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Observing the mass shifts of mesons immersed in nuclear matter is interesting, as the changes are
expected to shed light on the effects of chiral symmetry breaking on the origin of hadron masses. At the
same time, it is important to understand the momentum dependence of the masses for spin-1 mesons, as the
changes manifest differently across the two polarization modes. Here, the mass shifts of K�

1 mesons with
finite three-momentum in nuclear medium are studied in the QCD sum rule approach. We find that the mass
of Kþ

1 (K−
1 ) meson is increased(decreased) by the nontrivial momentum effect in both the transverse and

longitudinal modes. Specifically, compared to its rest mass in the nuclear medium, in the transverse mode,
the mass ofKþ

1 ðK−
1 Þ is observed to shift byþ2ð−55Þ MeV, while in the longitudinal mode, the mass shift is

þ13ð−11Þ MeV, all at a momentum of 0.5 GeV. Exploring the medium modifications of K1 meson
through kaon beams at J-PARC will provide insights on the partial restoration of chiral symmetry in nuclear
matter.

DOI: 10.1103/PhysRevD.110.014013

I. INTRODUCTION

Among the various particles that make up the Universe,
hadrons stand out due to their significant contribution to
the mass of observable matter. However, the masses of the
individual quarks that compose a hadron are much smaller
than the overall mass of the hadron. Consequently, under-
standing the mechanisms behind the generation of hadron
mass is crucial [1–4]. Nonperturbative effects [5,6] and
chiral symmetry breaking are key mechanisms contributing
to the generation of hadron mass. In particular, the mass
difference between chiral partners is attributed to the sponta-
neous breaking of chiral symmetry [7,8]. Observing themass
change of a hadron immersed inmatter is expected to provide
a crucial link in understanding the connection between chiral
symmetry breaking and the hadron’s mass. This is because
chiral symmetry is anticipated to be partially and/or fully
restored in matter.
Vector mesons were initially of interest, as their dilepton

decays were expected to offer insights into modified
properties arising from the dense initial stages of proton-
nucleus or nucleus-nucleus collisions. [3,9]. Subsequently,
attention shifted to mesons with small widths, as such
properties were found to be crucial prerequisites for particle
identification. Mesons within this group are ω [10],

ϕ [11,12], f1ð1285Þ [13,14], K�ð892Þ [15], and
K1ð1270Þ [16]. The KEK-PS E325 experiments found a
nontrivial reduction in the ω meson and ϕ meson mass in
nuclear matter [11,17]. Experiments with higher statistics
are being performed at the J-PARC E16 experiment [18,19]
through eþe− decay and will be complemented by the
J-PARC E88 experiment, which aims to measure the ϕ
meson through itsKþK− decay. At the same time, to isolate
the effect of chiral symmetry breaking and observe the
effect realistically, it is crucial to investigate the mass shift
between chiral partners with small widths such as the K�
and K1 with the same charge [20]. This is so because they
both have small widths and are chiral partners so their mass
difference solely relies on changes in the chiral order
parameter, irrespective of the medium in which they are
immersed [21].
In general, when vector mesons are immersed in a

medium at rest, the transverse and longitudinal polarization
modes will behave differently when moving with finite
momentum. While these momentum dependencies hinder
the observation of mass shift, they are dominated by
chirally symmetric effects so that the momentum depend-
encies will be small for the mass difference between chiral
partners [21]. The momentum dependencies of the different
polarization modes were studied for the light vector mesons
ðρ;ω;ϕÞ in QCD sum rule method [22–24]. Recent
revisions for the ϕ meson were made in [25,26], and heavy
quarkonium was studied in [27]. The different polarization
modes of a hadron at a given momentum can, in principle,
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be observed from the complete angular dependence of
decay particles [28]. While such measurements are sched-
uled in the J-PARC E16 experiments for the ϕ meson [19],
it is essential to estimate the momentum dependencies of
the different polarization modes for various hadrons to offer
guidelines for these measurements as well as for future
experiments.
In this work, we will investigate the mass shift of the

K1ð1270Þ that propagates with finite three-momentum in
nuclear matter, using QCD sum rules. While reconstructing
K1 and K� from hadronic final states poses challenges such
as smearing or signal loss due to interactions with the
medium, utilizing J-PARC’s kaon beam presents a viable
approach to observing these particles in nuclear target
experiments [16,20,29], given that the K1 meson can be
observed from a K þ p reaction [30]. We note that in the
nuclear medium, Kþ

1 and K−
1 become nondegenerate due to

nucleon-induced charge conjugation invariance breaking.
Therefore, different effects could be observed in the nuclear
medium depending on their charge states. To study the
different charge states in nuclear matter, we will following
the method in [16].
The paper is organized as follows: Sec. II provides

a brief overview of the QCD sum rules for the K�
1 meson

and displays the newly computed Wilson coefficients.
Section III presents the maximum values for the mass
shifts of K�

1 meson. Conclusions are given in Sec. IV. The
Appendix contains some essential calculations and math-
ematical expressions.

II. FORMALISM

We will follow the vacuum sum rule and similar notation
as used in the work of Song et al. [16], and generalize it to
include the finite three-momentum dependence. The quan-
tity we study in the following is the two-current correlation
function,

ΠμνðqÞ ¼ i
Z

d4xeiq·xhT½jμðxÞj†νð0Þ�i; ð1Þ

where j
K−

1
μ ¼ ūγμγ5s and j

Kþ
1

μ ¼ s̄γμγ5u. The currents above
are not conserved, leading to contributions from pseudo-
scalar mesons to the correlation function. Thus, in the
vacuum, we get

ΠμνðqÞ ¼ −gμνΠ1ðq2Þ þ qμqνΠ2ðq2Þ: ð2Þ

Here, Π2 has contributions from the spin-0 mesons.
Therefore, we will extract the Π1 (spin-1) part to perform
QCD sum rule. The cases of vacuum and medium with
q⃗ ¼ 0 are well summarized in [16].
When q⃗ ≠ 0 in medium, the conserved part of the

correlation function in Eq. (2) can further be decomposed
into the transverse and longitudinal polarization directions

with respect to the momentum [22]. These modes can be
obtained by first extracting the transverse mode of Eq. (2)
ΠT

μν, explained in Appendix B, and then using it as follows:

ΠLðω2; q⃗2Þ ¼ q2

q⃗2
ΠT

00; ð3Þ

ΠTðω2; q⃗2Þ ¼ −
1

2
ðΠT;μ

μ þ ΠLÞ: ð4Þ

To clearly observe the q⃗ dependence, we change the
variable from ðw2; q⃗2Þ to ðQ2; q⃗2Þ, where Q2 ≡ −w2 þ q⃗2

[26]. In this case, the q⃗2 that is absorbed into Q2 denotes a
trivial dependence that does not break Lorentz symmetry.
On the other hand, the remaining q⃗2 exhibits a nontrivial
dependence that violates Lorentz symmetry and represents
medium modifications due to q⃗2. For spin-1 particles, this
nontrivial effect is generally polarization dependent.
From the analytic property of the energy dispersion

relation at fixed q⃗2, we can derive the relationship
between the real and imaginary parts of the correlator
in terms of the four momenta and the remaining nontrivial
three-momentum,

ReΠiðQ2; q⃗2Þ ¼ 1

π

Z
∞

−q⃗2
ds

ImΠiðs; q⃗2Þ
sþQ2

; ð5Þ

where i ¼ L or T.
To reduce the effects of excited resonances, continuum,

and higher dimensional condensates, the Borel transform is
introduced as

MðM2; q⃗2Þ¼ lim
n;Q2→0;
Q2=n¼M2

ðQ2Þnþ1
1

n!

�
−

d
dQ2

�
n
ΠðQ2; q⃗2Þ; ð6Þ

where the parameter M2 is called the Borel mass.

A. Vacuum sum rule

In the vacuum, ΠL ¼ ΠT ¼ Π1. Using the operator
product expansion (OPE), the current correlator can be
expressed as follows, considering terms up to dimension 6:

Π1ðq2Þ ¼ B0Q2 ln
Q2

μ2
þ B2 ln

Q2

μ2
−
B4

Q2
−
B6

Q4
; ð7Þ

where

B0 ¼
1

4π2

�
1þ αs

π

�
; ð8Þ

B2 ¼
3m2

s

8π2
; ð9Þ

B4 ¼ −εmshūui0 þ
1

12

�
αs
π
G2

�
0

; ð10Þ
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B6¼
32παs
81

ðhūui20þhs̄si20Þþ ε
32παs
9

ðhūui0hs̄si0Þ: ð11Þ

Here,n inBn denotes themass dimension of the operator, the
renormalization scale is taken to be μ ¼ 1 GeV, and hOi0
denotes the vacuum condensate. The four-quark operators
can be divided into chiral symmetry breaking and symmetric
parts [31]. The chiral symmetry breaking part will change in
the nuclear medium as the chiral order parameter. However,
while thevalue of the chiral symmetric part invacuumcan be
extracted by combining the sum rules for chiral partners, the
medium dependence is not so well known [32]. Therefore,
we will just employ a factorization ansatz for the dimension
6 four-quark operators [3,8].
To highlight the distinction between K1 and K�, we

introduce ε in the following manner:

ε ¼
�
1 for K1

−1 for K�:
ð12Þ

It is important to note that the only difference between K1

and K� correlators is proportional to chiral symmetry
breaking operators [32].
For input parameters, we use the values given at a

renormalization scale of μ ¼ 1 GeV [26]. mq ¼ 4.5 MeV,
ms ¼ 124.4 MeV [33], αs ¼ 0.472 [34], and hūui0 ¼
ð−0.246 GeVÞ3 [35]. hαsπ G2i0 ¼ 0.012 GeV4 and hs̄si0 ¼
0.8hūui0.
The phenomenological spectral function is employed to

determine the imaginary part of the correlator,

1

π
ImΠ1ðq2Þ ¼

m4
K1

g2K1

δðq2 −m2
K1
Þ

þ ðB0q2 − B2Þθðq2 − s0Þ; ð13Þ
where s0 is the continuum threshold.
After using Eq. (5), by performing the Borel trans-

formation and taking the ratio with its derivative, one
obtains the following relation for the mass [16]:

m2
K1

¼ M2
2B0E2 − B2E1=M2 þ B6=M6

B0E1 − B2E0=M2 − B4=M4 − B6=M6
; ð14Þ

where

E0 ¼ 1 − e−s0=M
2

; ð15Þ

E1 ¼ 1 −
�
1þ s0

M2

�
e−s0=M

2

; ð16Þ

E2 ¼ 1 −
�
1þ s0

M2
þ s20
2M4

�
e−s0=M

2

: ð17Þ

If the Borel mass M is too large, the pole dominance is
lost, and if M is too small, the contribution from higher

dimensional condensates increases. Thus, it is necessary to
consider an appropriate region called Borel window. We
used the two conditions,

M2
min∶

���� B4 þ B6=M2

B0M4 − B2M2

���� < 0.15; ð18Þ

M2
max∶

����B0M2ð1 − E1Þ − B2ð1 − E0Þ
B0M2 − B2

���� < 0.7: ð19Þ

M2
min is determined to ensure that the power corrections do

not exceed 15% of the perturbative part, while M2
max is set

to keep the continuum contribution below 70% of the
perturbative part.
The value for s0 is chosen so that the extremum of the

Borel curve is close to the physical mass of the K1. These
prescriptions lead the Borel window to be 0.97 ≤ M2 ≤
2.18 GeV2, the continuum threshold s0 ¼ 2.412 GeV2,
and the overlap strength FK1

≡m2
K1
=g2K1

¼ 0.049 GeV2.

B. Nuclear medium

In our calculation of the nonscalar part of the OPE, we
focused only on the twist-2 terms, known to be the
dominant elements [36]. The odd terms in the OPE
contribute with opposite signs for the two charged states,
a consequence of nucleon-induced charge symmetry
breaking.
We chose to study the following combinations of the

correlators:

Π∓ðQ2; q⃗2Þ ¼ ΠeðQ2; q⃗2Þ � q0ΠoðQ2; q⃗2Þ; ð20Þ

here, the “þ” sign in front of Πo represents negative charge
states, while the “−” sign indicates positive charge states.
The OPE for the even and odd parts are

ΠeðQ2; q⃗2Þ ¼ B0Q2 ln
Q2

μ2
þ B2 ln

Q2

μ2
−
B�
4

Q2
−
B�
6

Q4
; ð21Þ

ΠoðQ2; q⃗2Þ ¼ 1

2Q2
ðAu

1 − As
1Þρ −

2m2
N

3Q4
ðAu

3 − As
3Þρ

þ q⃗2t
Q6

2m2
NðAu

3 − As
3Þρ; ð22Þ

where

B�
4 ¼ −εmshūuiρ þ

1

12

�
αs
π
G2

�
ρ

þmN

2
ðAu

2 þAs
2Þρ

þmNαsA
g
2ρ

�
3

4π
−

1

3π
ln
Q2

μ2

�
−
q⃗2t
Q2

mNðAu
2 þAs

2Þρ

þmNαsA
g
2ρ

�
−

7q⃗2t
6πQ2

þ 2q⃗2t
3πQ2

ln
Q2

μ2
−

2q⃗2l
3πQ2

�
; ð23Þ
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B�
6 ¼

32παs
9

�
εhūuiρhs̄siρ þ

hūui2ρ þ hs̄si2ρ
9

�

−
5

6
m3

NðAu
4 þ As

4Þρþ ρm3
NðAu

4 þ As
4Þ
�
9q⃗2t
2Q2

−
4q⃗4t
Q4

�

þ ρm3
NðAu

4 þ As
4Þ

q⃗2l
Q2

: ð24Þ

For convenience, we have represented the three-momentum
dependent terms for both the transverse and longitudinal
modes together, denoted as q⃗t and q⃗l, respectively. To
obtain three-momentum dependence in the transverse
mode, one should take the q⃗l ¼ 0 while keeping the q⃗t
dependent terms. Similarly, when extracting the terms in
the longitudinal mode, one should set the q⃗t ¼ 0 while
maintaining the q⃗l dependent terms.
To calculate the expectation value with baryon density ρ,

we have used the linear density approximation hOiρ ≃
hOi0 þ ρhOiN and ρ will be set to the normal nuclear
matter density ρ0 ¼ 0.17 fm−3. The nucleon matrix ele-
ments hOiN are given by [37]

mqhūuþ d̄diN ¼ σπN;mshs̄siN ¼ σsN; ð25Þ
�
αs
π
G2

�
N
¼ 8

9
ð−mN þ σπN þ σsNÞ; ð26Þ

where σπN ¼ 39.7 MeV [35], σsN ¼ 52.9 MeV [35], and
mN is the nucleon mass taken to be the isospin averaged
value mN ¼ ð0.93827þ 0.93957Þ=2 GeV. The numerical
values of twist-2 terms can be estimated using the parton
distribution function. Thus, Aq

n and Ag
n are defined as

hST ðq̄γμ1Dμ2 � � �DμnqÞiN
≡ ð−iÞn−1Aq

nðμ2ÞST ðpμ1 � � �pμnÞ
2mN

; ð27Þ

hST ðGa
αμ1Dμ2 � � �Dμn−1G

aα
μn ÞiN

≡ ð−iÞn−2Ag
nðμ2ÞST ðpμ1 � � �pμnÞ

mN
; ð28Þ

where the nucleon four momentum pμ is taken to be at rest.
Aq
n and Ag

n are listed in Table I.
Πe and Πo are even and odd under charge conjugation

symmetry. Therefore, the charge even and odd states will
become nondegenerate in the medium. In [16], we have
introduced a sum rule that at least isolates the ground state
to either K−

1 or Kþ
1 state in the spectral density. This is

accomplished through the following sum rule. Therefore,
in nuclear matter with q⃗, the dispersion relation Eq. (5)
becomes

Re
�
Πe ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

K∓
1

þ q⃗2
q

Πo



¼ 2

π

Z Im
�
Πe ∓ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
K∓

1

þ q⃗2
q

Πo


ds

sþQ2
: ð29Þ

By introducing corresponding thresholds s�0 and differ-
ent residues coupling to the K�

1 states, as in Ref. [16], we
derive the following imaginary part at finite q⃗:

2

π
Im

�
Πe þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

Kþ
1

þ q⃗2
q

Πo



¼
m4

K−
1

g2K−
1

0
B@1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

Kþ
1

þ q⃗2
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

K−
1
þ q⃗2

q
1
CAδðq2 −m2

K−
1
Þ

þ ðB0q2 − B2Þ
8<
:
0
B@1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

Kþ
1

þ q⃗2
q

q0

1
CAθðq2 − s−0 Þ

þ

0
B@1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

Kþ
1

þ q⃗2
q

q0

1
CAθðq2 − sþ0 Þ

9=
;;

2

π
Im

�
Πe −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

K−
1
þ q⃗2

q
Πo




¼
m4

Kþ
1

g2Kþ
1

0
B@1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

K−
1
þ q⃗2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

Kþ
1

þ q⃗2
q

1
CAδðq2 −m2

Kþ
1

Þ

þ ðB0q2 − B2Þ
8<
:
0
B@1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

K−
1
þ q⃗2

q
q0

1
CAθðq2 − sþ0 Þ

þ

0
B@1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

K−
1
þ q⃗2

q
q0

1
CAθðq2 − s−0 Þ

9=
;: ð30Þ

We now allow for the parameters to change to leading
order in ρ as follows:

F� ¼ FK1
þ F0

�ρ;

m� ¼ mK1
þm0

�ρ;

s�0 ¼ s0 þ s0�0 ρ; ð31Þ
where m� and F� represent mK�

1
and m2

K�
1

=g2K�
1

, respec-

tively. The density independent terms are equivalent to

TABLE I. Aq and Ag values used in the present work. All values
are given at a renormalization scale of 1 GeV [37].

Au
1 As

1 Au
2 As

2 Ag
2 Au

3 As
3 Au

4 As
4

3 0 0.784 0.053 0.367 0.2178 0.0016 0.0945 0.00121
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those in the vacuum. Then, by conducting the Borel
transformation and focusing on terms linear in ρ,
Eq. (29) becomes

FðM2ÞF0
� þMðM2; q⃗2Þm0

� þ SðM2; q⃗2Þs0�0
¼ C�ðM2; q⃗2Þ: ð32Þ

The explicit forms of the functions in Eq. (32) are listed in
Appendix A.
From Eq. (32), we define the following function:

V�ðF0
�; m

0
�; s

0�
0 Þ

≡
Z

M2
max

M2
min

fFðM2ÞF0
� þMðM2; q⃗2Þm0

�

þ SðM2; q⃗2Þs0�0 − C�ðM2; q⃗2Þg2dM2: ð33Þ

We chose the Borel window to be the same as in the
vacuum. We aim to identify F0

�, m
0
�, and s

0�
0 that minimize

V�, the conditions of which are as follows:

∂V�
∂F0

�
¼ ∂V�

∂m0
�
¼ ∂V�

∂s0�0
¼ 0: ð34Þ

This approach results in three coupled linear equations. By
solving these equations, the final results are obtained.

III. RESULTS AND DISCUSSIONS

The key finding of our work is the mass shift at finite
three-momenta in the nuclear medium. We plot the mass
changes of Kþ

1 and K−
1 up to jq⃗j ¼ 1.0 GeV in Fig. 1. Our

study indicates that Kþ
1 shows an increase in mass in both

the transverse and longitudinal modes, notably in the
longitudinal mode. On the other hand, K−

1 exhibits a mass
reduction across both modes, with a larger effect in the
transverse mode. In particular, at a momentum of 0.5 GeV,
the mass of Kþ

1 is shifted by þ2 MeV in the transverse
mode and þ13 MeV in the longitudinal mode, while K−

1

demonstrates a shift of −55 MeV in the transverse mode
and −11 MeV in the longitudinal mode. For both K�

1

mesons, the direction of mass shifts at finite three momenta
aligns with the mass shift directions due to the density at
q⃗ ¼ 0. Also, we reevaluated the mass changes without
three-momentum in the nuclear matter reported in [16], we
find the shift for K−

1 and Kþ
1 to be −257 MeV þ65 MeV,

respectively.
As can be seen in Fig. 1, in the longitudinal modes, the

changes in the two charge states are similar inmagnitude but
differ in direction. On the other hand, the transverse mode
displays different patterns. From the perspective of the
operator product expansion (OPE), Πo behaves oppositely
across charge states and shows momentum dependence
solely in the transverse mode. This leads to the bulk of the
observed differences, although on the phenomenological

side, the mixing of charge-dependent parameters necessi-
tates a careful evaluation of each term’s contribution.
To determine which condensate mostly influences the

momentum dependence, we have examined ΔmK1
ðjq⃗jÞ ¼

mK1
ðjq⃗jÞ −mK1

ð0Þ after setting each term to zero. Figure 2
illustrates the effects of the two dominant terms in the
transverse mode, namely, Au

1 − As
1 and Au

2 þ As
2 terms.

Comparing the two different charge states, when
Au
1 − As

1 → 0, the modifications are observed in the same
direction, whereas taking Au

2 þ As
2 ¼ 0 leads to changes in

the opposite direction. This indicates that while the Au
2 þ

As
2 term within Πe is indeed responsible for the shift in the

same direction, the Au
1 − As

1 term, belonging to Πo, is
responsible for the distinction between Kþ

1 and K−
1 as

expected. This is because these operators are proportional
to the quark charge with odd numbers of Lorentz indices,
similar to vector repulsion in Walecka-type models [38]. In
the longitudinal mode, the dominant effect of the Au

1 − As
1

term is seen in Fig. 3. In Figs. 2 and 3, we also show the
effect of Ag

2 term. As can be seen in these figures, the graphs
with Ag

2 ¼ 0 are almost identical to the “total” result.
Hence, in both polarization modes, the contributions from
other terms, including the Ag

2 term, are small. Although

FIG. 1. The masses of K−
1 and Kþ

1 as functions of jq⃗j at normal
nuclear matter density. The T (L) means the transverse (longi-
tudinal) mode.
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with lesser effect, Au
3 − As

3 term, which is also part of Πo,
has similar effects as the Au

1 − As
1 term, leading to shifts in

the different directions for the two charge states.
Let us now further illustrate the difference between the

longitudinal and transverse modes across the different
charge states. As illustrated in Fig. 1, it can be seen that
both mK�

1
;L −mK�

1
;T , where L and T represent polarization

modes, are positive and the difference is large in the
negative charge state. This tendency can be understood
from the OPE perspective. In the OPE side, the quantities
corresponding to mK�

1
;L −mK�

1
;T are

ReðΠe ∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

K∓
1

þ q⃗2
q

ΠoÞL
− ReðΠe ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

K∓
1

þ q⃗2
q

ΠoÞT ð35Þ

and are given in Eq. (A5) in Appendix A. From this, we
find that the difference between the two charged states is
proportional to Au

3 − As
3. In fact, when Au

3 − As
3 is taken to

be zero, mK�
1
;L −mK�

1
;T exhibit similar values across the

two charged states. However, when Au
2 þ As

2 is taken to be

zero, the difference mK�
1
;L −mK�

1
;T , exhibits pattern similar

to that observed in Fig. 1. Thus, the OPE perspective offers
a clear explanation that the quark charge dependence
induces the difference in the charge state, which is in line
with the mass difference between different charge states at
finite density when q⃗ ¼ 0.
The results of this study provide guidelines for future

experiments. The order of the nontrivial momentum-
induced mass shift of K1ð1270Þ is similar to that
observed in previous studies of other particles, including
(ρ, ω, ϕ) [22–26] and heavy quarkonium [27]. However,
in the transverse mode, K−

1 has a relatively larger
momentum dependence. This underlines the necessity
of investigating the medium modification of K−

1 at low
momentum or identifying the different polarization
modes through the angular dependences of the decay
particles [39]. As detailed in [20], the dominant decay
modes for K1ð1270Þ are identified as K1ð1270Þ →
Kρð42%Þ and K1ð1270Þ → K�πð16%Þ. For instance,
the production of K−

1 has been observed in reactions
between K− and nucleons [30,40]. For Kþ

1 meson, as
discussed in [29], the reaction K−p → K1ð1270ÞþΞ− can

FIG. 2. The effects of the nonscalar operators on ΔmK1
ðjq⃗jÞ ¼

mK1
ðjq⃗jÞ −mK1

ð0Þ in the transverse mode. The term total
indicates that the full OPE calculated in this study is taken into
account. The subscript T in K�

1;T means the transverse mode.

FIG. 3. The effects of the nonscalar operators on ΔmK1
ðjq⃗jÞ ¼

mK1
ðjq⃗jÞ −mK1

ð0Þ in the longitudinal mode. The term total
indicates that the full OPE calculated in this study is taken into
account. The subscript L in K�

1;L means the longitudinal mode.
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be useful. These processes could be explored using the
kaon beam at J-PARC [16,29].
While the momentum dependencies differ between the

longitudinal and transverse modes, as well as for different
charge states, the mass gap between chiral partners only
depends on the chiral order parameter [21]. So forK�ð892Þ,
as previously mentioned, it has the same momentum
dependent terms as those of K1ð1270Þ from the perspective
of OPE. Consequently, the momentum-induced mass shift
for K�ð892Þ is expected to be nearly identical to that
of K1ð1270Þ.
As first discussed in [41], a double peak structure

appearing in the decay spectra is an intriguing signal of
the corresponding medium effect. If one observes the
angle-averaged decay spectra for an unpolarized beam,
two peaks may appear because the momentum-induced
mass shift differs between polarization modes. The gap
between these peaks grows as jq⃗j increases. However, when
jq⃗j becomes very large, most particles decay outside the
nucleus. As also noted in [26], at a suitably low momentum
(less than 1 GeV for ϕ meson [11]), the difference between
the two peaks should exceed their width to be meaningful.
The vacuum widths of K1 and K� are about 90 MeV and
50 MeV, respectively. From the symmetric nuclear matter
and chiral partner arguments, the momentum dependences
of ðK−

1 ; K̄
0
1; K̄

�0Þ are expected to be similar, and the gap
between the two peaks for K−

1 at jq⃗j ¼ 1 GeV is about
200 MeV. Therefore, if one selects K̄�0 with a suitable
momentum and if its medium width remains sufficiently
less than 200 MeV, one can observe a double peak in the
Kπ spectra of an unpolarized K̄�0.

IV. CONCLUSIONS

We have investigated the mass modifications of K�
1

mesons with finite three-momentum in nuclear matter using
QCD sum rule analysis. We find that, due to nontrivial
momentum effects, the mass of Kþ

1 (K−
1 ) meson is

increased(decreased) in both the transverse and longi-
tudinal modes. Specifically, compared to its rest mass in
the nuclear medium, Kþ

1 (K−
1 ) shows a mass shift of

þ2ð−55Þ MeV in the transverse mode, while in the
longitudinal mode, the shift amounts to þ13ð−11Þ MeV,
all at a momentum of 0.5 GeV.
Next, we have improved one of the results in [16], the

mass shift at q⃗ ¼ 0. For Kþ
1 (K−

1 ), the change amounts to
þ65ð−257Þ MeV. These numerical findings also imply
that in nuclear matter, K−

1 ðūsÞ experiences attraction,

whereas Kþ
1 ðs̄uÞ feels repulsion. This phenomenon can be

explained through the quark content of the meson. When it
contains a quark (antiquark), it experiences repulsion
(attraction) with the quarks in the medium. This pattern
can also be identified in charged kaons [16,42–44] and
charged D mesons [45].
Meanwhile, the methodology of QCD sum rules focuses

only on the bulk property of the spectral function, leading
to a scenario where mass shift and width broadening are
interrelated [46]. As a result, the mass variations deter-
mined in this analysis represent the upper limits within the
framework of QCD sum rules.
Nevertheless, our study provides direction on how the

mass of K�
1 in the medium with momentum would change,

which could be validated through several proposed
methods [16,29,30,39,40].
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APPENDIX A: SOME MATHEMATICAL
EXPRESSIONS

Here, we list the explicit forms of the functions presented
in Eq. (32) and also show the calculated outcomes in
Eq. (35),

FðM2Þ ¼ −m2
K1
e−m

2
K1

=M2

; ðA1Þ

MðM2; q⃗2Þ ¼ FK1
mK1

�
−2þ 2m2

K1

M2

�
e−m

2
K1

=M2

þ FK1
m3

K1

2ðm2
K1

þ q⃗2Þ e
−m2

K1
=M2

; ðA2Þ

SðM2; q⃗2Þ ¼ 1

2

0
B@1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

K1
þ q⃗2

q
ffiffiffiffiffi
s0

p þ q⃗2

1
CAðB0s0 − B2Þe−s0=M2

;

ðA3Þ
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C�ðM2; q⃗2Þ ¼ −mshūuiN þ αs
12π

hG2iN þmN

2
ðAu

2 þ As
2Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

K1
þ q⃗2

q
1

2
ðAu

1 − As
1Þ

þ 32παs
9M2

�
hūuiNhs̄si0 � εhūui0hs̄siN þ 2

9
ðhūuiNhūui0 þ hs̄siNhs̄si0Þ

�

−
5m3

N

6M2
ðAu

4 þ As
4Þ ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

K1
þ q⃗2

q
2m2

N

3M2
ðAu

3 − As
3Þ þ

αs
π
Ag
2mN

�
3

4
−
1

3
ðlnM2 − γEÞ

�

þ αs
π
Ag
2mN

�
−

7q⃗2t
6M2

þ 2

3

q⃗2t
M2

ðlnM2 þ 1 − γEÞ −
2q⃗2l
3M2

�

−
q⃗2t mN

M2
ðAu

2 þ As
2Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

K1
þ q⃗2

q q⃗2t
M4

m2
NðAu

3 − As
3Þ

þm3
NðAu

4 þ As
4Þ
�
9q⃗2t
4M4

−
2q⃗4t
3M6

�
þm3

NðAu
4 þ As

4Þ
q⃗2l
2M4

þm0∓
�

FK1
m3

K1

2ðm2
K1

þ q⃗2Þ e
−m2

K1
=M2

�

þ s0∓0

8<
:
1

2

0
B@−1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

K1
þ q⃗2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s0 þ q⃗2

p
1
CAðB0s0 − B2Þe−s0=M2

9=
;: ðA4Þ

For the pole of K�
1 ,

Re
�
Πe ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

K∓
1

þ q⃗2
q

Πo


L
− Re

�
Πe ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

K∓
1

þ q⃗2
q

Πo


T

¼ −
1

Q2

�
q⃗2t
Q2

mNðAu
2 þ As

2ÞρþmNαsA
g
2ρ

�
7q⃗2t
6πQ2

−
2q⃗2t
3πQ2

ln
Q2

μ
−

2q⃗2l
3πQ2

��

−
1

Q4

�
ρm3

NðAu
4 þ As

4Þ
q⃗2l
Q2

þ ρm3
NðAu

4 þ As
4Þ
�
−
9q⃗2t
2Q2

þ 4q⃗2t
Q4

��

∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

K∓
1

þ q⃗2
q q⃗2t

Q6
2m2

NðAu
3 − As

3Þρ: ðA5Þ

APPENDIX B: CALCULATION OF WILLSON COEFFICIENT OF THE
TWIST-2 QUARK CONDENSATE OF MASS DIMENSION 4

In this section, we present the process to estimate the one of the willson coefficient of nonscalar terms in detail,

ΠT
μνðqÞ ¼ i

Z
d4xeiqxhT½ūðxÞηνσγσγ5sðxÞs̄ð0Þημδγδγ5uð0Þ�i;

ΠT;τ¼2;d¼4
μν ðqÞ ¼ i

X
α

1

4
hs̄ΓαDβsiρ

∂

∂qβ
Tr½Γαηνσγσγ5S̃

uð−qÞημδγδγ5� þ ðu ↔ sÞ

¼ i
4

X
α

hs̄ΓαDβsiρTr½Γαηνσγσγ5=qγβ=qημδγδγ5�
1

q4
þ ðu ↔ sÞ; ðB1Þ

where ημν is introduced to extract the conserved part and suppress the pseudoscalar contribution [47],

ημν ≡
�
qμqν
q2

− gμν

�
: ðB2Þ

In this case, Γα ¼ γα.
First, by concentrating solely on the strange quark operator, the following results are obtained:

hs̄γαDβsiρ ≃ hs̄γαDβsi0 þ ρhST ðs̄γαDβsÞiN; ðB3Þ
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ρhST ðs̄γαDβsÞiN ¼ −iρAs
2

mN

2

�
vαvβ −

gαβ
4

�
; ðB4Þ

�
vαvβ −

gαβ
4

�
Tr½Γαηνσγσγ5=qγβ=qημδγδγ5�

¼ 4gμνðq2 − 2q20Þ þ vμð8qνq0 − 8q2vνÞ
þ qμð8vνq0 − 4qνÞ; ðB5Þ

Πs
L ¼ q2

q⃗2
Πs

00 ∝ 4q2; ðB6Þ

Πs
T ¼ −

1

2
ðΠμ;s

μ þ Πs
LÞ ∝ 4q2 − 8q⃗2: ðB7Þ

Here, the superscripts T, τ, and d in Πμν have been omitted
for convenience. Calculating for the u-quark also yields the
same result. So, we have

ΠL ¼ −mN

2Q2
ðAu

2 þ As
2Þρ; ðB8Þ

ΠT ¼−
1

Q2

�
mN

2
ðAu

2þAs
2Þρ−

q⃗2

Q2
mNðAu

2þAs
2Þρ

�
: ðB9Þ

By examining the odd terms, it can be confirmed that the
outcomes for the u-quark and s-quark are opposite sign. As
a result, when we consider same-flavor mesons, the odd
terms are expected to vanish.
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