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Critical phenomena in phase transitions of strongly interacting matter, governed by quantum chromo-
dynamics, are inherently encoded in the fluctuations of conserved charges. In this work, we study the net-
baryon number density fluctuations, including the lowest-lying nucleon and the baryonic resonance
Δð1232Þ, based on the parity doublet model in the mean-field approximation. We focus on the qualitative
features of the second-order susceptibility of the net-baryon number density in dense hadronic matter and
how the inclusion of Δð1232Þ affects it. We demonstrate that the fluctuations of the individual baryons do
not necessarily reflect the total net-baryon number fluctuations at finite density, due to the nontrivial
correlations between different particle species. Our results highlight the role of baryonic correlations in the
interpretation of data from heavy ion collision experiments.
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I. INTRODUCTION

The exploration of critical phenomena in phase transi-
tions of strongly interacting matter governed by quantum
chromodynamics (QCD) is one of the goals of the current
ultrarelativistic heavy ion collision (HIC) experiments. In
particular, the central attention of the experiments at BNL
and CERN and the upcoming large-scale nuclear experi-
ments FAIR in GSI and NICA in Dubna is focused on
understanding the properties of dense baryonic matter (see,
e.g., [1] for a recent review). Low-energy hadronic matter
is expected to undergo a phase transition to quark-gluon
plasma with increasing baryon density and/or temperature.
From ab initio lattice QCD (LQCD) calculations at
vanishing net-baryon density, we know that strongly
interacting matter undergoes a simultaneous smooth resto-
ration of chiral symmetry and deconfinement of hadronic
matter to quark-gluon plasma at Tc ≃ 0.155 GeV [2–6].
The determination of the properties of the chiral phase

transition in LQCD calculations at high net-baryon den-
sities is currently unattainable due to a well-known sign
problem. Nevertheless, many effective models predict a
first-order transition at low temperatures (see, e.g., [7–10]).
This would imply the existence of a critical point on the
QCD phase diagram. Despite experimental efforts at the
Relativistic Heavy Ion Collider at BNL [11] and the Super

Proton Synchrotron at CERN [12], its existence has so far
not been confirmed [13].
Fluctuations of conserved charges are excellent probes

of critical behavior associated with phase transitions. The
expectation is that they would grow rapidly and exhibit
nonmonotonic behavior at the freeze-out in HICs [14–19]
and the QCD phase boundary [20–23]. Because of the
statistical nature of HIC experiments, the fluctuations of
conserved charges are connected to the event-by-event
fluctuations. First indications of nonmonotonic behavior
were seen in the net-proton multiplicity fluctuations in
central Auþ Au collisions in the BES-I program, which
covered

ffiffiffiffiffiffiffiffi
sNN

p ¼ 7.7–200 GeV. Nevertheless, more pre-
cise data at low collision energies are needed for better
statistics and determination of the behavior of higher-order
multiplicity fluctuations.
Chiral symmetry is a fundamental symmetry of quan-

tum QCD. One of the consequences of the dynamical
restoration of chiral symmetry is the appearance of parity
doubling of baryons, which has been verified in LQCD
calculations at finite temperature and the vanishing baryon
chemical potential for the octet and decouplet of light
baryons [24–26]. The masses of positive-parity baryons
were found to be almost independent of temperature. At the
same time, the masses of their negative-parity baryons were
found to drop rapidly as the chiral symmetry was being
restored, leaving the opposite-parity baryons degenerate
with a finite mass in the vicinity of the chiral crossover.
This phenomenon can be described in the effective frame-
work of the parity doublet model, which is a generalization
of the famous linear sigma model [27,28]. The model has
been applied to the phenomenology of HICs and studies of
neutron stars [29–62].
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The effects of the restoration of chiral symmetry on the
fluctuations of conserved charges have recently been
studied in the context of the parity doublet model with
nucleonic degrees of freedom [63,64]. The differences in
the qualitative critical behavior of opposite-parity chiral
partners and their correlations were shown to be nontrivial.
In this work, we use the parity doublet model to calculate
the susceptibilities of the net-baryon number distribution.
We generalize the analysis done in [64], based on a
framework that allows the evaluation of fluctuations in a
single baryonic parity doublet, that is, the nucleon and its
chiral partner. We explicitly include the Δð1232Þ resonance
and its chiral partner Δð1700Þ within the framework of the
extended parity doublet model [65]. The inclusion of Δ
matter introduces additional correlations that are expected
to affect the fluctuations of conserved charges. We analyze
the susceptibilities in individual chiral doublets and
various correlations among them. We emphasize the low-
temperature and high-density part of the model phase
diagram. It should be noted that the consequences of
the appearance of the Δð1232Þ resonance are found to
be crucial for the properties of the low-temperature equa-
tion of state (EOS) and the structure of neutron stars (see,
e.g., [44,45,66–71]). Therefore, it is important to explore
further the underlying role of the Δð1232Þ resonance in
dense matter under extreme conditions.
This work is organized as follows. In Sec. II, we

introduce the hadronic parity doublet model for the nucleon
and Δð1232Þ. In Sec. III, we introduce the cumulants and
susceptibilities of the net-baryon number. In Sec. IV, we
present our results. Finally, Sec. IV is devoted to the
conclusions.

II. PARITY DOUBLET MODEL

In this section, we briefly review the SU(2) parity
doublet for the nucleon and Δð1232Þ resonance [65].
Here, we follow [45] assuming isospin symmetry. The
thermodynamic potential of the model in the mean-field
approximation reads

Ω ¼
X
α

Ωα þ Vσ þ Vω; ð1Þ

where α denotes spin-1=2 nucleons (N�) and spin-3=2
Δ resonances (Δ�), with � denoting positive-
(negative-)parity states. The mean-field potentials are

Vσ ¼ −
λ2
2
σ2 þ λ4

4
σ4 −

λ6
6
σ6 − ϵσ; ð2Þ

Vω ¼ −
m2

ω

2
ω2; ð3Þ

where λ2 ¼ λ4f2π − λ6f4π −m2
π and ϵ ¼ m2

πfπ. The masses
of the π and ω mesons are denoted as mπ and mω,

respectively. The decay constant of the pion is denoted
as fπ . The parameters λ4 and λ6 are fixed to the properties
of the nuclear ground state at vanishing temperature: the
saturation density n0, binding energy E=A −mNþ, and the
incompressibility K (see Table I). An additional constraint
on the model is imposed by the condition that Δ matter is
not present in the nuclear ground state and subsaturation
densities. Therefore, determining the ground state proper-
ties in the current model is done in the same way as in the
pure nucleonic parity doublet model (see, e.g., [64]).
The kinetic part of the thermodynamic potential reads

Ωα ¼ γαT
Z

d3p
ð2πÞ3 lnð1 − fαÞ þ lnð1 − f̄αÞ; ð4Þ

where

fα ¼ ð1þ eðEα−μαÞ=TÞ−1; ð5Þ

f̄α ¼ ð1þ eðEαþμαÞ=TÞ−1 ð6Þ

are the particle and antiparticle Fermi-Dirac distribution
functions, respectively. The spin-isospin degeneracy factors
are γN� ¼ 2 × 2 ¼ 4 and γΔ� ¼ 4 × 4 ¼ 16. The disper-

sion relation is Eα ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

α

p
, the effective chemical

potential is μα ¼ μB − gαωω, and T is the temperature. We
note that in the current model, the positive- and negative-
parity states are coupled to the vector meson with the same
strength, that is, gNω ¼ gNþ

ω ¼ gN−
ω and gΔω ¼ gΔþ

ω ¼ gΔ−
ω .

Thus, we also define the effective chemical potentials
μN ¼ μNþ ¼ μN−

and μΔ ¼ μΔþ ¼ μΔ−
. In the literature,

it is customary to parametrize the coupling of the ω meson
to the Δ baryon in terms of the coupling to the nucleon:

rΔ ¼ gΔω
gNω

: ð7Þ

The masses of the positive- and negative-parity chiral
partners are given by

md
� ¼ 1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2dσ

2 þ 4ðmd
0Þ2

q
∓ bdσ

�
; ð8Þ

where the � sign denotes parity and d∈ fN;Δg labels the
nucleonic and Δ doublets. The states N� are identified as
Nð939Þ andNð1535Þ, andΔ� asΔð1232Þ andΔð1700Þ [72].
We note that other possibilities for identifying the chiral

TABLE I. Properties of the nuclear ground state at T ¼ 0 and
μB ¼ 0.923 GeV used in this work: saturation density n0, binding
energy E=A −mNþ, and incompressibility K.

n0½fm−3� E=A −mNþ [GeV] K [GeV]

0.16 −0.016 0.24
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partners are also possible (see, e.g., Refs. [37,73]. The para-
meters ad and bd are combinations of Yukawa couplings
with the σ meson. For a given doublet, they are determined
by the corresponding vacuum masses md

� (see Table II).
The parameters of the Δ sector are generally poorly

constrained [74]. The most commonly used constraint is the
depth of the Δ optical potential, UΔ, at nuclear saturation
density. However, there is no clear consensus in the
literature as to what its value should be. For example,
analyses of the threshold for π and Δ production in heavy
ion collisions give UN ≲ UΔ ≲ 2=3UN (see, e.g., [75–78]).
However, a recent comparison of the optical potentials of
the nucleon and Δ in electron scattering on nuclear targets
suggests that UΔ ≃ 3=2UN [79]. In principle, the values of
the ratio rΔ and the chirally invariant mass mΔ

0 in the parity
doublet model can be constrained by analyzing the electro-
magnetic excitations of Δ. This was done in the context
of the relativistic quantum hadrodynamics scheme, which
constrains the baryon-meson couplings [80]. A similar
analysis could be performed in the parity doublet model.
This would yield a relation between rΔ and mΔ

0 . However,
such a study is beyond the scope of this paper, and we plan
to explore these issues elsewhere.
In this work, we focus on a qualitative description of the

fluctuations of the net-baryon number density. We consider
a representative value of mN

0 ¼ 0.8 GeV. This large value
is motivated by the recent lattice QCD results [24–26].
Similar values have also been used in the literature
[32–43,46–56,62,63,81,82]. Note, however, that the quali-
tative structure of the results presented in this paper does
not depend on the choice of mN

0 . There are two remaining
parameters, mΔ

0 and rΔ. At vanishing baryon chemical
potential, the EOS does not depend on rΔ due to the
vanishing ω at μB ¼ 0.1 Therefore, we first use the finite-
temperature EOS at μB ¼ 0 to determine mΔ

0 . We find that
for the chosen value of mN

0 , the model yields a smooth
chiral crossover transition for mΔ

0 ≳ 0.95 GeV. We also
requiremN

0 ≲mΔ
0 . In general, too low values ofmΔ

0 lead to a
first-order phase transition at μB ¼ 0, and they also lead to
the appearance of Δ matter at subsaturation densities, thus,
spoiling the ground state properties [65]. On the other hand,
setting mΔ

0 → ∞ suppresses the Δ states, and the EOS

effectively corresponds to the pure nucleonic EOS. In the
present work, we choose mΔ

0 ¼ 0.95 GeV because it yields
the lowest temperature of the chiral crossover transition
at the vanishing baryon chemical potential. In Fig. 1, we
plot the normalized expectation value of the σ mean field at
vanishing baryon chemical potential for the pure nucleonic
(no Δ) and mΔ

0 ¼ 0.95 GeV models. Including Δ lowers
the pseudocritical temperature from Tc ≃ 0.21 GeV to
Tc ≃ 0.17 GeV. With mΔ

0 fixed, we are left with a single
parameter, rΔ, and we systematically study the influence of
repulsion on the fluctuations of the net-baryon number
density. The phase structure at the vanishing baryon
chemical potential is independent of the strength of the
repulsive couplings. Therefore, the strongest dependence
of the EOS on rΔ is expected at low temperature and high
density.
In Fig. 2, we show the phase diagram of the parity

doublet model for rΔ ¼ 0.8, 1.2. The liquid-gas crossover
line obtained at a minimum of ∂σ=∂μNþ (see Sec. III for
details) is almost independent of the choice of rΔ. This is to
be expected since the parameters are chosen so as not to
affect the properties of the nuclear ground state at low
temperatures and rΔ does not affect the EOS at vanishing
baryon chemical potential. Other lines, obtained from the
corresponding inflection points of ∂σ=∂μα, are sensitive to
the value of rΔ at low temperatures. They converge and
continue almost as a single line with increasing temperature
until Tc is reached at the vanishing baryon chemical
potential. In this work, we pay particular attention to the
low-temperature and high-baryon chemical potential part of
the phase diagram.We systematically study the influence of
Δ matter on the fluctuations of the net-baryon number in
dense matter. We remark that the liquid-gas crossover
transition develops a critical point at T ≃ 0.016 GeV and

TABLE II. Physical vacuum inputs and the parity doublet
model parameters used in this work. All entries are in GeV.

mN
0 mNþ mN− mΔ

0 mΔþ mΔ− mπ mω fπ

0.8 0.939 1.5 0.95 1.232 1.7 0.14 0.783 0.093

FIG. 1. Normalized expectation value of the σ mean field at
vanishing baryon chemical potential for mN

0 ¼ 0.8 GeV, and
mΔ

0 ¼ ∞ (blue, dotted line) and mΔ
0 ¼ 0.95 (red, dash-dotted

line). The vertical dashed lines mark the pseudocritical temper-
atures Tc.

1We note that while the EOS at vanishing baryon chemical
potential and finite temperature, i.e., pðϵÞ, is not affected by the
values of repulsive couplings, the fluctuations depend on them.
See, for example, [64].
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turns into an ordinary first-order phase transition. In
principle, the existence of critical points at the other
crossover lines shown in Fig. 2 depends on the model
parametrization. In this case, additional effects, such as
nonequilibrium spinodal decomposition would have to be
addressed. These effects have been explored, for example,
in the context of the Nambu–Jona-Lasinio model [83,84].
However, this is beyond the scope of the current work. We
plan to elaborate on this interesting issue elsewhere.
We define the particle fraction as follows:

Yα ¼
nα
nB

; ð9Þ

where

nα ¼ −
∂Ωα

∂μB
and nB ¼

X
α

nα; ð10Þ

whereΩα is the kinetic part of the thermodynamic potential
for particle species α, and nα, nB are the net density of
particle species α and the total net-baryon number density,
respectively. Equation (9) yields the following constraint:P

α Yα ¼ 1. In Fig. 3, we show the fraction of nuclear
matter YN ≡ YNþ þ YN−

at T ¼ 0.03 GeV for different
values of rΔ. Note that the corresponding fraction of Δ
matter is YΔ ¼ 1 − YN . As indicated in [45], the asymptotic
high-density matter composition depends on the difference
of the chemical potentials:

μN − μΔ ¼ gNωωðrΔ − 1Þ

¼
�
gNω
mω

�
2

ðnN þ rΔnΔÞðrΔ − 1Þ; ð11Þ

where nN ¼ nNþ þ nN−
, nΔ ¼ nΔþ þ nΔ−

. Note that the
last equality is valid because of stationary conditions. The
sign of the right-hand side depends only on the sign of
ðrΔ − 1Þ. Therefore, the composition of asymptotic matter
depends solely on the value of rΔ. For rΔ ¼ 1, at large μB,
the composition of the system can be determined by
degeneracy factors, that is, Yα ¼ γα=

P
i γi. In that case,

YN → 0.2 at high μB. For rΔ > 1, the system is dominated
by nuclear matter, that is, YN → 1 at high μB. Interestingly,
small deviations of rΔ from unity produce different
compositions of matter at μB ≲ 2 GeV. For example, for
rΔ ¼ 1.1, we observe that the system is dominated to a
large extent by nuclear matter with YN ≳ 0.95. Thus, for
rΔ ≳ 1.1, the EOS at low temperatures should already
reflect the pure nucleonic EOS. Generally, for rΔ > 1 the
fraction of nuclear matter features a minimum, which is
dictated by asymptotic behavior. On the other hand, when
rΔ < 1, the system becomes dominated by Δ matter and
YN → 0. The lower the value of rΔ, the faster the nuclear
matter is suppressed. We find that for rΔ ¼ 0.8–1.2, the
fraction of nuclear matter can range from almost zero to
unity for μB ≲ 2.0 GeV. We note that rΔ → ∞ and/or
mΔ

0 → ∞ suppresses Δ matter and the EOS effectively
corresponds to the pure nucleonic EOS.
In this work, we fix mN

0 ¼ 0.8 GeV, mΔ
0 ¼ 0.95 GeV,

and consider three representative values of rΔ ¼ 0.8, 1.0,
1.2. We systematically study the influence of Δ matter on
the susceptibility of the net-baryon number density.

III. SUSCEPTIBILITIES OF THE NET-BARYON
NUMBER DENSITY

In this work, we assume a system composed of positive-
and negative-parity nucleons and Δ’s. Since isospin corre-
lations are expected to be small [85], for simplicity, we

FIG. 2. Phase diagram obtained in the parity doublet model.
The lines are obtained from the minima of ∂σ=∂μα (see text for
details). Note that the lines for rΔ ¼ 1.2 and Nþ practically
overlap with the corresponding line for rΔ ¼ 0.8 and are not
shown in the figure.

FIG. 3. Nuclear matter fraction YN ¼ YNþ þ YN−
as a function

of the baryon chemical potential at T ¼ 0.03 GeV for different
values of the repulsive coupling rΔ. We note that the correspond-
ing Δ matter fraction YΔ ¼ YΔþ þ YΔ−

¼ 1 − YN .
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assume isospin symmetry. Thus, each isospin state contrib-
utes equally, which is expressed in the degeneracy factors
(see Sec. II). For such a system, the net-baryon number is

NB ¼ NNþ þ NN−
þ NΔþ þ NΔ−

; ð12Þ

with the � sign denoting the net number of positive/
negative-parity baryons. The mean and variance can be
expressed in terms of cumulants as

hNBi≡ κB1 ¼
X
α

κα1;

hδNBδNBi≡ κB2 ¼
X
α;β

καβ2 ; ð13Þ

respectively. The individual terms in the equations above are

κα1 ¼ hNαi;
καβ2 ¼ hδNαδNβi; ð14Þ

where α; β∈ fN�;Δ�g.
In general, the cumulants of the baryon number are

defined as

κBn ≡ Tn d
n logZ
dμnB

����
T¼const

; ð15Þ

where Z is the partition function. Because the thermody-
namic potentialΩ is related to the grand-canonical partition
function through Ω ¼ −T logZ=V, one may relate the
cumulants with the susceptibilities of the net-baryon
number in the following way:

κBn ¼ VT3χBn ; ð16Þ

where V is the volume of the system and

χBn ≡ −
dnΩ̂
dμ̂nB

����
T
; ð17Þ

with Ω̂ ¼ Ω=T4 and μ̂B ¼ μB=T.
To be able to connect the individual cumulants καβn to

susceptibilities [as in Eq. (16)], we need to rewrite the
mean-field thermodynamic potential in terms of the newly
defined chemical potentials, μN� and μΔ� for positive- and
negative-parity nucleons and Δ’s:

Ω ¼ ΩNþðμNþ ; T; σ;ωÞ þ ΩN−
ðμN−

; T; σ;ωÞ
þΩΔþðμΔþ ; T; σ;ωÞ þ ΩΔ−

ðμΔ−
; T; σ;ωÞ

þ VσðσÞ þ VωðωÞ; ð18Þ

where the mean fields σ ¼ σðμNþ ; μN−
; μΔþ ; μΔ−

; TÞ and
ω ¼ ωðμNþ ; μN−

; μΔþ ; μΔ−
; TÞ. Such a separation into

separate chemical potentials is possible in the mean-field
approximation, which is a single particle theory (see
detailed discussion in [86]). To be thermodynamically
consistent, we need to set each μα ¼ μB − gαωω at the
end of the calculations and before the numerical evaluation.
We note that μα’s are independent variables. The net-baryon
density is then given as

nB ¼ nNþ þ nN−
þ nΔþ þ nΔ−

; ð19Þ

where nα are the net densities given by

nα ¼ −
∂Ω
∂μα

: ð20Þ

After a little bit of algebra, it can be seen that this definition
is consistent with Eq. (10). We stress that the derivative
should be taken at a constant temperature.
The second-order susceptibility can be expressed as

follows:

χB2 ¼ χNN
2 þ χΔΔ2 þ χNΔ

2 ; ð21Þ

where

χNN
2 ¼ χNþNþ

2 þ χN−N−
2 þ 2χNþN−

2 ;

χΔΔ2 ¼ χΔþΔþ
2 þ χΔ−Δ−

2 þ 2χΔþΔ−
2 ;

χNΔ
2 ¼ 2

�
χNþΔþ
2 þ χNþΔ−

2 þ χN−Δþ
2 þ χN−Δ−

2

	
; ð22Þ

which contain contributions from the nucleonic, Δ sectors,
and terms that mix them. We note that in [64], a simplified
system consisting of a single parity doublet was considered.
By explicitly including the Δ� states, in addition to the
individual nucleonic and Δ sectors, four additional sus-
ceptibilities that mix them have to be considered. The
individual terms in Eq. (22) equation are given as follows:

χαβ2 ¼ 1

VT3
καβ2 ¼ −

d2Ω̂
dμ̂αdμ̂β

����
T¼const

; ð23Þ

where μ̂x ¼ μx=T. The detailed derivation of the cumulants
καβ2 is presented in [64] for the system consisting of
nucleonic parity partners. The inclusion of Δ� is straight-
forward. We notice that, in the mean-field approxima-
tion, χαβ2 ¼ χβα2 .
The susceptibilities defined in Eq. (22) can be related

through Eq. (23) to the cumulants of the two-component
system:

κNN
2 ¼ hδNδNi;
κΔΔ2 ¼ hδΔδΔi;
κNΔ
2 ¼ hδNδΔi; ð24Þ
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with

κB2 ¼ κNN
2 þ κΔΔ2 þ 2κNΔ

2 ; ð25Þ

where the nucleon, Δ, and net-baryon numbers are
N ¼ Nþ þ N−, Δ ¼ Δþ þ Δ−, and NB ¼ N þ Δ,
respectively.
Event-by-event cumulants and correlations are extensive

quantities. They depend on the volume of the system and its
fluctuations, which are unknown in heavy-ion collisions.
However, the volume dependence can be canceled by
taking the ratio of cumulants. Therefore, it is useful to
define the scaled variance, i.e., the ratio of the second- to
first-order cumulants of the baryon number, which may
also be expressed through susceptibilities,

RB
2;1 ≡ κB2

κB1
¼ χB2

χB1
: ð26Þ

To analyze the scaled variances for individual particle
species we also define the partial scaled variances:

Rαβ
2;1 ≡ καβ2ffiffiffiffiffiffiffiffiffi

κα1κ
β
1

q ¼ χαβ2ffiffiffiffiffiffiffiffiffi
χα1χ

β
1

q : ð27Þ

The scaled variances, Rαβ
2;1, can be defined also for cumu-

lants related to the nucleonic and Δ sectors in Eq. (24).
We note that, in general, the partial scaled variances Rαβ

2;1,
are not additive. For example, RNN

2;1 þ RΔΔ
2;1 þ 2RNΔ

2;1 ≠ RB
2;1.

We note that due to experimental limitations, the net-proton
number fluctuations are assumed to reflect the fluctuations
of the net-baryon number. However, this relation has not
yet been explored in theoretical models with dynamical
chiral symmetry restoration.
The susceptibilities introduced in Eq. (23) can be

evaluated analytically by differentiating Eq. (18).
Explicit calculations yield

χαβ2 ¼ −
∂σ

∂μ̂β

�
∂
2Ω̂
∂σ2

∂σ

∂μ̂α
þ ∂

2Ω̂
∂σ∂ω

∂ω

∂μ̂α
−
∂n̂α
∂σ

�

−
∂ω

∂μ̂β

�
∂
2Ω̂
∂ω2

∂ω

∂μ̂α
þ ∂

2Ω
∂σ∂ω

∂σ

∂μ̂α
−
∂n̂α
∂ω

�

þ ∂σ

∂μ̂α

∂n̂β
∂σ

þ ∂ω

∂μ̂α

∂n̂β
∂ω

þ ∂n̂α
∂μ̂β

; ð28Þ

where n̂α=β ¼ nα=β=T3 and nα=β are the net densities defined
in Eq. (20). We note that the last term ∂n̂α=∂μ̂β ¼ 0

for α ≠ β.
To evaluate Eq. (28), one needs to extract the derivatives

of the mean fields with respect to effective chemical
potentials. The derivatives can be calculated out by

differentiating the gap equations, namely

d
dμ̂α

�
∂Ω̂
∂σ

�����
T¼const

¼ d
dμ̂α

�
∂Ω̂
∂ω

�����
T¼const

¼ 0: ð29Þ

Writing them explicitly and isolating ∂σ=∂μ̂α, ∂ω=∂μ̂α,
yields

∂σ

∂μ̂α
¼
 

∂
2Ω̂

∂σ∂ω
∂
2Ω̂
∂ω2

∂n̂α
∂ω

−
∂n̂α
∂σ

! = ∂2Ω̂
∂σ2

−


∂
2Ω̂

∂σ∂ω

�2
∂
2Ω̂
∂ω2

!
;

∂ω

∂μ̂α
¼ −

�
∂n̂α
∂ω

þ ∂
2Ω̂

∂σ∂ω

∂σ

∂μ̂α

� =∂2Ω̂
∂ω2

: ð30Þ

We note that corresponding derivatives of the mean fields
with respect to μ̂β can be found similarly upon replacing
α → β. The above derivatives can be plugged into Eq. (28).
Once the values of the mean fields are established, Eq. (28)
can be evaluated numerically.

IV. RESULTS

First, we study the susceptibilities at finite temperatures
and vanishing baryon chemical potential. They are shown
in Fig. 4, for rΔ ¼ 0.8. It is instructive to compare our
results with those of the truncated hadron resonance gas
(tHRG) model, where the only degrees of freedom are
nucleons, Δ’s, and their chiral partners. The HRG model is
widely used for the description of matter under extreme
conditions, e.g., in the context of heavy-ion collision
phenomenology [87–92]. The thermodynamic potential

FIG. 4. Susceptibilities, χαβ2 , as functions of temperature at
vanishing baryon chemical potential. Also shown is the net-
baryon number susceptibility χB2 and the corresponding result,
χB;tHRG2 , obtained in the tHRG model. Note that the correlations
between N� and Δ� are combined in 1=2χNΔ

2 (see text for
details). The vertical, dotted line marks the chiral phase transition.
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of the tHRG model is a mixture of uncorrelated ideal gases
of stable particles:

ΩtHRG ¼
X
α

Ωα; ð31Þ

where α ¼ fN�;Δ�gwithΩα given by Eq. (4). The masses
are taken to be the vacuum masses (see Table II) and
μN ¼ μΔ ¼ μB. The net-baryon density and its susceptibil-
ity are obtained through Eq. (17). Thus, in the tHRG model
one has

χB;tHRG2 ¼ χNþNþ
2 þ χN−N−

2 þ χΔþΔþ
2 þ χΔ−Δ−

2 : ð32Þ

Because of the uncorrelated nature of N� and Δ� in the
tHRG model, there are no correlation terms in χB;tHRG2 . The
susceptibility in the tHRG model increases monotonically,
and we do not observe any critical behavior. The result

FIG. 5. Net-baryon number susceptibility for different values
of rΔ at T ¼ 0.03 GeV as functions of the baryon chemical
potential.

FIG. 6. Susceptibilities χαβ for different rΔ at T ¼ 0.03 GeV. Terms within the nucleonic and Δ sectors are shown in the right panel.
The correlations between N� and Δ� are shown in the left panel. Note that in the right panel, the correlators are shown with a negative
sign and that the scales are different in each panel.
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obtained in the parity doublet model deviates from the
tHRG baseline due to the in-medium properties of the
baryons. It reaches its maximum above Tc and starts to
decrease due to decreasing negative correlations. The
positive-parity susceptibilities, χNþNþ

2 and χΔþΔþ
2 , dominate

at low temperatures, increase rapidly as Tc is approached,
and continue to increase above it. The negative-parity
susceptibilities, χN−N−

2 and χΔ−Δ−
2 , become non-negligible

only near Tc and converge to their positive-parity counter-
parts at higher temperatures, due to chiral symmetry
restoration. Similarly, the correlators become relevant only
in the vicinity of Tc. Generally, the correlations are negative
at vanishing baryon chemical potential. We note that
although the susceptibilities at vanishing baryon chemical
potential are not independent of rΔ, they are qualitatively
similar.
We remark on the simplified nature of the current model.

Namely, the Nð1535Þ, Δð1232Þ, and Δð1700Þ resonances
are considered to be stable particles by neglecting their
finite widths. However, including the effects of finite
width in a self-consistent way is nontrivial in the context
of the relativistic mean-field approach. Forecasting possible
effects on fluctuation observables would require one to
account for the imaginary part of the resonance self-energy
as done, e.g., for N−ð1535Þ in dense nuclear matter [93].
Now we turn to the finite baryon chemical potential

regime and consider fixed T ¼ 0.03 GeV. In Fig. 5, we
show the net-baryon number susceptibility. The behavior at
μB < 1 GeV is similar for all the values of rΔ shown in
the figure. The curves show a well-pronounced peak that is
a remnant of the liquid-gas phase transition. Small devia-
tions from the pure nucleonic result are due to a small
fraction of theΔmatter present at T ¼ 0.03 GeV. At higher
chemical potentials, the susceptibilities develop plateaux. A
small peak is seen for the pure nucleonic EOS around
μB ¼ 1.4 GeV, which is a remnant of the first-order chiral
phase transition at low temperatures. The secondary peak
for rΔ ¼ 0.8 is a result of lower repulsion for the Δ matter,
leading to an early onset of the Δþ state. The result for
rΔ ¼ 1.1 is very close to the pure nucleonic EOS. We note
that for rΔ ¼ 1.2, the net-baryon number susceptibility
converges to that of pure nucleonic EOS. This convergence
is due to the suppression of Δ matter by repulsive
interactions. However, the net-baryon number susceptibil-
ity at higher baryon chemical potential shows very little
sensitivity to the choice of rΔ and depends only on the
composition of the asymptotic matter, as discussed in the
previous section.
The individual susceptibilities χαβ2 also depend on the

values of repulsive couplings. This can be seen in the right
panel of Fig. 6. For rΔ < 1, the susceptibility is dominated
by the contribution of Δ�. Similarly, for rΔ > 1, they are
dominated by the contribution ofN�. This is expected from
the relative abundances shown in Fig. 3 and discussed
above. For rΔ ¼ 1 all susceptibilities are not negligible.

In general, the susceptibilities χαα2 at a high baryon
chemical potential are much larger than the corresponding
peak from the liquid-gas transition below μB ¼ 1 GeV. At
the same time, the positive-negative parity correlations
within the same doublet become negative and show minima
of similar size as the peaks in χαα2 . The correlations between
N� and Δ� are shown in the left panel of Fig. 6 and have a
qualitatively similar structure for different values of rΔ.
However, their magnitude depends on the choice of the
repulsive coupling, and they are non-negligible, except for
rΔ ¼ 1.2, for which the Δ matter is almost completely
suppressed. Interestingly, we find that the susceptibilities of
the opposite-parity states (which are not chiral partners),
i.e., χNþΔ−

2 and χN−Δþ
2 become large and negative. They

become dominant and have minima around the chiral
crossover, providing an additional source of cancellation
of the net-baryon number fluctuations at finite density.
The collective susceptibilities defined in Eq. (22) are

shown in Fig. 7. For rΔ ¼ 1.2, susceptibilities containing Δ
vanish due to a large repulsive coupling for Δ�. Similarly,
for rΔ ¼ 0.8, the system is initially driven by the nucleon
susceptibility χNN

2 , but χΔΔ2 quickly becomes dominant and
χNN
2 vanishes at a higher baryon chemical potential. For
rΔ ¼ 1.0, all terms continue to grow with the baryon
chemical potential. On the other hand, for rΔ ¼ 1.2, the
susceptibilities in the Δ channel and the NΔ correlations

FIG. 7. Total susceptibilities within nucleonic and Δ sectors
and correlation between them as defined in Eq. (22) as functions
of the baryon chemical potential at T ¼ 0.03 GeV. Note that χNΔ

2

is plotted with a negative sign. The total net-baryon number
susceptibility is shown with red lines.
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are small due to the suppression of the Δ matter. We note
that the χNN

2 and χΔΔ2 susceptibilities are mostly positive.
On the other hand, as soon as the contribution from Δ�
becomes non-negligible, χNΔ

2 becomes significant and
negative. The susceptibilities χNN

2 and χΔΔ2 are smaller
than the individual susceptibilities shown in the right panel
of Fig. 6, due to the repulsive nature of the correlations of
the opposite-parity chiral partners. The correlations
between N� and Δ� are non-negligible and generally tend
to be negative at a high baryon chemical potential. Thus,
the correlator χNΔ

2 is negative at large baryon chemical
potentials, further suppressing the susceptibility of the total
net-baryon number density.
As shown in Fig. 8, qualitatively similar structures can be

seen in the scaled variances defined in Eq. (27). At low
chemical potential, the sensitivity to the liquid-gas tran-
sition is seen in RNþNþ

2;1 . At a high baryon chemical potential
as the chiral symmetry becomes restored, the signal is
dominated by the scaled variances of the negative-parity

states, which develop peaks related to the onset of the chiral
partners, N− and Δ−. The mixed scaled variances between
N� andΔ� show patterns similar to the susceptibilities χαβ2 .

At a high baryon chemical potential, the ratios RNþΔþ
2;1 and

RN−Δ−
2;1 feature peaks related to the restoration of chiral

symmetry, while RN−Δþ
2;1 and RNþΔ−

2;1 feature minima.
Most of the structure seen in the scaled variances is

washed out when the full nucleonic and Δ sectors are
considered as defined in Eqs. (22) and (27). This is shown
in Fig. 9. For rΔ ¼ 0.8, RNN

2;1 ≃ RB
2;1 below μB ≃ 0.9 GeV

until Δ matter becomes populated. This is also reflected in
the enhancement of RΔΔ

2;1 , which converges to RB
2;1 with a

higher baryon chemical potential. At the same time RNN
2;1

goes to unity, due to rΔ < 1. Similarly, for rΔ ¼ 1.0, RNN
2;1

deviates from RB
2;1 as soon as the Δ matter sets in; i.e., RΔΔ

2;1

deviates from unity. However, since at high density the
composition is determined by the degeneracy factors, none
of the ratios converge toRB

2;1. For rΔ ¼ 1.2, RΔΔ
2;1 ≃ 1, due to

FIG. 8. Scaled variances, Rαβ
2;1, for different sectors and different values of rΔ at T ¼ 0.03 GeV. Ratios within the nucleonic and Δ

sectors are shown in the right panel. The correlations between N� and Δ� are shown in the left panel. Note that in the right panel the
correlators, RNþN−

2;1 and RΔþΔ−
2;1 , are shown with negative sign.
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the suppression of Δ� states. Consequently, RNN
2;1 ≃ RB

2;1.
However, RB

2;1 is suppressed compared to other scaled
variances, regardless of the choice of rΔ.

V. SUMMARY

We have studied the net-baryon number density fluctua-
tions in dense matter. We have used the parity doublet
model for the nucleons and Δ baryons in the mean-field
approximation. The model features baryonic chiral partners
of opposite parity. It allowed us to study the interplay of the
positive- and negative-parity baryons, as well as various
correlations between them, and their role in fluctuations
of net-baryon number density. In this work, we analyzed
the second-order susceptibilities, focusing on the low-
temperature and high-density part of the phase diagram.
We confirmed that the fluctuations near the liquid-gas

phase transition are dominated by the fluctuations of the

positive-parity nucleon. This is not the case for a larger
baryon chemical potential (or net-baryon density). The
contributions of other species become non-negligible, and
the structure of the individual susceptibilities and correla-
tions becomes nontrivial. Generally, the total fluctuations in
a given baryonic chiral doublet (i.e., the fluctuations of the
positive- and negative-parity states and their correlation)
are smaller than the individual fluctuations. This is due to
the nonvanishing correlation between the chiral partners.
Furthermore, the total net-baryon number fluctuations are
further suppressed compared to the fluctuations of the
individual parity doublets. The source of this suppression
comes from the correlations between nucleonic and Δ
sectors. We observe that the susceptibility of the negative-
parity states becomes dominant at high baryon chemical
potentials. This is even more evident when the scaled
variances are considered, i.e., ratios of the second- to first-
order susceptibility. Generally, the susceptibilities and
correlators of species with the same parity are positive at
large baryon chemical potential. On the other hand, the
correlators of opposite-parity species become negative with
increasing baryon chemical potential. Our results highlight
the importance of the correlations of the baryonic parity
partners and different baryons for the net-baryon number
fluctuations. These qualitative differences in fluctua-
tions and correlations can be useful in the analysis of
the experimental data. Therefore, it is essential to consis-
tently incorporate the chiral in-medium effects to fully
interpret the properties of dense matter created in the next
generation of large-scale nuclear experiments FAIR/GSI
and NICA/Dubna.
We expect more refined structures to be present in

higher-order susceptibilities and their ratios. It is also
crucial to determine the role of the baryonic chiral partners
in the correlations of different conserved charges, e.g.,
baryon and electric charge. Work in these directions is
underway and will be reported elsewhere.
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