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We compute the one-loop vertex function of the QCD coupling in the presence of an ultraintense
magnetic field. From the vertex function, we extract the effective coupling and show that it grows with
increasing magnetic field. We consider the quark-gluon vertex and the three-gluon vertex, accounting for
the propagators of charged particles within the loops using the lowest Landau level approximation in order
to satisfy the condition where the magnetic field is the largest energy scale. Under this approximation, we
find that the contribution from the three-gluon vertex vanishes. Therefore, this result arises from the
competition between the color charge associated to gluons and to quarks as well, with the former being
larger than the latter. The behavior of the QCD coupling as a function of the magnetic field strength is
analogous to that exhibited by the light-quark condensate, indicating the magnetic catalysis occurs.
This increasing behavior stems from the dominant contribution of color charge associated to gluons in the
vertex function.
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In recent decades, there has been extensive study of
the effects produced by strong magnetic fields on strongly
interacting matter in extreme conditions [1]. This research
is motivated by conditions found in systems such as
relativistic heavy-ion collisions [2–7], the cores of neutron
stars [8–10], and the early Universe [11,12]. One of the
most significant findings reported in the literature concerns
the change in the vacuum expectation value (vev) of the
Dirac sector in quantum chromodynamics, referred to as
the light-quark condensate, due to the presence of magnetic
fields. When the magnetic field strength is large, the light-
quark condensate varies, increasing as the magnetic field
strength increases. This phenomenon is known as magnetic
catalysis (MC) [13–15]. Another way to describe this
phenomenon is to say that the breaking of chiral symmetry
is reinforced thanks to the presence of a magnetic field.
Results demonstrating MC from lattice quantum chromody-
namics (LQCD)were reported inRefs. [16–19].Additionally,
there are results from effective models [20–27] and holo-
graphic techniques [28–30] that provide explanations of the
MC phenomenon. However, another question that arises is

whether there are modifications in the coupling of strongly
interacting fieldswhen the system is permeated by amagnetic
field. This idea can be addressed by working directly within
the perturbative region of QCD, where we compute loop
corrections order by order of the QCD vertices. The one-loop
correction of the QCD coupling at finite temperature and
magnetic field, in the high temperature regime andweak field
approximation, was reported in Ref. [31]. In this study, the
effective coupling constant exhibits a decreasing behavior as
the magnetic field strength increases. It is important to
highlight that this behavior is the same as that observed in
the vev under the same conditions, suggesting that inverse
magnetic catalysis occurs. In Ref. [32] the correction to the
quark-gluon vertex at zero temperature in the presence of a
magnetic field was reported, focusing on the regime where
this field is the smallest energy scale. The result showed a
increasing behavior of the effective coupling as the magnetic
field increases. Once again, we observe that the effective
coupling constant exhibits the same behavior as the vev. In
these latter conditions, we observe magnetic catalysis.
To explore another condition where the QCD coupling

may be affected by the presence of a magnetic field, we
present in this work the computation of the QCD effective
coupling at one-loop order when a constant and uniform
magnetic field permeates the system, assuming it to be the
highest energy scale. In QCD, we have the quark-gluon
vertex and pure gluonic vertices. The former is depicted in
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Fig. 1 (on the left), where a gluon with momentum p2 − p1

enters to the vertex and a pair antiquark and quark leave the
vertex, with momentum p1 and p2, respectively.
In order to compute the one-loop vertex function for this

interaction, we consider two Feynman diagrams, depicted
in Figs. 2 and 3. The second type of vertex in QCD,
depicted in Fig. 1 (on the right), involves pure gauge fields.
In this case, there is one correction that could contribute to
the one-loop vertex function when a magnetic field is
present. It corresponds to the case where three external
gluons and three internal quarks generate the loop, as
depicted in Fig. 4. If the magnetic field is strong enough to
be the largest energy scale, then we can work in the lowest
Landau level (LLL) approximation for the propagation of
the charged fields. In this approximation, the loop in Fig. 4
is equal to zero, as shown in Refs. [33,34]. Therefore, it is
possible to work solely with the one-loop correction to the
quark-gluon vertex contribution.
We start calculating the one-loop vertex functions, where

we split the computation in two terms. The first one
involves a loop with two quarks and one gluon which
identifies as Γa;1

μ , while the second term involves a loop

with two gluons and one quark which corresponds to Γa;2
μ .

The expressions for the vertex functions are

igΓa;1
μ ¼

Z
d4k
ð2πÞ4 igt

bγνiSLLLðp2 − kÞigtaγμ

× iSLLLðp1 − kÞigtcγδiDcb
δν ðkÞ; ð1Þ

igΓa;2
μ ¼

Z
d4k
ð2πÞ4 igt

bγνiSLLLðkÞigtc1γα

iDc1c2
αβ ðp2 − kÞifac2c3ig

Vμβηðp2 − p1; p2 − k; p1 − kÞiDc3b
ην ðp1 − kÞ; ð2Þ

where igtaγμ is the quark-gluon vertex, and
ifa1a2a3igVμ1μ2μ3ðp1; p2; p3Þ is the three-gluon vertex, with

Vμβηðp2 − p1; p2 − k; p1 − kÞ ¼ ðp1 − p2Þμgβη
þ ðp2 − 2p1 þ kÞβgμη þ ðp1 − kÞηgμβ: ð3Þ

The fermion propagator for a charged field in the presence
of a magnetic field in the lowest Landau level approxima-
tion is written as follows:

(a) (b)

FIG. 1. Feynman diagrams of the QCD interaction. The one on the left a) is the quark-gluon vertex and the one on the right b) is the
three-gluon vertex.

FIG. 2. Feynman diagram of the QED-like contribution which
includes the magnetic correction at one-loop order to the quark-
gluon vertex.

FIG. 3. Feynman diagram of the pure QCD contribution which
includes the magnetic correction at one-loop order to the quark-
gluon vertex.
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iSLLLðkÞ ¼ 2ie
− k⊥2

jqfBj
kk þmf

kk2 −mf
2 þ iϵ

Oþ; ð4Þ

where the fermion’s mass and the electric charge are mf

and qf, respectively. The projectors O� are defined as

O� ≡ 1

2
½1� γ1γ2�: ð5Þ

We are considering the magnetic field is taken as pointing
along the ẑ axis. As a consequence of the Lorentz symmetry
breaking for charged particles, we rewrite the four vectors
in two pieces, the parallel and the perpendicular compo-
nents. Therefore, the four vectors can be written as follows:

XμXμ ¼ ðX2
0 − X2

3Þ − ðX2
1 þ X2

2Þ ¼ X2
k − X2⊥: ð6Þ

The last element that remains to be defined in Eqs. (1) and
(2) is the gluon propagator; for this work, we choose the
Feynman gauge and the propagator becomes

iDab
μνðpÞ ¼ δab

−igμν
p2 þ iϵ

: ð7Þ

Substituting Eqs. (4) and (7) in Eqs. (1) and (2), and after
some straightforward algebra within the numerator, the
vertex corrections become

igΓa;1
μ ¼ −8g3

�
CF −

CA

2

�
ta
Z

d2k⊥
ð2πÞ2

d2kk
ð2πÞ2

×
e
−
ðp2−kÞ2⊥
jqfBj e

−
ðp1−kÞ2⊥
jqfBj

ððp2 − kÞ2k −mf
2Þððp1 − kÞ2k −mf

2Þk2

× ðγkμðð=p2 − kÞk þmfÞðð=p1 − kÞk þmfÞ
− 2mfðp2 þ p1 − 2kÞkμ þmf

2γkμÞ; ð8Þ

igΓa;2
μ ¼ −CAg3ta

Z
d2k⊥
ð2πÞ2

d2kk
ð2πÞ2

×
e
−

k2⊥
jqfBj

ðk2k −m2Þðp2 − kÞ2ðp1 − kÞ2

× ðð4m − 2kkÞðp1 − p2Þμ þ γμðkk þmÞ
× ð=p2 − 2=p1 þ kÞ þ ð=p1 − kÞðkk þmÞγμÞ; ð9Þ

where CF and CA are the color factors corresponding to the
fundamental and adjoint representations of the SUðNÞ
Casimir operators. In order to integrate over all the
momentum components, we implement the Feynman para-
metrization. Then we use the general formula

1

Aa1
1 � � �Aan

n
¼ Γ½a1 þ � � � þ an�

Γ½a1� � � �Γ½an�
Z

∞

0

dx1 � � �
Z

∞

0

dxn

×
δð1 −P

n
k¼1 xkÞxa1−11 � � � xan−1n

ðPn
k¼1 xkAkÞ

P
n
k¼1

ak
: ð10Þ

Therefore, we can rewrite Eqs. (8) and (9), by using
Eq. (10) with two Feynman parameters x and y.
Additionally, we manipulate the denominators to express
the parallel components of the integrals in terms of a pair of
new variables, which are

lk;1 ¼ kk − ðyp2 þ yp1Þ;
lk;2 ¼ kk − ðyp2 þ ð1 − x − yÞp1Þ: ð11Þ

Then, we replace kk in terms of lk and observe that the
integrals over each momentum component are within a
symmetric range. Consequently, the integrals of odd
powers of each parallel momentum component evaluate
to zero. Thus, we obtain

igΓa;1
μ ¼ −16g3

�
CF −

CA

2

�Z
1

0

dx
Z

1−x

0

dy

×
Z

d2k⊥
ð2πÞ2 e

−
ðp2−kÞ2⊥
jqfBj e

−
ðp1−kÞ2⊥
jqfBj

×
Z

d2lk;1
ð2πÞ2

γkαγ
k
μγ

k
βl

α
kl

β
k þ fkμ;1

ðl2
k;1 − Δ1Þ3

; ð12Þ

igΓa;2
μ ¼ 2CAg3ta

Z
1

0

dx
Z

1−x

0

dy
Z

d2k⊥
ð2πÞ2 e

−
k2⊥

jqfBj

×
Z

d2lk;2
ð2πÞ2

lα
kl

νγkαγνγμ − γμγ
k
σγδlσ

kl
δ − fμ;2

ðl2
k;2 − Δ2Þ3

;

ð13Þ

with

FIG. 4. Feynman diagram which includes the magnetic cor-
rection at one-loop order to the three-gluon vertex.
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Δ1 ¼ ðxp2;k þ yp1;kÞ2 þm2ðxþ yÞ þ k2⊥ð1 − x − yÞ − xp2
2;k − yp2

1;k;

Δ2 ¼ ððk⊥2ð1 − xÞÞ þ 2k⊥p1;⊥ðxþ y − 1Þ − 2k⊥p2;⊥yþm2xþ p2
1xþ p2

1y − p2
1 þ ðp2;ky − p1;kðxþ y − 1ÞÞ2 − p2

2yÞ;
ð14Þ

and

fkμ;1 ¼ γkμð=p2ð1 − xÞ − =p1yÞð=p1ð1 − yÞ − =p2xÞ − 2mfðp2ð1 − 2xÞ þ p1ð1 − 2yÞÞkμ þmf
2γkμ; ð15Þ

fμ;2 ¼ ð4mf − 2ð=p1;kð1 − x − yÞ þ =p2;kyÞÞðp1 − p2Þμ þ γμð=p1;kð1 − x − yÞ þ =p2;kyÞð=p2;kð1þ yÞ
− =p1;kð1þ xþ yÞÞ þ ð=p1;kðxþ yÞ − =p2;kyÞð=p1;kð1 − x − yÞ þ =p2;kyÞγμ: ð16Þ

In order to compute each contribution, we proceed to
carry out first the integral over the parallel components.
Then the one-loop corrections to the QCD vertex become

igΓa;1
μ ¼ 2i

π
g3
�
CF −

CA

2

�
ta
Z

1

0

dx
Z

1−x

0

dy
Z

d2k⊥
ð2πÞ2

× e
−
ðp2−kÞ2⊥
jqfBj e

−
ðp1−kÞ2⊥
jqfBj

�
γμ

k

Δ1

þ fkμ;1
Δ2

1

�
; ð17Þ

igΓa;2
μ ¼ i

CA

4π
g3ta

Z
1

0

dx
Z

1−x

0

dy
Z

d2k⊥
ð2πÞ2 e

− k⊥2

jqfBj
fμ;2
Δ2

2

: ð18Þ

Our next step is to perform the integral over the
perpendicular components of momentum. However, before
integrating, we implement a suitable change of variable

Q ¼ p1 − p2; ð19Þ

P ¼ p1 þ p2

2
; ð20Þ

the relative and the average momentum between the quark
pair, respectively. For simplicity we consider the symmetric
three-momentum configuration, where p1 ¼ ðE; p⃗Þ and
−p1 ¼ ðE;−p⃗Þ. Thus, Q ¼ ð2E; 0Þ and P ¼ ð0; p⃗Þ. It
means that Q2 is proportional to the energy and P2 to
the momentum squared carried by the gluon. Another
important assumption is that we work in the static limit,
p⃗ → 0, at the same time that we consider Q2 large enough
to guarantee that we are working in the perturbative region
of QCD.
Since in Eqs. (17) and (18), the numerators do not

depend on k⊥, it is straightforward to identify two types of
integrals to compute, which are

Z
d2k⊥

e
−2k⊥2

jqfBj

a k⊥2 þ c
¼

πe
2c

ajqfBjΓ
�
0; 2c

ajqfBj
�

a

≡ πjqfBj
2c

eαΓð0; αÞα; ð21Þ

Z
d2k⊥

e
−2k⊥2

jqfBj

ða k⊥2 þ cÞ2 ¼
π

ac
−
2πe

2c
ajqfBjΓ

�
0; 2c

ajqfBj
�

a2jqfBj
≡ π

ac
−

π

ac
eαΓð0; αÞα; ð22Þ

where

a ¼ ð1 − x − yÞ;

c ¼ mf
2ðxþ yÞ þ 1

4
Q2ððx − yÞ2 − ðxþ yÞÞ;

α ¼ 2c
ajqfBj

: ð23Þ

In this step of the calculation process, it is relevant to
remember that we are working in the large magnetic field
limit, or in other words, we are working within the lowest
Landau level approximation. Therefore, if we call z ¼
ajqfBj and we make the approximation 2c ≪ z, we stay in
the very strong field regime, where α ≪ 1, and get

lim
α→0

eαΓð0; αÞα ¼ 1þ ð1 − γEÞαþOðα2Þ: ð24Þ

It is important to mention that although ð1 − x − yÞ → 0
within the term α seems to be a pole in Eq. (24), the integral
over the entire domain in x and y is finite, and therefore the
approximation is valid. This observation also tells us that
the underlying relationship in this approximation is con-
sidering Q2=qfB ≪ 1. Where γE is the Euler-Mascheroni
constant. Then, we substitute Eq. (24) in Eqs. (21) and (22),
and we obtain

igΓa;1
μ ¼ ig3

�
CF −

CA

2

�
tajqfBjγkμ

Z
1

0

dx
Z

1−x

0

dy

×
1

m2ðxþ yÞ þ 1
4
Q2ððx − yÞ2 − ðxþ yÞÞ ; ð25Þ

igΓa;2
μ ¼ 0: ð26Þ
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We proceed to integrate over the Feynman parameters, starting with the integral over y, we have

igΓa;1
μ ¼ 4ig3

�
CF −

CA

2

�
tajqfBjγkμ

Z
1

0

dx
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4mf
2−Q2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4mf

2 −Q2ð8xþ 1Þ
q

×

0
B@tanh−1

0
B@ 4mf

2−Q2ð2xþ 1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4mf

2 −Q2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4mf
2−Q2ð8xþ 1Þ

q
1
CA− tanh−1

0
B@ 4mf

2þQ2ð1− 4xÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4mf

2−Q2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4mf
2−Q2ð8xþ 1Þ

q
1
CA
1
CA: ð27Þ

Before performing the last integration, we rewrite the hyperbolic arctangent in terms of logarithms

igΓa;1
μ ¼ 4ig3

�
CF −

CA

2

�
tajqfBjγkμ

Z
1

0

dx

0
B@ln

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4mf

2 −Q2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4mf
2 −Q2ð8xþ 1Þ

q
þ 4mf

2 −Q2ð2xþ 1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4mf

2 −Q2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4mf
2 −Q2ð8xþ 1Þ

q
− 4mf

2 þQ2ð2xþ 1Þ

1
CA

þ ln

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4mf

2 −Q2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4mf
2 −Q2ð8xþ 1Þ

q
− 4mf

2 þQ2ð4x − 1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4mf

2 −Q2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4mf
2 −Q2ð8xþ 1Þ

q
þ 4mf

2 −Q2ð4x − 1Þ

1
CA
1
CA 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4mf
2 −Q2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4mf

2 −Q2ð8xþ 1Þ
q ; ð28Þ

and we finally proceed to integrate the last Feynman parameter, x, being the final expression,

igΓa;1
μ ¼ ig3

�
CF −

CA

2

�
taγkμ

jqfBj
Q2

0
B@ln

�
1 −

Q2

4mf
2

�
þ
2Q tan−1

�
Qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4mf
2−Q2

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4mf

2 −Q2
q

1
CA: ð29Þ

From Eq. (29), we can extract the effective QCD coupling in the presence of a very large magnetic field

geff ¼ g

2
641 − g2

3jqfBj
2Q2

×

0
B@ln

�
1 −

Q2

4mf
2

�
þ
2Q tan−1

�
Qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4mf
2−Q2

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4mf

2 −Q2
q

1
CA
3
75; ð30Þ

where we have used CF − CA
2
¼ − Nf

2
and Nf ¼ 3.

Equation (30) represents our final result, displaying a
monotonically increasing behavior of the coupling as the
magnetic field strength increases. The crucial element in
understanding the magnetic dependence of geff is directly
related to the coefficient CF − CA=2, which determines the
behavior of this effective constant with changes in the
magnetic field. Since the charge associated to the gluons is
larger than the one associated to the quarks, we can
conclude that the gluon dynamic is strengthened by an
external magnetic field. It is noteworthy that this result
holds even when the one-loop order correction of the three-
gluon vertex vanishes, a direct consequence of the lowest
Landau level approximation.
Equation (30) exhibits a monotonically increasing

behavior, as we have mentioned before, which is also seen
in the weak field limit at zero temperature, as shown in
Ref. [32]. Although both results are in completely different
energetic regimes, it may suggest that the behavior of the
coupling could be maintained over the entire magnetic field
range. Additionally, our result can be linked to the one

reported in Ref. [31], where the thermomagnetic one-loop
correction to the quark-gluon vertex was computed in the
limit of high temperature. In that case, the result is only
proportional to CF. Thus, it depends only on the color
charge associated with the quarks, and the effective
coupling has an opposite behavior. It decreases as the
magnetic field strength increases.
Notice that our analysis is within the perturbative regime

of QCD. Hence, we consider Q2, the gluon virtuality, to be
large enough, at least larger than 1 GeV2, while also
satisfying the relation Q2 ≪ eB, since we are operating
under the strong magnetic field approximation. Concerning
the kinematical conditions, we establish the configuration
where the quark and antiquark travel back to back, implying
that their relative orbital angular momentum L vanishes.
Since the gluon spin is equal to one, the pair quark-antiquark
must carry a total spinS ¼ 1, alignedwith themagnetic field.
For the situation when the magnetic field strength is

ultraintense, we can utilize the result of this work to compute
the q̄q scattering and annihilation processes. At first order in
the perturbative series, not only should the correction of the
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field’s propagation be relevant, but we can take into account
that the strength of the interaction is enhanced by the presence
of themagnetic field, providing a clear signal of themagnetic
catalysis. However, there is still more work to be done. The
nonperturbative region, where the gluon virtuality is not large
enough, remains an open question. This is work currently
under development and will be reported elsewhere.
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