for the ground
states such that the mixture is restricted to be very
small [41].
For completeness, we also provide the six lowest ξ

moments for vector meson DAs in Table V. The ξ moments

for the bottom vector and pseudoscalar mesons are rather
similar, following their DAs as shown in Fig. 9. For the

charm mesons, the odd (even) ξ moments for ϕk;⊥
2;V are

smaller (larger) than those of ϕ2;P where the biggest
difference is from the lowest odd hξ1i and even hξ2i
moments. Additionally, the even ξ moment of ϕ⊥

2;V are

generally smaller than those of ϕk
2;V . For the charmonia and

bottomonia, the even (odd) ξ moments of ϕ⊥
2;V are larger

(smaller) than those of ϕk
2;V for the heavy-light mesons.

F. Electromagnetic form factors

The results of the EM form factors of the pseudoscalar
heavy mesons for both SGA and GEM are presented in
Fig. 10, together with the lattice QCD [82–85]. We find that
the results for Dþ and Dþ

s in both methods are comparable
and consistent with the lattice QCD [82,84]. For the form
factor of the ηc, both methods seem consistent with
Ref. [83], but only the result for the GEM can reproduce

TABLE IV. Six lowest ξ moments of ϕ2;PðxÞ for both SGA and GEM, where ξ ¼ 2x − 1. The ξ moments for the GEM are generally
larger than those for the SGA, except for the even ξ moments of B and Bs mesons.

ϕ2;D ϕ2;Ds
ϕ2;ηc ϕ2;B ϕ2;Bs

ϕ2;Bc
ϕ2;ηb

SGA GEM SGA GEM SGA GEM SGA GEM SGA GEM SGA GEM SGA GEM

hξ1i −0.303 −0.262 −0.280 −0.244 � � � � � � −0.629 −0.508 −0.609 −0.497 −0.381 −0.329 � � � � � �
hξ2i 0.218 0.238 0.203 0.222 0.099 0.118 0.438 0.399 0.415 0.385 0.202 0.216 0.056 0.086
hξ3i −0.133 −0.117 −0.117 −0.100 � � � � � � −0.324 −0.279 −0.303 −0.263 −0.115 −0.104 � � � � � �
hξ4i 0.103 0.112 0.089 0.098 0.023 0.039 0.251 0.234 0.231 0.218 0.071 0.080 0.008 0.026
hξ5i −0.076 −0.067 −0.063 −0.053 � � � � � � −0.201 −0.180 −0.182 −0.164 −0.046 −0.043 � � � � � �
hξ6i 0.062 0.066 0.050 0.055 0.007 0.018 0.164 0.157 0.147 0.141 0.031 0.038 0.002 0.012

FIG. 9. Twist-2 DAs of pseudoscalar ϕ2;PðxÞ and vector heavy mesons with longitudinal ϕk
2;VðxÞ and transverse ϕ⊥

2;VðxÞ polarization.
Although we include the spin-spin term nonperturbatively, the differences in the DAs of pseudoscalar and vector mesons are rather
small. Only the mesons with charm quark show some visible difference in the DAs.
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the lattice QCD (orange dashed line) of Dudek et al. [85].
Note that we consider only the quark contribution for the
case of ηc and ηb, otherwise, the form factor vanishes.
We see that the falloff of EM form factors in the low-Q2

region for the GEM are generally faster than those for the
SGA. Even so, the difference between them may depend on
the fit as the form factor depends on the quark masses and
the potential parameters, where typically the smaller quark
masses produce a faster falloff of the form factor.
The mean squared of the charge radii from the form

factors are shown in Table VI, indicating that the obtained
radii for the GEM are generally larger compared to those
for the SGA. This can be understood from the density of the

WF plotted in Fig. 4. Since the WF for the GEM extends
more to long distances, the expected radius of hr2EMi is
larger than those for the SGA. Nevertheless, the obtained
radii in both models are consistent with current lattice QCD
[82–85]. In particular, for the Bþ meson, the results from
the two methods show a large deviation, i.e., hr2EMi ¼
0.297ð0.459Þ fm2 for the SGA (GEM), respectively.
Therefore, more lattice QCD data on this observable is
necessary to further constrain the models.
It is also crucial to examine the falloff of the form factor

in the high-Q2 region, as it is dictated by perturbative QCD.
As a demonstration, in Fig. 11, our calculations show that
Q2FDþðQ2Þ decreases with increasing Q2 rather than

TABLE V. Six lowest ξ moments of ϕk
2;VðxÞ and ϕ⊥

2;VðxÞ obtained with the GEM, where ξ ¼ 2x − 1.

ϕk
2;D� ϕ⊥

2;D� ϕk
2;D�

s
ϕ⊥
2;D�

s
ϕk
2;J=ψ ϕ⊥

2;J=ψ ϕk
2;B� ϕ⊥

2;B� ϕk
2;B�

s
ϕ⊥
2;B�

s
ϕk
2;B�

c
ϕ⊥
2;B�

c
ϕk
2;ϒ ϕ⊥

2;ϒ

hξ1i −0.295 −0.311 −0.272 −0.286 � � � � � � −0.473 −0.501 −0.467 −0.494 −0.308 −0.326 � � � � � �
hξ2i 0.242 0.248 0.219 0.223 0.109 0.105 0.386 0.403 0.374 0.390 0.213 0.216 0.092 0.087
hξ3i −0.125 −0.133 −0.105 −0.111 � � � � � � −0.263 −0.280 −0.250 −0.266 −0.096 −0.101 � � � � � �
hξ4i 0.112 0.117 0.094 0.096 0.034 0.032 0.225 0.238 0.210 0.222 0.078 0.079 0.029 0.027
hξ5i −0.069 −0.074 −0.053 −0.056 � � � � � � −0.170 −0.182 −0.155 −0.166 −0.039 −0.041 � � � � � �
hξ6i 0.065 0.068 0.051 0.052 0.016 0.015 0.150 0.159 0.135 0.143 0.036 0.036 0.014 0.013

FIG. 10. Computed EM form factor for pseudoscalar heavy mesons compared with available lattice QCD data [82–85]. Note that only
the quark contribution is considered for ηc and ηb, as otherwise the form factors vanish.
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remaining constant. Although there are logarithmic cor-
rections lnQ2 due to the running of the strong coupling
constant αsðQ2Þ [87] that affect the Q2 dependence, there
could be other contributing factors. Then, we fitted the
form factor Q2FDþðQ2Þ using GEM for Q2 values
between 60 and 100 GeV2 on a log-log scale as illustrated
in Fig. 11. The results show that FðQ2Þ ∝ 1=ðQ2Þn with
n ¼ 1.63, as indicated in the inset. When the form factor
is adjusted by multiplying (dividing) by lnQ2, the
exponent becomes n ¼ 1.40 (n ¼ 1.86), deviating from
the perturbative QCD prediction of n ¼ 1. In a previous
study of the pion form factor [64], it was suggested that
including the pseudovector component in the meson

vertex using the Bethe-Salpeter approach, which is not
considered in this work, could yield the correct asymp-
totic behavior. Furthermore, some nonperturbative effects
may also give different Q2 dependence in the form factor
at high-Q2 region [88]. Further investigation into this
matter is essential to fully understand the underlying
mechanisms.

IV. CONCLUSION AND OUTLOOK

We have investigated the structure of heavy mesons
using the single Gaussian ansatz (SGA) and Gaussian
expansion method (GEM) within the light-front quark
model (LFQM). To accomplish this, we have concentrated
our efforts on the ground state of heavy mesons and
investigate not only their static properties, but also their
structural properties. To determine the model parameters,
we have performed a simultaneous χ2 fit to the static
properties such as mass spectra and decay constants and
examined the difference in the predictions of both methods
especially in the structural properties such as DAs and EM
form factor.
We found that both methods yield similar static proper-

ties such as mass spectra and decay constants, and given the
model uncertainty, they exhibit reasonable agreement with
experimental and lattice QCD data. However, they show
differences in the LFWFs and structural properties. In
particular, the asymptotic behaviors of the WFs ψ0ðk →
∞Þ ∝ 1=k2⊥ and DAs ϕðx → 1Þ ∝ ð1 − xÞ are correctly
reproduced by the GEM, while they are not in the case
of the SGA. These behaviors in the high-momentum region
are governed by relativistic kinematics and Coulombic

TABLE VI. EM radius hr2EMi of pseudoscalar mesons for both SGA and GEM, and compared with the lattice QCD [82–85] and the
results of Refs. [25,86]. The results are given in units of fm2.

Dþ Dþ
s ηc

SGA 0.155 0.101 0.039
GEM 0.221 0.154 0.067
Lattice, Can et al. [82] 0.152(26) � � � � � �
Lattice, Li, and Wu [83,84] 0.176(69) 0.125(13) 0.052(4)
Lattice, Dudek et al. [85] � � � � � � 0.063(1)

Bþ Bþ
c ηb

SGA 0.297 0.034 0.008
GEM 0.459 0.067 0.017
BLFQ [25] � � � � � � 0.012

D0 B0 B0
s

SGA −0.252 −0.161 −0.099
GEM −0.377 −0.228 −0.151
LFQM [86] −0.304 −0.187 −0.119
LFQM, HQS limit [86] −0.496 −0.248 −0.181

FIG. 11. EM form factor of the Dþ meson in the wide range of
transfer momentum Q2. We perform a linear fit to the form factor
FðQ2Þ between Q2 ¼ 60–100 GeV2 on a log-log scale.
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one-gluon exchange, which produce a power-law falloff of
theWF ψðr → 0Þ ∝ 1=r. Furthermore, the falloff of the EM
form factor in the low-Q2 is faster for the GEM, giving
better agreement when compared to the lattice QCD [85],
especially for the ηc meson.
For future work, several directions can be explored: first,

it is crucial to investigate the form of the model
Hamiltonian since the WF obtained in the GEM model
is sensitive to the Hamiltonian, unlike in the SGA.
Furthermore, expanding our calculations to include excited
states and light mesons is of great importance in testing the
applicability of GEM. Finally, our model can be tested on
other form factors and hadron distributions.
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