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Magnetic corrections to the QCD coupling: Strong field approximation
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We compute the one-loop vertex function of the QCD coupling in the presence of an ultraintense
magnetic field. From the vertex function, we extract the effective coupling and show that it grows with
increasing magnetic field. We consider the quark-gluon vertex and the three-gluon vertex, accounting for

the propagators of charged particles within the loops using the lowest Landau level approximation in order
to satisfy the condition where the magnetic field is the largest energy scale. Under this approximation, we
find that the contribution from the three-gluon vertex vanishes. Therefore, this result arises from the
competition between the color charge associated to gluons and to quarks as well, with the former being
larger than the latter. The behavior of the QCD coupling as a function of the magnetic field strength is
analogous to that exhibited by the light-quark condensate, indicating the magnetic catalysis occurs.
This increasing behavior stems from the dominant contribution of color charge associated to gluons in the

vertex function.
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In recent decades, there has been extensive study of
the effects produced by strong magnetic fields on strongly
interacting matter in extreme conditions [1]. This research
is motivated by conditions found in systems such as
relativistic heavy-ion collisions [2—7], the cores of neutron
stars [8—10], and the early Universe [11,12]. One of the
most significant findings reported in the literature concerns
the change in the vacuum expectation value (vev) of the
Dirac sector in quantum chromodynamics, referred to as
the light-quark condensate, due to the presence of magnetic
fields. When the magnetic field strength is large, the light-
quark condensate varies, increasing as the magnetic field
strength increases. This phenomenon is known as magnetic
catalysis (MC) [13-15]. Another way to describe this
phenomenon is to say that the breaking of chiral symmetry
is reinforced thanks to the presence of a magnetic field.
Results demonstrating MC from lattice quantum chromody-
namics (LQCD) were reported in Refs. [16—19]. Additionally,
there are results from effective models [20-27] and holo-
graphic techniques [28-30] that provide explanations of the
MC phenomenon. However, another question that arises is
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whether there are modifications in the coupling of strongly
interacting fields when the system is permeated by a magnetic
field. This idea can be addressed by working directly within
the perturbative region of QCD, where we compute loop
corrections order by order of the QCD vertices. The one-loop
correction of the QCD coupling at finite temperature and
magnetic field, in the high temperature regime and weak field
approximation, was reported in Ref. [31]. In this study, the
effective coupling constant exhibits a decreasing behavior as
the magnetic field strength increases. It is important to
highlight that this behavior is the same as that observed in
the vev under the same conditions, suggesting that inverse
magnetic catalysis occurs. In Ref. [32] the correction to the
quark-gluon vertex at zero temperature in the presence of a
magnetic field was reported, focusing on the regime where
this field is the smallest energy scale. The result showed a
increasing behavior of the effective coupling as the magnetic
field increases. Once again, we observe that the effective
coupling constant exhibits the same behavior as the vev. In
these latter conditions, we observe magnetic catalysis.

To explore another condition where the QCD coupling
may be affected by the presence of a magnetic field, we
present in this work the computation of the QCD effective
coupling at one-loop order when a constant and uniform
magnetic field permeates the system, assuming it to be the
highest energy scale. In QCD, we have the quark-gluon
vertex and pure gluonic vertices. The former is depicted in
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FIG. 1.
three-gluon vertex.

Fig. 1 (on the left), where a gluon with momentum p, — p,
enters to the vertex and a pair antiquark and quark leave the
vertex, with momentum p; and p,, respectively.

In order to compute the one-loop vertex function for this
interaction, we consider two Feynman diagrams, depicted
in Figs. 2 and 3. The second type of vertex in QCD,
depicted in Fig. 1 (on the right), involves pure gauge fields.
In this case, there is one correction that could contribute to
the one-loop vertex function when a magnetic field is
present. It corresponds to the case where three external
gluons and three internal quarks generate the loop, as
depicted in Fig. 4. If the magnetic field is strong enough to
be the largest energy scale, then we can work in the lowest
Landau level (LLL) approximation for the propagation of
the charged fields. In this approximation, the loop in Fig. 4
is equal to zero, as shown in Refs. [33,34]. Therefore, it is
possible to work solely with the one-loop correction to the
quark-gluon vertex contribution.

We start calculating the one-loop vertex functions, where
we split the computation in two terms. The first one
involves a loop with two quarks and one gluon which
identifies as T'%"', while the second term involves a loop

FIG. 2. Feynman diagram of the QED-like contribution which
includes the magnetic correction at one-loop order to the quark-
gluon vertex.

(b)

Feynman diagrams of the QCD interaction. The one on the left a) is the quark-gluon vertex and the one on the right b) is the

with two gluons and one quark which corresponds to Fﬁ’z.
The expressions for the vertex functions are

- al d4k'b1/'LLL C U
gy = 2n) igt’y"iS*Ht (py — k)igt®y

X IS (py = k)igry’iDs (k). (1)

ighe? = / a'k igtPy iSHE (k)igre1y®
(22)*
iDy* (py — k)if*2%ig
VE(py — pi, py — k. py = K)iDy (pr = k). (2)

where igt?y* is the quark-gluon vertex, and
[fea3igViits (py ) p,, p3) is the three-gluon vertex, with

V”ﬁ"(Pz—Pth—kvpl —k) = (Pl —Pz)”gﬁ"
+ (p2 = 2p1 + k)P g1 + (p1 — k)1g"P. (3)

The fermion propagator for a charged field in the presence
of a magnetic field in the lowest Landau level approxima-
tion is written as follows:

FIG. 3. Feynman diagram of the pure QCD contribution which
includes the magnetic correction at one-loop order to the quark-
gluon vertex.
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FIG. 4. Feynman diagram which includes the magnetic cor-
rection at one-loop order to the three-gluon vertex.

k” + mg

k2
iSLLL () — 2 TP [ A
! ( ) re kHZ—mf2+ie

or, (4)

where the fermion’s mass and the electric charge are my
and ¢, respectively. The projectors O* are defined as

O =[xy’ (5)

N =

We are considering the magnetic field is taken as pointing
along the Z axis. As a consequence of the Lorentz symmetry
breaking for charged particles, we rewrite the four vectors
in two pieces, the parallel and the perpendicular compo-
nents. Therefore, the four vectors can be written as follows:

XX, =(X;-X3)-(X1+X})=X-X7. (6

The last element that remains to be defined in Egs. (1) and
(2) is the gluon propagator; for this work, we choose the
Feynman gauge and the propagator becomes

_lg;w

iDib(p) = 6% :
i (P) e

(7)

Substituting Egs. (4) and (7) in Egs. (1) and (2), and after
some straightforward algebra within the numerator, the
vertex corrections become

Pk, d*k
s ral o 3 A L I
ol =8 (CF 2>t / (2n)? (20)?

b (b
e luyBl o lagBl

(P2 = k)T = mP)(p1 = k)T = m )
X (ru((Bo = Ky +mp)((y = K)y +my)
—2my(py + p1 = 2K)) + m ), (8)

X

d*k, dk
. Fu.2 - _C 3ta/ L [
R AT | ) 2n)?

& =12 (p = kP(p1 — b)?
x ((4m = 2k))(p1 = p2), + vu (k) +m)
X (B = 2h1 + 8) + (b1 =B (k) +m)y,). (9)

where Cr and C, are the color factors corresponding to the
fundamental and adjoint representations of the SU(N)
Casimir operators. In order to integrate over all the
momentum components, we implement the Feynman para-
metrization. Then we use the general formula

1 F[al + -

'+Cln]/°° /oo
= — = dxy--- dx,
AT A Tlay]---Tla,] Jo 1 0

S(1 =S5 x)x e
(Sn, xkAk>D:l k

Therefore, we can rewrite Egs. (8) and (9), by using
Eq. (10) with two Feynman parameters x and y.
Additionally, we manipulate the denominators to express
the parallel components of the integrals in terms of a pair of
new variables, which are

X

(10)

Zia =k —
L=k —

(yp2 +yp1)s
yp2+(I=x=y)p;). (11)

Then, we replace k|| in terms of | and observe that the
integrals over each momentum component are within a
symmetric range. Consequently, the integrals of odd
powers of each parallel momentum component evaluate
to zero. Thus, we obtain

1- x
igle! = 164 <CF——>/ /

( ) P1—
y / Pk, Sl o
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with
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In order to compute each contribution, we proceed to 2,2 2 5
carry out first the integral over the parallel components. ) e x  2me’ B‘F(O’a|qf3|)
Then the one-loop corrections to the QCD vertex become / dky (ak,®>+c)? “ac | 4B
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Our next step is to perform the integral over the alq B

perpendicular components of momentum. However, before
integrating, we implement a suitable change of variable

Q= pi—Dpa (19)

pP1+ P2
2 b

P = (20)
the relative and the average momentum between the quark
pair, respectively. For simplicity we consider the symmetric
three-momentum configuration, where p; = (E, p) and
—p1 = (E,=p). Thus, Q = (2E,0) and P = (0,p). It
means that Q? is proportional to the energy and P? to
the momentum squared carried by the gluon. Another
important assumption is that we work in the static limit,
p — 0, at the same time that we consider Q? large enough
to guarantee that we are working in the perturbative region
of QCD.

Since in Eqs. (17) and (18), the numerators do not
depend on k |, it is straightforward to identify two types of
integrals to compute, which are

2%, 2

2¢
L alq B 2c
4,5l e F(O
e > alq B
/ d’ky = ’
a

In this step of the calculation process, it is relevant to
remember that we are working in the large magnetic field
limit, or in other words, we are working within the lowest
Landau level approximation. Therefore, if we call z =
a|q¢B| and we make the approximation 2¢ < z, we stay in
the very strong field regime, where o < 1, and get

{lli_r)l(l)e”l"(O, a=1+1-yga+O(@?). (24)
It is important to mention that although (1 —x—y) - 0
within the term a seems to be a pole in Eq. (24), the integral
over the entire domain in x and y is finite, and therefore the
approximation is valid. This observation also tells us that
the underlying relationship in this approximation is con-
sidering Q*/q B < 1. Where yg is the Euler-Mascheroni
constant. Then, we substitute Eq. (24) in Eqs. (21) and (22),
and we obtain

1- x
ige! = ig? (C,:——)t“|q Bly) / dx/

ZQZ((X -y

igle? = 0. (26)

. (25)

m*(x 4 y) + - (x+y))
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We proceed to integrate over the Feynman parameters, starting with the integral over y, we have

ighy! = 4ig? <c

“lq B|y / dx
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Before performing the last integration, we rewrite the hyperbolic arctangent in terms of logarithms
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and we finally proceed to integrate the last Feynman parameter, x, being the final expression,
2Qtan! <#)
C B 2 02
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Q 4 mf /4 mf2 _ Q2
From Eq. (29), we can extract the effective QCD coupling in the presence of a very large magnetic field
3lg,B] 0\ 20w (%)
geffzgl—922‘2 X ln<1—4 2>+ : . (30)
Q mf A /4- I’Vlfz - Q2
[
where we have used Cr — % = —% and N, = 3. reported in Ref. [31], where the thermomagnetic one-loop

Equation (30) represents our final result, displaying a
monotonically increasing behavior of the coupling as the
magnetic field strength increases. The crucial element in
understanding the magnetic dependence of g is directly
related to the coefficient C — C, /2, which determines the
behavior of this effective constant with changes in the
magnetic field. Since the charge associated to the gluons is
larger than the one associated to the quarks, we can
conclude that the gluon dynamic is strengthened by an
external magnetic field. It is noteworthy that this result
holds even when the one-loop order correction of the three-
gluon vertex vanishes, a direct consequence of the lowest
Landau level approximation.

Equation (30) exhibits a monotonically increasing
behavior, as we have mentioned before, which is also seen
in the weak field limit at zero temperature, as shown in
Ref. [32]. Although both results are in completely different
energetic regimes, it may suggest that the behavior of the
coupling could be maintained over the entire magnetic field
range. Additionally, our result can be linked to the one

correction to the quark-gluon vertex was computed in the
limit of high temperature. In that case, the result is only
proportional to Cp. Thus, it depends only on the color
charge associated with the quarks, and the effective
coupling has an opposite behavior. It decreases as the
magnetic field strength increases.

Notice that our analysis is within the perturbative regime
of QCD. Hence, we consider Q?, the gluon virtuality, to be
large enough, at least larger than 1 GeV?, while also
satisfying the relation Q? < eB, since we are operating
under the strong magnetic field approximation. Concerning
the kinematical conditions, we establish the configuration
where the quark and antiquark travel back to back, implying
that their relative orbital angular momentum L vanishes.
Since the gluon spin is equal to one, the pair quark-antiquark
must carry a total spin S = 1, aligned with the magnetic field.

For the situation when the magnetic field strength is
ultraintense, we can utilize the result of this work to compute
the gqg scattering and annihilation processes. At first order in
the perturbative series, not only should the correction of the
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field’s propagation be relevant, but we can take into account
that the strength of the interaction is enhanced by the presence
of the magnetic field, providing a clear signal of the magnetic
catalysis. However, there is still more work to be done. The
nonperturbative region, where the gluon virtuality is not large
enough, remains an open question. This is work currently
under development and will be reported elsewhere.
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