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In this work, we evaluate the Xð3872Þ to ψð2SÞ yield ratio (NX=Nψð2SÞ) in Pb-Pb collisions, taking
into account the interactions of the ψð2SÞ and Xð3872Þ states with light mesons in the hadron gas formed at
the late stages of these collisions. We employ an effective Lagrangian approach to estimate the thermally
averaged cross sections for the production and absorption of the ψð2SÞ and use them in the rate equation to
determine the time evolution of Nψð2SÞ. The multiplicity of these states at the end of the mixed
phase is obtained from the coalescence model. The multiplicity of Xð3872Þ, treated as a bound state of
ðDD̄� þ ccÞ and also as a compact tetraquark, was already calculated in previous works. Knowing
these yields, we derive predictions for the ratio (NX=Nψð2SÞ) as a function of the centrality, of the center-of-
mass energy, and of the charged hadron multiplicity measured at midrapidity ½dNch=dηðη < 0.5Þ�.
Finally, we make predictions for this ratio in Pb-Pb collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV to be measured by the
ALICE Collaboration in run 3. Our findings suggest that the molecular configuration generates a
ratio compatible with the data, whereas the ratio obtained with the tetraquark configuration is 50 times
smaller.

DOI: 10.1103/PhysRevD.110.014011

I. INTRODUCTION

Among the new hadrons observed in the past two
decades [1], several have properties incompatible with
the quark model predictions and can be classified as
unconventional states. For recent reviews, see [2–4].
Their properties remain the subject of intense debate,
and this makes exotic quarkonium spectroscopy a hot
topic of research. The most relevant question is: Which
is their structure? They can be weakly bound hadron
molecules, compact multiquark states, cusps generated
from kinematical singularities, excited conventional
hadrons, glueballs, hybrids, etc., or even a superposition
of different configurations. So far, there is no compelling
answer to this question.
One emblematic example is the first-observed and most

famous exotic state, Xð3872Þ [1,5]. Its intrinsic nature is
still a matter of controversy. Two configurations are the

most explored in the literature [2–4]: the shallow bound
state of open charm mesons ðDD̄� þ ccÞ and the cc̄qq̄
compact tetraquark. The ultimate goal of the present work
is to contribute to the determination of the Xð3872Þ
structure.
A new era in the investigation of exotic charmonium

states has started with the first observation of Xð3872Þ in
relativistic heavy-ion collisions reported recently by the
CMS Collaboration [6]. The data were collected in lead-
lead (Pb-Pb) collisions at a center-of-mass energy

ffiffiffi
s

p ¼
5.02 TeV per nucleon pair, using the decay chain
Xð3872Þ → J=ψπþπ− → μþμ−πþπ−. The rapidity and
transverse momentum intervals considered were jyj < 1.6
and 15 < pT < 50 GeV, respectively. The significance
of the inclusive Xð3872Þ signal was 4.2σ. Interestingly,
the prompt Xð3872Þ to ψð2SÞ yield ratio was found
to be

R ¼ NXð3872Þ
Nψð2SÞ

¼ 1.08� 0.49ðstatÞ � 0.52ðsystÞ: ð1Þ

This central value is about one order of magnitude higher
than the one observed in pp collisions [7], which is close
to 0.09. Additionally, the LHCb Collaboration reported
the observation of Xð3872Þ in p-Pb collisions at both
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forward and backward rapidity and at
ffiffiffi
s

p ¼ 8.16 TeV per
nucleon [8]. The decay chain was the same as the one
studied by the CMS Collaboration. The transverse
momentum interval considered was pT > 5 GeV, and
the rapidity intervals were 1.5 < y < 4 for p-Pb (forward
configuration) and −5 < y < −2 for Pb-p (backward
configuration). The resulting ratios of the Xð3872Þ to
ψð2SÞ multiplicities were 0.27� 0.08� 0.05 in p-Pb
and 0.36� 0.15� 0.11 in Pb-p. Both are bigger than
the one seen in pp collisions but smaller than the one
observed in Pb-Pb collisions.
On the theoretical side, some recent works have

attempted to describe the data. In Ref. [9], the coalescence
model has been used to estimate NX and the statistical
hadronization model to obtain NΨð2SÞ. The obtained ratio
has a central value of 0.806 for Xð3872Þ in the molecular
configuration and 0.204 for the tetraquark configuration. In
Ref. [9], the interaction of X [and also of the ψð2SÞ] with
the light mesons in the hadron gas was not considered.
Here, we try to estimate the effect of these interactions on
the ratio R.
At the beginning of a heavy-ion collision, quark-gluon

plasma (QGP) is formed. It expands, cools down, and
hadronizes into a hot hadron gas. The gas lives for about
10 fm and freezes out, generating the observed particles.
Conventional and exotic hadrons formed in the end of the
mixed phase can interact with the (mostly light) particles in
the hadron gas, and their multiplicities may experience
modifications due to production and absorption processes,
as was pointed out in previous works [10–20]. The case of
Xð3872Þ has been studied [10–12,16], and its final multi-
plicity will depend on the interaction cross sections, which,
in turn, depend on the spatial configuration of the quarks.
Meson molecules are larger and, therefore, have greater
cross sections and stronger interaction with the hadronic
medium than compact tetraquarks. In order to have a more
complete description of the process, these interactions
should be taken into account.
Motivated by these recent measurements in Pb-Pb and

p-Pb collisions, in this work we evaluate the ratioR taking
into account the interactions of the ψð2SÞ and of the
Xð3872Þ states with the hadron gas formed in heavy-ion
collisions. We will make use of effective Lagrangians
to estimate the thermally averaged cross sections for
Xð3872Þ and ψð2SÞ production and absorption and employ
them in the rate equation to determine the time evolution
of the ratio R. We will use the coalescence model to
compute the multiplicity of these states at the end of the
mixed phase. Xð3872Þ will be treated as a bound state of
ðDD̄� þ ccÞ and also as a compact tetraquark. Finally, we
will make predictions for R to be measured by the ALICE
Collaboration in run 3. We emphasize that we will study
only the interactions in the hadron gas phase which occur
after the hadronization of the QGP and involve only
hadronic degrees of freedom.

II. EFFECTIVE FORMALISM

In what follows, we describe the effective formalism
used to evaluate the interactions of the Xð3872Þ and ψð2SÞ
states with the surrounding hadronic medium. In particu-
lar, we consider the medium constituted of the lightest and
most abundant pseudoscalar and vector mesons, i.e., the
pions and ρ mesons, and take into account the lowest-
order Born contributions. The reactions involving
Xð3872Þ have already been studied in previous works,
and for the sake of conciseness we will not reproduce
them here. We refer the reader to Refs. [10–12,16] for a
detailed discussion.
To the best of our knowledge, in contrast to the case

of J=ψ [21–23], there is no effective theory for the reac-
tions involving ψð2SÞ. In the lack of works on this
subject, we adopt an effective approach, based on the
J=ψ studies, to describe the reactions ψð2SÞπ → D̄ð�ÞDð�Þ

and ψð2SÞρ → D̄ð�ÞDð�Þ, as well as the inverse processes.
In Figs. 1 and 2, we show the lowest-order Born diagrams
contributing to each process. To calculate their respective
cross sections, we will adapt the effective Lagrangians
introduced in [21–23]. The couplings involving the ψð2SÞ
and the D� mesons are [we denote ψð2SÞ≡ ψ]

LψDD ¼ gψDDψμð∂μDD̄ − −D∂
μD̄Þ;

LψD�D� ¼ −igψD�D� ½ψμð∂μD�νD̄�
ν − −D�ν

∂μD̄�
νÞ

þ ð∂μψνD�ν − ψμ∂νD�νÞD̄�μ

þD�μðψν
∂μD̄�

ν − ∂μψνD̄�νÞ�;
LψDD� ¼ −gψDD�ϵμναβ∂μψνð∂αD�

βD̄þD∂αD̄�
βÞ; ð2Þ

while the vertices involving the D� mesons and the pions
and ρ mesons are

LπDD� ¼ igπDD�D�μτ⃗ · ðD̄∂μπ⃗ − ∂μD̄ π⃗Þ þ H:c:;

LρDD ¼ igρDDðDτ⃗∂μD̄ − ∂μDτ⃗ D̄Þ · ρ⃗μ;
LρD�D� ¼ igρD�D� ½ð∂μD�ντ⃗D̄�

ν −D�ντ⃗∂μD̄�
νÞ · ρ⃗μ

þ ðD�ντ⃗ · ∂μρ⃗ν − ∂μD�ντ⃗ · ρ⃗νÞD̄�μ

þD�μðτ⃗ · ρ⃗ν∂μD̄�
ν − τ⃗ · ∂μρ⃗νD̄�

νÞ�;
LπD�D� ¼ −gπD�D�ϵμναβ∂μD8

νπ∂αD̄�
β;

LρDD� ¼ −gρDD�ϵμναβðD∂μρν∂αD̄�
β þ ∂μD�

ν∂αρβD̄Þ: ð3Þ

In Eqs. (2) and (3), Dð�Þ and D̄ð�Þ represent the isospin
doublets of the pseudoscalar (vector) charmed mesons;
ψν denotes the ψð2SÞ vector field; τ⃗ represents the Pauli
matrices in the isospin space; π⃗ and ρ⃗ are the pion and ρ
isospin triplets, respectively. The coupling constants gπDD� ,
gρDD, gρD�D� , gπD�D� , and gρDD� will be discussed below.
These effective Lagrangians introduced above allow us

to determine the amplitudes of the ψð2SÞ absorption
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processes depicted in Figs. 1 and 2:

Mψπ→D̄D ≡ X
i¼a;b

MðiÞ;

Mψπ→D̄D� ≡ X
i¼c;d;e

MðiÞ;

Mψπ→D̄�D� ≡ X
i¼f;g;h;i

MðiÞ;

Mψρ→D̄D ≡ X
i¼j;k;l;m

MðiÞ;

Mψρ→D̄D� ≡ X
i¼n;o;p;q

MðiÞ;

Mψρ→D̄�D� ≡ X
i¼r;s;t;u

MðiÞ; ð4Þ

where MðiÞ denotes the contribution coming from the
specific reaction (i); the expressions are explicitly summa-
rized in the Appendix.
As usual, we employ form factors to prevent the artificial

growth of the amplitudes with energy and take into account
the finite size of hadrons. To the best of our knowledge,
there is so far no systematic study of the couplings of
Eqs. (2) and (3) involving ψð2SÞ. Because of the similar-
ities of these vertices with those involving J=ψ , we assume
that the form factors for ψð2SÞ are given by the same

FIG. 1. Born diagrams for the processes ψð2SÞπ → D̄D [(a),
(b)], ψð2SÞπ → D̄�D [(c)–(e)], and ψð2SÞπ → D̄�D� [(f)–(i)].
The particle charges are not specified. We denote ψð2SÞ≡ ψ .

FIG. 2. Born diagrams for the processes ψð2SÞρ → D̄D [(j)–
(m)], ψð2SÞρ → D̄�D [(n)–(q)], and ψð2SÞρ → D̄�D� [(r)–(u)].
The particle charges are not specified. We denote ψð2SÞ≡ ψ .
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parametrizations of those for J=ψ, which have already been
computed via QCD sum rules in Refs. [16,22,24–27]. They
are given by

ðIÞ gM1M2M3
¼ A

Q2 þ B
;

ðIIÞ gM1M2M3
¼ Ae−ð

BþQ2

C Þ; ð5Þ

where Q is the Euclidean four-momentum of the off-shell
particle involved in the vertex and the constants A, B, and C
are given in Table I. The cross sections should depend on
the size of the interacting hadron. From the studies of
charmonium spectroscopy, it is well known that ψð2SÞ is
larger than the fundamental charmonium state by a factor
of about 2 (see, for example, the discussion in [28]).
Therefore, based on geometrical arguments, we expect
ψð2SÞ to have bigger cross sections than J=ψ by a factor of
about 4. Hence, in the lack of reliable estimates of the
coupling constants and form factors for the ψð2SÞ vertices,
we use the parametrizations given in Eq. (5) and Table I
but with the coupling constants varying in the range
½gM1M2M3

; 2gM1M2M3
�. This will be the main source of

uncertainties in our calculation.

III. CROSS SECTIONS FOR THE PROCESSES
INVOLVING ψð2SÞ

A. Vacuum cross sections

The isospin-spin-averaged cross section in the center-
of-mass (c.m.) frame for a specific ab → cd process is
given by

σab→cdðsÞ ¼
1

64π2sgagb

jp⃗cdj
jp⃗abj

Z
dΩ

X
S;I

jMab→cdðs; θÞj2;

ð6Þ

where
ffiffiffi
s

p
is the c.m. energy; jp⃗abj and jp⃗cdj are the

magnitudes of three-momenta of initial and final particles
in the c.m. frame, respectively;

P
S;I means the sum over

the spins and isospins of the particles in the initial and final
state, weighted by the isospin and spin degeneracy factors
ga ¼ ð2Sa þ 1Þð2Ia þ 1Þ and gb ¼ ð2Sb þ 1Þð2Ib þ 1Þ of
the two particles forming the initial state.
It is worth remarking that the cross sections for the

respective inverse processes can be computed through the
use of the detailed balance relation:

σcd→abðsÞ ¼
gagb
gcgd

jp⃗abj2
jp⃗cdj2

σab→cd: ð7Þ

The calculations are performed using the isospin-averaged
masses of the light and heavy mesons according to the
values reported by the PDG [1]. Since we use a range of
values for the couplings involving ψð2SÞ due to the
uncertainties, the results are shown in terms of bands.
The cross sections for the ψð2SÞ suppression by comov-

ing light mesons as functions of the relative c.m. energyffiffiffi
s

p
− ffiffiffiffiffi

s0
p

(
ffiffiffiffiffi
s0

p
being the threshold energy of the respec-

tive channel) are plotted in Fig. 3. Except for the channels
ψπ → D̄�D and ψπ → D̄�D�, all the cross sections are

TABLE I. Form factors gM1M2M3
for the respective vertices

M1M2M3 presented in Eq. (5), computed via the QCD sum rules
in Refs. [16,22,24–27] for J=ψ. M2 denotes the exchanged
particle.

M1 M2 M3 Form A B C

ψDD II 5.8 20 15.8
ψD�D II 20 27 18.6
ψDD� II 13 26 21.2
ψD�D� II 6.2 0 3.55
πDD� I 126 11.9 � � �
πD�D I 126 11.9 � � �
ρDD I 37.5 12.1 � � �
ρD�D� II 4.9 0 13.3
πD�D� II 4.8 0 6.8
ρDD� I 234 44 � � �
ρD�D I 234 44 � � �

FIG. 3. Cross sections for the absorption processes ψπ →
D̄ð�ÞDð�Þ (upper panel) and ψρ → D̄ð�ÞDð�Þ (lower panel), as
functions of the relative c.m. energy

ffiffiffi
s

p
− ffiffiffiffiffi

s0
p

.
ffiffiffiffiffi
s0

p
is the

threshold energy of the respective channel.
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exothermic, showing a substantial decrease after the thresh-
old. We remark that the ψπ → D̄D channel acquires
large cross sections close to the threshold, not visible in
the plot, and after that it suffers a strong decrease. In the
region close to the threshold up to moderate energies,
i.e.,

ffiffiffi
s

p
− ffiffiffiffiffi

s0
p ≃ 500 MeV, the different channels present

magnitudes of the order of 10−4 − 101 mb, but with the
reactions with final state D̄D being suppressed with respect
to the other ones. In the case of the inverse processes, the
cross sections are plotted in Fig. 4. As expected, very near
the threshold, they have an opposite behavior with respect
to the corresponding ψð2SÞ-suppression reactions in Fig. 3.
From the region close to the threshold up to moderate
energies, we observe that the cross sections are of the order
10−4 − 100 mb, and, in general, those for ψð2SÞ-suppres-
sion reactions have smaller magnitudes than their respec-
tive inverse processes. This is an important feature (since it
appears in the energy range relevant for heavy-ion colli-
sions) which can be attributed to the differences in the
phase space and the degeneracies encoded in Eq. (7) [17].

B. Thermally averaged cross sections

In a hadron gas, the temperature determines the order
of magnitude of the collision energy. Hence, it is more
realistic to use the vacuum cross sections weighted by

the thermal momentum distributions of the colliding
particles. For processes with a two-particle initial state
going into two final state particles ab → cd, it is given
by [10,15–17,29]

hσab→cdυabi ¼
R
d3pad3pbfaðpaÞfbðpbÞσab→cdυabR

d3pad3pbfaðpaÞfbðpbÞ
¼ 1

4β2aK2ðβaÞβ2bK2ðβbÞ
×
Z

∞

z0

dzK1ðzÞσab→cdðs ¼ z2T2Þ

× ½z2 − ðβa þ βbÞ2�½z2 − ðβa − βbÞ2�; ð8Þ

where υab denotes the relative velocity of the two initial
interacting particles; the function fiðpiÞ is the Bose-
Einstein distribution; βi ¼ mi=T, with T being the temper-
ature; z0 ¼ maxðβa þ βb; βc þ βdÞ, and K1 and K2 are the
modified Bessel functions of the second kind. It can be seen
from the expression in the second line in Eq. (8) that the
thermal average suppresses the configurations very close to
the thresholds: For sufficiently large z0, the K1ðzÞ function
acquires very small values.
In Fig. 5, we plot the thermally averaged cross sections

as functions of the temperature for the ψð2SÞ suppression
by comoving light mesons using the vacuum cross-section

FIG. 4. Cross sections for the production processes D̄ð�ÞDð�Þ →
ψπ (upper panel) and D̄ð�ÞDð�Þ → ψρ (lower panel), as functions
of the relative c.m. energy

ffiffiffi
s

p
− ffiffiffiffiffi

s0
p

.

FIG. 5. Thermally averaged cross sections for the absorption
processes ψπ → D̄ð�ÞDð�Þ (upper panel) and ψρ → D̄ð�ÞDð�Þ
(lower panel), as functions of the temperature.
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results obtained previously. In general, they have a weak
dependence on the temperature. The tendency seen in the
vacuum at moderate energies is reproduced here: Reactions
with the D̄D final state are suppressed with respect to the
other ones. On the other hand, for the ψð2SÞ production
processes, shown in Fig. 6, the reactions involving the
production of ψð2SÞρ present a strong dependence on the
temperature. Most importantly, the absorption cross sec-
tions are always larger than the production ones, and the
difference can reach 2 orders of magnitude, depending on
the temperature. According to previous studies, this feature
may have strong impact on the final yield of the ψð2SÞ in
heavy-ion collisions. This issue will be addressed in the
next section.

IV. MULTIPLICITIES OF ψð2SÞ AND Xð3872Þ
A. Time evolution

Here, wewill present the formalism used to determine the
yields of ψð2SÞ and Xð3872Þ in a hadron gas formed in the
final stage of heavy-ion collisions.Wewill use the thermally
averaged cross sections estimated in the previous section for
ψð2SÞ. For Xð3872Þ, we will use the results reported in
Ref. [16] and include the contributions of the anomalous
vertex XD�D̄� presented in Refs. [11,12]. These quantities
will be employed as entries into the time-evolution equations

to estimate the gain and loss terms. Explicitly, the rate
equation is [10,12,16,20,23,30,31]

dNhðτÞ
dτ

¼
X

c̄¼D̄;D̄�;
c¼D;D� ;
φ¼π;ρ

½hσc̄c→φhυc̄cinc̄ðτÞNcðτÞ

− hσφh→c̄cυψφinφðτÞNhðτÞ�; ð9Þ

where NhðτÞ represents the multiplicity of the state of
type h ½h ¼ ψð2SÞ; Xð3872Þ�; niðτÞ and NiðτÞ denote the
density and the number of the meson of type i at a given τ,
respectively. The pions, ρ, and charmed mesons in the
reactions discussed previously are assumed to be in equi-
librium, implying that with the Maxwell-Boltzmann
approximation niðτÞ becomes

niðτÞ ≈
1

2π2
γigim2

i TðτÞK2

�
mi

TðτÞ
�
; ð10Þ

where γi, gi, and mi are the fugacity, degeneracy factor,
and particle mass i, respectively. The multiplicity NiðτÞ is
then obtained by multiplying niðτÞ by the volume VðτÞ.
Following preceding works, we model the hadron gas
expansion by the boost invariant Bjorken flow with
an accelerated transverse expansion. The volume and
temperature profiles as a function of the proper time τ are
as follows [10,12,23,30,31]:

VðτÞ ¼ π

�
RC þ υCðτ − τCÞ þ

aC
2
ðτ − τCÞ2

�
2

τc;

TðτÞ ¼ TC − ðTH − TFÞ
�
τ − τH
τF − τH

�4
5

; ð11Þ

where RC, υC, aC, and TC are the transverse size, transverse
velocity, transverse acceleration, and temperature at the
time τC, respectively; TH ðTFÞ is the temperature at the
hadronization (kinetic freeze-out) time τH ðτFÞ. The param-
eters in Eq. (11) are fixed according to Ref. [31] for a
hadronic medium formed in central Pb-Pb collisions atffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV; for completeness, they are given in
Table II.
Additionally, the multiplicities of the light mesons as

well as of the charm quarks in charmed mesons are also
shown in Table II. For the light mesons, their fugacities in
Eq. (10) appear as normalization parameters to adjust the
multiplicities given in Table II. In the case of charm quarks,
since they are produced in the early stages of the collision,
we assume that the total number of charm quarks ðNcÞ in
charmed hadrons remains approximately conserved during
the hydrodynamic expansion, which leads to the condition
Nc ¼ ncðτÞ × VðτÞ ¼ const, engendering a time-depen-
dent charm-quark-fugacity factor γc ≡ γcðτÞ in Eq. (10).
To fix the initial condition for the yield NhðτÞ appearing

in the integro-differential equation (9), i.e., the yield of the

FIG. 6. Thermally averaged cross sections for the production
processes D̄ð�ÞDð�Þ → ψπ (upper panel) and D̄ð�ÞDð�Þ → ψρ
(lower panel), as functions of the temperature.
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state h at the end of QGP, we employ the so-called
coalescence model, which is characterized by the con-
volution of the density matrix of the constituents of h with
its Wigner function [14,16,31]. This model has the advan-
tage of carrying information on the intrinsic structure of
the system, such as angular momentum and the type and
number of constituent quarks. More concretely, according
to this approach the yield of a hadronic state of type h can
be written as

Nh ≈ gh
Yn
j¼1

Nj

gj

Yn−1
i¼1

ð4πσ2i Þ32
VðτÞð1þ 2μiTðτÞσ2i Þ

×

�
4μiTðτÞσ2i

3ð1þ 2μiTðτÞσ2i Þ
�
li
; ð12Þ

where gj and Nj are the degeneracy and number of the jth
constituent of h and σi ¼ ðμiωÞ−1=2, respectively; the
quantity ω is the oscillator frequency (taking an harmonic
oscillator as a model of the hadron internal structure) and μ
the reduced mass, i.e., μ−1 ¼ m−1

iþ1 þ ðPi
j¼1mjÞ−1; li is the

angular momentum of the system: It is 0 for an S wave
and 1 for a P wave. Table II summarizes the oscillation
frequency for the charmed hadrons, the charm quark
number, and masses used here.
From Eq. (12), we have the following multiplicities for

ψð2SÞ and Xð3872Þ at the end of the mixed phase:

Nψð2SÞðτHÞ ≈ 1.8 × 10−4;

Nð4qÞ
X ðτHÞ ≈ 1.8 × 10−4;

NðMolÞ
X ðτHÞ ≈ 1.1 × 10−2: ð13Þ

In the case of the molecular state Xð3872ÞðMolÞ, to calculate
the oscillation frequency, we have employed the expression
ω ¼ 6B, with B being the binding energy of Xð3872Þ
considered as a ðD0D̄�0 þ ccÞ bound state. As can be seen,
the coalescence mechanism generates initial conditions in
which molecules are more abundant than compact tetra-
quarks by a factor of about 60, reflecting the fact that
forming a loosely bound state is easier than a compact
tetraquark.
When compared to other works, the values for Nð4qÞ

X ðτHÞ
and NðMolÞ

X ðτHÞ in Eq. (13) are somewhat smaller than the
multiplicities reported in Ref. [30] because of the different
values used for the parameters (e.g., Nc for the calculation

of Nð4qÞ
X and B for NðMolÞ

X ). In addition, our value for

Nð4qÞ
X ðτHÞ in Eq. (13) is in agreement with that reported in

Ref. [31]. However, NðMolÞ
X ðτHÞ is bigger than the one

in [31] by a factor of 2.4, again probably due to the different
value used for B. Using a multiphase transport model,

the authors of Ref. [32] obtained Nð4qÞ
X ∼ 2 × 10−4 and

NðMolÞ
X ∼ 4–5 × 10−2 for more central Pb-Pb collisions

at
ffiffiffiffiffiffiffiffi
sNN

p ¼ 2.76 TeV, which is of the same order of
magnitude as our calculations.
In Fig. 7, we show the time evolution of the ψð2SÞ and

Xð3872Þ multiplicities as a function of the proper time. In
the case of ψð2SÞ, the final yield increases by a factor of
about one order of magnitude, which means that the gain
terms in the evolution equation (9) play a dominant role at
higher temperatures. Strictly speaking, at the beginning of
the hadron gas phase, the densities and multiplicities of the
charmed mesons are sufficient to counterbalance the bigger
magnitudes of the thermal cross sections for the absorption
processes multiplied by the densities of the light mesons
and the multiplicity of ψð2SÞ. As the time evolves, the gain
and loss terms become almost of the same order (consid-
ering the uncertainties), and the ψð2SÞ multiplicity suffers
just a slight reduction.
For the Xð3872Þ abundance, we remark that its time

evolution has already been analyzed in Refs. [10,12] for
central Au-Au collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV. Very
recently, in Ref. [16], this analysis has been redone for
central Pb-Pb collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV, for the
purpose of comparison between the final yields of
Tþ
ccð3985Þ and Xð3872Þ. Since we are interested in the

Xð3872Þ to ψð2SÞ yield ratio, for completeness we
present again in Fig. 7 NXð3872ÞðτÞ. This result is slightly
different from that published in Ref. [16]. We improved
the calculation including the anomalous vertex XD�D̄� as
discussed in [11]. As can be seen from the figure,
tetraquarks reach a final yield which is much smaller
(by a factor of about 50) than the one of ðDD̄� þ ccÞ
molecules. Another feature is that in both cases the
Xð3872Þ abundance does not present a sizable change
with time.

TABLE II. In the first three rows, we list the set of parameters
used in Eq. (11) for the hydrodynamic expansion and cooling of
the hadronic medium formed in central Pb-Pb collisions atffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV [31]. In the fourth row, we list the multiplicity
of the charm quark and light mesons used in the model. In the last
two rows, the quark masses and the frequency used in the
coalescence model are listed [16].

vC (c) aC (c2=fm) RC (fm)
0.5 0.09 11
τC (fm=c) τH (fm=c) τF (fm=c)
7.1 10.2 21.5
TC (MeV) TH (MeV) TF (MeV)
156 156 115
Nc NπðτFÞ NρðτHÞ
14 2410 184
VC (fm3) mq (MeV) mc (MeV)
5380 350 1500
ω (MeV)
220
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We also show in Fig. 7 the time evolution of the
Xð3872Þ to ψð2SÞ yield ratio. As expected from the
discussion above, we observe a strong variation of this
ratio in the early times and after that a relative stabilization.
Interestingly, the molecular configuration generates a
ratio greater than 1, which seems compatible with the
value given in Eq. (1) obtained by the CMS Collaboration
for Pb-Pb collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV within the
rapidity and transverse momentum ranges jyj < 1.6 and
15 < pT < 50 GeV. Since the data have been collected at
high-transverse momenta and in a specific rapidity range,
whereas our results have been computed considering the

whole range in pT and y, a direct comparison between our
results and data is not possible yet. It should be mentioned
that in Ref. [9] the coalescence model has been used to
estimate the NX and the statistical hadronization model to
obtain NΨð2SÞ. However, the hadronic interactions have not
been taken into account. This has resulted in a ratio with a
central value of 0.806 for Xð3872Þ in the molecular
configuration, argued to be consistent with the observed
one. As shown in Fig. 7, we find a bigger ratio for the
molecular configuration than that in Ref. [9].

B. Source size dependence

The size of the source can be related to a measurable
quantity, the charged-particle pseudorapidity density at
midrapidity, dNch=dηðjηj < 0.5Þ, which, in turn, can be
related to the freeze-out temperature by means of the
empirical formula [16,19,33]:

TF ¼ TF0e−bN ; ð14Þ

where TF0 ¼ 132.5 MeV, b ¼ 0.02, and N≡
½dNch=dηðjηj < 0.5Þ�1=3. Assuming that the hadron gas
undergoes a Bjorken cooling, i.e., T ¼ Thðτh=τÞ1=3, then
the freeze-out time τF can be written in terms of N
as [16,19,33]

τF ¼ τH

�
TH

TF0

�
3

e3bN : ð15Þ

A larger source generates a bigger N , which, from the
equation above, implies a bigger τF, i.e., a longer hadron
gas phase. As a consequence, the use of Eq. (15) in (9) will
give rise to a dependence of the multiplicity Nh on the size
of the source.
As shown in Ref. [19], empirical formulas relating N

with the volume of the system (V), charm quark number
(Nc), and light quark number (Nq) can also be obtained.
They are

V ¼ 2.82N 3;

Nc ¼ 7.9 × 10−5N 4.8;

Nu ¼ Nd ¼ 0.37N 3: ð16Þ

We also assume that the charm quark number and the
number of D mesons (ND) are proportional. Hence, the use
of Eq. (16) in (13) to estimate the dependence of the initial
conditions with N , together with (15) in (9), generates a
dependence of Nh on N .
In Fig. 8, we observe that the ratioR grows withN . This

is in qualitative agreement with the existing data. As
mentioned in introduction, the LHCb Collaboration
reported in Ref. [8] the growth of the ratio R when we
go from pp to p-Pb and to Pb-Pb collisions. Our results
give qualitative support to the conjecture that Xð3872Þ and

FIG. 7. Multiplicity of ψð2SÞ (upper panel), Xð3872Þ (central
panel), and their ratio (lower panel) as a function of the proper
time in central Pb-Pb collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV.
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ψð2SÞ experience a different dynamics in the hadronic
medium. Unfortunately, a direct comparison is an involved
task, as the data in Ref. [8] for the pp, p-Pb, and Pb-Pb
(this last one from the CMS Collaboration) collisions refer
to different energies and ranges of rapidity and transverse
momentum. Interestingly, the curves of the molecular and
compact tetraquark configurations converge to each other at
smaller sources, but in the region of validity of this model
(larger sources) the difference between these configurations
remains approximately of the same order.

C. Centrality and energy dependence

Apart from its dependence on the mass number A, N
also depends on the centrality of the collision and on the
center-of-mass collision energy (

ffiffiffi
s

p
). For Pb-Pb collisions

at 5.02 TeV, the relation between N and the centrality
(denoted as x, in percent) can be parametrized as [19]

dNch

dη

����
jηj<0.5

¼ 2142.16 − 85.76xþ 1.89x2 − 0.03x3

þ 3.67 × 10−5x4 − 2.24 × 10−6x5

þ 5.25 × 10−9x6: ð17Þ

Similarly, the dependence ofN on
ffiffiffi
s

p
can be parametrized

as

dNch

dη

����
jηj<0.5

¼−2332.12þ491.69logð220.06þ ffiffiffi
s

p Þ: ð18Þ

In order to determine the initial ψð2SÞ and Xð3872Þ
multiplicities with the coalescence model in terms of the
centrality and of

ffiffiffi
s

p
, we insert Eqs. (17) and (18) into

Eq. (16) and use these new equations in Eq. (12). The final
yields are then obtained solving Eq. (9) with these initial
conditions and up to a final time τF (which is also N
dependent).
In Fig. 9, we show the ratio R as a function of the

centrality. The Xð3872Þ final yield decreases faster than the

one of ψð2SÞ as we move from central to peripheral
collisions, and, therefore, the ratio becomes smaller.
Also, the curves for the molecular and compact tetraquark
configurations converge to similar values for more periph-
eral collisions.
The ratio R as a function of the energy

ffiffiffi
s

p
in central

Pb-Pb collisions is shown in Fig. 10. The Xð3872Þ final
yield presents an enhancement compared to that of ψð2SÞ,
resulting in a bigger ratio as

ffiffiffi
s

p
increases; the difference

between the curves of the molecular and compact tetra-
quark configurations remains of the same order at different
energies.
Taking together the results in Figs. 7–10, we conclude

that in central Pb-Pb collisions at
ffiffiffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV the
ratio R for minimum bias events is

NX

Nψð2SÞ
≃ 5 for molecules;

NX

Nψð2SÞ
≃ 0.1 for tetraquarks: ð19Þ

FIG. 8. Ratio R as a function of N . FIG. 9. The ratio R as a function of centrality in Pb-Pb
collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV.

FIG. 10. The ratio R as a function of energy
ffiffiffi
s

p
in central

Pb-Pb collisions.
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This is the main result of our work, and it is our pre-
diction for future measurements at run 3 of the ALICE
Collaboration, where it will be possible to measure
Xð3872Þ and ψð2SÞ at low transverse momentum, i.e.,
2 < pT < 8 GeV, where the hydrodynamical approach
used in this work should be applicable, as well as one
can expect most of the yields of the mentioned states (see,
for example, the transverse momentum distributions calcu-
lated in Refs. [9,34]). With data taken in this pT range, it
will be possible, for the first time, to investigate the medium
effects on Xð3872Þ, on ψð2SÞ, and on their ratio and check
our predictions. Moreover, in view of the numbers above,
we may have a good chance to discriminate between
molecules and tetraquarks. From the figures, we also
conclude that is easier to identify the different configura-
tions in larger systems and in more central collisions.
Changing the collision energy is not so relevant for this
purpose.
Before closing this section, we mention the study

presented in Ref. [35], where the authors study the effects
of a partonic medium on the ratioR. They find a nontrivial
behavior of this ratio. However, they do not consider final
state hadronic interactions, as we do here. A combination of
both approaches seems to be a promising project.

V. CONCLUDING REMARKS

In this work, we have studied the Xð3872Þ to ψð2SÞ yield
ratio in heavy-ion collisions, taking into account the
interactions of the ψð2SÞ and Xð3872Þ states with a hadron
gas made of light mesons. To this end, the thermally
averaged cross sections for the production and absorption
of the ψð2SÞ have been evaluated for the first time by using
effective Lagrangians. These cross sections, together with
the thermally averaged cross sections for the Xð3872Þ
production and absorption analyzed in previous works,

have been employed in the rate equation to determine the
time evolution of Nψð2SÞ, NX, and NX=Nψð2SÞ. The coa-
lescence model has been used to compute the initial
multiplicities, with Xð3872Þ being treated both as a
molecular bound state and as a compact tetraquark. Our
results indicate that the ratio is strongly affected by the
combined effects of hadronic interactions and hydrody-
namical expansion, and the molecular configuration has a
final value bigger than one, while the compact tetraquark
gives a smaller ratio by a factor of about 50.
Other interesting finding is that the ratio R grows with

the size of the source, which is in qualitative agreement
with the data from LHCb and CMS Collaborations [8].
We believe that this study can be seen as a theoretical

support to the idea that Xð3872Þ and conventional char-
monium ψð2SÞ have a different dynamics in a hadronic
medium.
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APPENDIX: AMPLITUDES

Here, the expressions for the contributions to the
amplitudes in Eq. (4), associated to the reactions depicted
in Figs. 1 and 2, are given:

MðaÞ ¼ gψDD�gπDD�εμ1
1

t − −m2
D�

ϵμβλρ

�
−gαβ þ ðp1 − −p3Þαðp1 − −p3Þβ

m2
D�

�
p2αpλ

1p
ρ
3; ðA1Þ

MðbÞ ¼ gψDD�gπDD�εμ1
1

u − −m2
D�

ϵμβλρ

�
−gαβ þ ðp1 − −p4Þαðp1 − −p4Þβ

m2
D�

�
p2αpλ

1p
ρ
4; ðA2Þ

MðcÞ ¼ 2gψDDgπDD�εμ1ε
�ν
4

1

t − −m2
D
p2νp3μ;

MðdÞ ¼ 1

2
gψD�D�gπDD�εμ1ε

�ν
4

1

u − −m2
D�

�
−gαβ þ ðp1 − −p4Þαðp1 − −p4Þβ

m2
D�

�
ðp2 þ p3Þα

× ½2p4μgνβ − ðp1 þ p4Þβgμν þ 2p1νgμβ�; ðA3Þ

MðeÞ ¼ gψDD�gπD�D�εμ1ε
�ν
4

1

t − −m2
D�

ϵμγδβϵνλρα

�
−gαβ þ ðp1 − −p3Þαðp1 − −p3Þβ

m2
D�

�
pγpρ

2p
δ
3p

λ
4; ðA4Þ
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MðfÞ ¼ gψDD�gπDD�εμ1ε
�λ
3 ε�ν4

1

t − −m2
D
ϵμλγδp

γ
1p2νpδ

3;

MðgÞ ¼ −gψDD�gπDD�εμ1ε
�λ
3 ε�ν4

1

u − −m2
D
ϵμνγδp

γ
1p2λpδ

4;

MðhÞ ¼ gψD�D�gπD�D�εμ1ε
�λ
3 ε�ν4

1

t − −m2
D�

ϵνγδα

�
−gαβ þ ðp1 − −p3Þαðp1 − −p3Þβ

m2
D�

�
pγ
4p

δ
2

× ½2p3μgβλ − −ðp1 þ p3Þβgμλ þ 2p1λgμβ�; ðA5Þ

MðiÞ ¼ gψD�D�gπD�D�εμ1ε
�λ
3 ε�ν4

1

u − −m2
D�

ϵλγδα

�
−gαβ þ ðp1 − −p4Þαðp1 − −p4Þβ

m2
D�

�
pγ
2p

δ
3

× ½2p4μgβν − −ðp1 þ p4Þβgμν þ 2p1nugμβ�; ðA6Þ

MðjÞ ¼ 4gψDDgρDDε
μ
1ε

ν
2

1

t − −m2
D
p3μp4ν;

MðkÞ ¼ 4gψDDgρDDε
μ
1ε

ν
2

1

u − −m2
D
p3νp4μ;

MðlÞ ¼ gψDD�gρDD�εμ1ε
ν
2

1

t − −m2
D�

ϵνγδαϵμλρβ

�
− − gαβ þ ðp1 − −p3Þαðp1 − −p3Þβ

m2
D�

�
pλ
1p

γ
2p

ρ
3p

δ
4; ðA7Þ

MðmÞ ¼ −gψDD�gρDD�εμ1ε
ν
2

1

u − −m2
D�

ϵνγδαϵμλρβ

�
− − gαβ þ ðp1 − −p4Þαðp1 − −p4Þβ

m2
D�

�
pλ
1p

δ
2p

γ
3p

ρ
4; ðA8Þ

MðnÞ ¼ −2gψDDgρDD�εμ1ε
ν
2ε

�λ
4

1

t − −m2
D
ϵνλγδpδ

2p
γ
4p3μ;

MðoÞ ¼ 2gψDDgρDD�εμ1ε
ν
2ε

�λ
4

1

u − −m2
D
ϵλμγδp

γ
1p

δ
4p3ν;

MðpÞ ¼ gψDD�gρD�D�εμ1ε
ν
2ε

�λ
4

1

t − −m2
D�

ϵμγδβ

�
−gαβ þ ðp1 − p3Þαðp1 − 3Þβ

m2
D�

�
pγ
1p

δ
3

× ½2p4νgλα − −ðp2 þ p4Þαgνλ þ 2p2λgνα�; ðA9Þ

MðqÞ ¼ gψD�D�gρDD�εμ1ε
ν
2ε

�λ
4

1

u − −m2
D�

ϵνγδβ

�
− − gαβ þ ðp1 − −p4Þαðp1 − −p4Þβ

m2
D�

�
pδ
2p

γ
3

× ½2p4μgβλ − −ðp1 þ p4Þβgμλ þ 2p1λgμβ�; ðA10Þ

MðrÞ ¼ −gψDD�gρDD�εμ1ε
ν
2ε

�ρ
3 ε�λ4

1

t − −m2
D
ϵνλγδϵμραβpα

1p
δ
2p

δ
3p

γ
4; ðA11Þ

MðsÞ ¼ gψDD�gρDD�εμ1ε
ν
2ε

�ρ
3 ε�λ4

1

u − −m2
D
ϵνργδϵμλαβpα

1p
γ
2p

δ
3p

β
4; ðA12Þ

MðtÞ ¼ gψD�D�gρD�D�εμ1ε
ν
2ε

�ρ
3 ε�λ4

1

t − −m2
D�

�
−gαβ þ ðp1 − −p3Þαðp1 − −p3Þβ

m2
D�

�

× ½2p4νgαλ − −ðp2 þ p4Þαgνλ þ 2p2λgνα�½2p3μgβρ − −ðp1 þ p3Þβgμρ þ 2p1ρgμβ�; ðA13Þ
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MðuÞ ¼ gψD�D�gρD�D�εμ1ε
ν
2ε

�ρ
3 ε�λ4

1

u − −m2
D�

�
−gαβ þ ðp1 − −p4Þαðp1 − −p4Þβ

m2
D�

�

× ½2p3νgαρ − −ðp2 þ p3Þαgνρ þ 2p2ρgνα�½2p4μgβλ − −ðp1 þ p4Þβgμλ þ 2p1λgμβ�; ðA14Þ

where p1 and p2 are the momenta of initial state particles while p3 and p4 are those of final state particles; s, t, and u are the

Mandelstam variables: s ¼ ðp1 þ p2Þ2, t ¼ ðp1 − p3Þ2, and u ¼ ðp1 − p4Þ2; and ϵð�Þi ≡ ϵð�ÞðpiÞ is the polarization vector.
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