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Several continuum and lattice investigations of the QCD three-gluon vertex have recently exposed its
key properties, some intimately connected with the low-momentum behavior of the two-point gluon
Green’s function and especially relevant for the emergence of a mass scale in this latter, via the Schwinger
mechanism. In the present study, we report on a lattice determination of the Landau-gauge, transversely
projected three-gluon vertex, particularly scrutinizing an outstanding one of these properties, termed planar
degeneracy, exploring its implications and capitalizing on it to gain further insight on the low-momentum
running of both the three-gluon vertex and its associated strong coupling.
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I. INTRODUCTION

The understanding of the origin of mass is one of the most
challenging, still open questions in particle physics. The
Higgs mechanism is well understood as responsible for the
masses of electroweak interacting bosons and all leptons.
However, concerning hadrons and especially those compos-
ing stable matter, it can explain only just 1%–2% of the
nucleons’ masses. The hadrons are composite bound states
whose mass budget cannot be explained by the single
contribution of their elementary components, the Lagrangian
(current) quark masses, and mostly relies on the dynamics of
quantum chromodynamics (QCD), the Standard Model’s
strong interaction theory [1–5]. The hadron masses basically
emerge from the interactions of quarks and gluons [6],
although the nature of the interacting gluons is very much
determined by the gluon-gluon interaction, which is an
expressionof a key feature ofQCD: its non-Abelian character.
This same character triggers the antiscreening of color
charges, which drives the interaction strength from its
asymptotically free limit at low distances to a nonperturbative
regime at low energies. And it is in this last that the rich and
intriguing dynamics of QCD becomes apparent.
The way in which gluon self-interactions define gluon

properties is revealed by a central component of QCD, the
three-gluon vertex [7–9]. It has been established [10–16]
that the presence of longitudinally coupled massless-pole

structures in the three-gluon vertex activates the so-called
Schwinger mechanism [17–22], generating thereby a
dynamical gluon mass and rendering the two-point gluon
Green’s function finite at vanishing momentum. This latter
fact and that the ghost is transparent to the mass generation
mechanism have been confirmed by a variety of studies of
the fundamental QCD Green’s functions carried out in both
continuum [23–46] and lattice QCD [47–50].
As the other side of the coin, when a dynamical gluon

mass is generated, the interplay of massive gluon and
massless ghost propagators, involved in the Dyson-
Schwinger equations (DSE) expansions of QCD Green’s
functions, generates logarithmic singularities at the two-
and three-point levels connected by the corresponding
Slavnov-Taylor identities (STIs) [51,52]. The two-point
singularity comes from the ghost-loop contribution to the
gluon self-energy, tamed by a kinematic factor q2 and
appearing only as a maximum in the gluon propagator form
factor at nonzero momentum. However, it remains dynami-
cally attached by the mass generation mechanism to the
three-point singularity, associated to the tree-level tensor
structure of the three-gluon vertex, where it is manifest in
its corresponding form factor by crossing zero at low
momentum, after an infrared suppression caused by the
contributions from the usually called swordfish diagrams
[53]. These properties for the three-gluon vertex have been
unveiled by a series of recent works [51–74] and have been
revealed as instrumental for the formation of physically
meaningful bound states [75–83].
Particularly in lattice QCD, the vertex form factors of

two special classes of kinematic configurations, soft-gluon
and symmetric, in which the vertex tensor space becomes
reduced, have been extensively studied with both quenched

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 110, 014005 (2024)

2470-0010=2024=110(1)=014005(17) 014005-1 Published by the American Physical Society

https://orcid.org/0000-0001-6961-7824
https://orcid.org/0000-0002-1651-5717
https://ror.org/03a1kt624
https://ror.org/02z749649
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.110.014005&domain=pdf&date_stamp=2024-07-08
https://doi.org/10.1103/PhysRevD.110.014005
https://doi.org/10.1103/PhysRevD.110.014005
https://doi.org/10.1103/PhysRevD.110.014005
https://doi.org/10.1103/PhysRevD.110.014005
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


[64–67] and unquenched [57] simulations in Landau gauge.
Only very recently, a more general analysis extended to all
available triplets of momenta with two equal squared ones,
dubbed bisectoral configurations, has been performed
[73,74]. As a main outcome of this analysis, a three-gluon
vertex property, termed therein planar degeneracy and
anticipated in some aspects by a previous DSE study
[59], is established. This property tells that, in very good
approximation over awidemomentum range, the significant
form factor is the one associated to the tree-level (classical)
tensor and its behavior is driven by only one Bose-
symmetric combination of the three squared momenta. A
first important consequence of this was soon exposed by a
subsequent study [16], in which a three-gluon vertex
constructed with lattice QCD inputs by assuming planar
degeneracy has been used to evaluate deviations in its
corresponding STIs, shown to be consistent with the
longitudinally coupled massless poles triggering the
Schwinger mechanism for the generation of a dynamical
gluon mass.
In the current work, for the first time, we extend the

study of the three-gluon vertex obtained from lattice QCD
in Landau gauge to a fully general kinematics, beyond the
bisectoral class, furthermore implementing a complete,
improved tensor basis [53]. We will initially focus on a
proper analysis of lattice discretization artifacts and, next,
scrutinize the deviations from planar degeneracy, paying
special attention to the behavior of the nonclassical form
factors and their impact. Then, we will canvass the
implications of this remarkable property and, capitalizing
on it, elaborate further on the description of the non-
perturbative running of the three-gluon vertex. An out-
standing inference from planar degeneracy is its entailing a
unique definition for the renormalized three-gluon vertex
[viz. Eq. (40)] and effective coupling [viz. Eq. (42)],
provided that the subtraction point is rationally defined.
Furthermore, capitalizing on previous investigations of the
soft-gluon and symmetric kinematic configurations from
lattice QCD with 2þ 1 dynamical fermions simulated with
a domain-wall action (DWF) [70], we deliver the first
unquenched results based on planar degeneracy.

II. THE THREE-GLUON VERTEX

The starting step in our computational scheme is the
calculation of the three-point correlation function in Fourier
space hÃa

αðqÞÃb
μðrÞÃc

νðpÞi, where Ãa
αðqÞ corresponds to the

gauge-field Lorentz-color component fα; ag at four-
momentum q and h� � �i stands for the average over the
Landau-gauge field configurations. More particularly, we
will focus on its projection over the antisymmetric color
tensor fabc:

Gαμνðq; r; pÞ ¼
1

24
fabchÃa

αðqÞÃb
μðrÞÃc

νðpÞi; ð1Þ

thereby discarding any possible contribution in the sym-
metric color tensor dabc.
The three-gluon vertex depends on three momenta

kinematically constrained by momentum conservation,
qþ rþ p ¼ 0, which allows that any possible tensor should
be formed by their different combinations, also including the
metric tensor: e.g., qαqμqν or gαμpν. In total, there are 14
linearly independent tensors [8,84], althoughonly four survive
in Landau gauge owing to the transverse condition
qαGαμνðq; r; pÞ ¼ rμGαμνðq; r; pÞ ¼ pνGαμνðq; r; pÞ ¼ 0.
As discussed at length in Refs. [64–66], one can define

the transverse projection of the one-particle irreducible
(1PI) three-gluon vertex IΓα0μ0ν0 (sketched in Fig. 1):

Γ̄αμνðq; r; pÞ ¼ IΓα0μ0ν0 ðq; r; pÞPα0αðqÞPμ0μðrÞPν0νðpÞ; ð2Þ

with PμνðqÞ ¼ gμν − qμqν=q2 standing for the usual
transverse projector; which can be thus derived from
Gαμνðq; r; pÞ as

gΓ̄αμνðq; r; pÞ ¼
Gαμνðq; r; pÞ

Δðq2ÞΔðr2ÞΔðp2Þ ; ð3Þ

where g is the strong coupling and Δðq2Þ is defined from
the gluon propagator as

hÃa
μðqÞÃb

μð−qÞi ¼ δabPμνðqÞΔðq2Þ: ð4Þ

This transversely projected vertex Γ̄αμν is the quantity that
can be estimated from Landau-gauge lattice QCD simu-
lations, from which the three-point correlation function in
Eq. (1) can be calculated. It can be highlighted that it
receives no contribution from the longitudinally coupled
massless poles [11–13] shown to trigger the Schwinger
mechanism [16–22]. This transverse projection of the pole-
free component of the 1PI three-gluon vertex is the object
we will deal with in what follows.

A. Bose-symmetric basis

Embedded only within the 4D transverse subspace of the
tensor space defined by the 1PI three-gluon vertex, Γ̄αμν can

FIG. 1. Diagrammatic representation of the 1PI three-gluon
vertex with the prescription chosen for the momenta and Lorentz-
color indices.
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be generally written in terms of any basis made by four
linearly independent transverse tensors. Particularly, the
choice of basis tensors expressing explicitly the Bose
symmetry of the three-point Green function from Eq. (1)
is advantageous, as has been detailed in Ref. [73] and will
be again exploited below. A simple inspection of Eq. (1)
makes apparent that, as fabc is antisymmetric under
exchange of color indices, so are, too, Gαμνðq; r; pÞ, and,
hence, Γ̄αμνðq; r; pÞ defined by Eq. (3), under the simulta-
neous exchange of two momenta and their corresponding
Lorentz indices. Then, one is left with [73]

Γ̄αμνðq; r; pÞ ¼
X4
i¼1

Γ̃iðq2; r2; p2Þλ̃iαμνðq; r; pÞ; ð5Þ

with

λ̃1αμνðq;r;pÞ¼ ½lα0μ0ν0
1 þlα0μ0ν0

4 þlα0μ0ν0
7 �Pα0

α ðqÞPμ0
μ ðrÞPν0

ν ðpÞ;
ð6aÞ

λ̃2αμνðq; r; pÞ ¼ 3
ðq − rÞν0 ðr − pÞα0 ðp − qÞμ0

q2 þ r2 þ p2

× Pα0
α ðqÞPμ0

μ ðrÞPν0
ν ðpÞ; ð6bÞ

λ̃3αμνðq; r; pÞ ¼
3

q2 þ r2 þ p2

�
lα0μ0ν0
3 þ lα0μ0ν0

6 þ lα0μ0ν0
9

�

× Pα
α0 ðqÞPμ

μ0 ðrÞPν
ν0 ðpÞ; ð6cÞ

λ̃4αμνðq;r;pÞ¼
�

3

q2þr2þp2

�
2�
tαμν1 þ tαμν2 þ tαμν3

�
; ð6dÞ

where ti and lj stand, respectively, for the four transverse
and ten nontransverse, well-known Ball-Chiu tensors
[8,84] [see, e.g., Eqs. (3.4) and (3.6) in Ref. [52] ]. The
basis tensors given by Eq. (6) can be proven to express the
antisymmetric character of Γ̄αμνðq; r; pÞ under Bose trans-
formations: e.g., λ̃iαμνðq; r; pÞ ¼ −λ̃iμανðr; q; pÞ. However,
keeping this antisymmetric property, other choices are
possible and, in some aspects, preferable.
Let us generally consider another tensor basis such that

Γ̄αμνðq; r; pÞ ¼
X4
i¼1

Γ̃�
i ðq2; r2; p2Þλ̃�iαμνðq; r; pÞ; ð7Þ

where one and another form factors can be related as

Γ̃�
i ðq2; r2; p2Þ ¼ P�αμν

i Γ̄αμνðq2; r2; p2Þ ð8aÞ

¼
X4
k¼1

P�αμν
i λ̃kαμνðq; r; pÞΓ̃kðq2; r2; p2Þ;

ð8bÞ

where Eq. (8a) displays the form factors projected out from
Γ̄αμνðq; r; pÞ, as it is expanded in (7), with the projector

P�αμν
i ¼

X4
j

M̃�−1
ij ðq2; r2; p2Þλ̃�αμνj ðq; r; pÞ; ð9Þ

defined by the 4 × 4 matrix

M̃�
ijðq2; r2; p2Þ ¼ λ̃�αμνi ðq; r; pÞλ̃�jαμνðq; r; pÞ; ð10Þ

while (8b) results from replacing the vertex with its
expansion given by Eq. (5).
The basis defined by Eq. (6) has been introduced in

Ref. [73] as a generalization of the restricted one employed
in Refs. [64–66]. Indeed, λ̃1αμνðq; r; pÞ corresponds to
the three-gluon tree-level tensor which, together with
λ̃2αμνðq; r; pÞ, forms a basis for those special kinematic
configurations in which the three squared momenta are equal
(symmetric case); while λ̃3αμνðq; r; pÞ and λ̃4αμνðq; r; pÞ
were therein chosen for the basis completion in the 4D
transverse subspace. An alternative choice [53] can be
featured as

λ̃�iαμνðq; r; pÞ ¼ λ̃iαμνðq; r; pÞ − δi3
3

2
λ̃1αμνðq; r; pÞ; ð11Þ

implying that Eq. (8b) specializes as

Γ̃�
i ðq2; r2; p2Þ ¼

X4
k¼1

�
δik þ

3

2
δi1δk3

�
Γ̃kðq2; r2; p2Þ: ð12Þ

The latterwill be shown below as a very useful result entailing
that, after the redefinition of the basis by Eq. (11), the form
factor Γ̃�

1ðq2; q2; 0Þ fully delivers the soft-gluon limit
(p2 → 0) of the transversely projected vertex [53].

B. Kinematics

Owing to momentum conservation, a kinematic con-
figuration for the three-gluon vertex remains entirely
determined by the three squared momenta or, alternatively,
by two momenta and the angle they form (e.g., q2, r2 and
θqr ¼ ½p2 − q2 − r2�=½2

ffiffiffiffiffiffiffiffiffi
q2r2

p
�, or any completely analo-

gous combination). Furthermore, the scalar form factors
defined in Eqs. (5) and (7), which depend on three scalars,
can be equivalently characterized. Interestingly, the basis
being Bose-symmetric, they can depend only on Bose
invariants that can be recast as1

1For reference, it is convenient to write these invariants in
terms of the ones defined in Eqs. (50) and (53) in [59], S0, S1, and
S2: s2 ¼ 3S0, t4 ¼ 6S2

0S1, and u6 ¼ 54S3
0S2.
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s2 ¼ q2 þ r2 þ p2

2
; ð13aÞ

t4 ¼ ðq2 − r2Þ2 þ ðr2 − p2Þ2 þ ðp2 − q2Þ2
3

; ð13bÞ

u6¼ðq2þr2−2p2Þðr2þp2−2q2Þðp2þq2−2r2Þ: ð13cÞ

An extensive analysis of the three-gluon kinematic con-
figurations is done in Ref. [59] on the ground of the theory
of permutation group; while a geometric rederivation can
be found in Ref. [73]. In the aim of keeping enough self-
completion in the present document, we will shortly outline
their main outcomes.
Any possible kinematical configuration, characterized

by the three squared momenta, can be represented as a point
in the positive octant of a 3D space, whose Cartesian axes
correspond to q2, r2 and p2 (see the top-right plot in Fig. 2).
All configurations sharing the same s invariant, Eq. (13a),
sit on a plane perpendicular to the diagonal of this positive
octant (the distance of the plane to the origin along the
diagonal is 2s2=

ffiffiffi
3

p
), which defines an equilateral triangle

(drawn in blue in the figure). Furthermore, momentum
conservation, qþ rþ p ¼ 0, imposes a restriction on the
momenta such that all allowed configurations lie within
the triangle incircle, the center of which corresponds to the
symmetric configuration: q2 ¼ r2 ¼ p2 (represented by a
green dot). The t invariant, Eq. (13b), locates the point
representing the configuration on a given concentric
circumference within the incircle and expresses its sepa-
ration away from the symmetric case (momentum con-
servation translates into t2 ≤

ffiffiffiffiffiffiffiffi
2=3

p
s2). And, finally, the u

invariant, Eq. (13c), refers to the location to each of the
three bisectoral lines in the triangle. As discussed in
Ref. [73], all the configurations such that two squared
momenta and two angles are the same can be represented
by a piece of bisectoral line lying inside the incircle (e.g.,
the vertical one in Fig. 2 corresponds to r2 ¼ q2 and
θqp ¼ θrp). Along any of the three bisectoral segments, the
kinematics evolves from soft-gluon to collinear nonsoft
cases, with the symmetric one in between; e.g., from the
cases p ¼ 0 and θqp ¼ θrp ¼ π=2 (orange point) to q2 ¼
r2 ¼ p2=4 and θqp ¼ θrp ¼ π (in Landau gauge, no tensor
structure remains for this case), passing through q2 ¼ p2 ¼
r2 and θpq ¼ θrp ¼ 2π=3 (green point), as illustrated in the
vertical bisectoral in Fig. 2. And, accordingly, the u
invariant evolves from u6 ¼ 2s6 (soft-gluon) to u6 ¼ −2s6
(collinear nonsoft), becoming zero in the symmetric case.
It is worthwhile to underline that the incircle represent-

ing all allowed configurations can be divided into three
identical regions, covering each an angle 2π=3, that can be
mapped into each other by permutations of the squared
momenta q2, r2, and p2, which do not modify the Bose-
symmetric invariants defined in Eq. (13). In Fig. 2, these

three regions appear bordered by solid gray lines displaying
the bisectoral segments which join the symmetric and
collinear nonsoft cases. On top of this, Bose symmetry2

also guarantees that the invariants remain unmodified by
the reflection in respect to the bisectoral segment joining
symmetric and soft-gluon cases, drawn with a pink dashed
line in the figure. Therefore, only the kinematic configu-
rations represented by points within one of the six regions
delimited by solid gray and dashed pink lines, spanned by
an angle π=3, are independent.
In general, the transversely projected vertex can have

independent contributions in the four basis tensors defined
by either Eq. (6) or (11), with the corresponding form
factors projected out by applying Eq. (8a) and, in the
former case, also Eq. (12). They may depend on the three
invariants (13) that can be evaluated for any arbitrary
kinematic configuration.
However, we will begin by specializing for the bisectoral

kinematics, as in Ref. [73], highlighting the particular soft-
gluon and symmetric cases. With no loss of generality, one
can then focus on the case q2 ¼ r2 and θpq ¼ θpr, for any
p2. The subspace spanned by the transversely projected
vertex reduces thereby its dimension from 4 down to 3, and

FIG. 2. The kinematic configurations for the three-gluon vertex
sketched in Fig. 1, represented here by the Cartesian coordinates
ðq2; r2; p2Þ. A fixed value of s2, Eq. (13a), implies sitting on the
same plane perpendicular to the octant diagonal (top right), which
defines an equilateral triangle in which momentum conservation
restricts the representations to lie within the white incircle (left).
The green dot labels the symmetric case, while black and orange
stand for the soft-gluon, the latter specializing the case consid-
ered, and connected by permutations with the other two. The
explanation of this representation is expanded in the text.

2The operation of reflection in respect to the bisectoral
segment joining the symmetric and the p ¼ 0 case corresponds
to the exchange q2 ↔ r2; completely analogous properties hold
for the other two bisectoral segments.
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the new restricted tensor basis obtained from Eq. (11) is
formed by the three tensors

λ̄�iαμνðq; r; pÞ ¼ lim
r2→q2

λ̃�iαμνðq; r; pÞ; ð14Þ

for i ¼ 1; 2; 3; while

lim
r2→p2

λ̃�4αμνðq;r;pÞ¼
X3
i¼1

f�i

�
2p2

p2þ2q2

�
λ̃�iαμνðq;r;pÞ; ð15Þ

with

f�1ðzÞ¼
9

16
zð2−zÞ; f�2ðzÞ¼

3

8

�
3

4
z−1

�
; f�3ðzÞ¼

3

8
z:

ð16Þ

A restricted basis of tensors λ̄iαμν can be analogously
derived from (6) and formally identical results obtained
with the only difference that f1ðzÞ ¼ 9=16zð1 − zÞ [73].
Then, Eqs. (8)–(10) can be specialized to the bisectoral

case only with the replacement of 4D by 3D basis tensors,
restricting the running of i, j, and k from 1 to 3. This entails
for the noninvertible 4 × 4matrix (10) its being replaced by
its first 3 × 3 block in the limit r2 → q2:

M̄�
ijðq2; p2Þ ¼ lim

r2→q2
M̃�

ijðq2; r2; p2Þ ð17Þ

for i; j ¼ 1; 2; 3; the form factors for the restricted basis
reading now

Γ̄�
i ðq2; p2Þ ¼ lim

r2→q2
Γ̃�
i ðq2; r2; p2Þ

þ f�i

�
2p2

p2 þ 2q2

�
Γ̃�
4ðq2; r2; p2Þ; ð18Þ

in terms of those for the general basis. And a formally
identical equation holds relating the form factors Γ̃i’s and
Γ̄i’s defined from Eqs. (5) and (6). Analogously, in the
bisectoral case, an equation equivalent to (12) works to
make Γ̄�

i ’s read in terms of Γ̄k ’s, with i; k ¼ 1; 2; 3.
The symmetric (p2 ¼ q2 ¼ r2, θpq ¼ θpr ¼ 2π=3) and

soft-gluon (p2 ¼ 0, θpq ¼ θpr ¼ π=2) are special cases in
which the 3 × 3 matrix defined in Eq. (17) is noninvertible,
as the involved tensor subspaces take dimensions 2 and 1,
respectively, making its determinant vanish.
In the symmetric case, the new restricted basis can be

defined as [i ¼ 1, 2]

λiαμνðq;r;pÞ¼ lim
p2→q2

λ̄iαμνðq;r;pÞ¼ lim
p2→q2

λ̄�iαμνðq;r;pÞ; ð19Þ

in terms of which, the transversely projected vertex reads

Γ̄αμνðr; q; pÞ ¼
X2
i¼1

Γ̄sym
i ðq2Þλiαμνðq; r; pÞ; ð20Þ

with

Γ̄sym
1 ðq2Þ ¼ lim

p2→q2
Γ̄1ðq2; p2Þ þ 1

2
Γ̄3ðq2; p2Þ ð21aÞ

lim
p2→q2

Γ̄�
1ðq2; p2Þ − Γ̄�

3ðq2; p2Þ; ð21bÞ

Γ̄sym
2 ðq2Þ ¼ lim

p2→q2
Γ̄2ðq2; p2Þ − 3

4
Γ̄3ðq2; p2Þ ð21cÞ

¼ lim
p2→q2

Γ̄�
2ðq2; p2Þ − 3

4
Γ̄�
3ðq2; p2Þ: ð21dÞ

On the other hand, in the soft-gluon case, one is left only
with the tree-level tensor λ1αμνðq; r; pÞ, which corresponds
to λ̄�1αμνðr; q; pÞ ¼ λ̄1αμνðr; q; pÞ taken in the limit p → 0,
and can, thus, write

Γ̄αμνðr; q; pÞ ¼ Γ̄sgðq2Þλ1αμνðq; r; pÞ; ð22Þ

with

Γ̄sgðq2Þ ¼ lim
p2→0

Γ̄1ðq2; p2Þ þ 3

2
Γ̄3ðq2; p2Þ ð23aÞ

¼ lim
p2→0

Γ̄�
1ðq2; p2Þ: ð23bÞ

The outcome exhibited by Eq. (23), which can be traced
back to Eq. (12), appears as the main advantage of the
tensor basis (11), Ref. [53], in respect to (6), Ref. [73].
Namely, the unique form factor in the soft-gluon case is
given only by the appropriate limit of the tree-level tensor
form factor; while, is the basis (6) used, two form factors
will need to be combined to deliver the correct result. As it
is raised in Ref. [73], both Γ̄1ðq2; p2Þ and Γ̄3ðq2; p2Þ are
separately plagued by a perturbative divergence in the limit
p → 0, which, however, cancels out when they are com-
bined as in Eq. (23a), rendering finite and well defined the
soft-gluon form factor and, owing to (23b), the bisectoral
Γ̄�
1ðq2; p2Þ. These divergences in Γ̄1;2ðq2; p2Þ have been

seen to be individually tamed by the nonperturbative
generation of a gluon mass [16,53]. However, as will be
discussed below, their remnant seems to spoil in some
kinematic region some of the good properties of the three-
gluon form factors, making especially useful their being
removed by the implementation of the tensor basis (11).
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C. Renormalization of the three-gluon
form-factors and coupling

We have thus far elaborated on the derivation of the
relevant form factors for the transversely projected vertex
Γ̄αμν from the three-point Green’s function Gαμν. The latter
is herein computed from lattice QCD and, thereby, obtained
as a lattice-regularized bare quantity. A multiplicative
renormalization scheme is subsequently applied by intro-
ducing first the gauge-field renormalization constant ZA,
such that bare and renormalized gluon two- and three-point
Green functions relate as

ΔRðq2Þ ¼ lim
a→0

Z−1
A ðaÞΔðq2; aÞ; ð24aÞ

GRαμνðq; r; pÞ ¼ lim
a→0

Z−3=2
A ðaÞGαμνðq; r; p; aÞ; ð24bÞ

where we have made explicit the dependence on the
regularization scale, the lattice spacing a, of the bare
quantities and renormalization constants and have left
implicit the latter’s and renormalized quantities’ on the
subtraction scale ζ2. Capitalizing on multiplicative renor-
malizability, only one further renormalization constant
needs to be introduced for all the form factors of the
1PI three-gluon vertex:

Γ̃�
iRðq2; r2; p2Þ ¼ lim

a→0
Z3ðaÞΓ̃�

i ðq2; r2; p2; aÞ; ð25Þ

thus implying

gR ¼ lim
a→0

Z3=2
A ðaÞZ−1

3 ðaÞgðaÞ ð26Þ

for the renormalization of the strong coupling. The same
reads for the form factors from Eq. (5) for the tensor
basis (6).
The last step of the calculation program is the imple-

mentation of a renormalization prescription, namely,
momentum subtraction (MOM) [85] in our case. This
implies that all renormalized correlation functions acquire
their tree-level expressions at the subtraction point, defined
in terms of the subtraction scale ζ2. In particular, one sets
Δ−1

R ðζ2Þ ¼ ζ2, which fixes ZA:

ZAða2Þ ¼ ζ2Δðζ2; aÞ; ð27Þ

while, for the three-gluon Green’s function, one needs to
consider a given kinematic configuration, Z3 resulting
defined by

Γ̃�
1RkðζÞðq2;r2;p2Þj

kðζÞ ¼ lim
a→0

ZkðζÞ
3 ðaÞΓ̃�

1ðq2;r2;p2;aÞjkðζÞ ¼1;

ð28Þ
where kðζÞ≡ fζ2; θqp; θrpg specifies the chosen configu-
ration and RkðζÞ its associated renormalization scheme.

At this point, we take advantage of the three-gluon
kinematic analysis described in the previous subsection
and choose a configuration represented by a point lying on
the plane s2 ¼ ζ2, within the white circle in Fig. 2, fixed by
two angles θqp and θrp.
In Eqs. (24)–(26) and (28), the limit a → 0, required to

drop any subleading lattice artifact away, has been made
explicit. This is a mandatory part of a renormalization
program, intended to remove properly any remaining
nonsingular dependence on the regularization scale or
cutoff, after subtraction. In lattice QCD calculations, the
latter entails an extrapolation to the continuum limit which
for the gluon and ghost propagators can be done by
following the procedure detailed in [86]. However, when
three-point functions are involved, the subleading lattice
artifacts, once those related to Oð4Þ breaking are properly
treated (as will be discussed below), become hidden by the
statistical errors and, even at nonzero but small lattice
spacing, the renormalized quantities appear not to depend
on it. The limit a → 0 can be then removed in practice, but,
formally at least, Eq. (27) and

ZkðζÞ
3 ðaÞ ¼ ðΓ̃�

1ðq2; r2; p2; aÞjkðζÞÞ−1 ð29Þ

are only possible solutions, all differing only by subleading
Oða2Þ artifacts, of (24a) evaluated at q2 ¼ ζ2 and Eq. (28),
respectively. They imply

Γ̃�
iRkðζÞðq2; r2; p2Þ ¼ lim

a→0

Γ̃�
i ðq2; r2; p2; aÞ

Γ̃�
1ðq2; r2; p2; aÞjkðζÞ

; ð30Þ

for i ¼ 1;…; 4, and

gRkðζ2Þ¼ lim
a→0

ζ3Δ3=2ðζ2;aÞΓ̃�
1ðq2;r2;p2;aÞjkðζÞgðaÞ; ð31Þ

for the strong coupling, which is shown here with its
explicit dependence on the subtraction scale.
We will make, for the three-gluon vertex renormaliza-

tion, the same choice made in Ref. [73], that is, the
so-called soft-gluon MOM scheme,3 namely, kðζÞ ¼
sðζÞ≡ fζ2; π=2; π=2g. Alternatively, another natural
choice for the kinematic configuration at the subtraction
point might have been the symmetric one: kðζÞ ¼ yðζÞ≡
fζ2; 2π=3; 2π=3g; i.e.,

3Indeed, the soft-gluon kinematic configuration (p2 ¼ 0,
r2 ¼ q2) seems to be affected by an apparent ambiguity when
is defined in terms of angles, as the condition appears to be
θrp þ θqp ¼ π, for whichever θrp and θqp. Such an ambiguity can
be seen not to exist, as, after a careful analysis [66,67], no trace of
an individual dependence on the angles remains in the limit
θpq þ θrp → π.
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ZyðζÞ
3 ðaÞ ¼

�
Γ̃�
1

�
2

3
ζ2;

2

3
ζ2;

2

3
ζ2; a

��
−1
: ð32Þ

However, early applications of the MOM prescription for
computing the renormalized coupling [87–90], as well as
more recent analyses [57,91,92], have used instead a
slightly different definition of the symmetric MOM
scheme: ȳðζÞ≡ f3=2ζ2; 2π=3; 2π=3g, such that

ZȳðζÞ
3 ðaÞ ¼ ðΓ̃�

1ðζ2; ζ2; ζ2; aÞÞ−1: ð33Þ

Both Eqs. (32) and (33) corresponding to symmetric
configurations for the subtraction point, they basically
differ by the choice of the invariant s2 and are consequently
represented by points lying on different planes in Fig. 2.
However, all renormalized form factors can be straight-

forwardly related to any other on the ground of Eqs. (29)
and (30). While, for the strong coupling, one can derive
from Eq. (31) that

gRkðζ2Þ ¼
Γ̃�
1ðq2; r2; p2;aÞjkðζÞ

Γ̄sgðζ2; aÞ gRsðζ2Þ ð34aÞ

¼ Γ̃�
1RsðζÞðq2; r2; p2Þj

kðζÞgRsðζ2Þ; ð34bÞ

relating three-gluon couplings in any MOM renormaliza-
tion scheme Rk [with the subtraction point fixed at kðζÞ] to
Rs [at sðζÞ; soft-gluon] through the ratio of their bare tree-
level form factors or, alternatively, the renormalized form
factor which comes out from that ratio.

III. RESULTS

As explained in Sec. II A, we can apply the projector
defined by Eq. (9) to extract the form factors Γ̃�

i or,
equivalently, its analog associated to the tensor basis (6)
for Γ̃i, from the transversely projected vertex calculated
with lattice QCD bare Green’s functions as shown in
Eq. (3). In Refs. [73,74], we have already presented a first
careful analysis of the three-gluon form factors Γ̄i in
bisectoral kinematics from lattice QCD. A main outcome
of that analysis appeared to be the emergence of a property
for these form factors, very specially for the tree-level one,
named therein planar degeneracy, that can be simply
described as their keeping dependence, in very good
approximation, only on the s invariant, Eq. (13a).
Assumed beyond the bisectoral kinematics, as suggested

therein4 and applied next to confirm the Schwinger mecha-
nism in Ref. [16], planar degeneracy implies that

Γ̃�
1RsðζÞðq2; r2; p2Þj

kðζÞ ¼ 1; ð35Þ

as far as evaluation at kðζÞ kinematics indicates that
s2 ¼ ζ2, for any values of θpq and θpr; and the scheme
RsðζÞ fixes the subtraction point at s2 ¼ ζ2 with
θpq ¼ θpr ¼ π=2. In short, required to take the value of
1 by the renormalization condition at the subtraction point,
the renormalized tree-level form factor takes the same value
for all angles because it keeps only dependence on s2 (this
result is strikingly illustrated by Fig. 3 in Ref. [16] for the
bisectoral case).
This result (35), applied to Eq. (34b), entails that the

observance of planar degeneracy is plainly equivalent to the
assertion that the three-gluon coupling can be uniquely
defined, irrespectively of the chosen kinematics, when the
subtraction scale is fixed for the Bose-symmetric s invari-
ant. Although approximate, this is a remarkable result.
In the following, we use a large-statistics set of quenched

lattice-QCD configurations for multiple β’s (described in
Table I) and investigate further the validity of the planar
degeneracy by extending previous results [73,74] to general
kinematics, i.e., any set of lattice momenta ðq; r; pÞ
satisfying qþ rþ p ¼ 0, corresponding to the white area
in Fig. 2.
The large amount of lattice momenta for these general

kinematics5 will allow us (i) the scrutiny of possible effects
due to lattice discretization artifacts associated to the
breaking of the rotational invariance [94–96]; (ii) those
beyond the planar degeneracy, i.e., residual dependencies
either in t,u in Eqs. (13b) and (13c) or in the angles θqr and
θqp; and, finally, (iii) to capitalize on the information for all
the orbits to gain some physical insights into the three-
gluon vertex running in its nonperturbative regime.

TABLE I. Lattice setups for the gauge-field configurations used
in this paper. The lattice spacings in the third column have been
obtained using the absolute calibration reported in [93] at β ¼ 5.8
and supplemented by a relative calibration based in the gluon
propagator scaling following the procedure described in [86].

β ðL=aÞ4 a (fm) Configurations

5.6 32 0.236 2000
5.7 32 0.182 1000
5.8 32 0.144 2000
6.0 32 0.096 2000
6.2 32 0.070 2000
6.4 32 0.054 1290

4Only an exploratory study, over a reduced number of non-
bisectoral kinematics configuration, has been made so far
confirming the observation of the property [16,73].

5For a N4 lattice with N ¼ 32, and limiting the momenta
(p ¼ 2π

Na n) to n ≤ N=4 to minimize the impact of lattice artifacts,
there are 74 800 sets of momenta for the general kinematics, 1400
for the bisectoral, and only 32 and 64 for the symmetric and soft-
gluon, respectively.
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A. H4 dependence

It is well known that any given two-point lattice-
regularized Green function, e.g., the gluon propagator,
owing to the breaking of rotational Oð4Þ down to permu-
tation Hð4Þ group invariance, depends on the four Hð4Þ
invariants [94–97]

q½2n� ¼
X4
μ¼1

q2nμ ð36Þ

with n¼1;…;4; although only the dependence on
q½2� ≡ q2 survives in the continuum limit: Clearly,
q½2n�=q2 ∼ a2ðn−1Þ → 0. Thus, the dominant subleading con-
tribution when the continuum limit is approached comes
with q½4�. A procedure, usually dubbed Hð4Þ extrapolation
[94–97], has been developed and proven to be notably
efficacious to cure two-point Green’s functions from the
Oð4Þ-breaking lattice artifacts [16,73,78,86,98–102].
In three-point cases, as the three-gluon vertex, a lattice-

regularized Green’s function could generally depend on
any Hð4Þ invariants that can be built with three momenta.
The choice of a Bose-symmetric tensor basis implies for the
corresponding form factors their depending only on Bose-
symmetric combinations of Hð4Þ invariants, the dominant
subleading contribution coming with

s½4� ¼ q½4� þ r½4� þ p½4�

4
ð37aÞ

¼ 1

2

X4
μ¼1

q2μr2μ þ q2μp2
μ þ p2

μr2μ: ð37bÞ

Other Hð4Þ invariants of a4 dimensions can be also
expressed in terms of s½4�, as is made apparent by (37b).
Thus far, the Hð4Þ extrapolation has been successfully

applied only for the three-point Green’s functions in the
soft-gluon case, in which only one momentum scale
survives, and, concerning the kinematic analysis, it behaves
as a two-point case [16,64–66,70,73], while, in the sym-
metric three-gluon case, the number of exploited kinematic
configurations made unfeasible any detailed analysis of
Oð4Þ-breaking artifacts.
In this work, we capitalize on the statistical power for

general kinematics and perform a first analysis of the
impact of these artifacts on the three-gluon vertex. The
main outcome of the analysis is illustrated by Fig. 3,
which delivers the tree-level form factor Γ̄�

1ðq2; p2Þ for the
bisectoral case in terms of θqr ¼ 2ðπ − θqpÞ and for a
given s2, while the value of the Hð4Þ-invariant s½4� appears
indicated by a color scale. Namely, no sizable and
systematic effect of s½4� appears on the tree-level form
factor, as all data for almost each angle are, in practice,
compatible within the errors. Otherwise expressed, a
linear slope in s½4� computed for almost each angle is
compatible with zero. In the cases shown in the figure, the

slopes averaged over all the angles6 are 0.09(13) and
−0.03ð16Þ for β ¼ 5.8 and 6.0, respectively. It should be
also highlighted that both the results’ errors and
dispersion notably increase near the symmetric configu-
ration, θqr ¼ 2π=3. This observation is explained by the
fact that, projecting out the form factor, one needs to deal
with the inversion of a matrix, Eq. (10), whose determi-
nant approaches zero near the symmetric configuration,
due to dimensional reduction [73].
These findings are systematically observed for the

different β’s, any value of s2, and all the kinematic
configurations. Therefore, with the available statistical
errors (corresponding to 2000 gauge-field configurations),
it can be concluded that the lattice Oð4Þ-breaking artifacts
are not relevant, and, consequently, one can reliably
average all the data that differ only in s½4� or other
higher-order Hð4Þ invariants.
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FIG. 3. The tree-level form factor for bisectoral kinematics
(q2 ¼ r2) displayed in terms of the angle θqr, for a fixed value of
the Bose-symmetric invariant. Two illustrative cases are dis-
played, with s2 ¼ 48a−2ðβÞ from two different lattice setups at
β ¼ 5.8 (top) and β ¼ 6.0 (bottom). The color scale refers to the
dimensionless ratio s½4�=ðs2Þ2.

6Planar degeneracy makes the average significant, as it entails
that the slope in s½4� is then independent of the angle.
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B. Planar degeneracy

The planar degeneracy exhibited by the three-gluon tree-
level form factor in a Bose-symmetric tensor basis can be
mathematically expressed as

Γ̃�
1ðq2; r2; p2; aÞ ¼ Γ̄sgðs2; aÞ; ð38Þ

in terms of bare quantities, which can be next renormalized
in Rs, the soft-gluon MOM scheme, to recast (38) as

Γ̃�
1RsðζÞðq2; r2; p2Þ ¼ Γ̄sg

R ðs2Þ ¼
Γ̄sgðs2; aÞ
Γ̄sgðζ2; aÞ : ð39Þ

This is what Fig. 4 shows from our lattice QCD calculation
with the Landau-gauge field configurations described in
Table I. Therein, we average the results for Eq. (39)’s lhs
(here, and in what follows, we take ζ ¼ 4.3 GeV) from all
the available general nonbisectoral configurations sharing
the same s invariant [i.e., those evaluated at kðsÞ with any
available θqp ≠ θrp] for each β; although we choose to
display all with the same symbols (golden filled circles), in
order to make the scaling more apparent. The tiny errors,
evaluated as the mean squared width for the distribution of
values at a given s, stem from their almost negligible
dispersion and prove that Eq. (39)’s lhs does depend only
on s2 and not on the angles. On top of this, the outputs for
bisectoral [blue: kðsÞ with any available θqp ¼ θrp], sym-
metric [red: kðsÞ with θqp ¼ θrp ¼ 2π=3], and soft-gluon
[black: kðsÞ with θqp ¼ θrp ¼ π=2] are also displayed. The
remarkable coincidence of all the results proves the equality
expressed by Eq. (39) and, hence, planar degeneracy within
the exposed kinematic range up to ∼4–5 GeV. It is
worthwhile stressing the nice scaling achieved with six
lattice setups, a different value of β each, represented all
together in Fig. 4 for all kinematical configurations.
Then, we focus on the bisectoral case, considering four

bins of momenta defined by a narrow interval around
s ¼ 1, 2, 3, and 4 GeV, respectively, and display them in
terms of the angle θqr ¼ 2ðπ − θrpÞ in the four panels in
Fig. 5. Equation (38) establishes that, for each bin, the
outputs should take the same value, which is referred to the
soft-gluon case. This is what the four panels show, where
the special soft-gluon and symmetric cases appear differ-
entiated in black and red, respectively.
Planar degeneracy implies equivalent features for the

form factors in any Bose-symmetric tensor basis, particu-
larly, for those associated to the basis (6), Γ̃1, which relates
to Γ̃�

1 as expressed in Eq. (12). The results for Γ̄1 and Γ̄�
1,

which derive from Γ̃1 and Γ̃�
1 in the bisectoral case, are

shown in Fig. 5 (the former in gray), and their comparison
made apparent that, when the soft-gluon limit is
approached and s2 increases, the latter respects better the
planar degeneracy than the former. The declining of Γ̄1

when θqr → π is understood as caused by a perturbative

singularity in this limit [16], which can be nonperturba-
tively removed [53] but spoils increasingly the constant
behavior imposed by Eq. (39) when s2 grows up. This
perturbative singularity also enters in Γ̄3 canceling that of
Γ̄1 when they are combined7 as in Eq. (12), thereby
resulting in Γ̄�

1 which delivers by itself the correct soft-
gluon limit [see Eq. (23)].
All these results, obtained from lattice gauge-field

configurations, are plainly consistent with the analysis
based on a continuum DSE calculation of the three-gluon
vertex in Ref. [53]. As an illustration of this excellent
agreement, we have included in every panel in Fig. 5 the
DSE result for Γ̄�

1 and Γ̄1 obtained at the corresponding
value of s2 as explained in Ref. [53].
Concerning the other two form factors, Γ̄�

2 and Γ̄�
3, again

derived from Γ̃�
2 and Γ̃�

2 as given by Eq. (18) and, according
to Eq. (12), equivalent to Γ̄2 and Γ̄3, we found them almost
compatible with zero, within errors, and negligible thereby,
as claimed in Ref. [73]. They are plotted in Figs. 6 and 7,
respectively, for s ¼ 1 and 4 GeV. It can be therein noticed
that the only sizable nonzero contribution, but very small
compared to Γ̄�

1, takes place for Γ̄�
3 in the soft-gluon limit

(θqr ¼ π) when s becomes large. Indeed, this contribution
to Γ̄�

3 ≡ Γ̄3 explains why Γ̄�
1 and Γ̄1 differ from each other in

that kinematic domain, canceling out the effect of the

-0.4
-0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

0.0 1.0 2.0 3.0 4.0 5.0 6.0

~ 1R  *

s (GeV)

soft-gluon
symmetric
bisectoral

general

FIG. 4. The tree-level form factor evaluated at any kinematic
configuration ðq2; r2; p2Þ and renormalized at the soft-gluon
point sðζÞ, Eq. (39)’s lhs, obtained from all the lattice configu-
rations in Table I, theOð4Þ-breaking artifacts treated as explained
in the text. We have taken ζ ¼ 4.3 GeV. The results for all
available (non)bisectoral configurations evaluated at the same
value of s2 have been averaged for each value of β, as explained
in the text, and all displayed with solid (golden) blue circles. The
symmetric and soft-gluon cases are particularly shown in red and
black, respectively.

7They are indeed combined by an equation which results from
applying Eq. (18) to (12) and which, as f�1 ¼ f1 þ 3=2f3,
appears to be the same restricted to d ¼ 3.
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perturbative singularity in Γ̄1 and restoring the planar
degeneracy as an excellent approximation for Γ̄�

1.
Although choosing to display the bisectoral case, in

which they depend only on a single angle, making thus
easier the representation, we have checked that Γ̄�

2 and Γ̄�
3

are negligible beyond, in any general kinematic configu-
ration. Clearly, this implies the same also for Γ̃�

2, Γ̃�
3, and Γ̃�

4

or, otherwise, according to Eq. (18), a very delicate and
implausible cancellation needs to involve the latter with the
two former ones. Furthermore, we have calculated Γ̃�

4 and
concluded that, albeit noisier than the other form factors, it
is compatible with zero in general kinematics.
Altogether, our findings support that one can very

accurately approximate the transversely projected three-
gluon vertex by

Γ̄Rαμνðq; r; pÞ ¼ Γ̄sg
R ðs2Þλ̃1αμνðq; r; pÞ; ð40Þ

renormalized at a subtraction point defined only by s2 ¼ ζ2,
irrespectively of the angles or, alternatively, the two other
Bose-symmetric invariants.

C. Zero crossing and logarithmic singularity

The key ingredient defining the transversely projected
three-gluon vertex, according to Eq. (40), is the soft-gluon
form factor Γ̄sg. Thus far, we have carefully scrutinized the
tree-level form factor Γ̄�

1 and proved that planar degeneracy
works remarkably well to describe its behavior for any
general kinematic configuration within the exposed range.
At this point and in the following, we assume planar
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FIG. 5. The tree-level form factor Γ̄�
1ðq2; p2Þ for bisectoral kinematics (q2 ¼ r2) renormalized as in Eq. (30), at the soft-gluon point

sðζÞwith ζ ¼ 4.3 GeV, as a function of the angle between equal momenta, θqr, for fixed values of s: from left to right 1 and 2 (top) and 3
and 4 GeV (bottom). The results obtained from lattice configurations with different β’s are displayed in different colors: β ¼ 5.6
(yellow), 5.7 (orange), 5.8 (light blue), 6.0 (green), 6.2 (purple), and 6.4 (dark blue). The same for Γ̄1ðq2; p2Þ is shown in gray, thus to
expose the advantage of using the tensor basis (11) instead of (6), basically at large s and θqr near π (soft-gluon). Results for values of θqr
near 2π=3 (symmetric) have been eliminated for clarity, as they are affected by the numerical noise induced by that one of matrix (10)’s
eigenvalues approaches zero. The soft-gluon (symmetric) case is plotted in black (red) for all β’s. The average of soft-gluon results is
also displayed by a dot-dashed black line. The DSE results obtained as discussed in Ref. [53] appear displayed in each panel, at its
corresponding value of s with a dashed blue (solid gray) line for Γ̄�

1 (Γ̄1).
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degeneracy and recalculate Γ̄sg from lattice QCD by
capitalizing on our large-statistics sample of gauge con-
figurations, as an average over the many different kinematic
configurations kðsÞ, for all available angles θqp and θqr at
each value of the Bose-symmetric invariant s.
Figure 8 shows the lattice results for Γ̄sg

R and displays
also a best fit with an expression motivated by a con-
struction of the three-gluon vertex relying on the STIs that it
satisfies [52,66,67,71], Eqs. (A6) and (A10) in the
Appendix. A main feature of the three-gluon vertex
revealed by this construction, and confirmed by lattice
analyses [64,65,68], is the presence of an infrared zero

crossing at very low values of s induced by a logarithmic
divergence at vanishing momenta. This singularity plays an
important dynamical role, as it is caused by the interplay of
massless ghosts and massive gluons in the loops of
the three-gluon DSE expansion [51] and can be related
to the dynamical gluon mass generation [10,11] at the level
of the two-point function via the corresponding STI [52]
(see the Appendix).
Our best fit over the ensemble of lattice data leaves us

with a global determination for the zero-crossing location,
as shown in Table II. However, the fitting expression
behaves as

Γ̄sg
R ðs2Þ ¼ γ0 þ γ1 ln

�
s2

ζ2

�
; ð41Þ

at asymptotically low s, with γ1 ¼ 0.11 [viz. Eq. (A11)].
Indeed, Eq. (41) is the more general output from identifying
and linking via STI the two- and three-point singularities
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FIG. 6. The form factor Γ̄�
2ðq2; p2Þ for bisectoral kinematics

(q2 ¼ r2), renormalized as in Eq. (30) at the soft-gluon point sðζÞ
with ζ ¼ 4.3 GeV, for the two fixed values s ¼ 1 and 4 GeV
(legends as in Fig. 5). The results for the symmetric point are
shown in red, and, as in Fig. 5, results for θqr near 2π=3 are
removed to avoid numerical noise. The soft-gluon result
(θqr ¼ π) does not exist as the corresponding basis tensor
λ̄�2αμν vanishes in this limit; while, in the symmetric case
(θqr ¼ 2π=3), the output is a combination of the limits for
Γ̄�
2ðq2; p2Þ and Γ̄�

3ðq2; p2Þ [viz. Eq. (21)]. The form factor
Γ̄2ðq2; p2Þ, associated to the basis (6), is identical to
Γ̄�
2ðq2; p2Þ, according to (12).
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FIG. 7. The same as Fig. 6, here for Γ̄�
3ðq2; p2Þ. In this case,

neither the soft-gluon nor the symmetric cases exist, because,
according to Eq. (21), the basis tensor λ̄�3αμν projects into the soft-
gluon limit of λ̄�1αμν or into the symmetric limits of λ̄�1αμν and λ̄

�
2αμν.
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generated by massless ghosts [11,103]. The same can be
also concluded from other approaches for the description of
the low-momentum behavior of QCD Green’s functions
[104]. Therefore, in the aim of estimating a systematic
uncertainty for the zero-crossing location, we fit
Eq. (41) with free parameters to all the lattice data below
a given scale smax, ranging from 0.4 to 0.7 GeV, and
derive thereby the location from the fitted parameters:
s0 ¼ ζ exp ð−γ0=½2γ1�Þ. The results can be found in
Table II, and the corresponding fits appear displayed in
Fig. 8. It should be noticed that the slope gets smaller
for smaller fitting windows, likely indicating that the
uncertainty for a lower zero-crossing location value is
underestimated.
The tree-level form factor has been formerly analyzed in

both the particular cases of symmetric and soft-gluon
kinematics [70], by using a set of NF ¼ 2þ 1 DWF
unquenched gauge-field lattice configurations at a physical
pion mass, to unveil any possible effect from realistic
dynamical quarks. Then, we capitalize on the results of

Ref. [70] to test and confirm that planar degeneracy works
equally well in the unquenched case, by displaying them in
terms of the Bose-symmetric invariant s in Fig. 9: Lattice
data for the tree-level form factor in the two different
kinematic cases, both renormalized at the same subtraction
point, exhibit an almost perfect overlapping within errors.
As for the quenched case, the agreement is indeed perfect
within the IR domain and up to roughly 4 GeV, some
marginal discrepancies appearing above which should
rely on the distinct perturbative running for different
kinematics.
Finally, the four panels in Fig. 5 made strikingly apparent

the validity of Eq. (38) from our lattice calculation and,
hence, (35). The DSE results therein displayed also con-
firms that this is a good approximation and, especially
within the IR domain, becomes exact in practice (see the
first panel for s ¼ 1 GeV). We can therefore conclude that,
in very good approximation, a unique three-gluon coupling

α3gðζ2Þ ¼
g2Rkðζ2Þ
4π

≡ g2Rsðζ2Þ
4π

ð42Þ

results from (34), the subtraction point fixed at s2 ¼ ζ2 for
any kinematic configuration. This is shown in Fig. 10,
where our lattice data display this unique three-gluon
coupling behavior for momenta below ∼4 GeV. At this
point, we can recall the instructive discussion in the end of
Sec. IV in Ref. [67], where the effective strength associated
to gluon-gluon interaction was compared to ghost-gluon by
using the coupling (42) in the soft-gluon renormalization
scheme. Our result here, inferred from the observance of
the three-gluon planar degeneracy, entails that this is the
unique effective strength for the gluon-gluon interaction
from the three-gluon coupling.

TABLE II. Logarithmic slope γ1 and zero-crossing location s0
for different fitting windows and combining data for all the
kinematics and lattice setups. The last row corresponds to the
results from the best fit of Eq. (A10) to all data.

smax (GeV) γ1 s0 (MeV)

0.7 0.138(2) 178(3)
0.6 0.118(6) 150(9)
0.5 0.107(16) 135(23)
0.4 0.075(23) 85(38)
� � � 0.11 161
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FIG. 9. The tree-level form factor renormalized at the soft-
gluon point sðζÞ with ζ ¼ 4.3 GeV, Eq. (39)’s lhs, obtained from
Γ̄sym
1 and Γ̄sg [see Eqs. (21) and (22)], calculated with unquenched

NF ¼ 2þ 1 lattice configurations at a physical pion mass [70],
and here expressed in terms of the Bose-symmetric invariant s2.
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FIG. 8. Semi-log plot of the form factor Γ̄sg
R evaluated, as

explained in the text, by assuming planar degeneracy and
averaging for all kinematic configurations at fixed s2. The fit
given in Ref. [67] [viz. Eq. (A6)] is displayed in a solid red line,
while the refined version herein introduced [viz. Eq. (A10)] is in
black; and the fits with Eq. (41) described in Table II are depicted
with dashed gray lines.
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IV. CONCLUSIONS

In the present investigation of the Landau-gauge three-
gluon vertex from lattice QCD, we have aimed at the
completion of a series of previous works by the study of
the full kinematic range and tensor space available to the
transversely projected vertex.
Two different Bose-symmetric basis have been consid-

ered, both including the tree-level (classical) tensor as one of
their elements. The first basis is the one implemented in the
previous lattice study [73], while the second one [53] is built
by rearranging the tensors of the first basis, only entailing a
minimal modification of the form factor associated to the
classical one. This classical form factor becomes then
improved, as it fully contains the three-gluon vertex in
the soft-gluon limit. In both cases, the corresponding form
factors have been projected out from the three-gluonGreen’s
function and, evaluating carefully the impact of Oð4Þ-
breaking lattice artifacts, have been seen to (i) be dominated
by the classical form factor, which (ii) is furthermore shown
to depend only on the Bose-symmetric combination of
momenta s2 [viz. Eq. (13a)], for s ≤ 4–5 GeV. The latter
being true in practice after the implementation of the two
basis, a very small violation of (ii) in the vicinity of the soft-
gluon limit and growing up with the momentum appears to
be eliminated by the improved version of the basis. These
results deliver an important confirmation, for a fully general
three-gluon vertex, of the property unveiled in previous
works and termed planar degeneracy. We have furthermore
presented the first evidence for this phenomenon in realistic
QCD, beyond pure Yang-Mills, by exploiting unquenched
gauge-field configurations using DWF at a physical
pion mass.
Finally, we have deepened into the implications of this

remarkable property and have shown that the transversely
projected three-gluon vertex can be uniquely renormalized

in the MOM scheme, irrespectively of the chosen kinematic
configuration, when the subtraction point is defined at a
given value of the Bose-symmetric combination s2 [viz.
Eq. (40)]. Thus, this renormalized vertex can be expressed in
terms of the only form factor in the soft-gluon case which,
capitalizing on the planar degeneracy, can bevery accurately
displayed by considering all the lattice data for all kinematic
configurations (viz. Fig. 8). Finally, an effective coupling
can be also defined [viz. Eq. (42)], relying on this unique
MOM three-gluon vertex, as a sensible expression of the
gluon-gluon interaction strength.
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APPENDIX: THE THREE-GLUON STIS AND THE
TREE-LEVEL FORM FACTOR

As discussed in, e.g., Ref. [66], one can generally write
the 1PI three-gluon vertex as

IΓαμνðq; r; pÞ ¼ Vαμνðq; r; pÞ þ Γαμνðq; r; pÞ; ðA1Þ

Γαμνðq; r; pÞ ¼
X10
i¼1

Xiðq2; r2; p2Þlαμν
i

þ
X4
j¼1

Yjðq2; r2; p2Þtαμνj ; ðA2Þ

where Vαμν contains the longitudinally coupled Schwinger
poles while, resorting to the Ball-Chiu basis [8,84] [see,
e.g., Eqs. (3.4) and (3.6) in Ref. [52] ], the free-pole part
Γαμν is decomposed into two, transverse and nontransverse,
pieces. One can then capitalize on the STIs involving the
three-gluon vertex, namely,

pνIΓαμνðq; r; pÞ ¼ Fðp2Þ½T μαðr; p; qÞ − T αμðq; p; rÞ�;
ðA3Þ

withFðp2Þ standing for the ghost dressing function and T αμ

for a tensor structure involving the gluon propagator and the
ghost-gluon scattering kernel [8,9,105], and rely on
Eq. (A3)’s rhs for the construction of the nontransverse
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FIG. 10. Strong effective coupling defined by Eq. (42) and
obtained according to Eq. (34) for all kinematics as done (and
labeled) in Fig. 4.
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components resulting from the vertex contraction in
(A3)’s lhs.
Rooting on the Schwinger mechanism for the generation

of a dynamical gluon mass, the gluon propagator can be
written as8

½Δðp2Þ�−1 ¼ p2Jðp2Þ þm2ðp2Þ; ðA4Þ

and it can be proven that, in (A3), the dynamical gluon
mass m2ðp2Þ is attached only to Vαμν and the kinetic term
Jðp2Þ to the nontransverse piece of Γαμν [10,11].
Notwithstanding this decoupling of m2ðp2Þ and Jðp2Þ at
the level of the STIs, they remain coupled by the gluon
propagator DSE, in which the full three-gluon vertex enters
and triggers the Schwinger mechanism.
The form factors Xi defined in Eq. (A3) can be thus

derived from the STIs like (A3), being then particularly
related toFðp2Þ and Jðp2Þ. This latter can be seen to receive
the contribution of a logarithmic singularity caused by ghost
loops in the DSE expansion of the gluon propagator which,
contrarily to gluon loops, do not remain protected by a
dynamically generated mass [51]. The same happens for the
form factors Xi, which are impacted by a logarithmic
singularity of the same origin from the three-gluon vertex
SDE. The STIs connect both singularities [52].
In this work, we calculate from lattice QCD the

transversely projected three-gluon vertex, Eq. (2). For this,
the contraction of the 1PI vertex with the transverse
projectors mixes the transverse and nontransverse pieces
of Eq. (A2) and makes the form factors in the Bose-
symmetric tensor basis, either (6) or (11), depend on
different combinations of Xi and Yi. However, although
the form factors Yi cannot be extracted from the STIs, one
is specially left with [67]

Γ̄sgðq2Þ ¼ X1ðq2; q2; 0Þ − q2X3ðq2; q2; 0Þ; ðA5Þ

in the soft-gluon case. Consequently, on the basis of the
planar degeneracy approximation and within its validity
momentum range, the transversely projected vertex
remains completely defined by the STIs.
The knowledge of Jðp2Þ is required, and it derives from

the gluon propagator DSE which, in its turn, involves the
three-gluon vertex (A1). Given the complexity of solving
the gluon propagator DSE in its full glory, an approximate
iterative procedure resorting to the dynamical equation for
m2ðp2Þ [71] and to gluon propagator lattice data is
described and followed in Ref. [66]. Relying on this output
for Jðp2Þ, the STI-based construction of Γ̄sg appears to be
in good agreement with the lattice data therein delivered for
the soft-gluon case. In Ref. [67], the STI-based result for
Γ̄sg is accurately fitted to

Rðp2Þ ¼ Fðp2ÞTðp2Þ

þ ν1

�
1

1þ ðp2=ν2Þ2
−

1

1þ ðζ2=ν2Þ2
�
; ðA6Þ

Rðp2Þ being a functional form inspired by the STI con-
struction of the vertex, with ν1;2 ¼ 0.165 and 0.83 GeV2

and where

Tðp2Þ ¼ 1þ 3λs
4π

�
1þ τ1s

τ2s þ p2

�

×
�
2 ln

p2 þ η2sðp2Þ
ζ2 þ η2sðζ2Þ

þ 1

6
ln
p2

ζ2

�
ðA7Þ

and

F−1ðp2Þ¼1þ9λF
16π

�
1þ τ1F

τ2Fþp2

�
ln
p2þη2Fðp2Þ
ζ2þη2Fðζ2Þ

ðA8Þ

dominate the low-momentum behavior and are determined
by the best fits to the solution of Jðp2Þ and to ghost
dressing lattice data, respectively, with

η2s;Fðp2Þ ¼ η21s;F
1þ p2=η22s;F

: ðA9Þ

The parameters for Eqs. (A7) and (A8) are [67] λs ¼ 0.27,
τ1s ¼ 2.67, τ2s ¼ 1.05, η21s ¼ 3.10, η22s ¼ 0.729; λF ¼ 0.22,
τ1F ¼ 6.34, τ2F ¼ 2.85, η21F ¼ 0.107, and η22F ¼ 11.2; all
parameters are in units of GeV2, except the dimension-
less λs;F.
In this work, we deliver a very precise lattice prediction

of the soft-gluon form factor based on planar degeneracy
and on exploiting thereby all available kinematic configu-
rations. Consequently, we need to slightly refine the fitting
expression, now reading

Γ̄sg
R ðp2Þ ¼ Rðp2Þ þ ν3

1þ ½ðp2 − p2
0Þ=ν4�2

−
ν3

1þ ½ðζ2 − p2
0Þ=ν4�2

; ðA10Þ

and can thus deliver a very accurate description of our
prediction with p0 ¼ 2.7 GeV and ν3;4 ¼ 0.054 and
4.12 GeV2, for all momenta below the subtraction point
ζ ¼ 4.3 GeV. It is worthwhile to remark that the low-
momentum asymptotic behavior reads

Γ̄sg
R ðp2Þ ∼ Fð0Þ λs

8π

�
1þ τ1s

τ2s

�
ln
p2

ζ2
¼ 0.11 ln

p2

ζ2
; ðA11Þ

fully relying on Eqs. (A7) and (A8) and on the DSE
determinations of the two-point gluon and ghost Green’s
functions from Refs. [66,67].

8The dependence on the renormalization scale ζ2 is kept
implicit.
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