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Azimuthal anisotropies of high-pT particles produced in heavy-ion collisions are understood as an effect
of a geometrical selection bias. Particles oriented in the direction in which the QCD medium formed in
these collisions is shorter suffer less energy loss, and thus, are over-represented in the final ensemble
compared to those oriented in the direction in which the medium is longer. In this work we present the first
semianalytical predictions, including propagation through a realistic, hydrodynamical background, of the
elliptic azimuthal anisotropy for jets, obtaining a quantitative agreement with available experimental data as
a function of the jet pT , its cone size R, and the collisions centrality. Jets are multipartonic, extended objects
and their energy loss is sensitive to substructure fluctuations. This sensitivity is determined by the physics
of color coherence that relates to the ability of the medium to resolve those partonic fluctuations.
Specifically, color dipoles with an angular separation smaller than a critical angle, θc, are not resolved by
the medium and they effectively act as a coherent source of energy loss. We find that elliptic jet azimuthal
anisotropy has a specially strong dependence on coherence physics due to the marked length dependence
of θc. By combining our predictions for the collision systems and center-of-mass energies studied at RHIC
and the LHC, covering a wide range of typical values of θc, we show that the relative size of elliptic jet
azimuthal anisotropies for jets with different cone sizes R follows a universal trend that indicates a
transition from a coherent regime of jet quenching to a decoherent regime. These results suggest a way
forward to reveal the role played by the physics of jet color decoherence in probing deconfined QCD
matter.

DOI: 10.1103/PhysRevD.110.014009

I. INTRODUCTION

Ultrarelativistic heavy-ion collisions taking place at
present-day colliders provide insights into the dynamics
of deconfined nuclear matter created in the aftermath of
these collisions [1]. The remarkable correlation between the
geometry of the initial collision state and the final state

momentum anisotropies of the observed particles has
inspired the conjecture that this new state of matter, referred
to as the quark-gluon plasma (QGP), behaves like an
expanding droplet of liquid deconfined nuclear matter
[2,3]. The surprising fact that this apparent hydrodynamic
behavior is also observed in proton-nucleus and proton-
proton collisions [4] has posed further challenges to our
understanding of the applicability of hydrodynamics for
smaller colliding systems, where spatial gradients are
expected to be large. These challenges were put into a
new perspective with the finding of hydrodynamic attractor
solutions, present in a variety of microscopic descriptions,
on which a longitudinally boosted system will fall provided
that the nonhydrodynamic modes of the theory decay
sufficiently fast [5–7] (for a recent review see Ref. [8]).
While these developments support an effective description
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of deconfined Quantum Chromodynamics (QCD) matter
using relativistic hydrodynamics, the details of the micro-
scopic description of the system remain to be fully
elucidated.
High-energy jets are rare events that are produced along-

side the QGP with which they strongly interact while they
travel through, offering valuable information about the
properties of the medium. Due to their multiscale nature,
spanning from the jet transverse momentum ∼pT to the
nonperturbative scales of the vacuum ∼ΛQCD, they probe
the QGP at different length scales. Through the study of the
modifications imprinted in this inmedium developing multi-
partonic system, we can infer the nature of the interaction
between the energetic partons and the QGP. Moreover, jets
that undergo significant modification or quenching will
experience the absorption of a sizable portion of their energy
and momentum by the medium. This occurs via dissipative
processes, the study of which provides insights into the
approach to thermal equilibrium aswell as broader aspects of
nonequilibrium QCD dynamics.
A direct connection between jet modifications and the

fundamental interactions between the QGP and fast partons
crucially relies on our understanding of jet fragmentation in
these systems. From the point of view of a high-energy jet,
the modest energy scales that characterize a droplet of
QGP are typically small compared to the largest jet energy
scales. This implies that medium modifications set in at
intermediate length scales, preceded by a nearly vacuum-
like evolution [9,10]. Nevertheless, as confirmed in exper-
imental data, the impact of medium modifications is
striking [11]. Jet yield suppression, typically quantified
by the nuclear modification factor RAA, stands as a
paradigmatic illustration of jet quenching. This phenome-
non is interpreted as arising from the interaction between
energetic colored objects and deconfined QCD matter.
A complete description of the dynamics of deconfined

QCD matter will however require establishing a consistent
picture between the microscopic physics of the bulk of the
system and that of its interaction with the jets that traverse
it. Recent theoretical progress on our understanding of the
intricate interplay between the jet and the medium scales
is now allowing for first-principles phenomenological
applications which can be meaningfully confronted to
the high-precision data expected from upcoming runs at
RHIC and LHC.
In a previous publication [12] we provided the first

analytical description of jet yield suppression as a function
of the jet size R. In short, this description accounts both for
the elastic and radiative processes induced by the inter-
action of a fundamental colored object, a parton, with the
medium, as well as the process of resolving which partons
participate in the medium interactions during the jet
fragmentation. Our analytical calculations were convolved
with a realistic model for the hydrodynamical background
and compared to experimental data at LHC energies.

We performed a thorough study of the relative sizes of
the different sources of theoretical uncertainties and estab-
lished that these are dominated by the computation of the
resolved phase space of the collinear invacuum parton
cascade up to relatively large angles R ∼ 0.6, which is
systematically improvable within perturbative QCD
(pQCD). In the present work, we extend this framework
to the study of jet suppression at RHIC energies. This
extension serves to further validate the fundamental work-
ing assumptions based on factorizing jet production,
fragmentation, and subsequent medium modification.
We also address another paradigmatic observable that is

jet azimuthal anisotropy. Roughly speaking, while RAA is
sensitive to the average path length traveled by the jet, this
observable is sensitive to path-length differences in jet
suppression due to the relative orientation in the transverse
plane of the jet direction ϕwith respect to the event plane of
the collision.
Analogously to how azimuthal anisotropies are quanti-

fied for the particles belonging to the bulk of the collision,
jet azimuthal anisotropies are defined via the pT-dependent
Fourier coefficients of their azimuthal distribution, the
vnðpTÞ, as

dN
dϕdpT

¼ dN=dpT

2π

�
1þ2

X
n

vnðpTÞcosðnðϕ−ΨnÞÞ
�
; ð1Þ

where dN=dpT is the multiplicity in the given pT-bin and
Ψn defines the nth order event plane. The behavior of pT-
inclusive vn, dominated by soft particle production from
the bulk of the system, are understood in terms of the
preferred directions determined by the initial geometry of
the collision, which translate into momentum anisotropies
due to the conversion of pressure gradients into momentum
flow via the final state hydrodynamic evolution [13]. In
contrast, high-pT vn are caused by a selection bias effect
that results into larger yields in the directions in which the
high-pT object has had to traverse less amount of medium,
i.e., in the directions with least quenching [14–16].
Due to the dominant elliptical, almondlike shape char-

acteristic of the collision of two fairly round objects at
finite impact parameter b, the largest vn is typically the
elliptical flow coefficient, v2. Nevertheless, fluctuations
in the positions of the incoming nucleons inside the
nuclei [17], and subnucleonic fluctuations in the color
field configurations inside each of the nucleons at the
moment of the collision [18], will give rise to finite values
for the higher harmonics v3, v4, and so on. For the case of
quenching-induced flow coefficients, also fluctuations in
the process of energy loss will contribute to the value of all
flow harmonics [19].
There is extensive recent literature on the study of flow

coefficients for single energetic particles, or high-pT
hadrons (see, e.g., [19–26]). However, much less work
has been devoted to the study of the flow coefficients for

MEHTAR-TANI, PABLOS, and TYWONIUK PHYS. REV. D 110, 014009 (2024)

014009-2



jets, and most of what is present is obtained from
Monte Carlo jet quenching models [27–29]. Given that
jets are extended objects, consisting of a collection of
hadrons within a given cone R, they are affected by a
number of physical mechanisms that are not present in the
description of single-hadron observables. Our analytical
theoretical framework consistently combines the most
dominant of such mechanisms, rendering it appropriate
to address the more challenging scenario involving jets.
Even within the medium, high-energy jets experience

part of their evolution as if they were approximately in
vacuum [10]. This is due to the presence of a wide-scale
separation between the typical time of high-virtuality parton
splitting, as determined by the Dokshitzer–Gribov–
Lipatov–Altarelli–Parisi (DGLAP) evolution equations,
and the typical time to produce a medium-induced emission
via multiple soft scatterings, as determined by the
BDMPS-Z equations [9,10,30]. The DGLAP evolution
resums large logarithms of the cone angle R, i.e.,
∼ log 1=R, and is responsible for jet “energy loss” in vacuum
from emissions off an initial hard parton with angles larger
than R. Hence, the jet spectrum becomes a function of the
cone angle R and transverse momentum pT [31–33]. We
incorporate this QCD evolution in the present work as well.
Vacuumlike radiation taking place within the cone Rwill

no longer contribute to energy loss in vacuum at leading-
logarithmic (LL) accuracy. However, in the presence of a
medium they will determine the amount of color charges
that can source out-of-cone radiation via interactions with
that medium. The enhancement of multiple color charge
energy loss by a Sudakov double logarithm is attributed to
the distinction in energy loss between real and virtual
contributions. Consequently, a critical aspect in the under-
standing of jet energy loss lies in determining the size of the
vacuum-generated incone phase space resolved by the
medium, which we refer to as the “quenched” phase space.
The first observations of the close relation between the

size of the “quenched” phase space and the amount of
energy loss were obtained using phenomenological models.
These were able to show that the origin of the jet core
narrowing observed in data is due to a selection bias
towards those jets that experienced a narrower fragmenta-
tion during its vacuumlike evolution [34,35]. Even though
each individual jet does get broadened in the process of
energy loss, the final ensemble is biased towards those jets
that lost the least energy, the narrower ones, due to the
steepness of jet production spectra. This same phenomenon
has been shown to account for a large part of the dijet
asymmetry modification of lead-lead (PbPb) compared to
proton-proton (pp) [36], even in the absence of path-length
differences between the leading and subleading jet.
On the theory side, the role of hard radiation that

occurs immediately after the hard partonic collision in
sourcing further (medium-induced) emissions was eluci-
dated in a series of papers analyzing the so-called antenna

setup [37–41]. These calculations revealed the existence of
the so-called decoherence time, associated with the typical
time needed by medium interactions before being able to
resolve the individual colors of the created pair of partons.
The case when this time is comparable to the medium
length determines a critical angle θc, corresponding to a
minimal angle below which jet splittings act coherently as a
single color charge and which profoundly affects the
quenching of jets in the medium [42]. For a homogeneous
plasma, the critical angle is defined as

θc ∼
1ffiffiffiffiffiffiffiffi
q̂L3

p ; ð2Þ

where L is the medium length and q̂ is the jet transport
coefficient that describes Brownian motion in transverse
momentum space. This phenomenon, called “color
decoherence,” leads to a modified joint probability of
losing energy off an initially color correlated pair of
particles [43]. On the level of the jet spectrum in heavy-
ion collisions, accounting for early resolved vacuumlike
emissions inside the medium and accounting for their
energy loss leads to an enhanced suppression factor at
high-pT where the additional “Sudakov factor” scales with
the “quenched” phase space [9].
The physics of color decoherence explains why single

inclusive hadron RAA is larger than jet RAA [9], i.e.,
Rjet
AAðpTÞ < Rhadron

AA ðpTÞ, and how this fact is intimately
related to the high-z enhancement of the measured jet
fragmentation function modification [44,45]. The first
phenomenological implementation of the inclusion of finite
resolution effects, or to which degree do two colored
charges generated by vacuumlike evolution engage with
the medium independently, in a Monte Carlo jet quenching
shower algorithm was done in [46], and later in close
analogy to the theoretical description described above
in [10]. The amount of selection bias towards narrower
jets has been shown to be strongly affected by the size of
the resolution parameter, leaving clear imprints on the
distribution of the relatively hard, measurable splitting
selected by the SoftDrop [47] grooming procedure (see
Refs. [48,49]) or the Dynamical Grooming [50] procedure
(see Refs. [51,52] as well as [53] for a closely related
substructure observable). Lately, renewed interest in the
energy-energy correlator observable [54–56] has arisen in
the field of jet quenching [57–61] due, in part, to its
potential sensitivity to emergent medium scales such as θc.
The present work shows how the R dependence of jet v2

closely relates to the existence of this medium resolution
scale, providing additional tools with which to experimen-
tally constrain these physics and build a coherent picture of
jet energy loss across all observables. With a full-fledged
embedding of our theoretical framework into a realistic
heavy-ion environment, we show that we can describe
currently available jet v2 data with a very good agreement.
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Further, by studying the R dependence of this observable,
we find an interesting departure from the one found for jet
RAA, consisting in a clear and persistent ordering of jet v2
as a function of the jet R across kinematic and centrality
selections. With simple analytical estimates we are able to
pinpoint the origin of this new phenomenon, which is
rooted in the marked length dependence of the medium
angular resolution scale, θc, combined with the fact that jet
azimuthal anisotropy is a length-differential jet suppression
observable. Moreover, we exploit centrality evolution to
target different values of the typical decoherence angle θc,
and in this way establish an arrangement of predictions
which actually collapse into universal, analytically under-
standable curves, when presented in terms of the ratio of the
two most relevant angular scales of the system, i.e., θc=R.
The rest of the paper is organized as follows. In Sec. II

we present our theoretical formalism and explain how we
embed it into a realistic heavy-ion environment. In Sec. III
we present the results for jet RAA and jet v2 at RHIC and
LHC energies as a function of R using our full semi-
analytical framework. Next, in Sec. IV, we gain further
insight on the phenomenological implications of the key
ingredients of our computation by analytically studying a
simplified scenario that allows a transparent qualitative
interpretation of the full results of Sec. III. Finally, in Sec. V
we conclude and look ahead.

II. THEORETICAL FORMALISM

In this section we provide a description of the theoretical
formalism used to produce the full results of Sec. III. These
ingredients are essentially the same as those used to
produce the results of publication [12], which we repro-
duce, often in a more detailed form, for convenience of the
reader. The key elements are illustrated in Fig. 1.

A. Vacuum-induced jet energy loss

The cross section to measure a jet with transverse
momentum pT contained within a cone of extent R in
the ðη;ϕÞ angular plane can be computed in vacuum as [31]

σppðpT; RÞ ¼
X
k¼q;g

fðn−1Þjet=k ðRjpT; R0Þσ̂kðpT; R0Þ; ð3Þ

where R0 is an initial large angular scale (R0 ∼ 1), and
n≡ nkðpT; R0Þ is the power-index of the cross section of
the hard parton with flavor k, σ̂kðpT; R0Þ. The latter is
calculated at leading order (LO) at the factorization scale
Q2

fac via the convolution of the parton distribution functions
(PDFs) fi=pðx;Q2

facÞ with the 2 → 2 QCD scattering
cross section σ̂ij→kl, i.e., σ̂k ¼ fi=p ⊗ fj=p ⊗ σ̂ij→kl. The
moment of the fragmentation function of an initial hard
parton with flavor k is

fðnÞjet=kðRjpT; R0Þ≡
Z

1

0

dxxnfjet=kðR; xjpT; R0Þ; ð4Þ

receiving both quark and gluon contributions, i.e., fðnÞjet=k ¼P
i¼q;g f

ðnÞ
i=k, via flavor conversion during the DGLAP

evolution [31–33,62]. Here, fjet=kðR; xjpT; R0Þ is the prob-
ability of finding a subjet carrying momentum fraction x at
cone angle R within a bigger jet with cone angle R0 and
transverse momentum pT .
The full, inclusive jet cross section therefore becomes

σppðpT; RÞ ¼
P

i¼q;g σ
pp
i ðpT; RÞ, where

σppi ðpT; RÞ ¼
X
k¼q;g

fðn−1Þi=k ðRjpT; R0Þσ̂kðpT; R0Þ ð5Þ

is the spectrum for a final quark or gluon jet measured at
cone angle R.
The DGLAP evolution is what describes the microjet

spectrum at different angular scales R, effectively imple-
menting out-of-cone radiation, or in other words, vacuum
jet energy loss. Its evolution equations in terms of the
moments of the fragmentation functions are

d
dt

fðnÞq ðtÞ ¼ γðnÞqq ðtÞfðnÞq ðtÞ þ γðnÞqg ðtÞfðnÞg ðtÞ
d
dt

fðnÞg ðtÞ ¼ γðnÞgg ðtÞfðnÞg ðtÞ þ γðnÞgq ðtÞfðnÞq ðtÞ; ð6Þ

where the evolution variable t≡ ln θ=R, with θ > R and
R < R0, so that t is evolved from lnR0=R to 0. The
anomalous dimensions at LO are [31]

FIG. 1. Sketch of the main steps involved in our computation.
Starting from a large angular scale R0, we evolve the jet spectrum
down to a given cone R using the microjets formalism. This
evolution can lead to out-of-cone radiation due to vacuum
physics. Depending on the amount of in-medium resolved
charges between R and the critical angle θc, the collimator
quantifies the shift in the jet spectrum for a given R due to
medium-induced effects.
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γðnÞqq ðtÞ ¼
Z

1

0

dz
αsðtÞ
π

pqqðzÞðzn − 1Þ;

γðnÞqg ðtÞ ¼
Z

1

0

dz
αsðtÞ
π

pqgðzÞzn;

γðnÞgg ðtÞ ¼
Z

1

0

dz
αsðtÞ
π

½pggðzÞðzn − zÞ − pgqðzÞ�;

γðnÞgq ðtÞ ¼
Z

1

0

dz
αsðtÞ
π

pgqðzÞzn; ð7Þ

with the unregularized Altarelli-Parisi (AP) splitting
functions

pqqðzÞ ¼ CF
1þ z2

1 − z
;

pgqðzÞ ¼ CF
1þ ð1 − zÞ2

z
;

pggðzÞ ¼ CA
ð1 − zð1 − zÞÞ2

zð1 − zÞ ;

pqgðzÞ ¼
Nf

2
ðz2 þ ð1 − zÞ2Þ: ð8Þ

Finally, the running coupling αsðtÞ ¼ αðktÞ, with kt ¼
zð1 − zÞpTθ, is evaluated at LO with five active flavors
and regularized as αsðktÞ ¼ min½1; 2π=ðβ0 log kt=Q0Þ�,
with β0 ¼ 23=3 and Q0 ¼ 0.09 GeV.
In practice, we fit the shape of the initial spectra

at R ¼ R0 ¼ 1, for a given pseudorapidity η range,
using the event generator PYTHIA8 [63,64], parame-

trized as dσ̂ðkÞ=dpT¼σðkÞ0 ðpðkÞ
T;0=pTÞnðkÞðpTÞ and nðkÞðpTÞ ¼P

5
i¼0 c

ðkÞ
i logiðpðkÞ

T;0=pTÞ. This effectively includes the LO
2 → 2 QCD scattering cross section convoluted with the
PDFs [free-proton PDFs in pp collisions, nuclear PDFs in
nucleus-nucleus (AA) collisions], plus some large-angle
evolution down to R0. We then use the LO DGLAP
evolution equations (6) to obtain the spectra for R < 1
using Eq. (3), a step which we refer to as “log 1=R
resummation” in the sketch depicted in Fig. 1. In pp
collisions, and to LL accuracy, this completes the jet
spectra computation.

B. Medium-induced jet energy loss

In the presence of deconfined matter, interactions of the
colored jet charges with the medium constituents induce
further out-of-cone energy loss contributions to the jet
spectra. The size of these contributions depends on the
interplay between the partonic structure contained within
cone R and the QGP properties. Accounting for these
medium effects requires extending angular resummation
to scales smaller than R, as described in the present
subsection.
The cross section to measure a jet with momentum pT

contained within a cone R in AA collisions is expressed as

σAAðpT; RÞ ¼
X
i¼q;g

Z
∞

0

dϵPiðϵ; R; pTÞσ̃ppi ðpT þ ϵ; RÞ;

¼
X
i¼q;g

QiðpT; RÞσ̃ppi ðpTÞ; ð9Þ

where σ̃ppi is the quark/gluon contribution to the total cross
section at angular scale R, as computed in Eq. (3) [the tilde
serves as a reminder that the proton PDFs are replaced
by the nuclear PDFs EPS09 computed at LO [65], i.e.,
fi=p → fi=A in Eq. (3)], and PiðϵÞ represents the probability
distribution of losing energy ϵ out of the jet cone. We
define the flavor dependent resummed quenching factor
(QF) as [66]

QiðpT; RÞ≡
Z

∞

0

dϵPiðϵ; R; pTÞ
σ̃ppi ðpT þ ϵÞ
σ̃ppi ðpTÞ

: ð10Þ

In the limit of large power index n, we can use the following
asymptotic expansion, valid for ϵ ≪ pT and nϵ ∼ pT ,

σ̃ppðpT þ ϵÞ
σ̃ppðpTÞ

¼ pnðpTÞ
T

ðpT þ ϵÞnðpTþϵÞ

¼ e−νðpTÞϵ½1þOðν2ðpTÞϵ2Þ�; ð11Þ

where the flavor subscript has been omitted for clarity, and
where νðpTÞ ¼ d ln σ̃pp

dpT
and ν2ðpTÞ ¼ d2 ln σ̃pp

dpT
2 . For our pur-

poses, we will approximate νðpTÞ ≈ nðpTÞ=pT . Then, to
first nonvanishing order in this expansion [67], one can
identify the QF with the Laplace transform of the energy
loss probability Piðϵ; RÞ,

QðpT; RÞ ≃ P̃

�
n
pT

; R

�
;

≡
Z

∞

0

dϵPðϵ; RÞe−νϵ
���
ν¼n=pT

: ð12Þ

The factorization (9) reduces trivially to the jet production
cross section in the absence of final-state interactions,
Eq. (3), when PðϵÞ ¼ δðϵÞ (hence Q ¼ 1) and by replacing
the nuclear PDFs by proton PDFs.
The amount of quenching experienced by a quark/gluon

jet of energy E and angular extent R, QiðE;RÞ depends on
the amount of sources of energy loss it contains. These
sources are understood as the jet substructure fluctuations
induced by the vacuumlike DGLAP evolution at scales
below R. The finite spacetime extent of the medium
requires knowledge of the spacetime evolution of these
substructure fluctuations as well. A key ingredient in this
picture is the quantum-mechanical formation time of an
emission process, which essentially corresponds to the time
it takes for an emission to decohere from its emitter, e.g.,
when jqgi → jqi þ jgi for the case of gluon emission off a
quark. This formation time can be estimated using the
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Heisenberg uncertainty principle to be tf ∼ ðE=QÞ=Q [69],
where Q is the virtuality of the process (not to be confused
with the QF Qi) and E=Q is a boost factor to the comoving
frame of the particle. More explicitly, when considering the
transverse momentum squared of a splitting event that
yields two offsprings with longitudinal momenta zE and
ð1 − zÞE, respectively, which reads k2⊥ ¼ zð1 − zÞQ2, its
formation time can be expressed as tf ∼ zð1 − zÞE=k2⊥.
A given fluctuation will only contribute to the QF if it is

formed within the medium, characterized with an extent L,
so tf < L. Another requirement arises from the physics of
color coherence within the medium. By computing stimu-
lated emission off a color connected dipole traversing
deconfined matter, it was found that independent emissions
off each of the legs of the antenna could only happen after a
time td [38,39,41,70], the decoherence time. This is the
time it takes for the members of a dipole to lose their color
correlation via color rotations induced by interactions
with the medium constituents. The decoherence time td
defines the time when the size of the dipole r⊥ðtÞ ¼ θt is of
order the inverse transverse momentum scale accumulated
by multiple scatterings during t, i.e., Q⊥ðtÞ≡ ffiffiffiffiffi

q̂t
p

. Or
equivalently, when r⊥ðtÞQ⊥ðtÞ ∼ 1. Solving for t reads the
decoherence time, td ∼ ðq̂θ2Þ−1=3. A given fluctuation will
only contribute if td < L. Also, naturally, one requires
tf < td for the splitting to be considered vacuumlike. When
tf > td the splitting is medium induced unless it is produced
outside the QGP.
The nonlinear angular evolution that couples the

resummed QF of quarks and gluons is then given by [9]

∂Qiðp;θÞ
∂ lnθ

¼
Z

1

0

dz
αsðk⊥Þ
2π

pjiðzÞΘresðz;θÞ

× ½Qjðzp;θÞQkðð1− zÞp;θÞ−Qiðp;θÞ�; ð13Þ

where the resolved phase space constraint encapsulates the
requirements stated above, i.e.,Θresðp;RÞ¼Θðtf < td<LÞ,
where tf ¼ 2=ðωθ2Þ and td ¼ ðq̂θ2=12Þ1=3. The require-
ment td < L can be translated into an angular constraint, as
θ > θc, where the critical angle θc ¼ ðq̂L3=12Þ−1=2 is the
minimum angle a dipole can have such that it is resolved by
the medium [71]. In terms of angular scales, Eq. (13)
encodes the “collimator resummation” evolution depicted
in Fig. 1 at scales below R. This evolution has no effect for
angles below θc, labeled as “coherence” in the sketch.
Even if a jet had a trivial inmedium evolution, for

instance if θc > R, it would still lose energy, but only
from the source associated with the total color charge of the
multipartonic system. This corresponds to the initial con-
ditions of Eq. (13), and are called the bare quenching

factors, computed as Qiðp; 0Þ ¼ Qð0Þ
rad;iðpTÞQð0Þ

el;iðpTÞ, for
radiative and elastic energy loss mechanisms, respectively
[66,73]. The radiative factor is related to the Laplace
transform of the quenching weight, and given by

P̃ðνÞ ¼ exp

�
−
Z

∞

0

dω
dI
dω

ð1 − e−νωÞ
�
; ð14Þ

where dI=dω represents the spectrum of medium-induced

emissions and Qð0Þ
radðpTÞ≡ P̃ðν ¼ n=pTÞ. We discuss both

contributions in detail below, cf. Eqs. (20) and (21) for final
results.
Let us continue with a brief reminder of the framework

used in the present and previous work [12] to compute
medium-induced radiation. It is based on the so-called
improved opacity expansion (IOE) scheme, where the
relatively rare hard momentum exchanges are computed
as perturbations on top of a sea of frequent multiple soft
scatterings. It amounts to expanding around the harmonic
oscillator. This framework naturally incorporates the
BDMPS-Z (multiple soft scattering) and GLV [74,75]
(single hard scattering) limits of the radiation spectrum,
while it leaves out the Bethe-Heitler (BH) regime (corre-
sponding to soft emissions with ω≲ T) [76].
When the medium-induced emission is soft compared to

the parent parton, i.e., ω ≪ E, the radiation spectrum can
be expressed as [80–82] dINHO=dω¼dIð0Þ=dωþdIð1Þ=dω,
where “NHO” (or next-to-harmonic oscillator approxima-
tion) refers to the order of the expansion in the IOE,
and read

dIð0Þ

dω
¼ 2αsCR

πω
ln j cosΩLj; ð15Þ

dIð1Þ

dω
¼ αsCRq̂0

2π
Re

Z
L

0

ds
−1
k2ðsÞ ln

−k2ðsÞ
Q2e−γE

: ð16Þ

In the last expression, Ω ¼ ð1 − iÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q̂=ð4ωÞp

, k2ðsÞ ¼
iωΩ½cotΩs − tanΩðL − sÞ�=2, and the strong coupling
constant runs with the typical transverse momentum of
the emission, as αs ¼ αsððq̂ωÞ1=4Þ. These expressions are
formally valid when the medium density is constant. We
will nevertheless make use of them with rescaled medium
parameters to account for the dynamical expansion; see
Sec. II D (for a discussion of the scaling properties, see
Refs. [83,84]).
In the IOE, the effective transport coefficient q̂ acquires

logarithmic corrections associated with the matching scale
Q, differing from the bare q̂0 as

q̂ ¼ q̂0 ln
Q2

μ2�
; ð17Þ

whereQ naturally corresponds to the transverse momentum
acquired by the emission via medium interactions during its
formation time. This scale is found by solving the implicit
equation Q4 ¼ q̂0ω lnQ2=μ2�, where the cutoff scale is
μ2� ¼ m2

D exp½−2þ 2γE�=4 [81,82]. The bare jet transport
coefficient that follows is obtained within the Hard
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Thermal Loop (HTL) effective theory, and reads q̂0 ¼
g2medNcm2

DT=ð4πÞ, while the expression for the Debye
screening mass mD, for three active flavors, reads
m2

D ¼ 3g2medT
2=2. Finally, the coupling gmed between the

jet partons and the medium constituents is taken to be
fixed, and corresponds to the only free parameter of our
framework.
While Eqs. (15) and (16) capture the ω-distribution of

the emitted quanta correctly in the regimes of interest, they
have been integrated over transverse momentum k⊥ and
offer no information about the broadening they experi-
enced. In order to compute jet energy loss, one needs
additional knowledge about their final angular distribution
with respect to the jet axis, θ ∼ k⊥=ω, since only those
emissions that end up outside of the jet cone R contribute to
the QF. To that end, we have adopted a multiplicative
Ansatz that depends on the regime in frequency of the
emission: hard or soft.
We distinguish gluons pertaining to three broad

regimes. First, there are gluons with energies T<ω<ωs,
where ωs ≡ ðg2medNc=ð2πÞ2Þ2πq̂0L2, for which formally
dIð0Þ=dω ≫ dIð1Þ=dω in the IOE expansion. These gluons
are produced with Oð1Þ probability during the passage
of the parent parton through the medium and trigger an
inverse turbulent cascade via democratic branchings that
results into an efficient accumulation of modes around
ω ∼ T [85–88]. Emissions pertaining to this regime are then
assumed to have been thermalized, becoming part of the
medium and contributing as correlated background. After
the subtraction of the uncorrelated background, as it is
typically done in experiments, their contribution to the final
energy distribution will be that produced by the wake
generated via the perturbation of the relativistic hydro-
dynamic equations of motion that govern the evolution of a
liquid system such as the QGP. While realistically model-
ing this nonperturbative piece of dynamics is beyond the
scope of the present work, we estimate its effects on the QF
by considering the possibility that some of this energy can
be recaptured. The larger the jet cone, the more likely it is to
recapture some of the energy.
Focusing first on the turbulent regime, corresponding to

T < ω < ωs, the amount of lost energy at any angle can be
estimated as

ΔEturb ¼
Z

ωs

T
dωω

dIð0Þ

dω
: ð18Þ

Now, assuming that a fraction ξ of this energy gets
thermalized and redistributed back inside the cone, just
ð1 − ξÞΔEturb is actually lost. Using geometrical arguments
this ratio ξ should correspond to the ratio of the area
covered by the jet cone and the area where the energy is
distributed, arriving at ξ ≈ R2=R2

rec, where the parameter
Rrec quantifies how efficient opening up the cone is in
recapturing the thermalized energy. Assuming a flat angular

distribution across the hemisphere of a given jet would
correspond to Rrec ¼ π=2, while a narrower angular dis-
tribution, as inspired by linearized hydrodynamics wake
calculations in the absence of radial flow, would correspond
to Rrec < π=2. Inspired by the study in [12], we have
currently chosen Rrec ¼ ð5=6Þπ=2. In our previous pub-
lication we checked that the choice of this nonperturbative
parameter has very little influence on jet suppression up to
R≲ 0.6, even for extreme values of Rrec, specially when
compared to other sources of uncertainties, such as the
determination of the resolved phase space (which is
perturbatively calculable). For this reason, and for jet
observables up to R≲ 0.6, gmed still remains as the only
relevant free parameter.
In order to realize this smearing, we note that ΔE ¼

− d
dν P̃ðνÞjν¼0; see Eq. (14). Hence, we define a “turbulent”

quenching factor Qð0Þ
rad;turbðpTÞ ¼ P̃T<ω<ωs

ðνð1 − R2=R2
recÞ,

where we have indicated that the integral over dω in (14) is
constrained by the thermal scale and ωs. For reference, the
full bare quenching factor is given in Eq. (20). In summary,
emissions between T < ω < ωs are assumed to thermalize
quickly, and their angular distribution is approximately flat
in the hemisphere of the jet.
Second, semihard gluons are those emitted with ωs <

ω≲ ωc, where the critical energy ωc≡ q̂0 lnðq̂0L=μ2�ÞL2=2
is the maximal energy that a medium-induced emission
produced by multiple soft scatterings can have. Third,
harder gluons, with ω > ωc, can be produced via rare
single large momentum transfers and we have now
dIð0Þ=dω ≪ dIð1Þ=dω. Semihard gluons will typically
experience rescattering within the medium via further
frequent transverse kicks, resulting in a diffusion process
that features a Gaussian probability distribution. While
harder gluons will also experience Gaussian broadening,
they are already produced with a relatively large k⊥ ≫ q̂L
(since tf < L), and a characteristic power-law tail
∼q̂0L=k4⊥. The relative size of these contributions in the
computation of the QF can be obtained by integrating
the broadening distribution computed using the IOE
framework [89] for k⊥ scales larger than wR, i.e.,
BðωR;Q2

broadÞ ¼ ðdI=dωÞ−1 R∞
ðωRÞ2 dk

2⊥dI=ðdωdk2⊥Þ, where
Q2

broad represents the characteristic broadening scale of the
different mechanisms.
In this way, the full radiation spectrum for emissions that

end up beyond the jet cone, under this multiplicative
Ansatz, reads [87]

dI>
dω

¼ BðωR;Q2
s=2Þ

dIð0Þ

dω

þ BðωR;max½Q2
s ; 16ω=ðπ2LÞ�Þ

dIð1Þ

dω
: ð19Þ

In the LO term, the broadening scale was set to Q2
broad ¼

Q2
s=2, where the saturation scale is Q2

s ¼ q0 lnðq̂0L=μ2�ÞL.
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This is the typical momentum acquired via multiple soft
scatterings averaged over all possible production points
between 0 and L [86,87]. The NLO term considers the
broadening scale that results into a larger amount of
broadening, either via the emission process itself, or by
further multiple soft scatterings. The choice of scales in
the NLO term correctly reproduce the GLV limit at high w
and k⊥, up to logarithmic factors. For more details on
the steps here employed to incorporate broadening we refer
the reader to the Appendix of our previous work [12]
and to [90].
The bare quenching weight associated with medium-

induced radiation is then

Qð0Þ
radðpTÞ ¼ exp

�
−
Z

∞

ωs

dω
dI>
dω

ð1 − e−νωÞ

−
Z

ωs

T
dω

dIð0Þ

dω
ð1 − e−νωð1−ð

R
Rrec

Þ2ÞÞ
�
; ð20Þ

where we have approximated dINHO=dω ≃ dIð0Þ=dω in the
turbulent regime T < ω < ωs. The bare quenching factor
for elastic energy loss is

Qð0Þ
el ðpTÞ ¼ exp

�
−êLν

�
1 −

�
R
Rrec

�
2
��

: ð21Þ

This expression is simply obtained as the Laplace transform
of δðϵ − êLð1 − R2=R2

recÞÞ. For a weakly coupled plasma,
as assumed in this work, the transport coefficient ê [91] is
related to q̂ by using the fluctuation-dissipation relation
ê ¼ q̂=ð4TÞ (where êq ¼ CF

Nc
êg and êg ¼ ê for gluons) [92].

C. Observables

The jet nuclear modification factor RAA can be written as

RAAðpT; RÞ ¼
P

i¼q;gQiðpT; RÞσ̃ppi ðpT; RÞP
i¼q;gσ

pp
i ðpT; RÞ

ð22Þ

¼ QqðpT; RÞf̃qðpT; RÞ
þQgðpT; RÞf̃gðpT; RÞ: ð23Þ

As before, the tilded pp cross section implies that the free-
proton PDFs have been replaced by nuclear PDFs that
account for nuclear modifications and isospin effects.
In particular, the modified quark and gluon fractions,
defined as

f̃iðpT; RÞ ¼
σ̃ppi ðpT; RÞP
i¼q;gσ

ppðpT; RÞ
; ð24Þ

do not add up to one, i.e.,
P

i¼q;g f̃iðpT; RÞ ≠ 1, reflecting
some of the nuclear modifications that take place even in
the absence of final state energy loss.

The other main observable studied in this work are the jet
azimuthal anisotropies, and more specifically the so-called
elliptic flow coefficient, v2. It is defined as the second order
Fourier coefficient in the expansion of the spectrum over
the azimuthal angle ϕ [93,94], and can be computed in AA
collisions as

v2ðpT; RÞ≡
R
π
−π dϕ cosð2ϕÞðdσAAðpT; RÞ=dϕÞR

π
−π dϕðdσAAðpT; RÞ=dϕÞ

; ð25Þ

where we used that the uncertainty in the event-plane angle
resolution ΨR is negligible compared to other sources of
uncertainties [95], and we have set it toΨR ¼ 0, as we do in
our simulations.

D. Event-by-event medium properties

In this subsection we provide simple arguments that
clarify the need to take into account fluctuations of the
inmedium histories of jets in order to realistically compute
jet observables in heavy-ion collisions. We also describe
how we include them in our model.
Jets are produced at different locations in the transverse

plane, with different orientations, and therefore explore
different inmedium lengths and medium properties, such as
temperature or flow, before escaping it. To clarify this point
with an example, let us focus on the effect that fluctuations
on the traversed length in the QGP, L, have on quenching.
One can define the average value of a given quantity X by

hXi ¼
R
∞
0 dLfðLÞXðpT; LÞR∞

0 dLfðLÞ ; ð26Þ

where fðLÞ represents the probability to traverse a length
L. In the most trivial event-by-event (EbE) scenario, we
assume a flat distribution between values Lmin and Lmax,
yielding fðLÞEbE ¼ ΘðL − LminÞΘðLmax − LÞ. We com-
pare the results obtained with this distribution against
those obtained by computing the given quantity X using
only the average value (Ave) of L, where fðLÞAve ¼
LmaxþLmin

2
δðL − ðLmax þ LminÞ=2Þ.

Let us now choose X to be the amount of suppression of
the spectrum. Again, for simplicity, let us just neglect the
dependence on color factors and consider the bare quench-
ing factor, ignoring thereby the phase-space resumma-
tion [96]. Then, X ¼ Q ¼ e−aL, where a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πᾱ2q̂ν

p
with

ν ¼ n=pT . Here, we explicitly assume that q̂ is constant
throughout the medium and independent of time. The ratio
of the mean quenching factor between the “event-by-event”
and “average” scenarios is

hQiEbE
hQiAve

¼ e−aLmin − e−aLmax

aðLmax − LminÞe−a
2
ðLmaxþLminÞ : ð27Þ
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This ratio tends to 1 as a goes to 0, for instance at high-pT ,
but is larger than 1 at a ≫ 1 [97]. This difference can
induce a change in the slope of Q and can affect the
agreement with high-precision experimental data in this
regime. This very simple example illustrates that the
average energy loss over many path lengths is not in
general the energy loss of the average path length.
This discrepancy is not necessarily that striking for all

quantities, though, as it obviously depends on the func-
tional dependence of that quantity on L. For instance, in the
case of v2, the EbE result coincides exactly with the Ave
(in the small eccentricity approximation), but only if one
uses the bare quenching weight,

hv2;iiEbE¼−
2e

Lmax−Lmin

Z
Lmax

Lmin

Q0
i

Qi
LdL¼hv2;iiAve; ð28Þ

simply because Q0
i=Qi is independent of L [98]. This

relation is no longer true when jet phase-space effects are
included by making use of the resummed quenching factor
because of its nontrivial L-dependence.
Therefore, in order to accommodate the variations in jet

energy loss resulting from the diverse trajectories the jet
may traverse within the expanding QGP, we must integrate
our theoretical framework into a realistic heavy-ion envi-
ronment. We follow the same procedure carried out in our
previous publication [12], whose steps we summarize here
for the reader’s convenience.
We first determine the production point in the transverse

plane ðx; yÞ by using the overlap of the thickness functions
of the colliding nuclei, TABðx; y; bÞ ¼ TAðx − b=2; yÞ×
TBðxþ b=2; yÞ, with b being the impact parameter of the
nuclear collision. The thickness function is derived from the
transverse density of nucleons within the Lorentz-contracted
nuclei and is distributed following theWoods-Saxon density
function [99]. Then, we randomly assign an orientation
within the transverse plane and a random rapidity value
within the range −2 ≤ y ≤ 2. While tracing the trajectory of
the jet within the QGP, we calculate the integrated values
of the necessaryphysical variables,which typically dependon
the local temperature T and fluid velocity u until the jet exits
the QGP phase, occurring at a pseudocritical temperature that
we choose to be Tc ¼ 145 MeV. These values of T and u are
extracted from event-averaged hydrodynamic profiles [100]
that describe the evolution of an expanding droplet of liquid
QGP in PbPb collisions at

ffiffiffi
s

p ¼ 5.02 ATeV, considering
various centrality classes. Because parameters such as the
fluid temperature are expressed in the local fluid rest frame, it
is necessary to take into account the infinitesimal distance
dxF covered by the jet in this particular frame during each
time increment dt in the laboratory frame.
Ignoring numerical constants, the essential physical

variables required are obtained through integration along
the trajectory γðtÞ of a jet as follows:

L ¼
Z
γðtÞ

dxF;

T ¼ 1

L

Z
γðtÞ

dxFTðxÞ;

m2
D ∝

1

L

Z
γðtÞ

dxFT2ðxÞ;

q̂0 ∝
1

L

Z
γðtÞ

dxFT3ðxÞ
�
p · uðxÞ

p0

�
;

ê ∝
1

L

Z
γðtÞ

dxFT2ðxÞ
�
p · uðxÞ

p0

�
;

ωc ∝ 2

Z
γðtÞ

dxFLðtÞT3ðxÞ
�
p · uðxÞ

p0

�
;

θ
−1
2

c ∝ 3

Z
γðtÞ

dxFL2ðtÞT3ðxÞ
�
p · uðxÞ

p0

�
; ð29Þ

where the length LðtÞ is the inmedium path of the jet up to
time t. The dilution factor ðp · uÞ=p0, with p the four-
momentum of the jet and u the fluid four velocity, arises in
transport coefficients due to a flowing medium [101]. We
want to make clear that even though we account for
fluctuations in the jet production point and orientation,
we do not encode any additional fluctuations associated
with the variations of the relevant quantities along the path
of the jet.
Central to the physics discussion of this work is the

length dependence of the coherence angle θc. In Fig. 2 we
show the distribution of the values of θc at RHIC energies,
for gold-gold (AuAu) collisions, for a few centrality
classes. To obtain these distributions we have followed
the procedure outlined above. Given that the impact

FIG. 2. Probability distribution of θc, as determined by the jet
embedding procedure outlined in Sec. II D. We have just selected
a few centrality classes for the collision kinematics at RHIC. The
solid lines represent the fits obtained using Eq. (30).
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parameter increases towards more peripheral collisions, the
traversed lengths tend to decrease notably. This means that
the typical value of θc increases with decreasing centrality.
This is precisely what is seen in Fig. 2. Due to the reduced
center-of-mass energies used at RHIC, the initial temper-
ature of the QGP is lower, and therefore it reaches Tc
earlier, reducing the typical traversed length L. This implies
that, for a given centrality class, the typical values of θc at
RHIC will be larger than those at LHC. One can easily see
that the θc distributions from Fig. 2 are of the type

PðθcÞ ¼
θc
θ�2c

e−θc=θ
�
c ; ð30Þ

where θ�c is the mode, i.e., the most frequent value, of the θc
distribution for a given centrality class in a given collision
system. This distribution has its origin in the distribution
of path lengths explored by the different inmedium jet
histories, as well as in the distribution of values of q̂, for
each centrality class and collision system. The value of θ�c,
both at RHIC and LHC for a wide range of centrality
classes, will be useful to interpret the results, as discussed
in Sec. IV. The qualitative agreement of this set of fits can
be seen by comparing the solid lines with the data histo-
grams in Fig. 2, and the corresponding values of θ�c are
tabulated in Table I. Further fluctuations associated with
different initial state configurations will be studied in
future work.

III. RESULTS

In this section we provide results for jet suppression,
RAA, and jet azimuthal ansisotropy, v2, as a function of the
jet cone angle R and jet transverse momentum pT for a
number of centrality classes that range from 0–5% to
60–70%, both at RHIC and LHC. They are computed using
the framework described in Sec. II, which is the same as in
our previous publication [12]. We compare our predictions
to experimental data that was in many cases released after
the publication of our previous work.

We emphasize that our calculation relies on two free
parameters, gmed and Rrec, namely the strength of the
coupling to the medium, gmed, and the energy recovery
parameter, Rrec, which were determined in our prior
analysis of jet RAA at LHC energies [12]. Accordingly,
in all of our results, the theory error bands correspond to
taking the minimum and maximum values among the four
combinations for the parameters gmed ¼ f2.2; 2.3g and
Rrec ¼ f1; 5=6g π

2
. We do not tune their values any further

to obtain the results presented in the current work.

A. Jet suppression at RHIC and LHC

We start by showing in Fig. 3 our results for jet RAA for
three different radii, R ¼ 0.2, R ¼ 0.3, and R ¼ 0.4, in the
different panels, confronted against experimental data mea-
sured by STAR [102]. Our results are computed for jets with
jηj < 0.5, while those from STAR have jηj < 1. Error bars
on data denote statistical uncertainties, while bands refer to
systematic uncertainties. The dashed line indicates the
region below which the experimental results are biased
by the requirement of the presence of a high-pT track within
the jet, which is something that the STAR collaboration
needed to apply in order to reduce the contamination from
fake background jets, and that cannot be replicated by our
present semianalytical framework. Another difference is the
fact that STAR only used charged tracks to reconstruct
the jets, while our calculation is done for full jets. A rather
crude way to account for this difference, which we did not
attempt to do, would be to shift the jet pT by a factor 2=3,
although this would have little effect on the unbiased
region due to the apparent relative flatness of RAA with
jet pT . We observe good agreement between our predictions
and experimental data in the unbiased region, above
pT ≳ 15 GeV, correctly reproducing the small dependence
of jet suppression on jet-size R.
In order to have a closer look into this mild R-depend-

ence of jet suppression, we present ratios of different
RAAðRÞ over the result for R ¼ 0.1 for RHIC energy in
Fig. 4. At low pT, increasing the jet radius translates into
less suppression (larger RAA), since the emissions off the
very few resolved color charges can still be captured within
the larger cone. As one increases the jet pT , the phase space
within the jet increases, more so for a larger R such as
R ¼ 0.6, and the number of resolved charges increases.
This leads to a larger suppression [still Oð10%Þ effects at
most] of larger R at higher pT, overcoming the capturing
effect that explains the behavior at low pT. The R
dependence of jet suppression is thus sensitive to very
relevant aspects of the jet-medium interaction, such as
the distribution of the radiated energy and the size of the
resolved phase space. Future jet measurements at the
sPHENIX detector [103] are expected to be precise enough
to corroborate this picture.
After the publication of our previous work [12], the

ALICE collaboration presented their results for the R

TABLE I. Fitted values for θ�c, using Eq. (30), both at RHIC
(AuAu collisions at

ffiffiffi
s

p ¼ 0.2 ATeV) and LHC (PbPb collisions
at

ffiffiffi
s

p ¼ 5.02 ATeV), for different centrality classes.

θ�c

Centrality RHIC LHC

0–5% 0.13 0.09
5–10% 0.15 0.10
10–20% 0.17 0.12
20–30% 0.22 0.15
30–40% 0.27 0.19
40–50% 0.35 0.24
50–60% 0.45 0.32
60–70% 0.58 0.41

MEHTAR-TANI, PABLOS, and TYWONIUK PHYS. REV. D 110, 014009 (2024)

014009-10



dependence of jet suppression at fairly low jet pT , ranging
from R ¼ 0.2 to R ¼ 0.6 [105] (the R dependence of this
low jet pT range was first measured years ago by ATLAS
[104], although in terms of a double central-to-peripheral,
RCP ratio that we do not attempt to reproduce in the present
work). In order to account for the differences in acceptance
with respect to ATLAS’ (whose results we compared
against in our previous publication [12]), i.e., jyj < 2.8,
we redid our calculations by modifying the rapidity
ranges of the initial spectrum at R0 ¼ 1 from which we
compute the vacuum and medium jet evolution, such that
jηj < 0.9 − R. Any expected causes for differences in RAA
due to the different rapidity ranges, such as the change of
the spectral index n (larger at larger η) and the quark-
initiated jet fraction (larger at larger η) turned out to be very
small. We show our predictions, confronted against ALICE
data, in Fig. 5, obtaining an excellent agreement.

In Fig. 6 we show jet RAA, also at LHC, but for a much
higher jet pT . Our results are compared to recent ATLAS
data for R ¼ 0.2 [106], ATLAS data for R ¼ 0.4 [108], and
CMS data [107] for R ¼ 0.2; 0.4; 0.6. The first point, at
pT ≈ 100 GeV of ATLAS results for R ¼ 0.4 jets [108],
was used to fit our value of gmed in [12]. The small larger
suppression experienced by R ¼ 0.4 jets as compared to
R ¼ 0.2 jets, which tends to disappear with decreasing jet
pT , as measured by ATLAS, is correctly captured by our
prediction. As predicted in our previous work [12], jet
RAAðR ¼ 0.2Þ should be somewhat less suppressed than
those with larger R, which hold even more similar values of
suppression among them. To a large extent, this is so due to
the fact that the typical critical angle for this centrality is
around θc ∼ 0.12, representing an extensive part of the
phase space of an R ¼ 0.2 jet. However, this mild trend was
not observed by CMS, where R ¼ 0.2 and R ¼ 0.4 lie on
top of each other for the limited available range in jet pT .
Moreover, CMS has measured that also R ¼ 0.6 jets are as
little suppressed as R ¼ 0.2 jets, together with R ¼ 0.4 jets,
within current uncertainties. The manifest, although mild
tension between the ATLAS and CMS results for R ¼ 0.4
jets motivates extending the pT range and precision
of measurements. Further improvements from the theory
side involve increasing the precision of the resolved phase-
space calculation, encapsulated in the value of θc in our
framework, as it can induce Oð20%Þ changes in jet
suppression [12], specially at very high pT .
In summary, the excellent agreement as a function of jet

pT ≳ 100 GeV up to pT ≲ 1 TeV, for R ¼ 0.4 jets belong-
ing to a wide range of centrality classes shown in our
previous work [12], combined with the no less remarkable
results here shown, which extend the pT reach down to
pT ≳ 20 GeV, both for smaller (R ¼ 0.2) and larger

FIG. 3. Comparison of jet RAA against STAR data [102] measured at RHIC at
ffiffiffi
s

p ¼ 0.2 ATeV, where different panels show different
R. The dashed vertical line indicates the jet pT below which the existence of an experimental bias prevents a direct comparison with our
semianalytical results.

FIG. 4. Ratio of RAA for different R over that for R ¼ 0.1, atffiffiffi
s

p ¼ 0.2 ATeV for AuAu collisions in the 0–10% centrality
class.
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(R ¼ 0.6) jet radii, and for several centrality classes as
well, present overall an encouraging picture of our first-
principles understanding of jet suppression in deconfined
QCD matter. Very good agreement is achieved across
centralities, spanning across almost two orders of magni-
tude in jet pT , and several jet radii, up to R ¼ 0.6, which we
deemed to be the radius above which nonperturbative
effects due to correlated background (medium response)
start to be important [12].
A complete set of predictions for jet RAA at RHIC and

LHC, for different centralities and jet radii up to R ¼ 0.6,
can be found in Appendix.

B. Jet azimuthal anisotropy at RHIC and LHC

We now turn to the discussion of the results for jet v2,
defined in Eq. (25). In our main set of results we do not
consider fluctuations in the initial collision geometry, as our
hydrodynamic backgrounds are event averaged within a
given centrality class, and so we have set the event plane to
ΨR ¼ 0. Just as it is the case for the flow coefficients of the
soft particles from the bulk of the system, these fluctuations
are expected to affect the values of higher-order flow
harmonics, such as v3, for high-pT objects as well [19].
In order to compute the jet v2 as in Eq. (25), one simply

needs to label each inmedium jet history with the azimuthal
angle along which it propagated,ϕ. One then readily obtains
the results forR ¼ 0.2 jets at LHC, shown inFig. 7,which are
compared against ATLAS data [109]. While ATLAS jet
RAA results typically feature an extended rapidity coverage,
jyj ≤ 2.8, these jet v2 results are for jets within jyj < 1.2. We
have recomputed our double differential jet spectra, both in
pT and ϕ, for this narrower rapidity range. In contrast to the
case of jet RAA, where we found negligible effects from
narrowing the rapidity range when comparing to ALICE
data, jet v2 is more sensitive to the decrease of the quark-
fraction that is induced by the reduction of the rapidity range
about midrapidity, especially so towards lower jet pT [52].
The reason is that, in the soft limit, jet v2 ∼ CR, as will be
illustrated in Sec. IV. Our predictions (solid bands) yield in
general very good agreement with experimental data, both in
total magnitude and in the jet pT-dependence.
The comparisons shown in Fig. 7 point to the presence of

tensions in the 0–5% centrality bin, wherewe overpredict the

FIG. 5. Comparison of theoretical predictions of RAA against ALICE data [105] for PbPb collisions at
ffiffiffi
s

p ¼ 5.02 TeV, for the 0–10%
(30–50%) centrality class in the upper (lower) row. Different columns display different values of jet cone R.

FIG. 6. Our predictions for RAA with R ¼ 0.2 confronted
against ATLAS data [106] and CMS data [107], for PbPb
collisions at

ffiffiffi
s

p ¼ 5.02 TeV. In our previous publication [12],
we used the first point of ATLAS data for R ¼ 0.4 [108] for
0–10% centrality class to fit our value of gmed.
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size of jet v2 at lower jetpT . One possible reason could be our
oversimplified treatment of quenching physics before hydro-
dynamization time, t0 ¼ 0.6 fm=c in our simulations, where
we simply ignore energy loss effects. It has been shown that
neglecting quenching in the earliest stages overestimates the
size ofv2 [110,111]. Including the effects of quenching in the
initial stages, for which theoretical calculations are now
becoming available [112,113], will be studied in futurework.
In the present work, we estimate the effect by allowing the
possibility of elastic and radiative energy loss before t0, as if
our present formulas were valid out of equilibrium aswell. In
practice, we set Tðt < t0; x⃗Þ ¼ Tðt0; x⃗Þ and vxðt < t0Þ ¼
vyðt < t0; Þ ¼ 0, while still keeping vz ¼ z=t. Quenching
duringmore time naturally reduces the value of jetRAA, so in
order to test the effect on v2 for the same amount of jet
suppression,we need to reduce the value of the couplingwith
the medium. While the bands represent our default results
with quenching t ≥ t0, obtained with gmed ∈ f2.2; 2.3g, the
dotted lines are the results with a reduced gmed ¼ 2, so that jet
RAA forR ¼ 0.4 jets at 0–10%centrality lieswithin the band.
We observe that, with the exception of the most peripheral
class, the dotted lines tend to be below the bands, yielding a
smaller jet v2, in consistency withwhat has been found in the
literature [22,110,111].Wenote that the largest relative effect
is, for themost central class, 0–5%,where the reduction of jet
v2 is almost by a factor of two. While the reduction of jet v2
does not significantly modify the level of agreement with
experimental data for more peripheral classes, in the case of
the 0–5% class the sizeable relative reduction brings our
theoretical predictions much closer to ATLAS data.
We further explore the R dependence of jet v2 in

Appendix, both at RHIC and LHC. In general, jet v2
increases as a function of R, as expected, since a larger R
tends to imply a larger resolved phase space. This is the
main reason why RAA tends to decrease with increasing

R≲ 0.6 at high jet pT . This trend tends to be reversed
towards lower jet pT , as illustrated for example in Fig. 4,
where the effect of increasing the amount of recaptured
energy by opening the cone overcomes the associated
enlargement of the resolved phase space. However, some-
thing distinct happens in the case of jet v2, where always
v2ðR; pTÞ > v2ðR0; pTÞ if R > R0, regardless of the relative
ordering in RAA. This is best appreciated in Fig. 13, for
RHIC results, where the typically lower jet pT compared to
LHC kinematics yield RAAðR; pTÞ > RAAðR0; pTÞ, over a
wide range in the accessible jet pT , while v2ðR; pTÞ >
v2ðR0; pTÞ, for R > R0.
In particular, we observe an interesting grouping among

different R, evolving with centrality, which is again best
perceived for RHIC kinematics. For central collisions, say
5–10% centrality class, v2ðR¼ 0.1;pTÞ≈v2ðR¼ 0.2;pTÞ≲
v2ðR¼ 0.3;pTÞ<v2ðR¼ 0.4;pTÞ≲v2ðR¼ 0.6;pTÞ, while
by the 50–60% centrality class v2ðR ¼ 0.1; pTÞ ≈ v2ðR ¼
0.2; pTÞ ≈ v2ðR ¼ 0.3; pTÞ ≈ v2ðR ¼ 0.4; pTÞ < v2ðR ¼
0.6; pTÞ. This type of grouping is absent forRAA, and reflects
the connection between jet v2 and the path-length depend-
ence of the critical angle θc, whose most frequent value θ�c
strongly evolves with centrality, as shown in Fig. 2. These
aspects are explained in Sec. IV based on simple arguments.
At this stage, we merely illustrate the behavior of this
grouping by computing the difference in jet v2 between jets
with a given R > 0.1 and those with R ¼ 0.1, for a fixed jet
pT ¼ 20 GeV, as a function of centrality, as shown in Fig. 8.
We observe the sequential collapse of the value of jet v2 for
jets with a givenR towards the value of jet v2 for the smallest
R ¼ 0.1 at different centrality classes. According to the
projected uncertainties associated to jet v2 measurements
with the sPHENIX detector [114], we believe that these
subtle features can be confronted against upcoming RHIC
data [115].

FIG. 7. Results for jet v2ðpTÞ for R ¼ 0.2 jets at LHC for PbPb collisions at
ffiffiffi
s

p ¼ 5.02 ATeV, confronted against ATLAS data [109].
See text for details.
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IV. DISCUSSION

To gain insight into the results presented in the previous
section, particularly to better comprehend the seemingly
distinct behavior of jet v2 concerning centrality compared
to that of jet RAA, we will try to summarize the main
features with an analytical model that captures the quali-
tative features of our fully-fledged event-by-event calcu-
lations above.
Ourmain goal is to reveal the importance of jet coherence,

an aspect that has been largely neglected in existing
literature. The geometry-sensitive nature of v2 can be
utilized to probe the length dependence of both quenching
and resolution effects. To illustrate our point, consider
measuring a quenched jet “in plane” versus “out of plane.”
The jet traveling “in plane”will not only experience a shorter
path length, leading to a smaller bare quenching, but also be
less resolved leading also to a larger θc and a smaller phase
space for additional substructure quenching. In contrast, the
jet traveling “out of plane” is both more quenched andmore
resolved. This additional effect emphasizes the path-length
differences embodied in an observable such as v2 and will
lead to: (i) an enhanced v2 of jets compared to hadrons,
and (ii) a characteristic increase of v2 with R for a given
centrality, as seen, for example, in Fig. 8.

A. R dependence of RAA

Taking the strong quenching limit, i.e., Qð0Þ
i ≪ 1, in

Eq. (13), see Ref. [12] for details, and using the fact that the
phase space is dominated by the double log which allows us
to approximate z ∼ 1 (we further assume a fixed coupling
constant), only the virtual term contributes and the solution
can be written directly as

QiðpT; RÞ ≃Qð0Þ
i ðpTÞe−ΩresðpT;RÞ: ð31Þ

Here, we effectively account the quenching of the leading

parton (total charge) via Qð0Þ
i . For the moment, to simplify

our discussion in this section, we neglect any weak R
dependence of this factor. This phase space is sensitive to
resolved subjets in the QGP and is given by

Ωres ¼
Z

R

0

dθ
θ

Z
1

0

dz
αs
π
PðzÞΘðtf < td < LÞ;

≈ 2ᾱ

Z
R

maxðθc;θminÞ

dθ
θ

Z
pT

ð2
3
q̂=θ4Þ1=3

dω
ω

; ð32Þ

where we used that the splitting function PðzÞ ≈ 2CR=z in
the soft limit of gluon emission (ω ¼ zpT). In this limit, we
get that the formation time is tf ¼ 2=ðωθ2Þ and the
decoherence time is td ¼ ðq̂θ2=12Þ1=3. The limit on the
angular integral is then θc ¼ ðq̂L3=12Þ−1=2 or θmin ≡
ð2
3
q̂=p3

TÞ1=4 [9]. In the high-pT limit, precisely for
pT > ωc=3, and for R > θc, we get

Ωres ¼ 2ᾱ ln
R
θc

�
ln
3pT

ωc
þ 2

3
ln

R
θc

�
; ð33Þ

where the characteristic energy scale is ωc ¼ q̂L2=2 and
the characteristic angular scale is θc ¼ ðq̂L3=12Þ−1=2.
Clearly, if R ≤ θc the phase space vanishes Ωres ¼ 0 and
the jet is quenched coherently, only according to its total
color charge, i.e.,

QiðpT; RÞjR≤θc ¼ Qð0ÞðpTÞ; ð34Þ

where Qð0Þ ¼ Qð0Þ
radQ

ð0Þ
el , corresponding to radiative and

elastic energy losses, respectively. We will not consider
elastic energy loss in this section, but note that most of the
conclusions regarding the scaling properties of RAA and v2
still hold under the general condition thatQð0Þ ¼ e−fðpT;RÞL,
where fðpT; RÞ is an arbitrary function of the jet transverse
momentum and cone angle.
For example, in what we refer to as the “soft” approxi-

mation, i.e., when we assume that the medium-induced
spectrum scales as dI=dω ∝ ω−3=2, the bare quenching

weight becomes Qð0Þ
i ðpTÞ ¼ expð−2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πᾱ2ωcn=pT

p
Þ [66],

and only ᾱ ¼ αsCi=π distinguishes between the quark and
gluon energy loss. This suppression factor describes how a
single parton suffers energy loss through soft gluon
emissions at any angle. It becomes directly relatable to
the quenching of single-inclusive hadron spectra if we
replace the parton pT by the transverse momentum of the
leading hadron, or pT → p0

T ≡ pT=hzi; see also [117]. For
example, for massless hadrons hzi ≈ 0.3–0.5 over a wide jet
pT range [118].
Assuming that the spectrum is dominated by a single

parton species and neglecting nuclear PDF (nPDF) effects,
we find that

RAA ≃QðpT; RÞ: ð35Þ

FIG. 8. Difference between the jet v2ðRÞ for R > 0.1 with
respect to v2ðR ¼ 0.1Þ, for jet pT ¼ 20 GeV and as a function of
centrality at RHIC for AuAu collisions at

ffiffiffi
s

p ¼ 0.2 ATeV.
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Including the full flavor dependence will influence jet RAA
(and hence also jet v2) on the quantitative level only.
Furthermore, for this discussion we omit effects coming
from the recovery of emitted energy at large angles.

The regime of strong quenching, given by Qð0Þ
i ≪ 1, is

relevant for the mid- to high-pT range at RHIC and LHC.
This is applicable in the mid- to high-pT regime where
pT ≈ 40 GeV. Hence, assuming the linearized form of the
full quenching factor, cf. Eq. (31), the ratio is

QðpT; RÞ
QðpT; 0.1Þ

≈ exp ½ΩresðpT; 0.1Þ − ΩresðpT; RÞ�

≈ 1 − 2ᾱLc ln

�
maxðR; θcÞ
maxð0.1; θcÞ

�
; ð36Þ

where Lc ≡ lnð3pT=ωcÞ, up to terms that are not enhanced
by a logarithm of pT . We conclude that the ratio of jet
suppression factors is mainly logarithmically dependent on
the coherence angle θc.

B. R dependence of v2
Simplifying the precise details of the geometrical

aspects of the suppression one can estimate the jet
anisotropy as [119]

v2 ≃
1

2

RAAðLinÞ − RAAðLoutÞ
RAAðLinÞ þ RAAðLoutÞ

; ð37Þ

see also [84], where Lin is the shorter path length
experienced by the jets that are emitted in plane, while
Lout is the path length of jets emitted perpendicular to it,
i.e., out of plane. For slightly eccentric systems such as
those corresponding to central and semicentral collisions
we can assume that the typical differences in path lengths
between in plane and out of plane are small, i.e., Lin ¼ L
and Lout ¼ Lþ ΔL, where ΔL=L ≪ 1. Assuming that the
nuclear overlap resembles a perfect ellipse, the path length
difference ΔL is directly related to the eccentricity of the
ellipse e via ΔL=L ¼ 2e. It follows that Eq. (37) takes the
simple form,

v2 ≈ −
ΔL
4

d lnRAA

dL
; ð38Þ

upon expansion to first order in ΔL.
To gain analytical insight into the behavior of v2 as a

function of jet pT and the cone angle R, we will at this point
introduce further simplifications. Again, we assume that the
spectrum is dominated by a single parton species and we
will neglect nPDF effects. Furthermore, we will assume
that the full quenching factor can be approximated by its
linearized version with “soft” bare quenching factors, as
done in the previous subsection, Sec. IVA. These sets of
simplifications allow us to better isolate the effects of the

relation between the resolved phase space of a jet and
energy loss.
In line with previous approximations, we expand

the quenching weight up to the first order in ΔL, i.e.,
QðLþ ΔLÞ ≈QðLÞð1þ ΔLδQÞ to obtain

v2 ≈ −
ΔL
4

δQ: ð39Þ

We define the perturbed resummed quenching factor as
δQðpT; RÞ ¼ ∂ lnQðpT; RÞ=∂L, where the path-length
dependence is implicit through the dependence on the
medium scales ωc and θc. The remaining part of this
section will be dedicated to studying the path-length
dependence of the quenching factor through δQ based
on Eq. (31). As in the previous subsection, we will now
focus on the regime of strong quenching, where
Qð0ÞðpTÞ ≪ 1. This immediately implies δQ ≪ 1.
Let us start considering the path-length dependence of

the bare quenching factor Qð0ÞðpTÞ. We find that

δQ0 ¼
∂ lnQð0ÞðpTÞ

∂L
≈ −CR

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2α2s q̂n
πpT

s
; ð40Þ

where the last step is valid for the “soft” approximation.
Due to its specific dependence on the variable ωc=pT , we
can also trade the derivative on the path length for a

derivative on pT , i.e., δQ0 ¼ − 2pT
L

∂ lnQð0ÞðpT Þ
∂pT

[24].
Another contribution to the perturbation of the quench-

ing factor resulting from the Sudakov suppression factor
needs to be accounted for, i.e., δQ ¼ δQ0 þ δQ1, where
δQ1 ¼ δΩresðpT; RÞ; see Eq. (33). This additional term
encapsulates the path length variation of additional jet
splittings that occur in the medium. It turns out that the
correction to the phase space is

δΩresðpT; RÞ ¼
3ᾱ

L
Lc; ð41Þ

again with Lc ≡ lnð3pT=ωcÞ, which is independent of the
jet cone angle up to the condition R > θc. Although derived
within simplified assumptions, the terms that we have
identified allow us to extract several useful qualitative
characteristics of jet v2 that we can compare to the results
from our full numerical simulations. Inspecting the two
terms in Eqs. (40) and (41), it becomes immediately clear
that v2;i ∝ δQi ∝ CR for i ¼ q, g. This is simply a conse-
quence of the Casimir scaling of the quenching factors,

where both lnQð0Þ
i ∝ CR and lnQi ∝ CR [120].

The flow coefficient is then found to be

v2
e
≃ ᾱ

� ffiffiffiffiffiffiffiffiffiffiffi
πωcn
pT

r
þ 3

2
LcΘðR − θcÞ

�
; ð42Þ
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where we highlighted the leading dependence of the second
term on the cone angle. In what follows, we will neglect the
additional weak logarithmic dependence on L in Lc. This
illustrates a distinctive jump in jet v2 at fixed pT and as a
function of R arising from the coherence physics encoded
in the full quenching factor. Other subleading contributions
to the R dependence are not discussed further here (see the
comment in Sec. IVA).
Note also that in the “coherent regime”, i.e., for R ≤ θc,

we uncover a simple relation between jet quenching and the
azimuthal asymmetry,

v2
e

����
R≤θc

≈ −
1

2
lnRAAjR≤θc ; ð43Þ

expected to hold for modest path-length differences equiv-
alent to small eccentricity. Assuming a relatively central
collision, 20–30%, for which e ∼ 0.2 [121], with a charged
hadron RAA ∼ 0.6 around pT ≈ 40 GeV [122] the above
pocket formula predicts the estimated value v2 ∼ 0.05,
which is in the ballpark of the experimental data [123].
Note that this correspondence is exact in our model study,
where we neglected expansion effects and employed the
“soft” approximation. It should nevertheless hold under
general assumptions as long as the “bare” quenching factor
scales with L, i.e., lnQð0Þ ∝ L. Finally, it is worth pointing
out that the azimuthal asymmetry is a small v2=e ∼OðαsÞ
effect, in contrast to the overall jet suppression factor
RAA ∼Oð1Þ.
The sensitivity to the critical angle θc is a direct

consequence of coherence physics and therefore, a concrete
prediction of our calculation. For example, instead of the
coherent phase space, if we assume that all emissions
created in the medium, i.e., with tf < L, fully contribute to
jet quenching, we arrive at a collimator function with the
phase-space ΩincohðpT; RÞ ¼ ᾱ

2
ln2ð1

2
pTR2LÞ [9], again for

large enough pT so that the argument of the log is positive.

In this case, there is a similar logarithmic enhancement of
jet v2 since δΩincoh ¼ ᾱ

L lnð12pTR2LÞ. However, this con-
tribution is expected to appear for all R, leading to a much
weaker relative R dependence.
Our above discussion also serves to draw a direct link

between single-inclusive hadron and fully reconstructed jet
v2 at high-pT . The hadron v2 originates from a parton v2 at
a pT which is larger by a factor 1=hzi and, since the
quenching of the total charge contribution diminishes with
pT , it will always be smaller. On the other hand, jet v2 is
enhanced compared to the hadron v2 due to the same
reasons that RAA is lower.

C. Identifying an angluar scale from jet suppression

The different qualitative behavior depending on the
relative size of R and θc found in previous sections suggests
a representation of observables based on the ratio θc=R.
This approximate scaling behavior highlights the interplay
between quenching and resolution effects affecting jets in
the quark-gluon plasma.
In Sec. II D we have not only learned that the typical

value of θc evolves strongly with centrality, but also that
within a given centrality the corresponding θc distribution
is relatively wide. We have extracted the most frequent
value of θc for each centrality and collision system,
θ�cð

ffiffiffi
s

p
; cent:Þ, shown in Table I. We will now make use

of these set of values to present results in terms of the
ratio θ�c=R.
We plot the jet RAA and jet v2 results obtained with the

full semianalytical calculations employed in Sec. III in
Fig. 9. In order to factor out absolute effects related to the
total amount of suppression, we have presented the results
for jets with R ≥ 0.2 divided by the results for jets with
R ¼ 0.1. Small-R jets, such as R ¼ 0.1, are meant to be
proxies for relatively unresolved color structures. The x
axis of these plots is a convenient measure of centrality,
with 0–5% being the most central and 60–70% the most

FIG. 9. Left: Double ratio of RAA between jets with different radii R and jets with R ¼ 0.1. Right: Double ratio of jet v2 between jets
with different radii R and jets with R ¼ 0.1. Results are plotted against the variable θ�c, which is the most frequent value of the θc
distribution for a given collision system and centrality. Jet momentum has been set to pT ≈ 38 GeV.
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peripheral (as illustrated in Table I). Given that θc decreases
with path length, we have chosen θ�c as such a measure (a
smaller θc corresponds in general to more central colli-
sions). In this plot, the data points represent calculations for
LHC kinematics with model parameters identical to the
analysis of the experimental data above. The shaded lines
are equivalent calculations for RHIC kinematics.
While the RAA ratios for different cone sizes R are fairly

similar to each other, with deviations Oð10%Þ, we see a
strong ordering of the jet v2 ratios with R, as expected from
the qualitative discussion above. The jet pT has been set to
be pT ≈ 38 GeV, since this is a regime accessible in both
collision systems. Next, we note that the calculations for
RHIC and LHC kinematics fall on top of each other.
Focusing on the v2 plot in Fig. 9 (right), we can see that the
20–30% centrality class for LHC kinematics (correspond-
ing to the third data point in the figure) overlaps with the
prediction for RHIC kinematics in the 0–5% centrality class
(the leftmost part of the band). This reveals how the
underlying distributions of θc are similar (see Table I for
the most frequent value θ�c) and that this is driving the
behavior of v2.
In Fig. 10 we present results for jet RAA (left panel) and

jet v2 (right panel) as a function of the scaling variable
θ�c=R. We can observe a striking collapse of all data points
onto clearly defined paths along θ�c=R, both for the jet RAA
and jet v2 ratios shown in each panel. As above, the jet pT
has been set to be pT ≈ 38 GeV, since this is a regime
accessible in both collision systems. Computations for
RHIC kinematics reach larger values of θ�c=R than LHC
kinematics, and LHC results reach smaller values of θ�c=R
than RHIC results.
Starting with the right panel of Fig. 10, where we plot the

scaling of jet v2 ratios, one of the most visible features is the
congruence at θ�c=R ≈ 1. This is a clear manifestation of
the collapse already hinted at in Fig. 8, and is expected
based on the estimates from Eq. (42) for unresolved jets.

Most importantly, this reveals a radical change of behavior
of jet quenching at θ�c=R < 1, where jet substructure
fluctations are contributing to the overall quenching,
and θ�c=R > 1, where the jets are quenched coherently.
Succinctly, this plot illustrates the main features of our
predictions for length-differential jet quenching at different
center-of-mass energies, centralities, and cone sizes R.
The observed general trends can be easily understood

using the simple analytical results of the previous sections.
As already pointed out in Sec. II D, attempting to compare
this analytical toy model to our complete framework
requires at least the inclusion of some measure of the
fluctuations of the dominant variables. Therefore, for a
qualitative comparison, we allow the fluctuation of θc
while keeping all other parameters fixed (e.g., ωc). In this
way, the steplike behavior of Eq. (42) now becomes similar
to an exponential decay, i.e.,

ΘðR − θcÞ →
Z

R

0

dθcPðθcÞ ¼ 1 −
1þ t

te
1
t

; ð44Þ

where we used the parametrization in Eq. (30) and
t ¼ θ�c=R. A similar procedure is performed to “improve”
the toy model of the ratio of jet suppression factors.
Replacing the step function with this expression gives a

very good approximation of the trend observed in Fig. 10.
We plot the results using Eqs. (31) and (42), with the
procedure to account for fluctuations in θc described above,
in Fig. 11. For this qualitative comparison we have chosen
pT=ωc ≈ 1.2 (roughly corresponding to q̂ ¼ 1.5 GeV2=fm,
L ¼ 3 fm, and pT ¼ 40 GeV) and n ¼ 5. The dotted lines
show the result had we kept θc at a constant value, while the
full lines include fluctuations of θc according to Eq. (30).
As expected, fluctuations cause the scaling behavior of v2
to drastically change shape, but the analytical trends are
strikingly similar to the behavior obtained from the full
numerical calculation.

FIG. 10. Left: Double ratio of RAA between jets with different radii R and jets with R ¼ 0.1. Right: Double ratio of jet v2 between jets
with different radii R and jets with R ¼ 0.1. Results are plotted against the variable θ�c=R, where θ�c is the most frequent value of the θc
distribution for a given collision system and centrality. Jet momentum has been set to be pT ≈ 38 GeV.
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Some remarks are in order. Note that in the left panel of
Fig. 11 the double ratio never goes above one in contrast to
the left panel of Fig. 10, showing the full numerical results.
Similarly, the toy-model predictions for the v2 ratios in the
right panel of Fig. 11 do not go below one at θ�c=R > 1, in
contrast to the right panel of Fig. 10. This is because our
simplified formulas do not account for the possibility that
radiation can stay within the cone, implying that larger R
always translates into a larger energy loss. In this coherent
regime, the physics of jet quenching is dominated by the
energy loss of a single color charge and we know that
opening up the cone angle leads straightforwardly to the
slow recapturing of lost energy at large angles.
The fact that the clear jet v2 scalings presented in the

right panel of Fig. 10 can be obtained simply by using the
most frequent value of θc in a given centrality class,
c.f. Table I, is highly nontrivial. In comparison, the scaling
observed for jet RAA is not as striking given that jet
suppression factor has a mild R dependence to begin with,
for a given centrality.
Despite all the differences associated with the quenching

of jets with different R, produced in different collision
systems, with mediums of different initial energy densities
and lifetimes, to mention a few of them, we predict that
these jet RAA and jet v2 ratios should follow general trends
if expressed in terms of θ�c=R. We reemphasize the fact that
these trends are obtained from the results generated with the
full semianalytical framework, within a realistic heavy-ion
environment, which successfully describe jet RAA and jet
v2 for essentially all jet pT and R, centrality classes,
and collisions systems—after fitting a single parameter,
gmed ≈ 2.25.

V. CONCLUSIONS

In this paper we have provided the first analytical
calculation of the elliptic flow coefficient v2 for jets in
heavy-ion collisions. Given that jets are extended

multipartonic objects, their degree of suppression due to
medium interactions is in general larger than for single-
inclusive hadrons. This fact leads, on average, to lower
values of RAA, the jet yields suppression observable, and to
larger values of v2, the azimuthally asymmetric jet yields
observable. A key ingredient of our framework is the
determination of the quenched phase space of a jet,
determined by the physics of color decoherence in the
medium. At LL accuracy, dipoles with an angle smaller
than the critical angle θc will not be resolved by the
medium, and will lose energy as a single color charge, i.e.,
will lose less energy. The fact that the critical angle
possesses a marked length dependence, θc ∼ L−3=2,
together with the fact that jets belonging to different
centrality classes typically traverse very different amounts
of QGP, naturally motivates the study of the physics of
color decoherence for jet quenching observables as a
function of centrality, targeting wide ranges of critical
angles. The identification of such a program is one of the
main conclusions of the present paper.
As a relevant phenomenological example, we have

studied the jet v2 evolution with centrality as a function
of the jet opening angle R. We have compared to ATLAS
data for narrow jets with R ¼ 0.2, obtaining very good
agreement, using the same framework and same single free
parameter used in our previous work where we described
the centrality evolution of inclusive jet suppression at LHC,
for different jet radii [12]. In contrast to the R dependence
of jet RAA, we have found that there is a clear ordering for
the jet v2 results for jets with different R, where larger R jets
always possess larger values of jet v2 as compared to
smaller R jets. The reason is tightly connected to the typical
value of θc in a given centrality class. Given that v2
quantifies the different degree of suppression of jets
traversing different amounts of length (i.e., it is a length-
differential observable), those jets whose paths lead to a
larger value of θc (the short paths) will be less suppressed

FIG. 11. Simple analytical estimates for the jet RAA (left panel) and jet v2 (right panel) ratios between jets with different R > 0.1 and
those with R ¼ 0.1, at a fixed pT=wc ≈ 1.2 and n ¼ 5. Results are presented as a function of θ�c=R. The dashed curves labeled with
“Fixed θc” ignore the effect of θc fluctuations within a given centrality class, while the solid curves, labeled as “Fluc. θc,” do
include them.
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than those whose paths lead to smaller values of θc (the
longer paths), thereby raising the value of jet v2. This is so
unless the jet as a whole is to be unresolved regardless
of the path taken, i.e., when R < θc. In this case, small
differences in the traversed path length will not lead to
different amounts of resolved phase space, reducing the
size of jet v2 when compared to those jets with R > θc. We
indeed observe how, as a function of centrality, jets whose
R goes from being above to below the typical value of θc in
that centrality change their behavior in relation to jets with
other R, such as in relation to the smallest R jets studied in
this work, R ¼ 0.1, as shown in Fig. 8.
Usage of a semianalytical framework has allowed us to

qualitatively explain, with simple expressions, this charac-
teristic behavior of the R dependence of v2. These results
suggest a representation of jet v2 ratios in terms of the ratio
between the two most relevant angular scales in this
problem, i.e., as a function of θc=R. In Fig. 10 we have
shown that this procedure leads to the approximate collapse
of all such jet v2 ratios, for any centrality and collision
system, onto a single curve, for a fixed jet pT . Our simple
expressions, Eqs. (36) and (42), provide an analytical
explanation for this behavior, provided that the substantial
role of the θc fluctuations within a given centrality class
are taken into account. The success of our framework
to describe all presently available jet suppression data for
any jet pT , size R, centrality class, and collision system
grants robustness to these predictions. They represent a
transparent test of the physics of color decoherence which
can be confrontedwith future precise experimental data to be
measured both at RHIC and LHC. This dynamical picture
can be tested by acquiring precise data on jet v2 for as many
cone sizes R as possible, in as many centrality classes as
possible and in as many collision systems as possible (such
as PbPb, AuAu, and OO collisions [124,125]).
In this work we have also revisited the predictions for jet

RAA, comparing our predictions with newly released exper-
imental data and obtaining remarkably good agreement.
Further directions include incorporating a running coupling
between the jet parton and medium constituents, which is
now fixed and is in practice the only free parameter of our
framework (gmed). Another particularly relevant theoretical
improvement will consist in the inclusion of theoretically
well-motivated dynamics for quenching in the nonequili-
brium regime. Quenching in the initial stages can have
sizeable effects on jet v2, as shown inFig. 7 using a simplified
prescription, and in consistency with what was found for
single-inclusive high-pT hadron v2 [110,111]. The strongest
relative effect appears for the most central class, and is
necessary to describe experimental data. Properly accounting
for quenching in the initial stages is also necessary to
understanding the possible existence of energy loss in small
systems, such as proton-lead (pPb) or pp collisions.
The current implementation of medium response effects,

now simply accounted for by a single parameter, Rrec, and

which have been shown to have important effects for
large-R jets, such as R > 0.6, leaves room for improve-
ment. A more precise treatment of the kinematics of the
particles involved in the scattering processes, such as the
recoiling constituents of the QGP, can be achieved by
numerically computing bare quenching factors using QCD
effective kinetic theory simulations [126,127]. Moreover,
including the effects of thermodynamic gradients and flow
on the stimulated radiation and broadening kernels recently
computed in [128–132], so far neglected in most studies in
the literature, will provide a more realistic description of the
coupling between the jet and the dynamically evolving
medium. In particular, the existence of a flowing medium
implies that the thermalized energy and momentum depos-
ited by the jet will flow along with this medium, leading to
different wake patterns depending on the jet inmedium
history [133,134]. Large R jets are also sensitive to the
amount of quenching experienced by the recoiling jet in the
same event due to the long-range correlations induced by
the wake [135], provided that they are close enough in
rapidity [136]. One way to account for these physics will be
to use computationally efficient semianalytical calculations
of the wake profiles [137,138] in order to determine the Rrec
parameter jet by jet.
Furthermore, it will also be very interesting to extend this

framework in order to go beyond inclusive jet observables,
allowing it to becoming differential in jet substructure
properties, or including the possibility of multijet events.
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APPENDIX: FULL SCAN ON THE R
DEPENDENCE OF RAA AND JET v2 WITH
CENTRALITY AT RHIC AND THE LHC

In this section we show a comprehensive set of results for
jet RAA and jet v2 for LHC (Fig. 12) and RHIC (Fig. 13)
collision systems. In the following we comment on the
main aspects of the R and pT dependence of these
observables, which offer complementary information to
that presented in the main text.
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FIG. 12. Jet RAAðR; pTÞ (top) and jet v2ðR; pTÞ (bottom) at LHC for PbPb collisions at
ffiffiffi
s

p ¼ 5.02 ATeV.
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FIG. 13. Jet RAAðR; pTÞ (top) and jet v2ðR; pTÞ (bottom) at RHIC for AuAu collisions at
ffiffiffi
s

p ¼ 0.2 ATeV.
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We first discuss the LHC results shown in Fig. 12. The
results in the top panel indicate that jet RAA for jets with
differentR are much more similar at low pT than at high pT ,
where larger R jets are more suppressed, specially for the
most central classes. This is because of the competition
between phase space and recapture of energy effects. The
size of the resolved phase space grows with jet pT and R.
Even though a largeR jet ismore capable of retaining energy
emitted from its core, the larger amount of energy loss
sources present at highpT trump this effect and the net result
is an increased suppression. In contrast, at low pT the
recapture of the emitted energy plays a more important role,
yielding overall a very mild dependence of suppression on
R. As we move towards more peripheral classes, the size of
the resolved phase space diminishes as the typical value of θc
increases, yielding an increasingly flatter dependencewithR
across a wider jet pT range. We even observe how for the
most peripheral class, in the bottom right panel, large R jets
are somewhat less suppressed than small R ones.
Interestingly, for the case of jet v2 (lower panel of

Fig. 12) we in general find that v2ðpT; R0Þ ≥ v2ðpT; RÞ if
R0 > R, for any centrality class. This is explained in detail
with simple analytical estimates in Sec. IV, and is in
essence related to the interplay between the marked length
dependence of θc and the fact that jet v2 is a length-
differential jet suppression observable. As the typical value
of θc increases with decreasing centrality, we find that jet v2
values tend to be similar among jets with R ≤ θc. This is
specially so towards lower jet pT ≈ 50 GeV, where phase-
space effects are not too large. The important remark to
make is that, in contrast to the jet RAA results, relative

differences in jet v2 between small R and large R jets do in
general remain large over a wide range of jet pT and
centrality classes.
By moving to the RHIC results of Fig. 13 we observe

qualitatively similar trends. Jet RAA, shown in the top
panel, is naturally covering a much narrower jet pT range
due to smaller center of mass energies. The relatively small
size of the resolved phase space implies that large R jets are
slightly less suppressed than small R jets at fairly low
values of jet pT (where the applicability of our framework
should be put to question), while yielding a very mild
dependence towards higher jet pT ≈ 40 GeV. Again, how-
ever, we find that jet v2, shown in the lower panel of
Fig. 13, does present the same ordering discussed above for
the LHC results. To appreciate the interesting decorrelation
between jet v2 and jet RAA behavior with varying R, it is
instructive to note that even though jet RAA can increase
(less quenching) with increasing R, jet v2 will always
increase with increasing R. The fact that the size of the
resolved phase space remains relatively small over the
whole pT range makes the grouping of jets whose R is
smaller than the typical value of θc for a given centrality
class clearer than it was in the case for the LHC results
of Fig. 12.
We conclude by highlighting that the results of this

section imply that the θ�c=R scalings predicted in Sec. IV for
jet v2 ratios are a very transparent manifestation of the
physics of color decoherence in jet suppression, dissimilar
to the case of the jet RAA ratios, where relative differences
among jets with different R are already small due to
competing effects.
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