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We investigate the semileptonic decay of Ωb → Ωclν̄l in three lepton channels. To this end, we use the
QCD sum rule method in three point framework to calculate the form factors defining the matrix elements
of these transitions. Having calculated the form factors as building blocks, we calculate the decay widths
and branching fractions of the exclusive decays in all lepton channels and compare the results with other
theoretical predictions. The obtained results for branching ratios and ratio of branching fractions at different
leptonic channels may help experimental groups in their search for these weak decays. Comparison of the
obtained results with possible future experimental data can be useful to check the order of consistency
between the standard model theory predictions and data on the heavy baryon decays.
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I. INTRODUCTION

In recent years, there has been considerable attention
given to the study of hadrons containing heavy quarks.
Following the first observation of deviations from the
Standard Model (SM) predictions in B meson decays at
different experiments, attention has shifted towards all
members of the b-hadrons. The BaBar experiment reported
a 3.4σ deviation from the SM prediction in the semileptonic
B → D decay, specifically in the ratio of branching fractions
between the τ channel and either e or μ that couldn’t be
explained [1]. Subsequently, the LHCb experiment reported
aviolationofLeptonFlavorUniversality (LFU) in the ratio of
branching fractions for semileptonicB → K decay, observed
at the μ channel compared to e, by 2.6σ from the SM
prediction [2]. Furthermore, discrepancies from the SM
predictions have been observed in the B → J=Ψ decay,
showing 2σ deviations above the range of central values
predicted by the SM in the ratio of branching fractions
between the τ and μ channels [3]. The semileptonic decays of
b-hadrons hold promise for exploring Beyond the Standard
Model (BSM) physics. The decay of Λb to Λc has been
studied using various theoretical methods [4–11], but LHCb
has not observed any deviations from the SM predictions
[12]. According to the quark model, which serves as a
framework to describe particles in the SM, nine single-heavy

spin one-half ground state baryons can bemade of a b quark.
All of these baryons together with the spin three-half
single heavy baryon members have been detected in the
experiment so far. The heaviest particle among the spin one-
half single heavy baryons is theΩb, containing a bottom and
two strange quarks. The first observation of Ωb occurred in
pp̄ collisions at

ffiffiffi
s

p ¼ 1.96 TeV, through the reconstructed
decay Ωb → J=ΨΩ− in the D0 detector at Fermilab’s
Tevatron, with JP ¼ 1

2
þ. The signal event at a mass of

6.165� 0.010� 0.013 GeV was with a significance of
5.4σ [13]. After measuring mass and lifetime by the
Collider Detector at Fermilab [14], its mass and lifetime
have then been respectively measured as 6045.1� 3.2�
0.5� 0.6 MeV=c2 and 1.78� 0.26� 0.05� 0.06 ps by
LHCb [15].
The semileptonic decays of b-baryons can also be served

as good probes to check the SM predictions with the results
of ongoing progressive experiments. It is important to
check whether there are similar deviations between the SM
predictions and experimental data in b-baryon semileptonic
decays or not. Such possible deviations will increase our
hope to indirectly search for new physics BSM. In this
context, we investigate the semileptonic decay of Ωb → Ωc
using the QCD sum rule (QCDSR) method, which is a
powerful tool to study the nonperturbative phenomena. The
study of weak decays offers two advantages: firstly, it
provides valuable insights into various SM parameters
including the Cabibbo-Kobayashi-Maskawa (CKM) matrix
elements; secondly, it provides us with insight into the
lepton flavor universality and serves as a good candidate for
studying BSM physics. Since the SM predicts the same
coupling to the W and Z gauge bosons for all three lepton
families, measuring the ratio of branching fraction,
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RΩc
¼ Br½Ω−

b → Ωcτν̄τ�
Br½Ω−

b → Ωcðe; μÞν̄ðe;μÞ�
; ð1Þ

and comparing it with future experimental data can open a
new window for exploring LFU.
The weak semileptonic Ωb → Ωc channel has not been

observed yet, but some theoretical computations to calcu-
late the corresponding decay rates have been conducted.
The semileptonic decay of Ωb → Ωc was investigated
by heavy quark effective theory (HQET) [16], 1=m
corrections to form factors in the nonrelativistic quark
model [17], the spectator quark model [18], relativistic
three-quark model [19–23], constituent quark model [24],
an independent method [25], using the Beth-Salpeter
equation [26,27], large Nc method in HQET framework
[28,29], light front approach [30,31], and Bjorken sum
rules [32]. Our aim is to calculate the decay rates and
branching ratios of Ωb → Ωclν̄l using the QCDSR
method in full theory for the first time. As stated, the
QCDSR method is one of the powerful and predictive
models in the nonperturbative area of QCD developed by
Shifman et al. [33,34] and it is used to calculate different
hadronic parameters. This method has had good predic-
tions and comparable results with the experiments so far
and it is a trustworthy nonperturbative approach to study
the hadronic decays [35–40].
The manuscript is organized as follows. In Sec. II, we

obtain the sum rule for the form factors entering the low
energy amplitude of the decay under study. In Sec. III, we
conduct a numerical analysis of the form factors by
determining the working regions of auxiliary parameters
and find the fit functions for the behavior of form factors in
terms of transferred momentum squared. We determine the
decay rates and branching ratios for all the lepton channels,
and compare our results with the predictions of other
theoretical studies in Sec. IV. Section V is devoted to
the concluding remarks. Some details of the calculations
are presented in the Appendices.

II. QCD SUM RULE CALCULATIONS

QCD sum rule provides two perspectives on a hadron:
the physical or phenomenological side, which views the
hadron as a unique object in time-like region, and the
QCD or theoretical side, which perceives the hadron’s
content through constituent quarks and gluons and their
interactions in spacelike region. By connecting these
two perspectives through dispersion integrals and the
quark-hadron duality assumption, hadronic parameters
are derived in terms of fundamental QCD parameters
[33,34,41,42]. The form factors relevant to the semileptonic
decays are obtained by equating the coefficients of the
corresponding Lorentz structures from these two parts
and applying double Borel transformation and continuum
subtraction.

A. Phenomenological side

To obtain the amplitude for the Ωb → Ωclν̄l transition
we need the responsible Hamiltonian at quark level. In this
decay s quarks are spectators, so transition happens via
b → clν̄l with transition current of Jtr ¼ c̄γμð1 − γ5Þb.
The effective Hamiltonian can be written as

Heff ¼
GFffiffiffi
2

p Vcbc̄γμð1 − γ5Þblγμð1 − γ5Þνl; ð2Þ

where GF is the Fermi coupling constant and Vcb is the
CKM matrix elements. Obtaining the decay amplitude
involves sandwiching the effective Hamiltonian between
the initial and final baryon states. In this process, the
leptonic part exits the matrix element and we have

M ¼ hΩcjHeff jΩbi

¼ GFffiffiffi
2

p Vcblγμð1 − γ5ÞνlhΩcjc̄γμð1 − γ5ÞbjΩbi: ð3Þ

The decay contains two parts: the vector (Vμ) and the axial
vector (Aμ) transitions. Each of these parts can be para-
metrized in terms of three form factors in full QCD. The
most complete parametrizations considering the Lorentz
invariance and parity are [11]

hΩcðp0; s0ÞjVμjΩbðp; sÞi ¼ ūΩc
ðp0; s0Þ

�
F1ðq2Þγμ

þ F2ðq2Þ
pμ

mΩb

þ F3ðq2Þ
p0μ

mΩc

�

× uΩb
ðp; sÞ;

hΩcðp0; s0ÞjAμjΩbðp; sÞi ¼ ūΩc
ðp0; s0Þ

�
G1ðq2Þγμ

þ G2ðq2Þ
pμ

mΩb

þG3ðq2Þ
p0μ

mΩc

�

× γ5uΩb
ðp; sÞ; ð4Þ

where, F1ðq2Þ; F2ðq2Þ; F3ðq2Þ, and G1ðq2Þ; G2ðq2Þ, and
G3ðq2Þ are form factors describing the vector and axial
transitions, respectively. q ¼ p − p0 is the momentum
transferred to the leptons, and uΩb

ðp; sÞ and uΩc
ðp0; s0Þ

are Dirac spinors of the initial and final baryonic states. To
find the form factors, we use an appreciate three point
correlation function. In this framework, the initial hadron
can emerge from the vacuum state and subsequently, after
interacting with the weak current, the final hadron can be
annihilated into the vacuum state

Πμðp; p0; qÞ ¼ i2
Z

d4xe−ip·x
Z

d4yeip
0·yh0jT fJ ΩcðyÞ

× J tr;VðAÞ
μ ð0ÞJ †ΩbðxÞgj0i; ð5Þ
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where T is the time-ordering operator, and J ΩbðxÞ and
J ΩcðyÞ are the initial and final hadron’s interpolating
currents, respectively. To evaluate the correlation func-
tion on the phenomenological side, one needs to insert

two relevant hadronic complete sets with the same
quantum numbers as the currents J Ωb and J Ωc for
each the initial and final hadrons, respectively, as
follows:

1 ¼ j0ih0j þ
X
h

Z
d4p
ð2πÞ4 ð2πÞδðp

2
h −m2

hÞjhðpÞihhðpÞj þ higher Fock states: ð6Þ

After performing some algebraic manipulations, the hadronic side for the correlation function is obtained in the following
form:

ΠPhys
μ ðp; p0; qÞ ¼ h0jJ Ωcð0ÞjΩcðp0ÞihΩcðp0ÞjJ tr;VðAÞ

μ ð0ÞjΩbðpÞihΩbðpÞjJ †Ωbð0Þj0i
ðp02 −m2

Ωc
Þðp2 −m2

Ωb
Þ þ � � � ; ð7Þ

where � � � means the contributions of the higher states and continuum. The residues of the initial (λΩb
) and final (λΩc

) states
are defined as

h0jJ Ωcð0ÞjΩcðp0Þi ¼ λΩc
uΩc

ðp0; s0Þ;
hΩbðpÞjJ̄ Ωbð0Þj0i ¼ λþΩb

ūΩb
ðp; sÞ: ð8Þ

Now, by using the summations over Dirac spinors

X
s0
uΩc

ðp0; s0ÞūΩc
ðp0; s0Þ ¼ =p0 þmΩc

;

X
s

uΩb
ðp; sÞūΩb

ðp; sÞ ¼ =pþmΩb
; ð9Þ

as well as inserting all the matrix elements, defined above, into Eq. (7), we can obtain the final form of the
phenomenological side after performing the double Borel transformation as

B̂ΠPhys
μ ðp; p0; qÞ ¼ λΩb

λΩc
e−

m2
Ωb
M2 e−

m2
Ωc

M02

�
F1ðmΩb

mΩc
γμ þmΩb

=p0γμ þmΩc
γμ=pþ =p0γμ=pÞ

þ F2

�
mΩc

mΩb

pμ=pþ 1

mΩb

pμ=p0=pþmΩc
pμ þ pμ=p0

�
þ F3

�
1

mΩc

p0
μ=p0=pþ p0

μ=p0 þ p0
μ=pþmΩb

p0
μ

�

− G1ðmΩb
mΩc

γμγ5 þmΩb
=p0γμγ5 −mΩc

γμ=pγ5 − =p0γμ=pγ5Þ

− G2

�
pμ=p0γ5 þmΩc

pμγ5 −
mΩc

mΩb

pμ=pγ5 −
1

mΩb

pμ=p0=pγ5

�

− G3

�
mΩb

mΩc

p0
μ=p0γ5 þmΩb

p0
μγ5 −

1

mΩc

p0
μ=p0=pγ5 − p0

μ=pγ5

��
þ � � � ; ð10Þ

where M2 and M02 are Borel parameters that should be
fixed in the numerical analysis section.

B. QCD side

To evaluate the correlation function on the QCD side
in the deep Euclidean region, one should insert the
interpolating currents of hadrons into the correlation
function, i.e., Eq. (5). The interpolating current of single

heavy ΩQ baryon with spin-parity JP ¼ ð1
2
Þþ is given by

(see also [43])

J ΩQðxÞ ¼ −1
2
ϵabcfðqaTðxÞCQbðxÞÞγ5qcðxÞ

þ βðqaTðxÞCγ5QbðxÞÞqcðxÞ
− ½ðQaTðxÞCqbðxÞÞγ5qcðxÞ
þ βðQaTðxÞCγ5qbðxÞÞqcðxÞ�g; ð11Þ
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where a, b, and c are color indices, C is the charge
conjugation operator, q is s quark, and Q is bottom or
charm quark field. The β is a general mixing parameter with
β ¼ −1 corresponding to Ioffe current. We will also fix
the working region of this parameter in the numerical
analysis section. A proof of the above current considering
all the quantum numbers and properties of ΩQ is given in
Appendix A. Now, we are in a position to evaluate the
correlation function in the QCD side at coordinate space.

By replacing the interpolating currents of the initial and
final hadrons ðJ Ωb ;J ΩcÞ, as well as the transition current
ðJtrÞ of the decay, in the correlation function Eq. (5),
and considering all possible contractions of the quark
fields using Wick’s theorem, we find the correlator in
terms of the heavy and light quarks’ propagators. To avoid
the inclusion of a lengthy formula inside the text, we
present it in Appendix B. For the light quark propagator
we use [44]

Sabq ðxÞ ¼ iδab
=x

2π2x4
− δab

mq

4π2x2
− δab

hq̄qi
12

þ iδab
=xmqhq̄qi

48
− δab

x2

192
hq̄gσGqi þ iδab

x2=xmq

1152
hq̄gσGqi

− i
gGαβ

ab

32π2x2
½=xσαβ þ σαβ=x� − iδab

x2=xg2hq̄qi2
7776

− δab
x4hq̄qihg2G2i

27648
þ…; ð12Þ

and the heavy quark propagator is given by [44]

SabQ ðxÞ ¼ i
Z

d4k
ð2πÞ4 e

−ikx
�
δabð=kþmQÞ
k2 −m2

Q
−
gGμν

ab

4

σμνð=kþmQÞ þ ð=kþmQÞσμν
ðk2 −m2

QÞ2
þ g2G2

12
δabmQ

k2 þmQ=k

ðk2 −m2
QÞ4

þ…

�
; ð13Þ

where

Gμν
ab ¼ Gμν

A tAab; G2 ¼ Gμν
A GA

μν; ð14Þ

A;B;C ¼ 1; 2…8; μ and ν are Lorentz indices and tA ¼ λA=2 with λA being the Gell–Mann matrices. The gluon field
strength tensorGA

μν ≡ GA
μνð0Þ is fixed at x ¼ 0. Each term in quark propagator gives us an operator with the mass dimension

in the Wilson’s operator product expansion (OPE). Bare loop is a perturbative term and corrections from the operators with
d ¼ 3; hq̄qi, d ¼ 4; hG2i, d ¼ 5; hq̄gσGqi, and d ¼ 6; hq̄qi2 are nonperturbative terms. By inserting the heavy and light
quark propagators into the correlation function we get the results including all the perturbative and nonperturbative
corrections of different mass dimensions. In the calculations we consider the nonperturbative operators up to six mass
dimensions. The next step is to perform the Fourier integrals and four integrals over momenta of the heavy quarks. In the
calculations, as an example, there appear terms of the form

Z
d4k

Z
d4k0

Z
d4xeiðk−pÞ:x

Z
d4yeið−k0þp0Þ:y xμyνkμ0k0ν0

ðk2 −m2
bÞlðk02 −m2

cÞm½ðy − xÞ2�n : ð15Þ

To proceed, first we use the identity [45]

1

½ðy − xÞ2�n ¼
Z

dDt
ð2πÞD e−it·ðy−xÞið−1Þnþ12D−2nπD=2 ΓðD=2 − nÞ

ΓðnÞ
�
−
1

t2

�
D=2−n

; ð16Þ

and substitute xμ → i ∂

∂pμ
and yμ → −i ∂

∂p0
μ
, which leads to

Z
dDt

Z
d4k

Z
d4k0

Z
d4xeiðk−pþtÞ:x

Z
d4yeið−k0þp0−tÞ:y fðk; k0Þ

ðk2 −m2
bÞlðk02 −m2

cÞm
�
−
1

t2

�
D=2−n

: ð17Þ

Now we perform Fourier integrals using

Z
d4xeiðk−pþtÞ:x

Z
d4yeið−k0þp0−tÞ:y ¼ ð2πÞ4δ4ðk − pþ tÞð2πÞ4δ4ð−k0 þ p0 − tÞ: ð18Þ

In this step, the two resultant four-dimensional Dirac delta functions are used to perform integrals over four k and k0. The
remaining D-dimensional integral over t is evaluated by the Feynman parametrization and utilizing [45]
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Z
dDt

ðt2Þm
ðt2 þ LÞn ¼

iπ2ð−1Þm−nΓðmþ 2ÞΓðn −m − 2Þ
Γð2ÞΓðnÞ½−L�n−m−2 : ð19Þ

The final step is to calculate the imaginary parts of the obtained results by employing the following identity [45]:

Γ
�
D
2
− n

��
−
1

L

�
D=2−n

¼ ð−1Þn−1
ðn − 2Þ! ð−LÞ

n−2ln½−L�: ð20Þ

Note that for those contributions that don’t have imaginary parts we follow the standard procedure of the method and
calculate the contributions directly. Finally, the function takes the following form in terms of twenty-four different Lorentz
structures:

ΠQCD
μ ðp; p0; qÞ ¼ ΠQCD

=p0γμ=p
ðp2; p02; q2Þ=p0γμ=pþ ΠQCD

pμ=p0=pðp2; p02; q2Þpμ=p0=pþ ΠQCD
p0
μ=p0=pðp2; p02; q2Þp0

μ=p0=p

þ ΠQCD
p0
μ=p0γ5

ðp2; p02; q2Þp0
μ=p0γ5 þ ΠQCD

p0
μ=p0=pγ5

ðp2; p02; q2Þp0
μ=p0=pγ5 þ ΠQCD

=p0γμγ5
ðp2; p02; q2Þ=p0γμγ5

þ ΠQCD
=p0γμ=pγ5

ðp2; p02; q2Þ=p0γμ=pγ5 þ ΠQCD
pμ=p0=pγ5

ðp2; p02; q2Þpμ=p0=pγ5 þ ΠQCD
=p0γμ

ðp2; p02; q2Þ=p0γμ

þ ΠQCD
pμ=p0γ5

ðp2; p02; q2Þpμ=p0γ5 þ ΠQCD
p0
μ=p0 ðp2; p02; q2Þp0

μ=p0 þ ΠQCD
pμ=p0 ðp2; p02; q2Þpμ=p0

þ ΠQCD
γμ=pγ5ðp2; p02; q2Þγμ=pγ5 þ ΠQCD

γμ ðp2; p02; q2Þγμ þ ΠQCD
γμ=p ðp2; p02; q2Þγμ=pþ ΠQCD

γμγ5 ðp2; p02; q2Þγμγ5
þ ΠQCD

pμ=pγ5ðp2; p02; q2Þpμ=pγ5 þ ΠQCD
p0
μ=pγ5

ðp2; p02; q2Þp0
μ=pγ5 þ ΠQCD

p0
μ=p

ðp2; p02; q2Þp0
μ=p

þ ΠQCD
pμ=p ðp2; p02; q2Þpμ=pþ ΠQCD

p0
μ

ðp2; p02; q2Þp0
μ þ ΠQCD

p0
μγ5

ðp2; p02; q2Þp0
μγ5 þ ΠQCD

pμ ðp2; p02; q2Þpμ

þ ΠQCD
pμγ5 ðp2; p02; q2Þpμγ5: ð21Þ

Here ΠQCD
i ðp2; p02; q2Þ (i stands for different structures) are the invariant functions defined in terms of double dispersion

integrals as follows:

ΠQCD
i ðp2; p02; q2Þ ¼

Z
∞

smin

ds
Z

∞

s0min

ds0
ρQCDi ðs; s0; q2Þ

ðs − p2Þðs0 − p02Þ þ Γiðp2; p02; q2Þ; ð22Þ

where smin ¼ ð2ms þmbÞ2, s0min ¼ ð2ms þmcÞ2, and ρQCDi ðs; s0; q2Þ denote the spectral densities, defined by
ρQCDi ðs; s0; q2Þ ¼ 1

π ImΠQCD
i ðp2; p02; q2Þ. Here Γiðp2; p02; q2Þ represent the contributions directly calculated. Upon

performing the quark-hadron duality assumption later, the upper limits of the integrals will be altered to s0 and s00,
which are continuum thresholds at the initial and final states, respectively. The spectral densities include two parts and can
be returned as

ρQCDi ðs; s0; q2Þ ¼ ρPerti ðs; s0; q2Þ þ
X4
n¼3

ρni ðs; s0; q2Þ; ð23Þ

where Pert stands for the perturbative contribution, n ¼ 3 for the quark condensates, and n ¼ 4 for the gluon condensates.
The fifth and sixth dimensions represent the mixed condensates and are denoted by Γiðp2; p02; q2Þ in Eq. (22). Now we
apply the double Borel transformation to the QCD side using [46]

B̂
1

ðp2 − sÞm
1

ðp02 − s0Þn ⟶ ð−1Þmþn 1

Γ½m�Γ½n�
1

ðM2Þm−1
1

ðM02Þn−1 e
−s=M2

e−s
0=M02

: ð24Þ

As mentioned before, the Borel transformation subtracts the contributions of the higher resonances and continuum and
enhances the ground states contributions at the initial and final channels. We also perform continuum subtraction supplied
by the quark hadron assumption. As a result, we get

ΠQCD
i ðM2;M02; s0; s00; q

2Þ ¼
Z

s0

smin

ds
Z

s0
0

s0min

ds0e−s=M2

e−s
0=M02

ρQCDi ðs; s0; q2Þ þ B̂½Γiðp2; p02; q2Þ�; ð25Þ
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where the components of ρiðs; s0; q2Þ and Γiðp2; p02; q2Þ
are given, as an example for the structure =p0γμ=p, in
Appendix C.
At the last step, we match the coefficients of different

structures from the phenomenological and QCD sides to
get the sum rules for the form factors in terms of QCD
parameters like quark masses, quark and gluon conden-
sates, strong coupling constant, etc., as well as the auxiliary
parameters M2, M02, s0, s00, and β.

III. NUMERICAL ANALYSIS OF THE
FORM FACTORS

After obtaining sum rules for the form factors we analyze
the results for the form factors and obtain their behavior in
terms of q2 which are necessary to find the widths of the
weak transitions under study. To this end, we need some
input parameters presented in Table I. The sum rules for the
form factors include some auxiliary parameters as well: The
Borel parameters M2 andM02, the continuum thresholds s0
and s00, and the mixing parameter β entering the currents.
We need to find the working regions for these helping
parameters considering the standard requirements of the
method. These conditions are pole dominance at the initial
and final channels, convergence of the OPE, and relatively
weak dependence of the physical quantities on the auxiliary
parameters. In technique language, to find the upper limits
of Borel parameters M2 and M02 we demand the pole
contribution (PC) to exceed the contributions of higher
states and continuum, i.e.,

PC ¼ ΠQCDðM2;M02; s0; s00Þ
ΠQCDðM2;M02;∞;∞Þ ≥

1

2
: ð26Þ

Their lower limits are set by the convergence of the OPE
series. We require that the higher dimensional nonpertur-
bative operator has maximally a few percent contribution.
In other words we impose the condition

RðM2;M02Þ ¼ΠQCD−dim6ðM2;M02; s0; s00Þ
ΠQCDðM2;M02; s0; s00Þ

≤ 0.05: ð27Þ

These requirements lead to the following regions for the
Borel parameters

9 GeV2 ≤ M2 ≤ 12 GeV2;

and

6 GeV2 ≤ M02 ≤ 9 GeV2: ð28Þ

The parameters s0 and s00, which represent the continuum
thresholds in Ωb and Ωc channels, respectively correspond
to the energy of the first excited states in the initial and final
channels. These thresholds are determined based on the
conditions ensuring the sum rules exhibit optimal stability
in the allowed M2 and M02 regions. We choose the regions

ðmΩb
þ 0.1Þ2 GeV2 ≤ s0 ≤ ðmΩb

þ 0.5Þ2 GeV2;

and

ðmΩc
þ 0.1Þ2 GeV2 ≤ s00 ≤ ðmΩc

þ 0.5Þ2 GeV2; ð29Þ

which lead to a good OPE convergence and pole
dominance.
As is seen from Figs. 1–4 the form factors show good

stability with respect to variations ofM2, M02, s0, and s00 in
their working windows. As previously mentioned, in
addition to the Borel parameters and continuum thresholds
we have β parameter arising from the interpolating currents.
This parameter can span the entire region from −∞ to ∞.
To confine it in a manageable range, we define x ¼ cos θ
with θ ¼ tan−1β ensuring x operates within the ½−1; 1�
region. We select the region that maintains the form factors
possibly unchanged. As an example, in Fig. 5, we depict
the variations of the form factor F1 with respect to x. From
this figure we restrict this parameter as

−1.0 ≤ x ≤ −0.5;

and

0.5 ≤ x ≤ 1.0; ð30Þ

which are valid for all the form factors. This is equivalent to
the interval β∈ ½−1.73; 1.73�, which the form factor show
minimal dependency on this parameter as is seen from the
plot of the form factor F1 with respect to β again in Fig. 5.
We shall note that the Ioffe current corresponding to
x ¼ −0.71 or β ¼ −1 falls within the obtained region on
the negative side.

TABLE I. Input parameters used in calculations.

Parameters Values

mb ð4.18þ0.03
−0.02 Þ GeV [47]

mc ð1.27� 0.02Þ GeV [47]
ms ð93.4þ8.6

−3.4 Þ MeV [47]
me 0.51 MeV [47]
mμ 105 MeV [47]
mτ 1.776 GeV [47]
mΩb

ð6.045� 0.012Þ GeV [47]
mΩc

ð2.695� 0.017Þ GeV [47]
GF 1.17 × 10−5 GeV−2 [47]
Vcb ð39� 1.1Þ × 10−3 [47]
m2

0 ð0.8� 0.2Þ GeV2 [48–50]
τΩb 1.64þ0.18

−0.17 × 10−12 s [47]
hūui −ð0.24� 0.01Þ3 GeV3 [48,49]
hs̄si ð0.8� 0.1Þhūui GeV3 [48,49]
h0j 1π αsG2j0i ð0.012� 0.004Þ GeV4 [48–50]
λΩb 0.121� 0.012 GeV3 [43]
λΩc 0.062� 0.018 GeV3 [43]
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After determining the working regions of the auxiliary
parameters, wewill analyze the behavior of the form factors
in terms of q2. Our analysis shows that the form factors are
well fitted to the function

F ðq2Þ ¼ F ð0Þ	
1 − a1

q2

m2
Ωb
þ a2

q4

m4
Ωb
þ a3

q6

m6
Ωb

þ a4
q8

m8
Ωb


 : ð31Þ

The values of the parameters, F ð0Þ, a1, a2, a3, and a4,
obtained using the average values of the auxiliary param-
eters, are shown in Tables II and III for different structures.
As the QCD sum rules for form factors rely on structures,

multiple choices are available for each form factor. We
select the best options considering the Borel, continuum,
and x parameter working regions, ensuring relatively less
uncertainties of the results. Generally, structures with more

FIG. 1. Form factors, corresponding to the structures presented in Table II, as functions of the Borel parameterM2 at various values of
the parameter s0, q2 ¼ 0 and average values of other auxiliary parameters.

FIG. 2. Form factors, corresponding to the structures presented in Table II, as functions of the Borel parameterM02 at various values of
the parameter s0, q2 ¼ 0 and average values of other auxiliary parameters.
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momenta lead to more stability. The selected structures for
the form factors are shown in Table II. F1, G1, and G2 are
determined based on fixed structures as shown in Table II,
however, for F2, F3, andG3, we have two more alternative
structure selections that are seen in Table III. The presented
uncertainties for the form factors at q2 ¼ 0 in Tables II
and III are due to the uncertainties in the calculations of the
working regions for the auxiliary parameters as well as
errors of other input values.

Figure 6 shows the form factors Fi andGi as functions of
q2 at average values of s0; s00;M

2;M02, and Ioffe point.
Meanwhile, Fig. 7 shows the same behavior but consid-
ering the uncertainties of the form factors. Figures 8 and 9
depict the behaviors of the form factors with and without
uncertainties corresponding to the structures presented in
Table III. As it is expected from weak decays, the form
factors grow with increasing the q2. We will use the fit
functions of the form factors in the allowed physical region,

FIG. 3. Form factors, corresponding to the structures presented in Table II, as functions of the Borel parameterM2 at various values of
the parameter s00, q

2 ¼ 0 and average values of other auxiliary parameters.

FIG. 4. Form factors, corresponding to the structures presented in Table II, as functions of the Borel parameterM02 at various values of
the parameter s00, q

2 ¼ 0 and average values of other auxiliary parameters.
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m2
l ≤ q2 ≤ ðmΩb

−mΩc
Þ2, to find the exclusive widths and

branching ratios in next section.

IV. DECAY WIDTH AND BRANCHING RATIO

Now, we are in a position to evaluate the decay widths
and branching fractions of the semileptonic Ωb → Ωclν
transitions in all lepton channels using the fit functions of
the form factors determined in the previous section. We
utilize the following formula [5,6,51–53]:

dΓðΩb → Ωclν̄lÞ
dq2

¼ G2
F

ð2πÞ3 jVcbj2
λ1=2ðq2 −m2

lÞ2
48m3

Ωb
q2

Htotðq2Þ;

ð32Þ

where λ is defined as λ≡ λðm2
Ωb
; m2

Ωc
; q2Þ ¼ m4

Ωb
þ

m4
Ωc

þ q4 − 2ðm2
Ωb
m2

Ωc
þm2

Ωb
q2 þm2

Ωc
q2Þ, ml stands for

the lepton mass, andHtotðq2Þ refers to the total helicity and
is defined as

Htotðq2Þ ¼ ½HUðq2Þ þHLðq2Þ�
�
1þ m2

l

2q2

�
þ 3m2

l

2q2
HSðq2Þ:

ð33Þ

The relevant parity conserving helicity structures are
expressed as

HUðq2Þ ¼ jHþ1=2;þ1j2 þ jH−1=2;−1j2;
HLðq2Þ ¼ jHþ1=2;0j2 þ jH−1=2;0j2;
HSðq2Þ ¼ jHþ1=2;tj2 þ jH−1=2;tj2; ð34Þ

where different helicity amplitudes are parametrized in
terms of the transition form factors, Fi and Gi,

FIG. 5. Variations of F1 form factor corresponding to the structure =p0γμ=pwith respect to x and β at the average values of s0, s00,M
2, and

M02 and at q2 ¼ 0.

TABLE II. Parameters of the fit functions for different form factors corresponding to Ωb → Ωclν̄l transition.

F1ðq2Þ∶=p0γμ=p F2ðq2Þ∶pμ=p0=p F3ðq2Þ∶p0
μ=p0=p G1ðq2Þ∶=p0γμ=pγ5 G2ðq2Þ∶pμ=p0=pγ5 G3ðq2Þ∶p0

μ=p0=pγ5

F ðq2 ¼ 0Þ −0.28� 0.08 0.39� 0.10 −0.04� 0.01 −0.018� 0.007 0.40� 0.11 −0.037� 0.009
a1 1.38 1.32 2.16 0.47 1.32 2.16
a2 0.25 0.22 1.38 −0.01 0.22 1.38
a3 0.08 0.07 −0.19 0.12 0.072 −0.19
a4 0.01 0.003 −0.045 −0.06 0.004 −0.05

TABLE III. Parameters of the fit functions for other possible structures for form factors of Ωb → Ωc transition.

F2ðq2Þ∶pμ=p F2ðq2Þ∶pμ=p0 F3ðq2Þ∶p0
μ=p F3ðq2Þ∶p0

μ=p0 G3ðq2Þ∶p0
μ=p0γ5 G3ðq2Þ∶p0

μ=pγ5

F ðq2 ¼ 0Þ −0.13� 0.05 0.66� 0.21 0.57� 0.14 0.37� 0.12 0.44� 0.13 −0.60� 0.17
a1 1.42 1.25 1.14 1.33 1.38 1.2
a2 0.11 0.19 0.13 0.31 0.31 0.15
a3 0.16 0.06 0.05 0.06 0.07 0.05
a4 0.15 −0.006 −0.001 −0.014 −0.013 −0.002

SEMILEPTONIC Ωb → Ωclν̄l … PHYS. REV. D 110, 014010 (2024)

014010-9



FIG. 6. The form factors F1, F2, F3,G1,G2, andG3, corresponding to the structures in Table II, as functions of q2 at average values of
auxiliary parameters and Ioff point.

FIG. 7. The form factors corresponding to the structures in Table II with their errors at the average values of auxiliary parameters.
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FIG. 8. The form factors F2, F3, and G3 corresponding to the structures in Table III as functions of q2 at average values of auxiliary
parameters and Ioff point.

FIG. 9. The form factors corresponding to the structures in Table III with their errors at the average values of auxiliary parameters.
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HV;A
þ1=2;0 ¼

1ffiffiffiffiffi
q2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mΩb

mΩc
ðα ∓ 1Þ

q
½ðmΩb

�mΩc
ÞFV;A

1 ðαÞ

�mΩc
ðα� 1ÞFV;A

2 ðαÞ �mΩb
ðα� 1ÞFV;A

3 ðαÞ�;
HV;A

þ1=2;1 ¼ −2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mΩb

mΩc
ðα ∓ 1Þ

q
FV;A

1 ðαÞ;

HV;A
þ1=2;t ¼

1ffiffiffiffiffi
q2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mΩb

mΩc
ðα� 1Þ

q
½ðmΩb

∓ mΩc
ÞFV;A

1 ðαÞ

� ðmΩb
−mΩc

αÞFV;A
2 ðαÞ

� ðmΩb
α −mΩc

ÞFV;A
3 ðαÞ�; ð35Þ

with

α ¼ m2
Ωb

þm2
Ωc

− q2

2mΩb
mΩc

:

In the above formulas, FV
i ≡ Fi represent the vector form

factors and FA
i ≡Gi (i ¼ 1, 2, 3) are the axial form factors,

the upper (lower) sign corresponds to the vector (the axial
vector) contributions. Here, HV;A

h0;hW
are the helicity ampli-

tudes for weak decays including the vector (V) and the axial
vector (A) currents and their indices ðh0; hWÞ are the
helicities of the final baryon and the virtual W-boson.
Since the amplitudes for negative values of the helicities are
related to HV;A

−h0;−hW
¼ �HV;A

h0;hW
, the total amplitude is given

by Hh0;hW ¼ HV
h0;hW

−HA
h0;hW

for the V–A currents.

We utilize the fit functions for all the form factors
obtained in previous section to evaluate the decay rates for
all lepton channels. The average values for the widths,
along with their uncertainties, are presented in Table IV.
Additionally, we compare our results with other predictions
existing in the literature in this table. As is seen, our result,
within the errors, is consistent with the predictions of
Refs. [16,17,19–21,23,25–27,29,30] for the e=μ channel.
The prediction of Ref. [18] differs with others considerably.
Our result is also consistent with the predictions of
Refs. [16,25] and is close to the prediction of Ref. [28]
considering the presented uncertainties for the τ channel.
We also find the branching fractions at different lepton

channels. We present the obtained results in Table V and
compare them with other existing predictions. Considering
the uncertainties, our results are in good consistency with
those of Refs. [28–30] for different channels.
It is instructive to evaluate the ratio of branching

fractions in τ and e=μ channels. We find

RΩc
¼ Br½Ωb → Ωcτν̄τ�

Br½Ωb → Ωcðe; μÞν̄ðe;μÞ�
¼ 0.29þ0.06

−0.05 : ð36Þ

This ratio is predicted (only central values) in Refs. [25,28]
as well, which are RΩc

¼ 0.37 and RΩc
¼ 0.30, respec-

tively. As is seen, our result, within the errors, is con-
sistent with the prediction of Ref. [28] and close to
that of Ref. [25]. Our result together with the presented

TABLE IV. Decay widths (in GeV) for the semileptonic Ωb → Ωclν̄l transition at different channels.

Γ½Ωb → Ωcðe; μÞν̄ðe;μÞ� × 1014 Γ½Ωb → Ωcτν̄τ� × 1015

Present work 1.10þ0.66
−0.52 3.11þ1.71

−1.43
1=mQ correction HQET [16] 1.32 2.1
Nonrelativistic quark model [17] 1.51 � � �
Spectator quark model [18] 3.55 � � �
Relativistic three-quark model [19] 1.23 � � �
Relativistic in quasipotential approach [20] 0.85 � � �
Relativistic three-quark model [21] 0.85 � � �
Independent model [25] 0.85 3.5
Relativistic three-quark model [23] 1.11 � � �
Bethe–Salpeter [26] 1.19 � � �
Covariant quasipotential approach [27] 1.72 � � �
Large Nc HQET [28] � � � 4.83
Large Nc HQET [29] 1.68 � � �
Light front [30] 1.14 � � �

TABLE V. Branching ratios of the semileptonic Ωb → Ωclν̄l transition at different channels.

Present work Nc HQET [28] Nc HQET [29] Light front [30]

Br ½Ωb → Ωcðe; μÞν̄ðe;μÞ�ð%Þ 2.74þ1.64
−1.29 � � � 2.82 2.72

Br ½Ωb → Ωcτν̄τ�ð%Þ 0.78þ0.43
−0.36 1.21 � � � � � �
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uncertainties as SM theory prediction would be very useful
for comparison with future data.

V. CONCLUSION

The exploration of deviations of experimental data from
the SM predictions on some parameters related to the
semileptonic B decays has prompted further researches on
other b-hadrons’ decay channels that may exhibit similar
deviations. Such possible deviations at baryonic channels
can help us explore physics BSM. In this study, we
examined the semileptonic decay Ωb → Ωclν in all lepton
channels. We calculated the form factors defining these
weak transitions and found their fit functions in terms of q2

in the allowed physical region. We used the obtained form
factors to estimate the widths, branching ratios, and ratio of
branching fractions at different lepton channels. We com-
pared our results with the predictions of others studies
existing in the literature.
As we said, there is no experimental data regarding

these decay channels. Thanks to the new progresses in the
experiments, we hope it will be possible to study such
decay modes in experiments like LHCb in near future. The
future data and their comparison with our results will help
us not only check the values of SM parameters but also, in
the case of any inconsistency in the values of decay rates,
search for new physics effects. Specifically, our prediction
on RΩc

and its comparison with future related data will
be very important regarding the consistency/inconsistency
between the SM theory prediction and experiment. Any
deviations of data from the SM prediction can be consid-
ered as a hint for new physics effects BSM.
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APPENDIX A: THE INTERPOLATING CURRENT

In this appendix, we construct the interpolating current
for the ΩQ baryon. According to the quark model, this
single heavy state with Q ¼ b or c belongs to the sextet
representation meaning that the interpolating current is
symmetric with respect to the exchange of the light quarks.
The current should also be a color singlet. By these
requirements and considering JP ¼ 1

2
þ as the spin-parity

of this state, the general form of the interpolating current
can be written as

J ΩQ ∼ ϵabcfðsaTCΓsbÞΓ̃Qc þ ðsaTCΓQbÞΓ̃sc
− ðQaTCΓsbÞΓ̃scg; ðA1Þ

where Γ, Γ̃ ¼ I, γ5, γμ, γ5γμ, or σμν are Dirac sets. We need
to determine Γ and Γ̃ considering all the quantum numbers

and requirements. We show that the first term does not
contribute to the interpolatingcurrent.To this end,weconsider
the transpose of the term ϵabcsaTCΓsb, which leads to

½ϵabcsaTCΓsb�T ¼ −ϵabcsbTΓTCTsa; ðA2Þ

where we considered the Grassmann number nature of the
quark fields. Using C2 ¼ −1 and CT ¼ C−1, we get

½ϵabcsaTCΓsb�T ¼ ϵabcsbTCðCΓTC−1Þsa ðA3Þ

where

CΓTC−1 ¼ Γ for Γ ¼ I; γ5; γ5γμ;

and

CΓTC−1 ¼ −Γ for Γ ¼ γμ; σμν: ðA4Þ
Switching color dummy indicies, one obtains

½ϵabcsaTCΓsb�T ¼ −ϵabcsaTCΓsb for Γ ¼ I; γ5; γ5γμ;

and

½ϵabcsaTCΓsb�T ¼ ϵabcsaTCΓsb for Γ ¼ γμ; σμν: ðA5Þ

The transpose of a one-by-one matrix like ϵabcsaTCΓsb
should be equal to itself. Thus

ϵabcsaTCΓsb ¼ 0 for Γ ¼ I; γ5; γ5γμ: ðA6Þ

The ΩQ baryon with JP ¼ 1
2
þ consists of two s quarks and a

heavyquarkb or c. The spin of the attached heavyquark to the
above diquark is 1

2
and the sameas the spin of thebaryon. Thus

the spin of the diquark is zero. This implies Γ ¼ I; γ5.
Therefore Γ in Eq. (A1) can be either I or γ5, which defines
ourDiracparticleof spin-1=2.Therefore,weconsiderboth the
possibilities and write the interpolating current as

J ΩQ ∼ ϵabcfðsaTCQbÞΓ̃1sc þ βðsaTCγ5QbÞΓ̃2sc

− ðQaTCsbÞΓ̃1sc − βðQaTCγ5sbÞΓ̃2scg; ðA7Þ

where we considered the linear combinations of the two
possibilities by introducing the general mixing parameter β.
Now, we should determine Γ̃1 and Γ̃2. They are determined
through the Lorentz and parity considerations. As previously
mentioned, the interpolating current for the states under study
is Lorentz scalar, so onemust have both of the Γ̃1 and Γ̃2 equal
to I or γ5 considering the above values for Γ. The parity
transformation leads to the results Γ̃1 ¼ γ5 and Γ̃2 ¼ I. After
normalization, we obtain

J ΩQ ¼ −1
2

ϵabcfðsaTCQbÞγ5sc þ βðsaTCγ5QbÞsc

− ½ðQaTCsbÞγ5sc þ βðQaTCγ5sbÞsc�g: ðA8Þ
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APPENDIX B: THE CORRELATION FUNCTION ON QCD SIDE

After substituting the interpolating and transition currents into Eq. (5) and applying Wick’s theorem, the following result
is obtained in coordinate space:

ΠOPE
μ ¼ i2

Z
d4xe−ipx

Z
d4yeip

0y 1

4
ϵa0b0c0ϵabcfγ5Sc0as ðy− xÞS0bð−xÞð1− γ5ÞγμS0cðyÞSa0cs ðy− xÞγ5

−Tr½S0a0as ScðyÞγμð1− γ5ÞSbð−xÞ�γ5Sc0cs ðy− xÞγ5þ βSc
0a
s ðy− xÞS0ibb ð−xÞð1− γ5ÞγμS0b0ic ðyÞγ5Sa0cs ðy− xÞγ5

− βTr½S0a0as ðy− xÞγ5Sb0ic ðyÞγμð1− γ5ÞSibb ð−xÞ�Sc
0c
s ðy− xÞ− γ5Sc

0a
s ðy− xÞS0ibb ð−xÞð1− γ5ÞγμS0a0ic ðyÞSb0cs ðy− xÞγ5

þTr½S0b0as ðy− xÞS0a0ic ðyÞμð1− γ5ÞSibb ð−xÞ�γ5Sc
0c
s ðy− xÞγ5 − βSc

0a
s ðx− yÞS0ibb ð−xÞð1− γ5ÞγμS0a0ic ðyÞγ5Sb0cs ðy− xÞγ5

þ βTr½S0b0as ðy− xÞγ5Sa0ic ðyÞγμð1− γ5ÞSibb ð−xÞ�Sc
0c
s ðy− xÞγ5− βγ5Sc

0a
s ðy− xÞγ5S0ibb ð−xÞð1− γ5ÞγμS0b0ic ðxÞSa0cs ðy− xÞ

þ βTr½γ5S0a0as ðy− xÞSb0ic ðxÞγμð1− γ5ÞSibb ð−xÞ�γ5Sc
0c
s ðy− xÞ− β2Sc

0a
s ðy− xÞγ5S0ibb ð−xÞð1− γ5ÞγμS0b0ic ðyÞγ5Sa0cs ðy− xÞ

þ β2Tr½γ5S0a0as ðy− xÞγ5Sb0ic ðyÞγμð1− γ5ÞSibb ð−xÞ�Sc
0c
s ðy− xÞþ βγ5Sc

0a
s ðy− xÞγ5S0ibb ð−xÞð1− γ5ÞγμS0a0ic ðyÞSb0cs ðy− xÞ

− βTr½γ5S0b0as ðy− xÞSa0ic ðyÞγμð1− γ5ÞSibb ð−xÞ�γ5Sc
0c
s ðy− xÞþ β2Sc

0a
s ðy− xÞγ5S0ibb ð−xÞð1− γ5ÞγμS0a0ic ðyÞγ5Sb0cs ðy− xÞ

− β2Tr½γ5S0b0as ðy− xÞγ5Sa0ic ðyÞγμð1− γ5ÞSibb ð−yÞ�Sc
0c
s ðy− xÞ− γ5Sc

0b
s ðy− xÞS0iab ð−xÞð1− γ5ÞγμS0b0ic ðyÞSa0cs ðy− xÞγ5

þTr½S0a0bs ðx− yÞSb0ic ðyÞγμð1− γ5ÞSiab ð−xÞ�γ5Sc
0c
s ðy− xÞγ5 − βSc

0b
s ðy− xÞS0iab ð−xÞð1− γ5ÞγμS0b0ic ðyÞγ5Sa0cs ðy− xÞγ5

× βTr½S0a0bsðx− yÞγ5Sb0ic ðyÞγμð1− γ5ÞSiab ð−xÞ�Sc
0c
s ðy− xÞγ5þ γ5Sc

0b
s ðy− xÞS0iab ð−xÞð1− γ5ÞγμS0a0ic ðyÞSb0cs ðy− xÞγ5

−Tr½S0b0bs ðy− xÞSa0ic ðyÞγμð1− γ5ÞSiab ð−xÞ�γ5Sc
0c
s ðy− xÞγ5þ βSc

0b
s ðy− xÞS0iab ð−xÞð1− γ5ÞγμS0a0ic ðyÞγ5Sb0cs ðy− xÞγ5

− βTr½S0b0bs ðy− xÞγ5Sa0ic ðyÞγμð1− γ5ÞSiab ð−xÞ�Sc
0c
b ðy− xÞγ5þ βγ5Sc

0b
s ðy− xÞγ5S0iab ð−xÞð1− γ5ÞγμS0b0ic ðyÞSa0cs ðy− xÞ

− βTr½γ5S0a0bs ðy− xÞSb0ic ðyÞγμð1− γ5ÞSiab ð−xÞ�γ5Sc
0c
s ðy− xÞþ β2Sc

0b
s ðy− xÞγ5S0iab ð−xÞð1− γ5ÞγμS0b0ic ðyÞγ5Sa0cs ðy− xÞ

þ β2Tr½γ5S0a0bs ðy− xÞγ5Sb0ic ðyÞγμð1− γ5ÞSiab ð−xÞ�Sc
0c
s ðy− xÞ− βγ5Sc

0b
s ðy− xÞγ5S0iab ð−xÞð1− γ5ÞγμS0a0ic ðyÞSb0cs ðy− xÞ

× βTr½γ5S0b0bs ðy− xÞSa0ic ðyÞγμð1− γ5ÞSiab ð−xÞ�γ5Sc
0c
s ðy− xÞ− β2Sc

0b
s ðy− xÞγ5S0iab ð−xÞð1− γ5ÞγμS0a0ic ðyÞγ5Sb0cs ðy− xÞ

þ β2Tr½γ5S0b0bs ðy− xÞγ5Sa0ic ðyÞγμð1− γ5ÞSiab ð−xÞ�Sc
0c
s ðy− xÞg; ðB1Þ

where S0q ¼ CSTC.

APPENDIX C: DIFFERENT PERTURBATIVE AND NONPERTURBATIVE CONTRIBUTIONS

In this appendix, the explicit forms for the components of ρiðs; s0; q2Þ and Γiðp2; p02; q2Þ for the structure =p0γμ=p are
given as

ρPert=p0γμ=p
ðs; s0; q2Þ ¼

Z
1

0

du
Z

1−u

0

dv
1

512π4Z2
f½ð−1þ uÞu2ð−2s0 þ ð−q2 þ SÞuÞ þ uð2Sþ ðsþ 3s0Þuð−3þ 2uÞ

þ q2ð−2þ 3uÞÞvþ ð2sþ q2ð4 − 5uÞuþ suð−8þ 5uÞ þ s0uð−4þ 7uÞÞv2
þ 2ð−2sþ ð−q2 þ 3sþ s0ÞuÞv3 þ 2sv4 þ 12m2

sZ2 − 2LZðZ þ 1Þ�½−β2 þ 1�
þ ½12msZðmcuþmbvÞ�½β2 þ 1�gΘ½Lðs; s0; q2Þ�; ðC1Þ

ρ3=p0γμ=p
ðs; s0; q2Þ ¼ 0; ðC2Þ

ρ4=p0γμ=p
ðs; s0; q2Þ ¼ 0; ðC3Þ

and

Γ=p0γμ=pðp2; p02; q2Þ ¼ Γ5
=p0γμ=p

ðp2; p02; q2Þ þ Γ6
=p0γμ=p

ðp2; p02; q2Þ; ðC4Þ

with
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Γ5
=p0γμ=p

ðp2; p02; q2Þ ¼ hs̄sim2
oms

192π2r2r02
½ðmcmsrþmbmsr0Þð1þ β2Þ þ 3rr0ðβ2 − 1Þ�; ðC5Þ

and

Γ6
=p0γμ=p

¼ hs̄si2
2592π2r3r03

f½27m2
cm2

sπ
2rRþ 27π2rr0ð−4rr0 þm2

sð−q2 þ R0ÞÞ þ 27m2
bm

2
sπ

2r0R�½1 − β2�
þ ½−2mcmsðg2s − 54π2Þr2r0 − 2mbmsðg2s − 54π2Þrr02�½β2 þ 1�g: ðC6Þ

In the above equations we have used the following short-hand notations:

Lðs; s0; q2Þ ¼ −m2
cuþ s0u − s0u2 −m2

bvþ svþ q2uv − suv − s0uv − sv2;

Z ¼ uþ v − 1;

S ¼ sþ s0;

r ¼ m2
b − p2;

r0 ¼ m2
c − p02;

R ¼ r − r0;

R0 ¼ rþ r0; ðC7Þ

and Θ½…� stands for the unit-step function.
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