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We investigate the interplay among the pion’s form factor, transverse momentum dependent distributions
(TMDs), and parton distribution functions (PDFs) extending our light-front quark model (LFQM)
computation based on the Bakamjian-Thomas construction for the two-point function [1,2] to the
three-point and four-point functions. Ensuring the four-momentum conservation at the meson-quark vertex
from the Bakamjian-Thomas construction, the meson mass is taken consistently as the corresponding
invariant meson mass both in the matrix element and the Lorentz factor in our LFQM computation. We
achieve the current-component independence in the physical observables such as the pion form factor and
delve into the derivation of unpolarized TMDs and PDFs associated with the forward matrix element. We
address the challenges posed by twist-4 TMDs and exhibit the fulfillment of the sum rule. Effectively, our
LFQM successfully handles the light-front zero modes and offers insights for broader three-point and four-
point functions and related observables.
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I. INTRODUCTION

Comprehending the internal structure of the pion is a
paramount objective in modern nuclear and particle phys-
ics. Being the lightest meson comprised of quark and
antiquark recognized as a pseudo-Goldstone boson of
quantum chromodynamics (QCD), the pion provides an
unparalleled opportunity to delve into the intricacies of
strong interactions. In particular, several different aspects of
pion structure such as its decay constant, distribution
amplitudes (DAs), form factors, parton distribution func-
tions (PDFs), generalized parton distributions (GPDs), and
transverse momentum dependent distributions (TMDs)
offer complementary insights into how quarks and gluons
are distributed in terms of their charge, momentum, and
spatial positions [3–9].
Alongside the experimental measurement [10–15] of the

pion’s decay constant and elastic form factor, one can also
investigate the partonic structure of the pion by directing
pion beams at nuclear targets using the Drell-Yan process
(DY) [16]. In fact, the DY process not only grants access to

the pion’s twist-2 PDF [17–21] but also furnishes infor-
mation about TMDs, encompassing both leading and
subleading twists [22]. In particular, as elucidated in
[6,7], the exploration of higher-twist TMDs and PDFs
not only offers insights into quark-gluon dynamics but also
serves as a means to assess the internal consistency of
phenomenological models.
The light-front quark model (LFQM) [23–32] based on

the light-front dynamics (LFD) [33] stands as a powerful
theoretical framework for unraveling the intricate details of
aforementioned aspects of hadron structure and related
phenomena. In the LFQM, the pion form factor FπðQ2Þ,
derived from the components of the vector currents Jμ with
μ ¼ ðþ;⊥;−Þ, is linked [6,7] to the twist-2, 3, and 4 TMDs
in the forward matrix elements of Jμ, respectively. While
the form factor and TMDs obtained from Jþð¼ J0 þ J3Þ
and J⊥ ¼ ðJx; JyÞ remain unaffected by the LF zero modes,
it is well known that both FπðQ2Þ and the twist-4 TMD
obtained from the J−ð¼ J0 − J3Þ current is prone to receive
contributions from the zero modes. The presence of zero-
mode contributions from the J− current poses challenges to
the internal consistency of the LFQM in the computation of
the twist-4 pion TMD, as discussed in [6,7]. While the
presence of LF zero mode resulting from the J− current
appears to be a universal feature to be investigated in LFD,
its specific quantitative contribution relies on the choice of
model wave functions characterizing the bound state of
hadrons [34–39]. Therefore, it is of paramount importance
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to correctly extract and incorporate the zero modes specific
to a given LFQM examining its self-consistency.
Over the past several years, we have developed our self-

consistent LFQM that allows us to obtain the physical
observables in a manner independent of the current
components. We noticed that the self-consistency of
LFQM adheres to the Bakamjian-Thomas (BT) construc-
tion principle [40,41]. The interaction Vqq̄ between quark
and antiquark is incorporated into the mass operator via
M ≔ M0 þ Vqq̄ in line with the BT construction. As we
have shown in our LFQM analysis of mass spectra for the
ground, and radially excited states of pseudoscalar and
vector mesons, the detailed results can be found
[27,28,31,32]. In this framework, the meson state is
constructed from noninteracting, on-mass shell quark
and antiquark representations, with a strict adherence to
the four momentum conservation P ¼ pq þ pq̄ at the
meson-quark vertex, where P and pqðq̄Þ represent the
momenta of the meson and quark (antiquark), respectively.
In particular, the conservation of LF energy
(P− ¼ p−

q þ p−
q̄ ) at the meson-quark vertex signifies the

importance of taking the meson mass as the invariant mass
M0 in terms of the quark and antiquark momenta to satisfy
M2

0
þP2⊥
Pþ ¼ ðm

2
qþp2

q⊥
pþ
q

þ m2
q̄þp2

q̄⊥
pþ
q̄

Þ in the computation of the

meson-quark vertex.
In contrast to traditional LFQM approaches [23–25], the

distinguished feature of our self-consistent LFQM lies in
the computation of hadronic matrix elements. For instance,
consider the transition matrix element hP0jq̄ΓμqjPi ¼
PμF , where F represents various physical observables
like decay constants and form factors. Pμ corresponds to
the associated Lorentz factor. In traditional LFQM [23–25],
when calculating F , the BT construction (i.e., setting
M → M0) is only applied to the matrix element
hP0jq̄ΓμqjPi and not to the Lorentz factorPμ. This selective
application ofM → M0 solely to the matrix element results
in the LF zero mode affecting the observable F , particu-
larly when using the “bad” component of the current, such
as the minus current. We have found [1,2,42–46] that it is
necessary to apply the consistent BT construction or
replacement (M → M0) equally to both the matrix element
and the Lorentz factor. This ensures that F becomes
independent of the current components, as we have shown
[1,2,42–46] in the computation of the decay constants of
pseudoscalar and vector mesons. We have also demon-
strated this independence in the context of leading- and
higher-twist DAs [1,2,42–44] and weak transition form
factors [45,46] between two pseudoscalar mesons. This can
be achieved by computing F ¼ hP0j q̄Γμq

Pμ jPi, meaning that
the Lorentz factor should be computed within the integral
of internal momenta. To signify this unique and novel
prescription consistent with the BT construction in the
computation of physical observables, we may coin our
LFQM as “self-consistent” LFQM.

In Refs. [1,2,42–46], we have also developed our self-
consistent LFQM by starting from the manifestly covariant
Bethe-Salpeter (BS) model. Within this derivation, we
identified a distinct matching condition, denoted as the
“type II” link {e.g., see Eq. (49) in [42]}. This type II link
plays a pivotal role in connecting the covariant BS model to
our LFQM, ensuring its adherence to the principles of the
BT construction. Notably, a crucial component of the type
II link involves substituting the physical meson mass M
that originally appeared in the integrand for the matrix
element calculation with the invariant mass M0. This
replacement aligns with the principles of the BT construc-
tion within our LFQM framework.
The primary aim of the present work is to utilize the self-

consistency of the LFQM in deriving the correlated pion’s
form factor, TMDs, and PDFs. Our focus is on recognizing
the intricate relationships between these quantities while
addressing the twist structure present in TMDs and PDFs,
categorized by the components of the current Jμ. Of
particular note is our unique theoretical approach, which
leverages the BT construction to compute the form factor,
twist-4 TMDs, and PDFs derived from the minus compo-
nent of the currents. We think that this approach represents
a novel and original contribution within the framework of
the LFQM.
The paper is organized as follows: In Sec. II, we illustrate

the essential aspect of the LFQM consistent with the BT
construction in the two-point function computation of the
decay constant and distribution amplitude. The current
component independence of the decay constant is exem-
plified in this section along with the computation of the
leading-twist DA both at the initial scale μ20 ¼ 1 GeV2 and
at the scale μ2 ¼ 10 GeV2 through the QCD evolution. In
Sec. III, we extend the computation to the three-point
function describing the general structure of the pseudosca-
lar meson form factor and obtain the current component
independent pion form factor. In Sec. IV, we further extend
our computation to the four-point function and obtain the
three unpolarized TMDs related to the forward matrix
element hPjq̄γμqjPi, where the twist-2, 3, and 4 TMDs are
obtained from μ ¼ þ;⊥, and −, respectively. The twist-2,
3, 4 PDFs obtained from the corresponding TMDs are also
presented in this section. Especially, we resolve the LF zero
mode issue of the twist-4 TMD and PDF in our LFQM. We
also discuss the QCD evolution of a pion PDFs and present
the Mellin moments of the three PDFs compared with other
theoretical predictions. Finally, we summarize our findings
in Sec. V. In Appendix A, we display the results for the
helicity contributions to the pion form factor. In
Appendix B, the type II link between the manifestly
covariant BS model and the self-consistent LFQM is
demonstrated for completeness. The influence of the quark
running mass on the pion form factor by treating mass
evolution solely as a function of the momentum transferQ2

is also examined in Appendix C.
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II. LIGHT-FRONT QUARKMODEL APPLICATION
TO PION DECAY CONSTANT AND

DISTRIBUTION AMPLITUDE

The essential aspect of the LFQM [23–29] for the qq̄
bound state meson with the total momentum P is to saturate
the Fock state expansion by the constituent q and q̄. In this
approach, the Fock state is treated in a noninteracting qq̄
representation, while the interaction is incorporated into the
mass operator via M ≔ M0 þ Vqq̄, ensuring compliance
with the Poincaré group structure, specifically the commu-
tation relations for the two-particle bound state system. The
interactions are then encoded in the LF wave function
ΨJJz

λqλq̄
ðpq;pq̄Þ, which is the eigenfunction of the mass

operator.
The four-momentum P of the meson in terms of the LF

components is defined as P ¼ ðPþ; P−;P⊥Þ, and we take
the metric convention as P2 ¼ PþP− − P2⊥, using the
metric convention a · b ¼ ðaþb− þ a−bþÞ=2 − aT · bT .
The meson state jMðP; J; JzÞi≡ jMi of momentum P
and spin ðJ; JzÞ can be constructed as

jMi ¼
Z

½d3pq�½d3pq̄�2ð2πÞ3δ3ðP − pq − pq̄Þ

×
X
λq;λq̄

ΨJJz
λqλq̄

ðpq;pq̄Þjqðpq; λqÞq̄ðpq̄; λq̄Þi; ð1Þ

where pμ
qðq̄Þ and λqðq̄Þ are the momenta and the helicities of

the on-mass shell ðp2
qðq̄Þ ¼ m2

qðq̄ÞÞ constituent quark (anti-

quark), respectively. Here, ½d3p�≡ dpþd2p⊥=ð16π3Þ. The
LF on-shell momenta pqðq̄Þ of qðq̄Þ are defined in terms of
the LF relative momentum variables ðx;k⊥Þ as

pþ
q ¼ xPþ; pþ

q̄ ¼ ð1 − xÞPþ;

pq⊥ ¼ xP⊥ − k⊥; pq̄⊥ ¼ ð1 − xÞP⊥ þ k⊥; ð2Þ

which satisfies ðpq þ pq̄Þ2 ¼ M2
0. One may define the

longitudinal momentum fraction x in terms of the momen-
tum variable kz as [23,24]

x ¼ E1 þ kz
E1 þ E2

; 1 − x ¼ E2 − kz
E1 þ E2

; ð3Þ

where Ei ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

i þ k⃗2
q

is the kinetic energy of ith-con-

stituent and k⃗ ¼ ðk⊥; kzÞ so that M0 ¼ E1 þ E2. For the
equal quark and antiquark mass case (E1 ¼ E2 ¼ E),M2

0 ¼
4E2 and kz ¼ ðx − 1

2
ÞM0.

In terms of the LF relative momentum variables ðx;k⊥Þ,
the boost-invariant meson mass squared is given by

M2
0 ¼

k2⊥ þm2

x
þ k2⊥ þm2

1 − x
; ð4Þ

where m ¼ mq ¼ mq̄ for the pion case. The LF wave
function of the pion is generically given by

Ψλqλq̄ðx;k⊥Þ ¼ ϕðx;k⊥ÞRλqλq̄ðx;k⊥Þ; ð5Þ

where ϕðx;k⊥Þ is the radial wave function, and
Rλqλq̄ðx;k⊥Þ is the spin-orbit wave function that is obtained
by the interaction independent Melosh transformation [47]
from the ordinary spin-orbit wave function assigned by the
quantum number JPC. The covariant form of Rλqλq̄ for the
pion is given by [23,24]

Rλqλq̄ ¼
ūλqðpqÞγ5vλq̄ðpq̄Þffiffiffi

2
p

M0

; ð6Þ

and it satisfies
P

λ0s R
†R ¼ 1. The explicit matrix form of

Rλqλq̄ for the pion is given by

Rλqλq̄ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pþ
q p

þ
q̄

q
M0

 
pþ
q pL

q̄ −pL
qp

þ
q̄ mðpþ

q þpþ
q̄ Þ

−mðpþ
q þpþ

q̄ Þ pþ
q pR

q̄ −pR
qp

þ
q̄

!
;

ð7Þ

where pRðLÞ ¼ px � ipy. Equation (7) can be expressed in
terms of ðx;k⊥Þ variables defined in Eq. (2).
The interactions between q and q̄ are included in the

mass operator [40,41] to compute the mass eigenvalue of
the meson state. In our LFQM, we treat the radial wave
function ϕðx;k⊥Þ as a trial function for the variational
principle to the QCD-motivated effective Hamiltonian
saturating the Fock state expansion by the constituent q
and q̄. The QCD-motivated Hamiltonian for a description
of the ground and radially excited meson mass spectra is
then given by Hqq̄jΨi ¼ ðM0 þ Vqq̄ÞjΨi ¼ Mqq̄jΨi, where
Mqq̄ and Ψ ¼ Ψλqλq̄ are the mass eigenvalue and eigen-
function of the qq̄ meson, respectively. The detailed mass
spectroscopic analysis for the ground and radially excited
mesons can be found in Refs. [27,28,31,32,48].
For the 1S state radial wave function ϕðx;k⊥Þ, we use

the Gaussian wave function

ϕðx;k⊥Þ ¼
4π3=4

β3=2

ffiffiffiffiffiffiffi
∂kz
∂x

r
expð−k⃗2=2β2Þ; ð8Þ

where β is the variational parameter fixed by the analysis of
meson mass spectra [27,28,48]. For mq ¼ mq̄ ¼ m case,

the Jacobian of the variable transformation fx;k⊥g → k⃗ ¼
ðk⊥; kzÞ is given by ∂kz

∂x ¼ M0

4xð1−xÞ. The normalization of our

Gaussian radial wave function is then given by
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Z
1

0

dx
Z

d2k⊥
16π3

jϕðx;k⊥Þj2 ¼ 1: ð9Þ

In our numerical calculations for the pion observables,
we use the model parameters ðm; βÞ ¼ ð0.22; 0.3659Þ
[GeV] obtained in Ref. [27,28] for the linear confining
potential model. The charge radius and decay constant of
the pion obtained from this linear potential model param-
eters were predicted as rπ ¼ 0.654 fm and fπ ¼ 130 MeV,
which are in excellent agreement with the current PDG
average value [49] of experimental data [10–12], rExpπ ¼
ð0.659� 0.004Þ fm and fExpπ ¼ 131 MeV.
In our recent works [1,2], we established the method to

obtain the pseudoscalar meson decay constant within our
standard LFQM in a process-independent and current
component-independent manner. To provide a comprehen-
sive understanding, we present here the essential aspect
required to attain the Lorentz and rotational invariant result
within our LFQM framework.
The pion decay constant defined by the local axial vector

operator, h0jq̄ð0Þγμγ5qð0ÞjπðPÞi ¼ ifπPμ, can be obtained
as

fπ ¼
ffiffiffiffiffiffi
Nc

p Z
1

0

dx
Z

d2k⊥
16π3

ϕðx;k⊥Þ

×
1

iPμ

X
λ1;λ2

Rλ1λ2

�
v̄λ2ðp2Þffiffiffiffiffi

x2
p γμγ5

uλ1ðp1Þffiffiffiffiffi
x1

p
�
; ð10Þ

where Nc ¼ 3 arises from the color factor implicit in the
wave function. The final result of fπ in the most general
P⊥ ≠ 0 frame is given as follows [2]:

fðμÞπ ¼
ffiffiffiffiffiffiffiffi
2Nc

p Z
1

0

dx
Z

d2k⊥
16π3

ϕðx;k⊥Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þk2⊥

p OðμÞ
A ðx;k⊥Þ; ð11Þ

where the operators OðμÞ
A derived from the currents with

μ ¼ ðþ;⊥Þ yield identical results, specifically

OðþÞ
A ¼ Oð⊥Þ

A ¼ 2m. For the minus component of the
current, when the pion mass M is employed in the

Lorentz factor P− ¼ ðM2 þ P2⊥Þ=Pþ, the result for Oð−Þ
A

is Oð−Þ
A ¼ 2mðM2

0 þ P2⊥Þ=ðM2 þ P2⊥Þ. However, it is note-
worthy that Oð−Þ

A converges to the results obtained for

μ ¼ ðþ;⊥Þ, specifically Oð−Þ
A → 2m, when the substitution

M → M0 is applied [2] for the meson-quark vertex. More
detailed analysis of the decay constant including the
unequal quark and antiquark mass case can also be found
in [2].
In particular, the pion DA ϕπðxÞ is completely indepen-

dent of the current components and is given by

ϕπðx; μ0Þ ¼
ffiffiffiffiffiffiffiffi
2Nc

p
fπ

Z
μ2
0 d2k⊥
16π3

2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k2⊥

p ϕðx;k⊥Þ; ð12Þ

where the normalization is fixed by
R
1
0 dxϕπðx; μ0Þ ¼ 1 at

any scale μ0. The DA provides information about the
probability amplitudes of finding the hadron in a state
characterized by the minimum number of Fock constituents
and small transverse-momentum separation. This is defined
by an ultraviolet (UV) cutoff μ0 ≥ 1 GeV. The dependence
on the scale is then given by the QCD evolution equation
[3] and can be calculated perturbatively. Nevertheless, the
DA at a specific low scale can be determined by incorpo-
rating essential nonperturbative information from the
LFQM. Additionally, the Gaussian wave function in our
LFQM enables the accurate integration up to infinity
without any loss of precision. For the nonperturbative
valence wave function given by Eq. (8), we take μ0 ¼
1 GeV as an optimal scale for our LFQM.
To compare the leading-twist pion DAwith high-energy

experimental data, it is necessary to incorporate radiative
logarithmic corrections through QCD evolution [50,51].
The evolution of the pion DA at large Q is governed by the
Efremov-Radyushkin-Brodsky-Lepage (ERBL) equation.
The solution of the ERBL equation can be expressed
[50–53] in terms of Gegenbauer polynomials

ϕπðx; μÞ ¼ 6xð1 − xÞ
X0∞

n¼0

C3=2
n ð2x − 1ÞanðμÞ; ð13Þ

where C3=2
n is the Gegenbauer polynomials of order 3=2

and the prime notation (′) means the summation over even
values of n only. The matrix elements, anðμÞ, are the
Gegenbauer moments given by

anðμÞ ¼
2ð2nþ 3Þ

3ðnþ 1Þðnþ 2Þ
�
αsðμÞ
αsðμ0Þ

�γ
ð0Þ
n
2β0

×
Z

1

0

dxC3=2
n ð2x − 1Þϕπðx; μ0Þ; ð14Þ

where the strong coupling constant αsðμÞ is given by

αsðμÞ ¼
4π

β0 lnð μ2

Λ2
QCD

Þ
; ð15Þ

and

γð0Þn ¼ −2CF

�
3þ 2

ðnþ 1Þðnþ 2Þ − 4
Xnþ1

k¼1

1

k

�
;

β0 ¼ 11 −
2

3
NF; ð16Þ

with NF being the number of active flavors. We take
here NF ¼ 3. In the chiral limit (i.e., m → 0) within our
LFQM, we obtain ϕchiral

π ðx; μ0Þ ¼ 1. In this case, one getsR
1
0 dxC3=2

n ð2x − 1Þϕchiral
π ðx; μ0Þ ¼ 1.
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In Fig. 1, we show the pion DA at the initial scale
μ20 ¼ 1 GeV2 (solid line), which is evolved to μ2 ¼
10 GeV2 (dashed line). We note that the Jacobi factorffiffiffiffiffi

∂kz
∂x

q
required for the rotational invariance of the radial wave

functionϕðx;k⊥Þ [see Eq. (8)] flattens the shape of theDAat
the midpoint of x while amplifying the DA at the extreme
points of x ¼ 0 and 1. Our results are compared with other
theoretical predictions, including the pion DA data obtained
from the Lattice QCD (LQCD) calculation [54] using large-
momentum effective theory (LaMeT) at the renormalization
scale μ ¼ 2 GeV, the asymptotic result ϕAsy ¼ 6xð1 − xÞ,
and the result of Dyson-Schwinger equations (DSE)
[55–57], denoted as ϕDBðx; ζHÞ ¼ 20.227xð1 − xÞ½1−
2.5088

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞp þ 2.0250xð1 − xÞ�, obtained from the

dynamical-chiral-symmetry breaking-improved (DB) trun-
cations at the scale ζH ¼ 0.30 GeV, respectively. We also
note that the AdS/CFT prediction [58–60], ϕAdS ¼
π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞp

=8, exhibits similar shape to that of the DSE.
Our result at the initial scale μ0 ¼ 1 GeV shows a much

broader shape than the asymptotic form but is close to the
results from DSE and AdS/CFT calculations. The deviation
of our result from the asymptotic form is noticeable even at
the initial scale μ0, and it remains substantial even after
evolution to the scale μ2 ¼ 10 GeV2, as depicted in Fig. 1.
While the results from the LQCD also show a broader
shape than the asymptotic one and are close to ours
obtained at the initial scale μ0, the behaviors at the end

points (x ¼ 0, 1) are significantly different from ours. As
the authors stated in [54], this could be due to missing
higher-power or high-order corrections in LaMETor due to
effects of higher moments ignored in the operator product
expansion and DSE calculations.

III. PION FORM FACTOR

In this section, we first discuss the overarching frame-
work that governs the transition between two pseudoscalar
mesons, namely the transition from a pseudoscalar meson
characterized by momentum P and mass M to another
pseudoscalar meson with momentum P0 and mass M0. In
this transition, the four-momentum transfer q is introduced
and defined as q ¼ P − P0. The general covariant decom-
position of the matrix element for this transition,
J μ ≡ hP0jq̄γμqjPi, is given by

J μ ¼
�
ðPþ P0Þμ − qμ

ðM2 −M02Þ
q2

�
Fðq2Þ

þ qμ
ðM2 −M02Þ

q2
Hðq2Þ; ð17Þ

where the Lorentz structure containing the form factor
Fðq2Þ is manifestly gauge invariant, while the additional
amplitude for M ≠ M0 as in the case of the weak decay is
described by the form factor Hðq2Þ. For the semileptonic
decays between two different pseudoscalar mesons, Fðq2Þ
andHðq2Þ correspond to the weak form factors fþðq2Þ and
f0ðq2Þ related to the exchange of 1− and 0þ, respectively.
The self-consistent treatment of the weak form factors
fþðq2Þ and f0ðq2Þ within the framework of the LFQM,
employing the “type II” link that connects the covariant BS
model to the LFQM, has been elaborated in Refs. [45,46].
In the case of the electromagnetic form factor of a

pseudoscalar meson, the Lorentz structure proportional to
qμ associated with Hðq2Þ in Eq. (17) does not contribute to
J μ due to the invariance of time reversal symmetry, and
only the gauge invariant form factor Fðq2Þ remains
relevant; i.e.,

J μ
em ≡ PμFemðq2Þ

¼
�
ðPþ P0Þμ − qμ

ðM2 −M02Þ
q2

�
Femðq2Þ: ð18Þ

In Eq. (18), it is important to note the presence of the
second term proportional to ðM2 −M02Þ on the right-hand
side, which allows the electromagnetic gauge invariance q ·
J em ¼ 0 even ifM ≠ M0. Of course, this term becomes zero
when applying the physical mass relation, i.e., M2 ¼ M02.
However, as discussed in the introduction, the consistent BT
treatment of the noninteracting qq̄ representation (i.e.,

Mð0Þ → Mð0Þ
0 ) both in the matrix element J μ

em and the
Lorentz structure Pμ ≡ ðPþ P0Þμ − qμðM0

2 −M02
0 Þ=q2 on

FIG. 1. Pion DAs at initial scale μ20 ¼ 1 GeV2 (solid line),
which is evolved to μ2 ¼ 10 GeV2 (dashed line). For compari-
son, we include the results from the Lattice QCD [54] and DSE
[55–57] calculations as well as the asymptotic result.
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the right-hand side of Eq. (18) is crucial in the LFQM
computation based on the principles of the BT construction
to obtain the physical observable Femðq2Þ uniquely inde-
pendent of the current components. The selective application
of the noninteracting qq̄ representation only to the matrix
element J μ

em but not to the Lorentz structure Pμ may lead to
the LF zero mode issue, particularly when dealing with the
minus component (μ ¼ −) of the current.
In our self-consistent LFQM based on the BT construc-

tion where M → M0 and M0 → M0
0, we demonstrate that

the second term proportional to qμ in Eq. (18) is essential. It
serves a dual purpose, enabling us to derive the current-
component independent pion form factor and maintaining
gauge invariance, specifically ensuring q · J em ¼ 0 even
when replacing the physical mass Mð0Þ with the invariant

mass Mð0Þ
0 .

To compute the pion form factor defined in Eq. (18), we
use the Drell-Yan-West (qþ ¼ 0) frame with P⊥ ¼ 0,
where q2 ¼ −q2⊥ ≡ −Q2. In this frame, we have

P ¼
�
Pþ;

M2

Pþ ; 0⊥
�
; P0 ¼

�
Pþ;

M02 þ q2⊥
Pþ ;−q⊥

�
;

q ¼
�
0;
M2 −M02 − q2⊥

Pþ ;q⊥
�
: ð19Þ

For the Pðq1q̄Þ → P0ðq2q̄Þ transition with the momentum
transfer q ¼ P − P0, the relevant on-mass shell quark
momentum variables in the qþ ¼ 0 frame are given by

pþ
1 ¼ xPþ; pþ

q̄ ¼ ð1 − xÞPþ;

p1⊥ ¼ xP⊥ − k⊥; pq̄⊥ ¼ ð1 − xÞP⊥ þ k⊥;
pþ
2 ¼ xPþ; p0þ

q̄ ¼ ð1 − xÞPþ;

p2⊥ ¼ xP0⊥ − k0⊥; p0
q̄⊥ ¼ ð1 − xÞP0⊥ þ k0⊥: ð20Þ

Since the spectator quark (q̄) requires that pþ
q̄ ¼ p0þ

q̄ and
pq̄⊥ ¼ p0

q̄⊥, one obtains k0⊥ ¼ k⊥ þ ð1 − xÞq⊥.
The matrix element J μ

em ¼ hπðP0Þjq̄γμqjπðPÞi in the
one-loop contribution within the framework of the LFQM
based on the noninteracting qq̄ representation consistent

with the BT construction is then obtained by the con-
volution of the initial and final state LF wave functions as
follows:

J μ
em ¼

Z
1

0

dpþ
1

Z
d2k⊥
16π3

ϕ0ðx;k0⊥Þϕðx;k⊥Þ
X
λ0s

hμ
λ1 λ̄→λ2 λ̄

;

¼
Z

1

0

dpþ
1

Z
d2k⊥
16π3

ϕ0ðx;k0⊥Þϕðx;k⊥Þ

× ½hμð↑→↑Þþð↓→↓Þ þ hμð↑→↓Þþð↓→↑Þ�; ð21Þ

where

hμ
λ1 λ̄→λ2 λ̄

≡R†
λ2 λ̄

�
ūλ2ðp2Þffiffiffiffiffiffi

pþ
2

p γμ
uλ1ðp1Þffiffiffiffiffiffi

pþ
1

p
�
Rλ1 λ̄

ð22Þ

is the term of spin trace, and hμð↑→↑Þþð↓→↓Þ ≡
P

λ̄ðhμ↑λ̄→↑λ̄
þ

hμ
↓λ̄→↓λ̄

Þ and hμð↑→↓Þþð↓→↑Þ ≡
P

λ̄ðhμ↑λ̄→↓λ̄
þ hμ

↓λ̄→↑λ̄
Þ are the

helicity nonflip and the helicity flip contributions,
respectively.
Now, applying the same BT construction to the Lorentz

factor Pμ in Eq. (18), we obtain the pion form factor FðμÞ
π

for any component (μ ¼ þ;−;⊥) of the current as

FðμÞ
π ðQ2Þ ¼

Z
1

0

dpþ
1

Z
d2k⊥
16π3

ϕ0ðx;k0⊥Þϕðx;k⊥Þ

×
½hμð↑→↑Þþð↓→↓Þ þ hμð↑→↓Þþð↓→↑Þ�

Pμ : ð23Þ

It is important to note that all meson mass terms, denoted as

Mð0Þ, appearing in Pμ are substituted with Mð0Þ
0 , where

M0
0 ¼ M0ðk⊥ → k0⊥Þ represents the invariant mass of the

final state pion.
The helicity nonflip hμð↑→↑Þþð↓→↓Þ and the helicity flip

hμð↑→↓Þþð↓→↑Þ contributions from the spin trace term

together with the Lorentz factor Pμ obtained from each
component of the current J μ

em are summarized in Table I.
We note that the μ ¼ þ and ⊥ components of the current
J μ

em receive only the helicity nonflip contributions. On the
other hand, the minus (μ ¼ −) component of the current

TABLE I. Helicity nonflip hμð↑→↑Þþð↓→↓Þ ≡
P

λ̄ðhμ↑λ̄→↑λ̄
þ hμ

↓λ̄→↓λ̄
Þ and the helicity flip hμð↑→↓Þþð↓→↑Þ ≡P

λ̄ðhμ↑λ̄→↓λ̄
þ hμ

↓λ̄→↑λ̄
Þ contributions from the spin trace term and the Lorentz factor Pμ obtained from each

component of the currents J μ
em.

Current components hμð↑→↑Þþð↓→↓Þ hμð↑→↓Þþð↓→↑Þ Pμ

J þ
em 2ðm2þk⊥ ·k0⊥Þffiffiffiffiffiffiffiffiffiffiffi

m2þk2⊥
p ffiffiffiffiffiffiffiffiffiffiffiffi

m2þk02⊥
p 0 2Pþ

J ⊥
em − ðm2þk⊥·k0⊥Þðq⊥þ2k⊥Þ

xPþ ffiffiffiffiffiffiffiffiffiffiffi
m2þk2⊥

p ffiffiffiffiffiffiffiffiffiffiffiffi
m2þk02⊥

p 0 −q⊥ð1 − M2
0
−M02

0

q2⊥
Þ

J −
em 2m2ð1−xÞq2⊥

x2ðPþÞ2
ffiffiffiffiffiffiffiffiffiffiffi
m2þk2⊥

p ffiffiffiffiffiffiffiffiffiffiffiffi
m2þk02⊥

p 2ðk⊥·k0⊥þm2Þðk2⊥þk⊥·q⊥þm2Þþð1−xÞðk⊥×q⊥Þ2
x2ðPþÞ2

ffiffiffiffiffiffiffiffiffiffiffi
m2þk2⊥

p ffiffiffiffiffiffiffiffiffiffiffiffi
m2þk02⊥

p 2M02
0
q2⊥þq4⊥þðM2

0
−M02

0
Þ2

q2⊥Pþ
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receives both the helicity nonflip and helicity flip contri-
butions. Detailed derivation of helicity contributions for
each current component is presented in the Appendix A.
From Table I, we now obtain the pion form factor for

each component of the current J μ
em as follows:

FðμÞ
π ðQ2Þ¼

Z
1

0

dx
Z

d2k⊥
16π3

ϕðx;k⊥Þϕ0ðx;k0⊥Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þk2⊥

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þk02⊥

p OðμÞ
LFQM:

ð24Þ

Here, the operators OðμÞ
LFQM are obtained from the expres-

sion
hμð↑→↑Þþð↓→↓Þþhμð↑→↓Þþð↓→↑Þ

Pμ in Eq. (23). This process involves
isolating the common denominator factor, K≡ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k2⊥

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k02⊥

p
, and incorporating it into the wave

functions. Consequently, we define OðμÞ
LFQM as follows:

OðμÞ
LFQM ¼ KPþ ½hμð↑→↑Þþð↓→↓Þ þ hμð↑→↓Þþð↓→↑Þ�

Pμ

≡HðμÞ
ð↑→↑Þþð↓→↓Þ þHμ

ð↑→↓Þþð↓→↑Þ; ð25Þ

where Pþ comes from the transformation of dpþ
1 ¼ Pþdx

in Eq. (23).
In Table II, we provide a summary of the results for

OðμÞ
LFQM, along with the contributions from the helicity

nonflip and flip processes, denoted as HðμÞ
ð↑→↑Þþð↓→↓Þ and

HðμÞ
ð↑→↓Þþð↓→↑Þ, respectively. These results are presented for

each component ðμ ¼ �;⊥Þ of the current.
As evident from Table II, the pion form factor FðþÞ

π

obtained from the plus current exhibits precisely the same

analytical form as the form factor Fð⊥Þ
π derived from the

perpendicular current. Furthermore, both form factors
exclusively receive contributions related to helicity nonflip
processes and are not affected by zero-mode contributions
as discussed in Ref. [43]. In contrast, the form factor
obtained from the minus component of the current encom-
passes not only the helicity nonflip but also the helicity flip
contributions. Taking into account both the helicity nonflip

and flip contributions for Fð−Þ
π , we have found that all three

form factors yield numerically identical results, indicating

FðþÞ
π ¼ Fð⊥Þ

π ¼ Fð−Þ
π . It is remarkable that we achieved

obtaining the physical observable Femðq2Þ as independent
of the current components.
In Appendix B, we present a detailed derivation of

Eq. (24) starting from the covariant BS model and applying
the “type II” link, as exemplified in Eq. (49) of [42], which
establishes a connection between the covariant BS model
and the LFQM. As explained in Appendix B, it is note-
worthy that in the J ⊥

em case, the same form factor Fð⊥Þ
π is

obtained even when using the traditional Lorentz factor
ðPþ P0Þμ without incorporating the term proportional to
qμ. This suggests that using ðPþ P0Þμ yields the correct
pion form factor when utilizing the μ ¼ ⊥ components of
the current as in the case of utilizing the μ ¼ þ component
of the current. This observation implies that the form factor
derived from the ðJ þ

em;J ⊥
emÞ currents is devoid of LF zero

modes. On the contrary, the pion form factor Fð−Þ
π derived

from the J −
em current using the traditional Lorentz factor

ðPþ P0Þμ yields notably different results, deviating from

the exact solution FðþÞ
π ¼ Fð⊥Þ

π . This disparity is typically

attributed to the LF zero-mode contribution to Fð−Þ
π .

Consequently, our method for obtaining the exact result

for Fð−Þ
π with the J −

em current, as presented in Table II and
utilizing the Lorentz factor Pμ consistently with the BT
construction for the valence picture of LFQM, indicates an
effective inclusion of the LF zero mode associated with the
nonvalence contribution from higher Fock states.
In Appendix C, we also present our numerical results for

the pion form factor and investigate the influence of the
quark running mass, treating it exclusively as a function of
the momentum transfer Q2.

IV. TMD AND PDF OF PION

In Refs. [6,7], the authors established the formalism to
describe unpolarized higher-twist TMDs within the LFQM
framework of constituent quarks, on par with the other
interacting models such as the spectator [61], chiral quark-
soliton [62], and bag [63] models. Focusing on unpolarized
targets within the framework of quark models, the authors
presented the four TMDs as the complete set of unpolarized
T-even TMDs. They also derived the Lorentz-invariance
relation among unpolarized TMDs, which is valid in the
framework of quark models without explicit gauge degrees
of freedom. Among those four TMDs, which are expressed
in terms of hadronic matrix elements of bilinear quark-field

TABLE II. The operators OðμÞ
LFQM and their helicity contributions to the pion form factor in the standard LFQM.

FðμÞ
π OðμÞ

LFQM HðμÞ
ð↑→↑Þþð↓→↓Þ HðμÞ

ð↑→↓Þþð↓→↑Þ

FðþÞ
π k⊥ · k0⊥ þm2 k⊥ · k0⊥ þm2 0

Fð⊥Þ
π k⊥ · k0⊥ þm2 k⊥ · k0⊥ þm2 0

Fð−Þ
π

2ð1−xÞq2⊥M2
0
ðk⊥ ·k0⊥þm2þq⊥·k0⊥Þ

x½2M02
0
q2⊥þq4⊥þðM2

0
−M02

0
Þ2�

2q2⊥fðk⊥ ·k0⊥þm2Þðk2⊥þk⊥·q⊥þm2Þþð1−xÞðk⊥×q⊥Þ2g
x2½2M02

0
q2⊥þq4⊥þðM2

0
−M02

0
Þ2�

2q2⊥fð1−xÞm2q2⊥g
x2½2M02

0
q2⊥þq4⊥þðM2

0
−M02

0
Þ2�
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correlators of the type hhjψ̄ð0ÞΓψðzÞjhi, three of them are
essentially related to the forward matrix elements of the
electromagnetic form factor, i.e. hhjψ̄ð0Þγμψð0Þjhi with
μ ¼ þ;−;⊥, and the remaining one is related to the matrix
element of the unit operator Γ ¼ 1.
The LFQM utilized in [6,7] shares similarities with ours

in that they both employ the constituent-quark picture in
calculating matrix elements. However, a notable difference
of ours stems from the BT construction consistently applied
to both the meson-quark vertex and the Lorentz factor
associated with the physical observable. Apparently, the
authors of Refs. [6,7] noticed the difficulties encountered in
computing the twist-4 quark TMD and PDF, denoted as
fq4ðx;k⊥Þ and fq4ðxÞ, respectively. In particular, they
attributed the reason why the sum rule for fq4ðxÞ, i.e.,
2
R
dxfq4ðxÞ ¼ 1, was not satisfied to the issue of the

nonvanishing LF zero mode. In this section, we provide
the analysis of the three TMDs and PDFs related to the
forward matrix elements hhjψ̄ð0Þγμψð0Þjhi, resolving the
difficulties noticed in Refs. [6,7]. We discuss our effective
resolution of the LF zero mode issue associated with the
twist-4 TMD and PDF.

A. TMD

TMDs are typically defined through quark correlators. In
constituent models that lack explicit gluon degrees of
freedom, the Wilson lines in QCD simplify to unit matrices
in color space. Consequently, T-odd TMDs are not present,
and only T-even TMDs are observable. The characteriza-
tion of a spin-zero hadron, such as the pion, is achieved
using four specific TMDs, as discussed in Refs. [6,7].
Three of four TMDs for pion are related to the forward
matrix element hPjq̄γμqjPi of the vector currents, which are
defined as [6,7]

Z ½dz�
2ð2πÞ3e

ip·zhPjψ̄ð0ÞγþψðzÞjPijzþ¼0¼fq1ðx;pTÞ;
Z ½dz�

2ð2πÞ3e
ip·zhPjψ̄ð0ÞγjTψðzÞjPijzþ¼0¼

pj
T

Pþf
q
3ðx;pTÞ;

Z ½dz�
2ð2πÞ3e

ip·zhPjψ̄ð0Þγ−ψðzÞjPijzþ¼0¼
�
mπ

Pþ

�
2

fq4ðx;pTÞ;

ð26Þ

where ½dz� ¼ dz−d2zT , jPi denotes a pion state with four-
momentum P, q represents the flavor index for the quark
and antiquark contributions, and mπ stands for the pion
mass. Additionally, fq1ðx; pTÞ, fq3ðx; pTÞ, and fq4ðx; pTÞ
with pT ¼ jpT j correspond to the unpolarized TMDs of
twist-2, twist-3, and twist-4, respectively. While twist-4
TMDs may be regarded as academic interest, it is worth
noting that fq4ðx; pTÞ becomes intertwined with other twist-
4 quark-gluon correlators, such as those associated with

power corrections to the deep inelastic scattering structure
functions, as discussed in [6,64–70].
We should also note that the authors in [6,7] used the

metric convention a · b ¼ aþb− þ a−bþ − aT · bT rather
than our metric convention a · b ¼ ðaþb− þ a−bþÞ=
2 − aT · bT , in defining TMDs given by Eq. (26). In this
case,m2

π defined in Eq. (26) implies 2PþP− ¼ m2
π according

to [6,7]. Thus, in extracting the TMDs and PDFs from
Eq. (26), we shall use the same metric convention as in [6,7].
Integrating out the left-hand side of Eq. (26), one obtains

Z ½dz�
2ð2πÞ3 e

ip·zhPjψ̄ð0ÞγμψðzÞjPi

¼
Z

dz−

4π
eixP

þz−hPjψ̄ð0Þγμψðz−ÞjPi

¼
Z

dz−

4π
eiðxPþ−pþÞz−hPjψ̄ð0Þγμψð0ÞjPi

¼ δðx − pþ=PþÞ
2Pþ hPjψ̄ð0Þγμψð0ÞjPi; ð27Þ

where ψðzÞjzþ¼zT¼0 ≡ ψðz−Þ.
Using the relation in Eq. (27), Eq. (26) can be rewritten

as follows:

2Pþ
Z

dxfq1ðxÞ ¼ hPjψ̄ð0Þγþψð0ÞjPi;

2pT

Z
dxfq3ðxÞ ¼ hPjψ̄ð0Þγ⊥ψð0ÞjPi;

4P−
Z

dxfq4ðxÞ ¼ hPjψ̄ð0Þγ−ψð0ÞjPi; ð28Þ

where the functions fðxÞ ¼ ffq1ðxÞ; fq3ðxÞ; fq4ðxÞg re-
present the PDFs obtained through the integration of the
corresponding TMDs fðx; pTÞ ¼ ffq1ðx; pTÞ; fq3ðx; pTÞ;
fq4ðx; pTÞg over pT, and this integration is expressed as
follows:

fðxÞ ¼
Z

d2pTfðx; pTÞ: ð29Þ

As discussed in [6,7], it is important to note that, due to the
explicit pT factor in Eq. (26), there is no direct PDF
counterpart to the twist-3 TMD, fq3ðx; pTÞ. However, it is
possible to formally define fq3ðxÞ as presented in Eq. (29).
The authors in [6,7] utilized the forward matrix elements,

expressed as hPjJqμjPi ¼ 2PμFqð0Þ, with Fqð0Þ ¼ 1. In
other words, they employed the traditional Lorentz factor
P̃μ ≡ limQ2→0ðPþ P0Þμ ¼ 2Pμ at the Q2 → 0 limit and
derived the sum rules for fq1ðxÞ and fq4ðxÞ from Eq. (28) as

2

Z
dxfq4ðxÞ ¼

Z
dxfq1ðxÞ ¼ 1; ð30Þ
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along with establishing the relation between twist-2 and
twist-3 TMDs as

xfq3ðx; pTÞ ¼ fq1ðx; pTÞ: ð31Þ

Especially, the sum rules given by Eq. (30) imply that

Z
dxfq1ðxÞ ¼

hPjJþjPi
P̃þ ¼ 1;

2

Z
dxfq4ðxÞ ¼

hPjJ−jPi
P̃− ¼ 1: ð32Þ

With the traditional Lorentz factor P̃μ employed in the
forward matrix element, while the zeroth moment for fq1ðxÞ
remains correct, the zeroth moment for fq4ðxÞ fails to satisfy
Eq. (32) due to the involvement of the LF zero mode arising
from the minus component of the current. The similar
complication encountered in the form factor calculation
was discussed in Sec. III.
We note that the authors in [7] indeed computed the

twist-4 PDF fq4ðxÞ using essentially the same LFQM with
the model parameters, ðm; βÞ ¼ ð0.25; 0.3194Þ GeV, but
with the physical pion mass in P−. Figure 2 shows fq4ðxÞ
obtained from the method used in [7], where we plot with
two parameter sets, ðm; βÞ ¼ ð0.25; 0.3194Þ GeV and
(0.22, 0.3659) GeV, respectively. Numerically, we obtain

Z
dxfq4ðxÞ ¼ 48.58 for m ¼ 0.25 GeV;

¼ 66.45 for m ¼ 0.22 GeV; ð33Þ

which are notably different from the expected value of 1=2.
The authors of [6,7] attributed this discrepancy to inad-
equate estimation of the zero-mode contribution to the J−

current in the computation of fq4ðxÞ.
In our LFQM, the matrix element hPjψ̄ð0Þγμψð0ÞjPi≡

hPjJμjPi can be obtained from the forward limit (Q2 → 0)
of Eq. (21), i.e., limQ2→0hP0jJμjPi as follows:

hPjJμjPi ¼ lim
Q2→0

Z
dpþ

1

Z
d2k⊥
16π3

ϕ0ðx;k0⊥Þϕðx;k⊥Þ

× ½hμð↑→↑Þþð↓→↓Þ þ hμð↑→↓Þþð↓→↑Þ�: ð34Þ

For the twist-2 TMD obtained from the Jþ current,
one can easily find that hþð↑→↑Þþð↓→↓ÞðQ2 ¼ 0Þ ¼ 2 and

hþð↑→↓Þþð↓→↑Þ ¼ 0 from Table I and thus obtain

hPjJþjPi ¼ 2Pþ
Z

dx
Z

d2k⊥
16π3

jϕðx;k⊥Þj2: ð35Þ

Comparing this with Eq. (28), one can readily determine
fq1ðx;k⊥Þ as follows:

fq1ðx;k⊥Þ ¼
1

16π3
jϕðx;k⊥Þj2; ð36Þ

where the twist-2 TMD and PDF satisfy the sum rule given
by Eq. (30)

Z
dx
Z

d2k⊥fq1ðx;k⊥Þ ¼
Z

dxfq1ðxÞ ¼ 1: ð37Þ

Likewise, by using Eq. (34) and the results,
h⊥ð↑→↑Þþð↓→↓ÞðQ2 ¼ 0Þ ¼ − 2k⊥

xPþ and h⊥ð↑→↓Þþð↓→↑Þ ¼ 0 from

Table I, one can also find

hPjJ⊥jPi ¼
Z

dx
Z

d2k⊥
16π3

jϕðx;k⊥Þj2
�
−
2k⊥
x

�
: ð38Þ

Comparing this with Eq. (28) and the formal definition of
the twist-3 TMD given by Eq. (29), the twist-3 TMD in the
LFQM can be extracted as

2k⊥fq3ðx;k⊥Þ ¼
1

16π3
jϕðx;k⊥Þj2

�
−
2k⊥
x

�
; ð39Þ

that is, we obtain the relation

xfq3ðx;k⊥Þ ¼ −fq1ðx;k⊥Þ: ð40Þ

0 0.2 0.4 0.6 0.8 1
x

0

100

200

300

400

fq 4
(x

)

m = 250 MeV
m = 220 MeV

Physical pion mass used in P
-

FIG. 2. The twist-4 pion PDF, obtained using the methodology
from [7], while accounting the physical pion mass in P−.
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While our result in Eq. (40) aligns with the relation
provided by Eq. (31), there is a discrepancy in the overall
sign. Specifically, following the definition of the twist-3
TMD in Eq. (26), we find that fq3ðx;k⊥Þ is negative
(fq3ðx;k⊥Þ ≤ 0), unlike the case of fq1ðx;k⊥Þ, which is
positive (fq1ðx;k⊥Þ ≥ 0). Therefore, to ensure the twist-3
TMD and PDF are positive, we need to adjust the overall
sign in the definition of Eq. (26). However, for the sake of
the magnitude comparison modulo overall sign in our
numerical calculation, we present our results for fq3ðx;k⊥Þ
and fq3ðxÞ as positive quantities.
Finally, to correctly account for the LF zero-mode

contribution to the twist-4 TMD and PDF obtained from
the J− current and to ensure adherence to the sum rule for
fq4ðxÞ within the LFQM, we find that one should take the
Lorentz factor as Pμ ¼ ðPþ P0Þμ − qμ M2−M02

q2 not as the

conventional P̃μ ¼ ðPþ P0Þμ and compute the normaliza-
tion of the forward matrix element as previously discussed
in Sec. III:

1 ¼ FðQ2 ¼ 0Þ ¼ lim
Q2→0

hP0j J
μ

Pμ jPi: ð41Þ

This treatment achieves the current-component indepen-
dent normalization of the pion form factor at Q2 ¼ 0 and
necessitates consequently modifying the relation for fq4ðxÞ
to satisfy the sum rule 2

R
dxfq4ðxÞ ¼ 1 from Eq. (32) to the

modified relation given by

Z
dxfð−ÞðxÞ ¼ lim

Q2→0
hP0j J

−

P− jPi ¼ 1; ð42Þ

where fð−Þ ¼ 2fq4ðxÞ can be straightforwardly obtained
from Eq. (23) as

fð−ÞðxÞ ¼
Z

d2k⊥fð−Þðx;k2⊥Þ

¼ lim
Q2→0

Z
d2k⊥
16π3

ϕ0ðx;k0⊥Þϕðx;k⊥Þ

×
Pþ½h−ð↑→↑Þþð↓→↓Þ þ h−ð↑→↓Þþð↓→↑Þ�

P− : ð43Þ

Here, the unpolarized twist-4 TMD is defined as
2fq4ðx;k2⊥Þ ¼ fð−Þðx;k2⊥Þ. We note in Eq. (43) that the
meson masses MðM0Þ should be taken as the invariant
masses M0ðM0

0Þ in computing P−. This approach effec-
tively resolves the LF zero mode issue of fq4ðxÞ satisfying
the sum rule given by Eq. (30) correctly.
In Fig. 3, we show the unpolarized TMDs for pion up to

twist-4, i.e., fqi ðx;k⊥Þ (top panel) and xfqi ðx;k⊥Þ (i ¼ 1, 3,
4) (middle panel) (in units of GeV−2), as a function of x and
k2⊥ (in units of GeV2), respectively. We also show the
corresponding PDFs (bottom panel), fqi ðxÞ (solid lines),

and xfqi ðxÞ (dashed lines) at the scale μ20 ¼ 1 GeV2.1 For
the twist-2 TMD fq1ðx;k⊥Þ, the distribution of a quark with
a longitudinal momentum fraction x is identical to the
distribution of an antiquark with a longitudinal momentum
fraction 1 − x; i.e., fq1ðx;k2⊥Þ ¼ fq̄1ð1 − x;k2⊥Þ. Moreover,
we have fq1ðx;k2⊥Þ ¼ fq̄1ðx;k2⊥Þ, resulting in a momentum
distribution that is symmetric with respect to x ¼ 1=2. On
the other hand, for the higher twist TMDs, the distributions
fq3ðx;k2⊥Þ and fq4ðx;k2⊥Þ of a quark are peaked at the very
small x value and show the asymmetric behavior with
respect to x ¼ 1=2. It is also important to note that while
the twist-2 and twist-3 TMDs, fq1ðx;k⊥Þ and fq3ðx;k⊥Þ,
remain unaffected, the twist-4 TMD fq4ðx;k⊥Þ is signifi-
cantly affected by incorporating effectively the LF zero
mode contribution in addition to the valence contribution
within the valence quark and antiquark picture of our
LFQM. The twist-2 and twist-4 PDFs of the pion, com-
puted at the scale μ20 ¼ 1 GeV2, adhere to the sum rule as
defined in Eq. (30), and we obtain the first moments of
fq1ðxÞ and fq4ðxÞ asZ

1

0

dx xfq1ðxÞ ¼ 0.5; 2

Z
1

0

dx xfq4ðxÞ ¼ 0.29: ð44Þ

Additionally, the twist-3 PDF also fulfills the following
condition:

Z
1

0

dx xfq3ðxÞ ¼
Z

dxfq1ðxÞ ¼ 1: ð45Þ

Within our LFQM, there is also the capability to assess
the inverse moments of PDFs. This concept has previously
been explored in the context of a contemporary reinter-
pretation of the Weisberger sum rule [71], as discussed in
[72]. For the inverse moments of the pion PDFs defined by

hx−1iqi ¼
Z

1

0

dx
fqi ðxÞ
x

; ð46Þ

we obtain hx−1iq1 ¼ 3.11, hx−1iq3 ¼ 20.60, and hx−1iq4 ¼
3.40, respectively. Our result for hx−1iq1 should be com-
pared with other model predictions such as 2.82 obtained
from [7] and 2.79 (2.62) obtained from other LFQM (LF
holographic model) analysis [73]. It is worth mentioning
that the inverse moment of fq1ðxÞ corresponds to the zeroth
moment of fq3ðxÞ. In other words, hx−1iq1 ¼ hx0iq3 , which
can be attributed to the relationship: xfq3ðxÞ ¼ fq1ðxÞ. Given

1Our parametric fits for fqi ðxÞ (i ¼ 1, 4) at μ0 ¼ 1 GeV are
obtained as follows: (1) fq1fitðx; μ0Þ ¼ NπXα½1þ aXβ þ e−bX

2 �,
where X ¼ xð1 − xÞ and Nπ ¼ 83.691, α ¼ 1.878, a ¼ −1.549,
β ¼ 0.476, and b ¼ 112.350. (2) fq4fitðx; μ0Þ ¼ Nπxαð1−
xÞβð1 − γ

ffiffiffi
x

p þ δxÞ, where Nπ ¼ 10.118, α ¼ 0.455, β ¼ 1.806,
γ ¼ 2.241, and δ ¼ 1.558.
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that the 1=x moments are often not well defined in QCD
and various other models, the LFQM presents an avenue to
explore sum rules associated with the inverse moments.

B. QCD evolution of PDF

The valence quark distributions at higher scales of μ2 can
be established using the initial input by undergoing QCD
evolution. We utilize the NNLODGLAP equations [74–76]
within the framework of QCD to evolve our PDFs from
their original model scales to the higher μ2 scales required
for experimental comparisons. The scale evolution enables

quarks to emit and absorb gluons, with the emitted gluons
leading to the generation of quark-antiquark pairs and
additional gluons. This process at higher scales unveils the
gluon and sea quark constituents within the constituent
quarks, revealing their QCD characteristics.
For the QCD evolutions of PDFs, we use the higher order

perturbative parton evolution toolkit (HOPPET) to numeri-
cally solve the NNLO DGLAP equation [77], and the
strong coupling constant αsðμ0Þ at the initial scale is fixed
following the procedure [78–81]; i.e., the initial scale μ0
needs to be chosen in such a way that, after evolving from
μ0 to μ ¼ 2 GeV, the valence quarks at μ2 ¼ 4 GeV2 carry

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
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FIG. 3. The unpolarized TMDs for pion, fqi ðx;k⊥Þ (top panel) and xfqi ðx;k⊥Þ (i ¼ 1, 3, 4) (middle panel), as a function of x and k2⊥,
and the corresponding PDFs, fqi ðxÞ and xfqi ðxÞ (bottom panel) at the scale μ20 ¼ 1 GeV2.
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about 47% of the total momentum in the pion [19,82].
Applying this constraint to the twist-2 PDF, we obtain at
μ2 ¼ 4 GeV2

hxival ≡ 2hxiq1 ¼ 2

Z
1

0

dx xfq1ðxÞ ¼ 0.472; ð47Þ

with the following parameter sets in HOPPET:

μ0;NNLO ¼ 1 GeV;
αNNLOðμ20Þ

2π
¼ 0.302: ð48Þ

We subsequently apply QCD evolutions not only to the
twist-2 PDF but also to the twist-3 and twist-4 PDFs. We

summarize in Tables III–VI the first fewMellin moments of
the pion PDFs, evaluated at both scales μ2 ¼ ð4; 27Þ GeV2,
and compared with other theoretical predictions.
Figure 4 shows the NNLO DGLAP evolutions of xfqi ðxÞ

(i ¼ 1, 3, 4) from the initial scale μ20 ¼ 1 GeV2 evolved to
μ2 ¼ 4 GeV2 and μ2 ¼ 27 GeV2. The experimental data
are taken from Refs. [88,89].

V. SUMMARY

We have conducted an investigation of the interrelated
pion’s form factor, TMDs, and PDFs within the framework
of the LFQM. Our self-consistent LFQM adheres to the BT
construction, where the interaction Vqq̄ between the quark
and antiquark is integrated into the mass operator through
M ≔ M0 þ Vqq̄, and the meson state is constructed in
terms of constituent quark and antiquark representations

TABLE III. Mellin moments of the pion valence PDF, fq1ðxÞ,
evaluated at the scale μ2 ¼ 4 GeV2.

hxiut2 hx2iut2 hx3iut2 hx4iut2
This work 0.236 0.101 0.055 0.033
[83] 0.2541(26) 0.094(12) 0.057(4) 0.015(12)
[84] 0.2075(106) 0.163(33) � � � � � �
[56] 0.24(2) 0.098(10) 0.049(7) � � �
[57] 0.24(2) 0.094(13) 0.047(8) � � �

TABLE IV. Mellin moments of the pion valence PDF, fq1ðxÞ,
evaluated at the scale μ2 ¼ 27 GeV2.

hxiut2 hx2iut2 hx3iut2 hx4iut2
This work 0.182 0.069 0.034 0.019
[85] 0.18(3) 0.064(10) 0.030(5) � � �
[57] 0.20(2) 0.074(10) 0.035(6) � � �
[86] 0.184 0.068 0.033 0.018
[21] 0.217(11) 0.087(5) 0.045(3) � � �

TABLE V. Mellin moments of the twist-3 pion PDF, fq3ðxÞ,
evaluated at the scales μ2 ¼ 4 GeV2 and μ2 ¼ 27 GeV2, respec-
tively.

hxiut3 hx2iut3 hx3iut3 hx4iut3
μ2 ¼ 4 GeV2 0.471 0.164 0.079 0.045
μ2 ¼ 27 GeV2 0.365 0.111 0.049 0.026

TABLE VI. Mellin moments of the twist-4 pion PDF, fq4ðxÞ,
evaluated at the scales μ2 ¼ 4 GeV2 and μ2 ¼ 27 GeV2, respec-
tively.

hxiut4 hx2iut4 hx3iut4 hx4iut4
μ2 ¼ 4 GeV2 0.069 0.021 0.009 0.005
μ2 ¼ 27 GeV2 0.053 0.014 0.006 0.003
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FIG. 4. LFQM predictions for the valence PDFs of the pion for a single quark evolved to the scales of μ2 ¼ ð4; 27Þ GeV2 from from
the initial scale μ20 ¼ 1 GeV2. Our results for xfq1ðxÞ are compared with the FNAL-E615 experimental data [88] and the modified
FNAL-E615 data [89].
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maintaining the four-momentum conservation with M →
M0 at the meson-quark vertex.
The distinguished feature of our self-consistent LFQM

for the analysis lies in the computation of hadronic matrix
elements. For the gauge invariant pion form factor, defined
by the local matrix element hP0jJμjPi ¼ PμFπðQ2Þ, where
Pμ ¼ ðPþ P0Þμ − qμðM2 −M02Þ=q2, we obtain the current
component independent pion form factor by takingMð0Þ →
Mð0Þ

0 consistently both in the matrix element and the Lorentz
factor Pμ and computing FπðQ2Þ ¼ hP0j JμPμ jPi.
Subsequently, we obtain the three unpolarized TMDs

and PDFs related to the forward matrix element
hPjq̄γμqjPi, where the twist-2, 3, and 4 TMDs are obtained
from μ ¼ þ;⊥, and −, respectively. Especially, we resolve
the LF zero mode issue of the twist-4 TMD and PDF raised
by the authors in [6,7] and show that the twist-4 PDF fq4ðxÞ
satisfies the sum rule, 2

R
dxfq4ðxÞ ¼ 1, within our LFQM.

In conclusion, our self-consistent LFQM has been
successfully applied to various amplitudes, including
two-point functions such as decay constants and DAs
[1,2,42–44], three-point functions such as semileptonic
and rare decays between two pseudoscalar mesons
[45,46], and four-point functions such as TMDs and
PDFs as presented in this work. Through these studies,
we have demonstrated that our LFQM is capable to
accurately account for the LF zero modes that arise when
dealing with the challenging J− current. It is noteworthy
that the presence of LF zero modes resulting from the J−

current appears a common feature to be investigated in
LFD. Our innovative approach, particularly in handling the
J− current, offers a novel means of correctly extracting and
incorporating the zero modes effectively within the LFQM
framework. Therefore, extending our approach to encom-
pass additional three-point and four-point functions and
related observables warrants thorough investigation to
further explore the effects of LF zero modes.
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APPENDIX A: HELICITY CONTRIBUTIONS TO
THE PION FORM FACTOR

In this appendix, we provide a summary of the results
regarding the helicity contributions to the pion form factor, as
presented in Tables I and II. For the analysis of the helicity
contributions to the pion form factor, the term corresponding
to the spin trace in Eq. (22) can be rewritten as

hμ
λ1 λ̄→λ2 λ̄

≡R†
λ2 λ̄

�
ūλ2ðp2Þffiffiffiffiffiffi

pþ
2

p γμ
uλ1ðp1Þffiffiffiffiffiffi

pþ
1

p
�
Rλ1 λ̄

;

¼ R†
λ2 λ̄
Uμ

λ1→λ2
Rλ1 λ̄

ðA1Þ

where pþ
i ¼ xiPþ ¼ xPþ (i ¼ 1, 2), and the relevant Dirac

matrix elements for the helicity spinors [3] are summarized in
Table VII.
Then, we obtain the helicity nonflip and flip contribu-

tions, i.e., hμð↑→↑Þþð↓→↓Þ ≡
P

λ̄ðhμ↑λ̄→↑λ̄
þ hμ

↓λ̄→↓λ̄
Þ and

hμð↑→↓Þþð↓→↑Þ ≡
P

λ̄ðhμ↑λ̄→↓λ̄
þ hμ

↓λ̄→↑λ̄
Þ, respectively, for

each component (μ ¼ þ;⊥;−) of the current as follows:
(1) For the J þ

em current, the helicity flip contributions
are zero, i.e., hþð↑→↓Þþð↓→↑Þ ¼ 0, and only the helicity
nonflip elements contribute. Specifically, we obtain

hþð↑→↑Þþð↓→↓Þ

¼ 2ðR†
↑↑R↑↑ þR†

↑↓R↑↓ þR†
↓↑R↓↑ þR†

↓↓R↓↓Þ

¼ 2ðm2 þk⊥ ·k0⊥Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þk2⊥

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þk02⊥

p : ðA2Þ

(2) For the J ⊥
em current, as in the case of the plus

current, only the helicity nonflip elements contrib-
ute. For convenience, we compute the matrix ele-
ments for γ⊥ · q⊥ rather than those for γ⊥; i.e.,

TABLE VII. Dirac matrix elements for the helicity spinors [3]. Note that pLðRÞqRðLÞ ¼ p⊥ · q⊥ � ip⊥ × q⊥.

Matrix Helicity (λ → λ0)

elements ↑ → ↑ ↑ → ↓
ūλ0γμuλ ↓ → ↓ ↓ → ↑
ūλ0 ðp2Þffiffiffiffiffi

pþ
2

p γþ uλðp1Þffiffiffiffiffi
pþ
1

p 2 0

ūλ0 ðp2Þffiffiffiffiffi
pþ
2

p γ− uλðp1Þffiffiffiffiffi
pþ
1

p 2
pþ
1
pþ
2

ðp2⊥ · p1⊥ � ip2⊥ × p1⊥ þm2Þ ∓ 2m
pþ
1
pþ
2

½ðpx
2 � ipy

2Þ − ðpx
1 � ipy

1Þ�
ūλ0 ðp2Þffiffiffiffiffi

pþ
2

p γi⊥
uλðp1Þffiffiffiffiffi

pþ
1

p pi
2⊥∓iϵijpj

2⊥
pþ
2

þ pi
1⊥�iϵijpj

1⊥
pþ
1

∓ mðpþ
2
−pþ

1

pþ
1
pþ
2

Þðδi1 � iδi2Þ
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U⊥
↑→↑ · q⊥ ¼ ½U⊥

↓→↓ · q⊥�� ¼
pR
1q

L

pþ
1

þ pL
2q

R

pþ
2

; ðA3Þ

where pR ¼ px þ ipy and pL ¼ px − ipy. We then
obtain

ðh⊥ · q⊥Þð↑→↑Þþð↓→↓Þ

¼ ðU⊥
↑→↑ · q⊥ÞðR†

↑↑R↑↑ þR†
↑↓R↑↓Þ

þ ðU⊥
↓→↓ · q⊥ÞðR†

↓↑R↓↑ þR†
↓↓R↓↓Þ

¼ −ðm2 þ k⊥ · k0⊥Þðq2⊥ þ 2k⊥ · q⊥Þ
xPþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 þ k2⊥
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 þ k02⊥
p : ðA4Þ

(3) For theJ −
em current, in this case, not only the helicity

nonflip but also the helicity flip elements contribute.
Specifically, we obtain

X
λ̄

h−
↑λ̄→↑λ̄

¼ U−
↑→↑ðR†

↑↑R↑↑ þR†
↑↓R↑↓Þ

¼ ðpL
2p

R
1 þm2Þðk0RkL þm2Þ

pþ
1 p

þ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k2⊥

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k02⊥

p ; ðA5Þ

X
λ̄

h−
↓λ̄→↓λ̄

¼ U−
↓→↓ðR†

↓↑R↓↑ þR†
↓↓R↓↓Þ

¼ ðpR
2p

L
1 þm2Þðk0LkR þm2Þ

pþ
1 p

þ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k2⊥

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k02⊥

p ; ðA6Þ

X
λ̄

h−
↑λ̄→↓λ̄

¼ U−
↑→↓ðR†

↓↑R↑↑ þR†
↓↓R↑↓Þ

¼ m2ðp2 − p1ÞRðk − k0ÞL
pþ
1 p

þ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k2⊥

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k02⊥

p ; ðA7Þ

X
λ̄

h−
↓λ̄→↑λ̄

¼ U−
↓→↑ðR†

↑↑R↓↑ þR†
↑↓R↓↓Þ

¼ m2ðp2 − p1ÞLðk − k0ÞR
pþ
1 p

þ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k2⊥

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k02⊥

p : ðA8Þ

We note that pLðRÞ
1 − pLðRÞ

2 ¼ qLðRÞ and k0LðRÞ −
kLðRÞ ¼ ð1 − xÞqLðRÞ since p1⊥ − p2⊥ ¼ q⊥ and
k0⊥ − k⊥ ¼ ð1 − xÞq⊥ as given in Eq. (20). Thus,
we get the helicity flip contributions from Eqs. (A7)
and (A8) as follows:

h−ð↑→↓Þþð↓→↑Þ ¼
2m2ð1 − xÞq2⊥

pþ
1 p

þ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k2⊥

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k02⊥

p :

ðA9Þ

The helicity nonflip contributions can be obtained
using Eqs. (A5) and (A6) together with the relations
p1⊥×p2⊥¼k⊥×q⊥ and p1⊥ · p2⊥ ¼ k2⊥ þ k⊥ · q⊥.
This yields the following expressions:

h−ð↑→↑Þþð↓→↓Þ

¼ 2

pþ
1 p

þ
2 K

fðk⊥ ·k0⊥ þm2Þðk2⊥ þk⊥ · q⊥ þm2Þ

þ ð1− xÞðk⊥ × q⊥Þ2g; ðA10Þ

where K ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k2⊥

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k02⊥

p
.

APPENDIX B: LINK BETWEEN THE
COVARIANT BS MODEL AND THE LFQM

In this appendix, we show the derivation of pion form
factor in the LFQM starting from the covariant BS model
using the matching condition known as the “type II” link
[42] between the two models.
The Feynman covariant triangle diagram shown in

Fig. 5(a) describes the transition of a pseudoscalar meson
with momentum P and mass M to another pseudoscalar
meson with momentum P0 and massM0, where q ¼ P − P0
is the four-momentum transfer. The matrix element J μ ≡
hP0jq̄γμqjPi obtained from the covariant BS model of
Fig. 5(a) is given by

(a) (b) (c)

FIG. 5. The covariant triangle diagram (a) corresponds to the sum of the LF valence diagram (b) and the nonvalence diagram (c),
where ζ ¼ qþ=Pþ. The large white and black blobs at the meson-quark vertices in (b) and (c) represent the ordinary LF wave function
and the nonvalence wave function vertices, respectively.
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J μ ¼ iNc

Z
d4k
ð2πÞ4

H0
0H

00
0

Np1
NkNp2

Sμ; ðB1Þ

where

Sμ ¼ Tr½γ5ð=p2 þmqÞγμð=p1 þmqÞγ5ð−kþmq̄Þ�; ðB2Þ

and p1 ¼ P − k and p2 ¼ P0 − k are the momenta of the
active quark with mass mq, and k is the momentum of the
spectator quark with mass mq̄. The denominator factors
Np1ð2Þ;k are given by Np1ð2Þ ¼ p2

1ð2Þ −m2
q þ iϵ and Nk ¼

k2 −m2
q̄ þ iϵ. We take the vertex functions as H0

0 ¼
H0

0ðp2
1; k

2Þ ¼ g=ðN0
ΛÞn and H00

0 ¼ H00
0ðp2

2; k
2Þ ¼ g=ðN00

ΛÞn
with N0

ΛðN00
ΛÞ ¼ p2

1ðp2
2Þ − Λ2 þ iϵ.

Following the same procedure using the Feynman para-
metrization [48], we obtain the manifestly covariant result
of Femðq2Þ≡ Fπðq2Þ for n ¼ 1 case as

Fcov
π ðq2Þ ¼ N

Z
1

0

dx
Z

1−x

0

dyf½3ðxþ yÞ − 4� lnC1

þ ½ð1 − x − yÞ2ðxþ yÞM2

þ ð2 − x − yÞðm2 þ xyq2Þ�C2g; ðB3Þ

where N ¼ g2Nc=8π2ðΛ2 −m2Þ2, C1 ¼ CΛmCmΛ
CΛΛCmm

, and
C2 ¼ ð1=CΛΛ − 1=CΛm − 1=CmΛ þ 1=CmmÞ with Cαβ ¼
ð1−x−yÞðxþyÞM2þxyq2− ðxα2þyβ2Þ− ð1−x−yÞm2.
Note that the logarithmic term, lnC1, is obtained from the
dimensional regularization with the Wick rotation.
Essentially, the Feynman covariant triangle diagram in

Fig. 5(a) is equivalent to the sum of the LF valence diagram
in Fig. 5(b) and the nonvalence diagram in Fig. 5(c), where
ζ ¼ qþ=Pþ. In the valence region (0 < kþ < P0þ), the pole
k− ¼ k−on ¼ ðk2⊥ þm2 − iϵÞ=kþ (i.e., the spectator quark)
is located in the lower half of the complex k− plane. In the
nonvalence region (P0þ < kþ < Pþ), the poles are at p−

1 ¼
p−
1onðm1Þ ¼ ½m2 þ k2⊥ − iϵ�=pþ

1 (from the struck quark
propagator) and p−

1 ¼ p−
1onðΛÞ ¼ ½Λ2 þ k2⊥ − iϵ�=pþ

1

(from the vertex function H0
0), which are located in the

upper half of the complex k− plane.
Performing the LF calculation of Eq. (18) together with

Eq. (19), one obtains FðμÞ
π for all possible three different

components (μ ¼ �;⊥) of the current as follows:

FðþÞ
π ¼ J þ

em

2Pþ ;

Fð⊥Þ
π ¼ J ⊥

em · q⊥
ΔM2 − q2⊥

;

Fð−Þ
π ¼ q2⊥PþJ −

em

2M02q2⊥ þ q4⊥ þ ðΔM2Þ2 ; ðB4Þ

where ΔM2 ¼ M2 −M02. If the nonvalence diagram
(P0þ < kþ < Pþ) does not vanish as qþ → 0, this

nonvanishing contribution is called the LF zero mode. In
the LF calculation of the covariant BS model, we do not
quantify the possible zero modes for the calculations of

Fð�;⊥Þ
π given by Eq. (B4). Instead, we just determine the

existence/nonexistence of the zero mode contribution to

Fð�;⊥Þ
π by computing only the valence contribution in the

qþ ¼ 0 frame. We then compare the covariant BS model to
the standard LFQM and discuss the implication of the LF
zero mode between the two models.
The LF calculation for the trace term in Eq. (B2) can be

separated into the on-shell propagating part Sμon and the
instantaneous part Sμinst, i.e., Sμ ¼ Sμon þ Sμinst, via the
relation between the Feynman propagator (=pþm) and
the LF on-mass shell propagator (=pon þm)

ð=pþmÞ ¼ ð=pon þmÞ þ γþ
ðp− − p−

onÞ
2

: ðB5Þ

The trace term Sμon obtained from the on-shell propagating
part is given by

Sμon ¼ 4½pμ
1onðp2on · kon þm2Þ − kμonðp1on · p2on −m2Þ

þ pμ
2onðp1on · kon þm2Þ�; ðB6Þ

where

p1on ¼
�
xPþ;

m2 þ k2⊥
xPþ ;−k⊥

�
;

p2on ¼
�
xPþ;

m2 þ ðk⊥ þ q⊥Þ2
xPþ ;−k⊥ − q⊥

�
;

kon ¼
�
ð1 − xÞPþ;

m2 þ k2⊥
ð1 − xÞPþ ;k⊥

�
: ðB7Þ

The instantaneous contribution is obtained as

Sμinst ¼ 2Δp1
½gþμðk · p2 þm2Þ þ pμ

2k
þ − pþ

2 k
μ�;

þ 2Δp2
½gþμðk · p1 þm2Þ þ pμ

1k
þ − pþ

1 k
μ�;

þ 2Δk½gþμð−p1 · p2 þm2Þ þ pμ
1p

þ
2 þ pþ

1 p
μ
2�;

þ 2Δp1
Δp2

kþgþμ; ðB8Þ

where Δp ¼ ðp− − p−
onÞ. We note for the valence contri-

bution (i.e., k− ¼ k−on) that Δp1ð2Þ ¼ ðM2 −Mð0Þ2
0 Þ=Pþ,

where

Mð0Þ2
0 ¼ kð0Þ2

⊥ þm2

x
þ kð0Þ2

⊥ þm2

1 − x
ðB9Þ

is the invariant mass of the initial (final) state meson, and
k0⊥ ¼ k⊥ þ ð1 − xÞq⊥. One can see from Eq. (B8) that
there is no instantaneous contribution for the plus current;
i.e., Sþinst ¼ 0.
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Now, for the valence region ð0 < x < 1Þ in the qþ ¼ 0
frame, the LF amplitude obtained from the on-shell con-
tribution is given by

J μ
em ¼ Nc

16π3

Z
1

0

dx
ð1 − xÞ

Z
d2k⊥χðx;k⊥Þχ0ðx;k0⊥ÞSμon;

ðB10Þ

where

χðx;k⊥Þ ¼
g

½xðM2 −M2
0Þ�½xðM2 −M2

ΛÞ�
; ðB11Þ

for the vertex function with n ¼ 1 case, and
M2

Λ ¼ M2
0ðmq → ΛÞ. The final state vertex function χ0 is

obtained from χ replacing k⊥ with k0⊥. The trace terms Sμon
for each component of the current are given by

Sþon ¼
4Pþ

1 − x
ðk⊥ · k0⊥ þm2Þ;

S⊥on ¼ −
2ð2k⊥ þ q⊥Þ

xð1 − xÞ ðk⊥ · k0⊥ þm2Þ;

S−on ¼
4M2

0

xPþ ðk⊥ · k0⊥ þm2 þ q⊥ · k0⊥Þ: ðB12Þ

From Eqs. (B4) and (B10), we get the on-shell con-
tributions to the pion form factor for each current compo-
nent ðμ ¼ �;⊥Þ as follows:

FðμÞ
π ðQ2Þ ¼ Nc

Z
1

0

dx
Z

d2k⊥
8π3

χðx;k⊥Þχ0ðx;k0⊥Þ
ð1 − xÞ2 OðμÞ

BS ;

ðB13Þ

where the operators OðμÞ
BSðx;k⊥Þ corresponding to the three

different components ðμ ¼ �;⊥Þ of the current are summa-
rized in Table VIII, whereΔM2 ¼ 0 in this BSmodel. In this
BS model, we found numerically that the LF on-shell results
obtained from the plus and perpendicular components of the
current in Eq. (B13) are exactly the same as the covariant one

in Eq. (B3), Fcov
π ¼ FðþÞ

π ¼ Fð⊥Þ
π . This indicates that the LF

resultsFðþÞ
π ¼ Fð⊥Þ

π receive only the on-shell contributions in

the valence region. Especially, the two results,FðþÞ
π andFð⊥Þ

π ,
are analytically the same, which can be easily checked by
using the symmetric variable,2 i.e., k⊥ ¼ l⊥ − ð1−xÞ

2
q⊥ and

k0⊥ ¼ l⊥ þ ð1−xÞ
2

q⊥. We note from using l⊥ that
χðx;k⊥Þχ0ðx;k0⊥Þ can be expressed as only even powers
of l⊥ and cos θ, where cos θ is defined through
l⊥ · q⊥ ¼ jl⊥jjq⊥j cos θ.

While it is well known that the plus component of the
current receives only the on-shell contribution, the present
result (Fcov

π ¼ Fð⊥Þ
π ) obtained from the perpendicular cur-

rent with only the on-shell contribution may be regarded
coincidental since this component in general receives the
nonvanishing instantaneous contribution even in the
valence region and possibly LF zero mode. The similar
observation for the perpendicular current has been made in
[87], where μ ¼ y was chosen in the qþ ¼ 0 with q⊥ ¼
ðqx; 0Þ frame. On the other hand, it is well understood that

the LF result Fð−Þ
π obtained from the on-shell contribution

does not match with the covariant result as the minus
current requires not only the instantaneous in the valence
region but also the zero mode contribution to yield the
covariant result.
However, the current component independent pion form

factor in our LFQM can be obtained from the BS result,

FðμÞ
π given by Eq. (B13), applying the link between the BS

model and the LFQM; i.e.,

ffiffiffiffiffiffiffiffi
2Nc

p χð0Þðx;kð0Þ
⊥ Þ

ð1−xÞ →
ϕð0Þðx;kð0Þ

⊥ Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þkð0Þ2

⊥
q ; Mð0Þ→Mð0Þ

0 ; ðB14Þ

in Eq. (B13), where ϕðx;k⊥Þ is the radial wave function in
our LFQM. The corresponding operators OðμÞ

LFQM in our

LFQM obtained from OðμÞ
BS are also summarized in

Table VIII. The essential feature of OðμÞ
LFQM compared to

OðμÞ
BS lies in the nonvanishing structure of ΔM2 → ΔM2

0 ¼
M2

0 −M02
0 in our LFQM, while ΔM2 ¼ 0 in the covariant

BS model for the elastic process.
Applying the link given by Eq. (B14) to Eq. (B13), we

obtain the same LFQM results for the pion form factor
given by Eq. (24); i.e.

FðμÞ
π ðQ2Þ ¼

Z
1

0

dx
Z

d2k⊥
16π3

ϕðx;k⊥Þϕ0ðx;k0⊥Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2⊥ þm2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k02⊥ þm2

p OðμÞ
LFQM:

ðB15Þ

TABLE VIII. The operators OðμÞ
BS defined in Eq. (B13), where

ΔM2 ¼ 0 in the BS model but ΔM2 ¼ M2
0 −M02

0 in the standard
LFQM.

FðμÞ
π OðμÞ

BS OðμÞ
LFQM

FðþÞ
π k⊥ · k0⊥ þm2

OðþÞ
BS

Fð⊥Þ
π

ðk⊥·k0⊥þm2Þðq2⊥þ2k⊥ ·q⊥Þ
xðq2⊥−ΔM2Þ Oð⊥Þ

BS ðMð0Þ → Mð0Þ
0 Þ

Fð−Þ
π

2ð1−xÞq2⊥M2
0
ðk⊥ ·k0⊥þm2þq⊥·k0⊥Þ

x½2M02q2⊥þq4⊥þðΔM2Þ2� Oð−Þ
BS ðMð0Þ → Mð0Þ

0 Þ

2Using the symmetric variable l⊥, the term 1
xq2⊥

½q2⊥þ
2k⊥ · q⊥� in Oð⊥Þ

BS becomes 1 since χχ0 in Eq. (B13) can be
expressed as only even powers of l⊥ and cos θ.
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APPENDIX C: QUARK MASS EVOLUTION IN
THE PION FORM FACTOR

In this appendix, we present our numerical results for the
pion form factor and investigate the influence of the quark
running mass, treating it exclusively as a function of the
momentum transfer Q2.
Contrary to quark models or LFQM, which employ a

phenomenological constant constituent quark mass, an
alternative approach rooted in QCD quantum field theory
is the utilization of the BS equation along with the Dyson-
Schwinger (DS) equations for the quark propagators, gluon
propagator, and vertices. A noteworthy outcome of the DS
calculations [5,90] is the determination of the effective
running mass, mðp2Þ as a function of the Euclidean
momentum p.
In our earlier study [91], we examined the impact of the

mass evolution from current to constituent quark on the soft
contribution to the elastic pion form factor. This was
accomplished by employing a light-front BS (LFBS)
model, which incorporates a running mass in a LFQM.
Specifically, we introduced two algebraic representations
of the quark running mass: a crossing asymmetric (CA)
mass function, proportional to p2, and a crossing sym-
metric (CS) mass function, proportional to p4. In Ref. [91],
we related the four momentum p2 to LF variables ðx;k⊥Þ
by utilizing the on-mass shell condition, denoted as
p2 ¼ m2ðp2Þ. This condition indicates that the mock
meson has no binding energy and results in the following
relation: p2 ¼ xð1 − xÞM̃2 − k2⊥, where M̃ ¼ ðMπþ
3MρÞexp=4 ¼ 612 MeV. The Ball-Chiu ansatz was also
used to maintain local gauge invariance of the quark-
photon vertex.
In this study, we depart from considering the mass

evolution dependent on the internal momentum of quark
and antiquark. Instead, we aim to evaluate the influence of
the quark running mass on the pion form factor by treating
mass evolution solely as a function of the momentum
transfer Q2. This approach is pursued independently of the
specific dynamics and internal momentum details. To
facilitate this analysis, we introduce two distinct algebraic
representations of the quark running mass, i.e., mass
functions proportional to Q2 and Q4 as

mðQ2Þ ¼ m0 þ ðm −m0Þ expð−Q2=μ2Þ;
mðQ4Þ ¼ m0 þ ðm −m0Þ expð−Q4=λ4Þ; ðC1Þ

where m0 and m are the current and constituent quark
masses, respectively. The parameters μ and λ are used to
adjust the shape of the mass evolution so that the running
mass yields a generic picture of the quark mass evolution
from the low energy limit of the constituent quark mass to
the high energy limit of the current quark mass. We use
m0 ¼ 5 MeV, m ¼ 220 MeV, μ2 ¼ 5 GeV2, and λ4 ¼
10 GeV4, respectively.
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FIG. 6. Quark mass evolution mðQ2Þ and mðQ4Þ in spacelike
momentum transfer (Q2 > 0) region.
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FIG. 7. Predictions of Q2FπðQ2Þ obtained from the constituent
quark mass m ¼ 220 MeV (solid line), mðQ2Þ (dotted line), and
m2ðQ4Þ (dashed line), respectively. The experimental data are
taken from [12–15].
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In Fig. 6, we depict the evolution of the quark mass
mðQ2Þ and mðQ4Þ in the spacelike momentum transfer
region (Q2 > 0). Furthermore, Fig. 7 presents our results
forQ2FπðQ2Þ, showcasing the constituent quark massm ¼
220 MeV (solid line) alongside the running mass functions
mðQ2Þ (dotted line) and m2ðQ4Þ (dashed line) for the
intermediate Q2 range. These results are then compared
with experimental data [12–15].
As discussed in Sec. III, the result obtained from the

constituent quark mass given by Eq. (24) is completely
independent of the current component Jμ. In comparison to

the case of constituent quark mass, the form factor withQ2-
dependent quark mass exhibits a faster falloff at inter-
mediate Q2 range. This behavior resembles the quark mass
evolution through internal momenta of quark and anti-
quark, as discussed in [91], and appears to provide some-
what better description closer to the experimental data.
Further, the symmetric form of quark mass evolution with
mðQ4Þ exhibits a slightly faster falloff compared to the
asymmetric form with mðQ2Þ. However, the difference in
the rate of falloff between the two forms does not seem so
significant.
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