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This study aims to develop second-order relativistic viscous magnetohydrodynamics (MHD) derived
from kinetic theory within an extended relaxation time approximation (momentum/energy dependent) for
the collision kernel. The investigation involves a detailed examination of shear stress tensor evolution
equations and associated transport coefficients. The Boltzmann equation is solved using a Chapman-
Enskog-like gradient expansion for a charge-conserved conformal system, incorporating a momentum-
dependent relaxation time. The derived relativistic nonresistive, viscous second-order MHD equations for
the shear stress tensor reveal significant modifications in the coupling with dissipative charge current and
magnetic field due to the momentum dependence of the relaxation time. By utilizing a power law
parametrization to quantify the momentum dependence of the relaxation time, the anisotropic magnetic
field-dependent shear coefficients in the Navier-Stokes limit have been investigated. The resulting viscous
coefficients are seen to be sensitive to the momentum dependence of the relaxation time.
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I. INTRODUCTION

High-energetic heavy-ion collision experiments at the
Relativistic Heavy Ion Collider (RHIC) and Large Hadron
Collider (LHC) have generated the hot and dense state of
strongly interacting nuclear matter known as the quark
gluon plasma (QGP). Relativistic hydrodynamics has
proven to be an effective framework for describing the
spacetime evolution of the QGP [1,2]. Phenomenological
analyses of bulk observables, such as collective flow and
hadron spectra, highlight the importance of incorporating
various dissipative processes in the hydrodynamical evo-
lution of the QGP [3–5]. Strong magnetic fields are
expected to be generated at the initial phase of heavy-
ion collision [6–9]. These fields may experience fast
decay as the system evolves. However, some studies have
shown that the decaying fields can induce electric currents
within the expanding system and can contribute to the
prolonged existence of magnetic fields throughout the QGP
evolution. There are still uncertainties regarding the mag-
netic field evolution and its lifetime in the QGP medium.

Recent measurements at the RHIC and LHC [10,11], as
well as the related studies [12,13] on the enhanced directed
flow (v1) of D mesons and v1 splitting of D0 and D̄0

mesons, indicated the presence of a strong magnetic field in
the early phase of the collision. Significant research efforts
have been dedicated to explore the impact of magnetic
fields on the phase diagram of quantum chromodynamics
(QCD) [14–16]. The magnetic field appears to hold a
pivotal significance, not only impacting the thermodynamic
and transport properties of the QCD medium but also
influencing heavy quark dynamics, dilepton spectra, and jet
physics [17–30]. The presence of a magnetic field has a
substantial impact on the equations of motion of charged
particles due to the spatial anisotropy introduced by the
field. This gives rise to additional transport coefficients
that depend on the orientation and strength of the magnetic
field in the medium [31–42]. The magnetic field together
with the chiral anomaly of the QCD medium can lead to
many interesting phenomena such as the chiral magnetic
effect [43–45]. Other fascinating phenomena associated
with the magnetic field are the magnetic catalysis and
inverse magnetic catalysis in the QCD medium [46,47].
One of the advancements in relativistic hydrodynamics is
its coupling with the electromagnetic fields created during
heavy-ion collisions, referred to as a magnetohydrodynam-
ical framework [48–60].
The transport coefficients of the QCD medium serve as

input parameters in the magnetohydrodynamics simulation.
These coefficients play a crucial role in capturing the
dynamic behavior of the magnetized QCD medium within
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the framework of magnetohydrodynamics. The understand-
ing of dissipative processes and their associated transport
parameters relies on the nonequilibrium physics of the
QGP which requires the knowledge of the microscopic
description of the medium. The relativistic Boltzmann
equation stands as a transport equation governing the
spacetime evolution of the phase-space distribution func-
tion. However, directly solving the Boltzmann equation
poses a challenge due to the intricate nature of the collision
term present there. Several simplified approaches for the
collision term have been proposed over the course of
several decades [61–64]. One notable approach is the
Anderson and Witting relaxation time approximation
(RTA) [64] of the collision term, where the collisional
aspects of the medium can be quantified with a relaxation
time parameter. Several efforts have been devoted in the
formulation of relativistic dissipative hydrodynamics
and in the estimation of transport coefficients within the
RTA1 [65–71]. Notably, in the usual formulation of dis-
sipative hydrodynamics with the RTA, it is assumed that the
relaxation time is independent of particle momentum.
However, in a realistic medium, the timescale of collisions
is typically influenced by the specifics of microscopic
interactions. Recently, there have been significant develop-
ments in modifying the standard RTA to address its
fundamental issues, ensuring consistency, and preserving
the basic properties of the linearized Boltzmann collision
kernel [72–76]. In Refs. [73,74], the authors established an
extended relaxation time approximation (ERTA) frame-
work for the systematic derivation of hydrodynamic equa-
tions from the Boltzmann equation. In this setup, a
relaxation time dependent on particle momentum is intro-
duced by extending the standard Anderson-Witting formu-
lation. These recent developments regarding the collision
kernel have not yet been considered in the formulation of
magnetohydrodynamics. Setting up dissipative magneto-
hydrodynamics and transport coefficients of the magnet-
ized QCD medium within the ERTA is an interesting task,
which serves as the motivation for the current study.
In the present work, we derived the nonresistive,

relativistic, second-order magnetohydrodynamic equations
for shear viscous evolution with the momentum-dependent
relaxation time for a conformal system with conserved
charges. To that end, we generalized the ERTA approach to
a magnetized medium. Utilizing the ERTA framework for
the first time in a magnetized medium, we studied the
magnetic field-dependent shear coefficients of the QCD
matter. We solved the ERTA Boltzmann equation by using
Chapman-Enskog-like gradient expansion. In the Navier-
Stokes limit, we demonstrated that the anisotropic shear
viscous coefficients of the magnetized QGP undergo
significant modifications with the new formulation, as

compared to those obtained within the conventional RTA
framework. We have also analyzed the coupling of the
shear stress tensor evolution to that of the dissipative charge
current.
The manuscript is organized as follows: we analyzed the

first- and second-order shear evolution for a conformal,
charge conserved fluid with energy-dependent relaxation
time in Sec. II. In Sec. III, we set up the first- and second-
order viscous magnetohydrodynamic evolution and the
associated transport coefficients for the nonresistive fluid
within the ERTA followed by the discussions. Finally, we
summarize the work with an outlook in Sec. IV.
Notations and conventions.—Throughout the analysis,

we work with natural units c ¼ kB ¼ ℏ ¼ 1, where c is
the velocity of light in vacuum, kB represents the
Boltzmann constant, and ℏ denotes the reduced Planck’s
constant. We consider the Minkowskian metric tensor
gμν ¼ diagð1;−1;−1;−1Þ. Hydrodynamic fluid four-
velocity is denoted by uμ which satisfies uμuμ ¼ 1 and
has the form uμ ¼ ð1; 0; 0; 0Þ in its local rest frame. The
projection operator that is orthogonal to uμ is defined as
Δμν ¼ gμν − uμuν. The quantityΔμν

αβ ≡ 1
2
ðΔμ

αΔν
β þ Δμ

βΔν
αÞ −

1
3
ΔμνΔαβ represents the rank-four traceless symmetric

projection operator orthogonal to uα and Δαβ.

II. SHEAR STRESS EVOLUTION
WITH ERTA, μ ≠ 0, B = 0

The energy-momentum tensor and the net-quark current
of a conformal system (system of massless quarks and
gluons) with conserved charges can be expressed in terms
of the single particle phase-space distribution function as

Tμν ¼
Z

dPpμpνðf þ f̄Þ ¼ εuμuν − PΔμν þ πμν; ð1Þ

Nμ ¼
Z

dPpμðf − f̄Þ ¼ nuμ þ nμ; ð2Þ

where dP ¼ dg
d3jpj

ð2πÞ3p0
is the phase-space factor with dg as

the degeneracy of the particle species. The quantities ε, P,
and n denote the energy density, the pressure, and the net-
quark number of the medium. The tensor decompositions
will be modified in the presence of a magnetic field. Here,
πμν and nμ are the dissipative quantities, namely shear stress
tensor and particle diffusion current, respectively, and the
hydrodynamic fluid velocity uμ is defined in the Landau
frame. It is important to emphasize that the bulk viscous
pressure vanishes in a conformal system (massless case).
The fundamental evolution equations of ε, n, and uμ can be
obtained from projections of energy-momentum conserva-
tion, ∂μTμν ¼ 0, along and orthogonal to uμ, and from the
particle four-current conservation, ∂μNμ ¼ 0, as follows:

ε̇þ ðεþ PÞθ − πμνσμν ¼ 0; ð3Þ
1Throughout the article, RTA refers to the relaxation time

approximation introduced by Anderson and Witting, where the
relaxation time is independent of particle energy or momentum.
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ðϵþ PÞu̇μ −∇μPþ Δμ
ν∂γπ

γν ¼ 0; ð4Þ

ṅþ nθ þ ∂μnμ ¼ 0; ð5Þ

where Ȧ ¼ uμ∂μA denotes the comoving derivative, ∇μ ¼
Δμν

∂ν is the spatial derivative, θ ¼ ∂μuμ is the expansion
parameter, and σμν ¼ Δμν

αβ∇αuβ is the velocity stress tensor.
Here, we consider the particle equilibrium distribution
function as f0 ¼ e−βðu·pÞþα where β ¼ 1

T and α ¼ μ
T with

μ as the chemical potential of the particle. For antiparticles,
f0 → f̄0 with α → −α. We can define thermodynamic
quantities from Eqs. (1) and (2) as

ε ¼ uμuν

Z
dPpμpνðf0 þ f̄0Þ ¼ 6dg

cosh α
π2β4

; ð6Þ

P ¼ −
Δμν

3

Z
dPpμpνðf0 þ f̄0Þ ¼ 2dg

coshα
π2β4

; ð7Þ

n ¼ uμ

Z
dPpμðf0 − f̄0Þ ¼ 2dg

sinh α
π2β3

: ð8Þ

The expressions for the derivatives of β and α can be
obtained by substituting Eqs. (6)–(8) into Eqs. (3)–(5) as

α̇ ¼ −An∂μnμ − AΠπ
μνσμν; ð9Þ

β̇ ¼ βθ

3
−Dn∂μnμ −DΠπ

μνσμν; ð10Þ

∇αβ ¼ −βu̇α þ n
ϵþ P

∇αα −
β

ϵþ P
Δα

ν∂μπ
μν; ð11Þ

where the coefficients An, AΠ, Dn, and DΠ are functions of
the temperature inverse β and chemical potential α, and
hence a function of spacetime ðx; tÞ:

An ¼
βϵ=3�

ϵ2β2

9
− 3n2

4

� ; AΠ ¼ βn=4�
ϵ2β2

9
− 3n2

4

� ; ð12Þ

Dn ¼
3nβ�

4ϵ2β2

3
− 9n2

� ; DΠ ¼ ϵβ3

3
�
4ϵ2β2

3
− 9n2

� : ð13Þ

For a system near to local thermodynamic equilibrium, the
particle nonequilibrium phase-space distribution function
can be expressed as f ¼ f0 þ δf with jδfj ≪ f0 (for
antiparticles f̄ ¼ f̄0 þ δf̄). Using Eqs. (1) and (2), the
shear stress tensor and the particle diffusion current can be
defined in terms of the nonequilibrium part of the distri-
bution function as

πμν ¼ Δμν
αβ

Z
dPpαpβðδf þ δf̄Þ; ð14Þ

nμ ¼ Δμ
ν

Z
dPpνðδf − δf̄Þ: ð15Þ

The derivation of these dissipative quantities requires the
knowledge of δf and δf̄ and can be obtained by solving the
Boltzmann equation. We obtain the first- and second-order
corrections to the local equilibrium distribution within the
ERTA framework in the next section.

A. Solving Boltzmann equation with ERTA

The relativistic transport equation characterizes the
evolution of the phase-space distribution function away
from equilibrium. In the absence of electromagnetic fields,
the Boltzmann equation (for particles) takes the form as
follows:

pμ
∂μf ¼ CðfÞ; ð16Þ

where CðfÞ is the collision kernel. The conventional way to
quantify the collision terms is to adopt the RTA framework

introduced by Anderson and Witting as CðfÞ ¼ − ðu·pÞ
τRðxÞ with

τRðxÞ as the relaxation time [64]. However, the above
approximation assumes the relaxation time to be indepen-
dent of particle energy. As the timescale of collisions
depends on the microscopic interactions in the medium, we
consider momentum-dependent relaxation time in the
present analysis. When the τR becomes dependent on
particle energy, it is seen that the conventional RTA is
incompatible with conservation equations for the energy-
momentum tensor and net-charge current, even in the
Landau frame. Hence, we work with the recently developed
ERTA framework [73] that takes into account the energy-
dependent relaxation time τRðx; pÞ by ensuring the satis-
faction of conservation equations. The Boltzmann equation
within the ERTA has the form

pμ
∂μf ¼ −

ðu · pÞ
τRðx; pÞ

ðf − f�0Þ: ð17Þ

Here, f�0 ¼ e−β
�ðu�·pÞþα� with β� ¼ 1

T� and α� ¼ μ�
T�. The four-

vector u�μ does not necessarily have to correspond to the
hydrodynamic four-velocity uμ. In the local rest frame of u�μ,
which can be referred to as the thermodynamic frame, the
distribution function is reduced to the Maxwell-Boltzmann
form with T� and μ� as the temperature and chemical
potential, respectively. The interpretation and distinctions
between the thermodynamic frame and the hydrodynamic
frame are discussed in detail in Ref. [73]. Nonequilibrium
corrections to the distribution function are obtained by
employing an iterative Chapman-Enskog-like solution of
the ERTA Boltzmann equation as

f ¼ f0 þ δfð1Þ þ δfð2Þ þ � � � ; ð18Þ
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where δfðiÞwith ði ¼ 1; 2; 3;…Þ is the gradient correction of
the distribution function to the ith order. Note that the
expansion is carried out around the local hydrodynamic
equilibrium as our interest lies in deriving hydrodynamic
equations.

B. First- and second-order shear viscous evolution
at finite μ

1. First-order evolution

We briefly review the derivation of the first-order evolu-
tion equation of shear tensor and number diffusion for a
conformal system. The first-order correction to the particle
distribution functions can be obtained from the ERTA
Boltzmann equation as defined in Eq. (17) as follows:

δfð1Þ ¼ −
τR

ðu · pÞp
μ
∂μf0 þ δf�ð1Þ; ð19Þ

where δf�ð1Þ ¼ f�0 − f0 arises due to the difference between

the definition of thermodynamic and hydrodynamic frame
variables. Defining T� ¼ T þ δT, μ� ¼ μþ δμ, and
u�μ ¼ uμ þ δuμ, we can define δf�ð1Þ from the Taylor expan-

sion of f�0 about T, μ, and uμ as

δf�ð1Þ ¼
�
−
ðδu · pÞ

T
þ ðu · p − μÞ

T2
δT þ δμ

T

�
f0: ð20Þ

Employing the form of the hydrodynamic equilibrium
distribution function and Eq. (20) in Eq. (19), we can write
the first-order correction to the particle and antiparticle
distribution functions as

δfð1Þ ¼ τR

��
n

ϵþ P
−

1

ðu · pÞ
�
pμ∇μαþ βpμpασμα

ðu · pÞ
�
f0

þ
�
−
ðδu · pÞ

T
þ ðu · p − μÞ

T2
δT þ δμ

T

�
f0; ð21Þ

δf̄ð1Þ ¼ τR

��
n

ϵþ P
þ 1

ðu · pÞ
�
pμ∇μαþ βpμpασμα

ðu · pÞ
�
f̄0

þ
�
−
ðδu · pÞ

T
þ ðu · pþ μÞ

T2
δT −

δμ

T

�
f̄0: ð22Þ

The quantities δT, δμ, and δuμ can be defined by imposing
the Landau frame condition uνTμν ¼ εuμ and the matching
conditions, ε ¼ ε0 and n ¼ n0. In the most general case,
these quantities take the form as [73]

δuμ ¼ Cβ∇μα; δμ ¼ C̄θ; δT ¼ Cθ; ð23Þ

where C, C̄, andC are the dimensionless variables. It can be
shown that for a conformal system with conserved charges,
the variables C̄ and C vanish and C takes the form as

C ¼ 1

β2Iþ31

�
n

ϵþ P
Kþ

31 − K−
21

�
: ð24Þ

Here, IðrÞ�nq and KðrÞ�
nq are the thermodynamic integrals as

defined in Appendix A. Employing Eqs. (21)–(23) in
Eqs. (14) and (15), we obtain the expression of shear tensor
and number diffusion current as

πμν ¼ 2η0σ
μν; with η0 ¼

Kþ
32

T
; ð25Þ

nμ ¼ κ∇μα; with κ ¼
�
−Cβ2I−21 þ

n
ϵþ P

K−
21 − Kþ

11

�
:

ð26Þ

Before proceeding to the derivation of the second-order
evolution equation for the shear stress tensor, let us discuss
the significance of the quantities, μ� ¼ μþ δμ, T� ¼ T þ
δT, and u�μ ¼ uμ þ δuμ in the ERTA framework. The
conventional formulation of hydrodynamics with RTA
(momentum independent τR) workswithin the Landau frame
to uphold macroscopic conservation laws. Simply replacing
the conventional thermal relaxation time with momentum-
dependent relaxation time can result in the violation of
microscopic conservation laws. This has generated signifi-
cant attention toward achieving a consistent approximation
of the collision term. A recent study [72] offers a notable
advancement in this direction by introducing counterterms in
the form of projectors to restore the conservation laws in the
presence of momentum-dependent relaxation time, regard-
less of the choice of hydrodynamic frames. The ERTA
framework presents a distinct solution to this problem. By
defining the equilibriumdistribution functionwithin theRTA
approximation in the “thermodynamic frame” (characterized
by the parameters μ�, T�, and u�μ), one can construct
consistent order-by-order hydrodynamics such that conser-
vation laws are satisfied at every stage of the gradient
expansion. Since our focus is on the derivation of hydro-
dynamic equations, the expansion of the nonequilibrium
distribution function is done about the hydrodynamic equi-
librium. However, the nonequilibrium part of the distribution
function gets an additional contribution in the current
framework δf� that arises from the difference between the
definition of thermodynamic and hydrodynamic frame
variables (i.e., in terms of μ� − μ ¼ δμ, T� − T ¼ δT, and
u�μ − uμ ¼ δuμ). The counterterms due to the momentum
dependence of the relaxation time are thus absorbed in the
definition of δμ, δT, and δuμ. In Appendix D, we have
presented a detailed derivation of the conservation equations
within the ERTA setup and verified that the definition of δμ,
δT, and δuμ encompasses the necessary counterterms arising
from the momentum dependence of the relaxation time, thus
ensuring the satisfaction of the conservation equations.
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2. Second-order evolution

In Ref. [77], the authors have explored second-order
hydrodynamics at a finite chemical potential within the
conventional RTA framework. One important observation
from the study was that, within the RTA, the second-order
evolution equations for πμν and nμ can be decoupled for a
system of massless quarks and gluons. In this subsection,
we reexamine the second-order evolution of shear viscosity
at finite μ using the ERTA framework. We start by
expressing the distribution function until the second order
in a gradient expansion as f ¼ f0 þ Δf with Δf ≡ δfð1Þ þ
δfð2Þ. Employing the Chapman-Enskog-like expansion and
ERTA Boltzmann equation, we have

Δf ¼ −
τR

ðu · pÞp
μ
∂μf0

−
τR

ðu · pÞp
μ
∂μ

�
−

τR
ðu · pÞp

μ
∂μf0 þ δf�ð1Þ

�
þ Δf�ð2Þ:

ð27Þ

Employing the definitions Eqs. (9)–(11) and keeping all
terms till second order, the first term of Eq. (27) can be
simplified as

−
τR

ðu · pÞp
μ
∂μf0

¼ τR½
�

n
εþ P

−
1

ðu · pÞ
�
pμ∇μα

þ βpμpασμα
ðu · pÞ −

β

εþ P
fpl∇kπ

k
l − plπklu̇kg

þ ðAn −Dnðu · pÞÞ∂μnμ

þ fAΠ −
�
DΠ þ β

εþ P

�
ðu · pÞgπαβσαβ�f0: ð28Þ

Notably, for the massless system at the μ ¼ 0 case,
τR

ðu·pÞp
μ
∂μδf�ð1Þ ¼ Oð∂3Þ and will not contribute to the

second-order evolution equation. However, this term will
have a nonvanishing contribution at finite μ. The second
term of Eq. (27) in the case of the massless charge
conserved system reduces as

−
τR

ðu · pÞp
μ
∂μ

�
−

τR
ðu · pÞp

μ
∂μf0 þ δf�ð1Þ

�

¼ −
τR

ðu · pÞp
k
∂k

��
−C

pl∇lα

T2
þ τR

�
n

ϵþ P
−

1

ðu · pÞ
�

× pl∇lαþ τRβ
plpmσlm
ðu · pÞ

�
f0

�
: ð29Þ

Imposing the Landau frame condition and matching con-
dition as in first order, one can obtain the last term of
Eq. (27) as

Δf�ð2Þ ¼
�
−
ðδuð2Þ ·pÞ

T
þðu ·p−μÞ

T2
δTð2Þ þ

δμð2Þ
T

�
f0: ð30Þ

However, it is observed that the contribution from Δf�ð2Þ
vanishes in the context of shear viscous evolution.2 It is
important to emphasize that the evolution of bulk viscous
pressure and number diffusion will depend on the term
Δf�ð2Þ. Substituting Eq. (27) in Eq. (14), we obtain the

second-order evolution equations for shear tensor as

π̇hμνi þ πμν

τπ
¼ 2βπσ

μν − δπππ
μνθþ 2πhμγ ωνiγ − τπππ

hμ
γ σνiγ

− τπnnhμu̇νi þ λπnnhμ∇νiαþ lπn∇hμnνi: ð31Þ

We have defined τπ ¼ Lþ
32

Kþ
32

such that τπ → τR in the limit

where the relaxation time is independent of particle
momentum. The transport coefficients appearing in the
shear viscous evolution in Eq. (31) are obtained as

βπ ¼
η0
τπ

¼ ðKþ
32Þ2

TLþ
32

; ð32Þ

δππ ¼
4

3
; ð33Þ

τππ ¼
2

7

Lþ
42

TLþ
32

; ð34Þ

τnn ¼ 2ðCβ2Kþ
32 − χ̃Lþ

32 þ L−
22Þ; ð35Þ

lπn ¼
2

κτπ
ðCβ2Kþ

32 − χ̃Lþ
32 þ L−

22Þ; ð36Þ

τπn ¼
2

κτπ

�
χ̃Mþ

42 −M−
32 þ L−

22 þ Kþ
32

�
2β2C − β3

∂C
∂β

�

− βLþ
32

∂χ̃

∂β
− χ̃Nþ

32β þ N−
22β −

τnnβ

2κ

∂κ

∂β

�
; ð37Þ

λπn ¼
1

κτπ

�
Kþ

32

�
4Cβχ̃ þ 2β2

�
∂C
∂α

þ χ̃
∂C
∂β

�	

− 2χ̃2Nþ
32 þ 2χ̃N−

22 − 2Lþ
32

�
∂χ̃

∂α
þ χ̃

∂χ̃

∂β

�

þ 2Cβ2K−
32 − 2Cβ2χ̃Kþ

42 − 4χ̃L−
32 þ 2Lþ

22 þ 2χ̃2Lþ
42

−
τnn
κ

�
∂κ

∂α
þ χ̃

∂κ

∂β

��
; ð38Þ

2It is seen thatΔμν
αβ

R
dPpαpβðΔf�ð2Þ þΔf̄�ð2ÞÞ¼−Δμν

αβI
αβγ
þ

Δuγð2Þ
T þ

Δμν
αβI

αβγ
þ uγ

ΔTð2Þ
T2 −Δμν

αβI
αβ
− μ

ΔTð2Þ
T2 þΔμν

αβI
αβ
−

Δμð2Þ
T ¼0 due to the proper-

ties of our-rank traceless symmetric projection operator. The
decomposition of Iαβγ is given in Eq. (A7).
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with χ̃ ¼ n
ϵþP. The thermodynamic integrals, Lnq,Mnq, and

Nnq are defined in Appendix A. Equation (31) denotes the
second-order evolution equation of the shear stress tensor for
a charge conserved conformal fluid with the new momen-
tum-dependent ERTA framework. Shear viscosity with
energy-dependent relaxation time in the absence of dissipa-
tive charge current in the QCD medium has been analyzed
recently [74]. In Fig. 1, we depicted the temperature behavior
of new coefficients λπn, lπn, and τπn that couples shear tensor
with charge current for a system of massless quarks and
gluons at a finite chemical potential with theERTAapproach.
For quantitative estimation, we use a power law parametri-
zation for the relaxation time as [78–81]

τRðx; pÞ ¼ τ0ðxÞ
�
u · p
T

�
l
; where τ0ðxÞ ¼ κ̄=T: ð39Þ

Here, τ0ðxÞ is the momentum-independent part, κ̄ being a
dimensionless constant, and l is an arbitrary parameter that
determines the order of momentum dependence of the
relaxation time. The parameter τ0 is of a timescale propor-
tional to the mean free path, and hence, we can use τ0ðxÞ
to define our Knudsen number, which is Kn ¼ τ0∂ [82]. In
the limit l ¼ 0, we have τR ¼ τ0ðxÞ, which describes the
momentum-independent conventional RTA framework.
Taking κ̄ to be a dimensionless constant here, in the mass-
less, Maxwell-Boltzmann case, we can express the above

FIG. 1. Impact of momentum-dependent relaxation time on the temperature dependence of lπn, τπn, and λπn. The coefficients are also
plotted as a function of l at different temperatures. The ERTA results are compared with those from RTA estimations. Here, l ¼ 0
corresponds to the usual RTA approximation.
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transport coefficients only as a function of the momentum
dependence parameter l, chemical potential α, and temper-
ature T as follows:

τπ ¼
κ̄Γð5þ 2lÞ
TΓð5þ lÞ ; l > −

5

2
; ð40Þ

η0 ¼
eαdgκ̄Γð5þ lÞ

30π2β3
; l > −5; ð41Þ

τππ ¼
2Γð6þ 2lÞ
7Γð5þ lÞ ; l > −

5

2
; ð42Þ

lπn ¼
TlΓð5þ lÞfΓð5þ lÞΓð4þ lÞ − 48Γð4þ 2lÞg

15ðl2 − lþ 4ÞΓð3þ lÞΓð5þ 2lÞ ;

l > −2; ð43Þ

τπn ¼
4TlΓð5þ lÞfΓð5þ lÞΓð4þ lÞ − 48Γð4þ 2lÞg

15ðl2 − lþ 4ÞΓð3þ lÞΓð5þ 2lÞ ;

l > −2; ð44Þ

λπn

¼lðlþ1ÞTΓð5þlÞf−Γð4þlÞΓð5þlÞþ48Γð4þ2lÞg
60ðl2−lþ4ÞΓð3þlÞΓð5þ2lÞ ;

l>−2: ð45Þ

In a prior study, detailed in Ref. [77], the authors have
demonstrated that the second-order evolution equations for
the shear stress tensor and the charge current are decoupled
for a system of massless quarks and gluons at finite chemical
potential within the conventional RTA. In contrast to this,
with the present analysis within the ERTA, we observe that
there exists a coupling with the evolution of shear tensor and
particle diffusion in the medium due to the momentum
dependence of the thermal relaxation time. In Eq. (31) the
terms nhμu̇νi, nhμ∇νiα, and ∇hμnνi couple evolution of shear
tensor with particle current.We observe that Eq. (31) reduces
to the result of [77], when we switch off the momentum
dependence of the relaxation time as the coefficients λπn, lπn,
and τπn vanish for a system of massless particles at finite μ in
the limit of constant τR. It is seen that the momentum
dependence of relaxation time has a significant effect on the
transport coefficients. All thermodynamic integrals are
modified in the ERTA approach, and notably, a new

thermodynamic integral MðmÞ�
nq as defined in Eq. (A10)

arises solely due to momentum dependence of the relaxation
time. In addition to that, the term C (that arises from the
matching condition) gives a nonvanishing contribution
within the ERTA framework. We observed that λπn, lπn,
and τπn are sensitive to the value ofl. The sign ofl also plays
an important role in the estimation as it indicates how the
particle energy influences the strength of interaction; i.e., a
positive sign of l indicates the decrease of interaction

strength with the energy of the particle. Notably, the sign
of the coefficients gets reversedwith the change in the sign of
l. It can be argued that range 0 ≤ l ≤ 1 is more relevant for
QCDmedium [78]. The signs of the transport coefficients in
the range 0 ≤ l ≤ 1 align with those found in the previous
study for the QCD medium [83].

C. Comparison of the ERTA results with the exact
results from the λϕ4 theory (l= 1 case)

Exact analytical solutions of the Boltzmann equation are
difficult to obtain and have been estimated only for
homogeneous, isotropic systems with a simpler interaction
model. We follow Refs. [84,85] where the exact results of
transport coefficients for a massless scalar theory are
obtained. In the recent study [84], the authors have
analytically extracted a full set of eigenvalues and eigen-
functions of the relativistic linearized Boltzmann collision
operator with the interaction considered being λϕ4 (mass-
less scalar theory). Further, it has been shown that in the
appropriate limit, a linearized collision kernel leads to the
recently formulated novel RTA proposed in Ref. [72].
Considering the massless scalar λϕ4 theory at high

temperatures, the linearized collision operator can be
written as [84]

L̂ϕk ¼
g
2

Z
dK0dPdP0f0k0 ð2πÞ5δð4Þðkþ k0 − p − p0Þ

× ðϕp þ ϕp0 − ϕk − ϕk0 Þ: ð46Þ

The eigenfunctions and eigenvalues of this operator were
calculated exactly, and they are given by [84]

L̂Lð2mþ1Þ
nk khμ1 � � � kμli ¼ −

gM
2

�
nþm − 1

nþmþ 1
þ δl0δn0

�

× Lð2mþ1Þ
nk khμ1 � � � kμmi; ð47Þ

where Lð2mþ1Þ
nk are the associated Laguerre polynomials

of degree n. With this, various transport coefficients have
been calculated in first and second orders in gradient
expansion [85]. It has also been noted that if we expand
ϕk on the basis of the irreducible tensors that constitute the
eigenfunctions of L̂, we recover the RTAwith momentum-
dependent relaxation time, τR along with some counter-
terms. The form of τR can be read off from L̂ϕk as

τRðpÞ ¼
2ðu · pÞ
gM

: ð48Þ

WithM ¼ eα=ð2π2β2Þ and g ¼ λ2=ð32πÞ, and τR takes the
form as follows:

τR ¼ 4π2

geαT

�
u · p
T

�
: ð49Þ
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Comparing Eqs. (39) and (49), in λϕ4, we identify κ̄ in the
ERTA framework as κ̄ ¼ 4π2=ðgeαÞ. With this, we can
compare the results of the transport coefficients calculated
in the ERTA for l ¼ 1 with those from λϕ4 theory. With
this identification of κ̄, when the mass is taken to be zero,
Eqs. (32)–(38) can be expressed as a function of only T and
the momentum-dependence parameter l for comparison
with the λϕ4 theory:

η0 ¼
2dgΓð5þ lÞ

15gβ3
; l > −5; ð50Þ

τπ ¼
4π2

geαT
Γð5þ 2lÞ
Γð5þ lÞ ; l > −

5

2
; ð51Þ

τππ ¼
2

7

Γð6þ 2lÞ
Γð5þ 2lÞ ; l > −

5

2
; ð52Þ

lπn ¼
TlΓð5þ lÞfΓð5þ lÞΓð4þ lÞ − 48Γð4þ 2lÞg

15ðl2 − lþ 4ÞΓð3þ lÞΓð5þ 2lÞ ;

l > −2; ð53Þ

τπn ¼
4TlΓð5þ lÞfΓð5þ lÞΓð4þ lÞ − 48Γð4þ 2lÞg

15ðl2 − lþ 4ÞΓð3þ lÞΓð5þ 2lÞ ;

l > −2; ð54Þ

λπn ¼
lðlþ 1ÞTΓð5þ lÞf−Γð4þ lÞΓð5þ lÞ þ 48Γð4þ 2lÞg

60ðl2 − lþ 4ÞΓð3þ lÞΓð5þ 2lÞ ; l > −2 ð55Þ

The comparison is summarized in Table I for l ¼ 1.3 We
observe that τπ ∼ ðT exp αÞ−1 in the ERTA (l ¼ 1) case;
i.e., the relaxation time also has a dependence on the
fugacity α of the gas in addition to the temperature, and
this observation is consistent with the result in [85]. It is
seen that the temperature dependences of the first- and
most of the second-order transport coefficients are con-
sistent in comparison with those obtained from the λϕ4

theory. We also note that η, κ, and τπ values for ERTA
(l ¼ 1) depend on the degeneracy factor dg unlike the λϕ4

results.
As for the last three second-order transport coefficients,

lπn and τπn match with the exact results from the λϕ4 theory.
For a one-to-one matching of ERTA results with scalar field
theory predictions (where the degeneracy factor is taken as
1), the first three ERTA coefficients (in Table I) differ by a
factor of 1=3, even though their temperature behavior is
exactly similar. Despite this, most of the second-order
ERTA coefficients match exactly with those from the scalar
theory. Hence, it is expected that the overall hydrodynam-
ical evolution with the ERTA may not be significantly
different from that of the scalar theory. We note that results
from holography [86] suggest that for a strongly coupled
system, the high momentum modes relax faster than low
momentum modes leading to a negative power of the
momentum dependence in the relaxation time (l < 0), and
for a weakly coupled system, low momentum modes relax
faster than the high momentum modes leading to (l > 0).
Since our results for l ¼ 1 mostly agree with that of the

λϕ4 theory, which is a weakly coupled system, they are also
consistent with the observations from [86].
The presence of an external source current will further

affect the shear viscous coefficients of the medium. In the
next section, we will analyze the impact of the magnetic
field on the shear viscous coefficients of the QCD medium
within the ERTA.

III. MAGNETOHYDRODYNAMIC SHEAR
EVOLUTION WITH ERTA, μ ≠ 0, B ≠ 0

In the conventional formulation of relativistic magneto-
hydrodynamics, the equations of fluid dynamics are
coupled with Maxwell’s equations taking both the electric
and the magnetic fields as dynamical variables:

TABLE I. Comparison of the ERTA coefficients with exact
results from λϕ4 theory by taking κ̄ as given in Eq. (48). The
exact form of transport coefficients of λϕ4 theory are obtained
from [84,85].

Coefficients
RTA results
(l ¼ 0)

ERTA results
(l ¼ 1)

λϕ4 results
(exact)

τπ τc 24dg
gn0β2

72
gn0β2

η 4Pτc
5

16dg
gβ3

48
gβ3

κ n0τc
12

dg
gβ2

3
gβ2

δππ 4
3

4
3

4
3

τππ 10
7

2 2
lπn 0 − 4

3β − 4
3β

τπn 0 − 16
3β − 16

3β

λπn 0 2
3β

5
6β

3For comparison purpose, we have rearranged the second-
order shear evolution equation of Ref. [85] as in the form of
Eq. (31).
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∂μFμν ¼ Jν;

∂μF̃μν ¼ 0; ð56Þ
where Jμ is the electric charge four-current. The electro-
magnetic field tensor Fμν can be decomposed into compo-
nents parallel and perpendicular to the fluid velocity uμ as

Fμν ¼ Fμλuλuν þ Fλνuλuμ þ Δμ
αΔν

βF
αβ

¼ Eμuν − Eνuμ þ ϵμναβuαBβ: ð57Þ

Similarly, we can decompose its dual counterpart F̃μν as

F̃μν ¼ 1

2
ϵμναβFαβ ¼ Bμuν − Bνuμ − ϵμναβuαEβ; ð58Þ

with Eμ ¼ Fμνuν and Bμ ¼ F̃μνuν. Here, ϵμναβ is the rank-
four Levi-Civita tensor with ϵ0123 ¼ þ1 and hence
ϵμναβ ¼ −ϵμναβ. In the local rest frame of the fluid, Eμ ¼
ð0;EÞ and Bμ ¼ ð0;BÞ, and hence, these coincide with the
usual electric and magnetic fields. Note that the electric and
magnetic four-vectors are orthogonal to the fluid velocity,
i.e., Eμuμ ¼ 0 and Bμuμ ¼ 0.
The presence of the electromagnetic field introduces

additional new scales into the kinetic equation, RL ¼ k⊥
qB

which is the Larmor radius where k⊥ are the momenta of
particles perpendicular to the magnetic field. For relativistic
hot plasma k⊥ ∼ T, and we have RL ¼ T

qB that defines the
magnetic cyclotron scale. Our focus is in the regime where
rc ≪ RL and 1

T ≪ RL. The first inequality indicates that
the impact of the magnetic field can be neglected in the
collision term, and the second one implies that the Landau
quantization is not required and can proceed with the
classical treatment. In this regime, it is safer to assume that
the magnetization pressure −MB (where M is the mag-
netization) is much smaller than thermodynamic pressure
P. In other words, even though we started the analysis by
considering that electromagnetic fields are dynamical
fields, for the case with vanishing magnetization or
polarization, the fields are acting as external fields, and
hence, the magnetic field effects enter through the Lorentz
force term in the kinetic equation [56]. The microscopic
description and evolution of the medium with a finite
magnetization is not yet well understood from the kinetic
theory point of view (the complexities lie in dealing with
the dipole moment of the consistent particles of the
medium). The present study focuses on the regime 1

T ≪
RL where magnetization effects are assumed to have a
negligible impact.
In the present analysis, we work with the widely used

approximation of an infinitely conducting medium, before
dealing with the more complicated case of a medium with a
finite electrical conductivity in a follow-up work. When the
electrical conductivity is assumed to be infinite, σE → ∞,
the induced current Jμd ¼ σEEμ → ∞ for any value of

the electric field strength. Hence, in this limit, we demand
that Eμ ¼ 0 and so in an arbitrary reference frame,
E ¼ −v ×B. This eliminates the electric field from the
equations of motion. While deriving dissipative magneto-
hydrodynamics from kinetic theory, dissipation is under-
stood to be a result of collisions between the particles in the
medium with the mean free path between two collisions
being λmfp ∼ 1=ðnσÞ, where σ is the scattering cross section
for 2 → 2 collisions and n is the number density. Ideal
magnetohydrodynamics with an infinite electrical conduc-
tivity though assumes no collisions or an infinite λmfp.
Hence, dissipative magnetohydrodynamics with infinite
conductivity will not describe the complete evolution.
Nevertheless, we particularly focus on the dissipation with
vanishing electric field, as our current interest lies on the
momentum transport (evolution of shear stress tensor) of
the viscous medium. We intend to explore the case of finite
conductivity in the near future.
Under the assumption of Eμ ¼ 0, the electromagnetic

field tensor becomes

Fμν → Bμν ¼ ϵμναβuαBβ ¼ −Bbμν; ð59Þ

where BμBμ ¼ −B2 and bμ ¼ Bμ

B with bμuμ ¼ 0 and
bμbμ ¼ −1. In the presence of a magnetic field, it is
convenient to introduce a rank-two operator, which projects
onto a subspace orthogonal to both uμ and bμ:

Ξμν ¼ Δμν þ bμbν: ð60Þ

From Eq. (59), we define the antisymmetric tensor
bμν ¼ −ϵμναβuαbβ, which is orthogonal to both bμ and
uμ, i.e., bμνbν ¼ bμνuν ¼ 0 with bμνbμν ¼ 2. Using the
identities for ϵμναβ, we have bμαbνα ¼ Ξμ

ν . Under these
conventions in Maxwell’s equations, the evolution equation
for the magnetic field driven by the fluid current can be
described as

ϵμναβðuα∂μBβ þ Bβ∂μuαÞ ¼ Jν; ð61Þ

Ḃμ þ Bμθ ¼ uμ∂νBν þ Bν∇νuμ: ð62Þ

Further, the electromagnetic energy-momentum tensor can
be described as [48]

Tμν
em ¼−FμλFν

λþ
1

4
gμνFαβFαβ ¼

B2

2
ðuμuν−Δμν− 2bμbνÞ:

ð63Þ

Here we have considered a nonmagnetizable and non-
polarizable fluid for the current study. Using Maxwell’s
equations, the evolution of Tμν

em can be written as

∂μT
μν
em ¼ −FνλJλ ¼ BbμλJλ: ð64Þ
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A. Equation of motion in the presence
of electromagnetic fields

For a nonmagnetizable and nonpolarizable fluid, the total
energy-momentum tensor can be expressed as the sum of
the energy-momentum tensor of the electromagnetic field
and the fluid as follows:

Tμν ¼ Tμν
em þ Tμν

f : ð65Þ

In the more general case, the total current is the combi-
nation of the current from the fluid (Jμf) and an external
current (Jμext) due to the motion of the spectator particles,

Jμ ¼ Jμf þ Jμext: ð66Þ

For the fluid current, Jμf ¼ nfNμ, where nf is the local
charge density in the local rest frame given by nf ¼ qn and
just like Nμ, since the total charge is also conserved, we
have

∂μJ
μ
f ¼ 0: ð67Þ

The external current source feeds energy and momentum
into the system, and hence, we have

∂μTμν ¼ −FνλJext;λ: ð68Þ

The conservation equation for Tμν
em as described in Eq. (64)

becomes

∂μT
μν
em ¼ −FνλðJf;λ þ Jext;λÞ: ð69Þ

Using Eqs. (68) and (69), the equation of motion for the
energy-momentum tensor of the fluid can be written as

∂μT
μν
f ¼ FνλJf;λ: ð70Þ

Note that the external current source does not appear in
Eq. (70) which shows that the energy and momentum of
the fluid is only affected by the Lorentz force exerted
on the fluid currents by the electromagnetic fields. We can
decompose the fluid four-current as Jμf ¼ nfuμ þ nμf, and
since in the nonresistive limit Fμν ¼ −Bbμν is orthogonal to
the fluid velocity uμ, we can see that in the nondissipative
case, ∂μT

μν
f0 ¼ 0. Hence, the fluid’s energy-momentum

tensor in that case is separately conserved. Contracting
Eq. (70) with uμ and Δα

ν , we get the equations of motion at
B ≠ 0 as

uν∂μT
μν
f ¼ 0;

Δα
ν∂μT

μν
f ¼ −Bbαλnλ: ð71Þ

These lead to the equation of motion as follows:

ε̇þ ðεþ PÞθ − πμνσμν ¼ 0; ð72Þ

ðϵþ PÞu̇μ −∇μPþ Δμ
ν∂γπ

γν ¼ −Bbνλnλ; ð73Þ

ṅþ nθ þ ∂μnμ ¼ 0: ð74Þ

By substituting Eqs. (6)–(8) into Eqs. (72)–(74), we obtain
the form of α̇, β̇, and u̇μ at a nonvanishing magnetic field as

α̇ ¼ −An∂μnμ − AΠπ
μνσμν; ð75Þ

β̇ ¼ βθ

3
−Dn∂μnμ −DΠπ

μνσμν; ð76Þ

∇αβ ¼ −βu̇α þ n
ϵþ P

∇αα −
β

ϵþ P
Δα

ν∂μπ
μν

−
β

ϵþ P
qBbαλnλ; ð77Þ

where the coefficients An, AΠ, Dn, and DΠ are defined
in Eqs. (12) and (13). We will use the above relations to
derive the evolution equations for shear stress tensor πμν in
the presence of a magnetic field, as discussed in the next
section.

B. ERTA Boltzmann equation
at finite magnetic field

The relativistic Boltzmann equation in the presence of a
magnetic field can be described as

pμ
∂μf − qBσνpν

∂f
∂pσ ¼ −

ðu · pÞ
τRðx; pÞ

ðf − f�0Þ: ð78Þ

In the strong magnetic field limit, where the magnetic field
is considered as the dominant energy scale compared to the
temperature of the medium, the charged particle undergoes
Landau-level kinematics. This, in turn, affects the QCD
thermodynamics and the collisional kernel in the strong
field regime [87–90]. As we consider the case of a weak
magnetic field regime where temperature is the dominant
energy scale in comparison with magnetic field, we ignore
the explicit dependence of the magnetic field on the
thermodynamic quantities and relaxation time unlike in
the case of a strong field regime. However, the presence
of a magnetic field introduces another expansion parameter

χ ¼ qBτ0ðxÞ
T in addition to the Knudsen number Kn ¼ τ0∂.

The validity of χ ≪ 1 is justified with the assumption
that τ0=RL ≪ 1 in the magnetohydrodynamic regime [51].
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With the above power counting scheme, in first order
OðKnÞ, we obtain

δfð1Þ ¼−
τR

ðu ·pÞ
�
pμ

∂μ−qBbσνpν
∂

∂pσ

�
f0þ δf�ð1Þ: ð79Þ

Using Eqs. (75)–(77), the first term can be represented as

−
τR

ðu · pÞp
μ
∂μf0 ¼ τR

��
n

ϵþ P
−

1

ðu · pÞ
�
pμ∇μα

þ βpμpασμα
ðu · pÞ −

β

ϵþ P
qpνBbνσnσ

�
f0:

ð80Þ

The last term of Eq. (80), which is magnetic field
dependent, is of the order of OðχKnÞ and is not considered
in first order for evaluating the matching conditions. The
second term in Eq. (79) vanishes as bμνpν

∂f0
∂pμ ¼ 0. Until

OðKnÞ, the matching condition remains intact as defined in
Eq. (23). With the gradient expansion method, we observed
that the magnetic field does not affect the shear viscous
evolution due to δfð1Þ. This observation is consistent with
that of the RTA result [51]. However, the matching
condition will directly affect the second-order evolution
equation of the shear stress tensor in the presence of the
magnetic field. The distribution function until second-order
gradient expansion Δf ¼ δfð1Þ þ δfð2Þ can be obtained
from the ERTA Boltzmann equation using the Chapman-
Enskog expansion as

Δf ¼ −
τR

ðu · pÞp
γ
∂γf0 −

τR
ðu · pÞp

γ
∂γδfð1Þ

þ τR
ðu · pÞ qBb

σνpν
∂

∂pσ δfð1Þ þ
τR

ðu · pÞ qBb
σνpν

∂f0
∂pσ

þ Δf�ð2Þ; ð81Þ

where δfð1Þ in the presence of a magnetic field is defined in
Eq. (79). Similar to the case of a vanishing magnetic field,
we can define

Δf�ð2Þ ¼
�
−
ðδuð2Þ ·pÞ

T
þðu ·p−μÞ

T2
δTð2Þ þ

δμð2Þ
T

�
f0: ð82Þ

Unlike the previous case, δuð2Þ, δTð2Þ, and δμð2Þ can have
dependence on the magnetic field in the medium.

C. Shear stress evolution in the presence
of a magnetic field

The evolution equation of shear in the presence of a
magnetic field within the ERTA framework until second-
order gradient expansion can be obtained from

πμν ¼ Δμν
αβ

Z
dPpαpβ

�
Δf�ð2Þ|ffl{zffl}

I1

−
τR

ðu · pÞp
γ
∂γf0|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

I2

−
τR

ðu · pÞp
γ
∂γδfð1Þ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

I3

þ τR
ðu · pÞ qBb

σνpν
∂

∂pσ δfð1Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
I4

þ τR
ðu · pÞ qBb

σνpν
∂f0
∂pσ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

I5

	
þ f0 → f0: ð83Þ

The notation f0 → f̄0 denotes the corresponding antipar-
ticle contributions to each term. The detailed derivation
of solving each term [Iiði ¼ 1;…; 5Þ] is presented in
Appendix C. We observed that the direct magnetic field
dependence in the shear viscous evolution is entering
through the third and fourth terms (I3 and I4 terms).
Solving Eq. (83), we obtain

π̇hμνi þ πμν

τπ
¼ 2βπσ

μν −
4

3
πμνθ þ 2πhμγ ωνiγ − τπππ

hμ
γ σνiγ

− τπnnhμu̇νi þ λπnnhμ∇νiαþ lπn∇hμnνi

þ δπBΔ
μν
ηβqBb

γηgβρπγρ − qBτπnBu̇hμbνiσnσ

− qBλπnBnσbσhμ∇νiα − qτ0δπnB∇hμðBνiσnσÞ; ð84Þ

where the coefficients βπ , τππ , τπn, λπn, and lπn are not
affected due to the addition of the magnetic field and is
defined in Eqs. (32)–(38). The new coefficients that couple
shear stress tensor with magnetic field are given by

δπB ¼ 2
βL−

22

η0τπ
; ð85Þ

τπnB ¼ 1

τπðϵþ PÞ
�
β2Nþ

32 − βMþ
42 þ βðϵþ PÞ ∂ξ

∂β
Lþ
32

�
;

ð86Þ

δπnB ¼ 2

τπτ0
ξLþ

32; ð87Þ

λπnB ¼ 2

τπðϵþ PÞ
�
2βχ̃Lþ

42 þ 2βLþ
32 þ βχ̃Nþ

32 þ Cβ3Kþ
42

− βN−
22 þ ðϵþ PÞ

�
∂ξ

∂α
þ ξ

∂ξ

∂β

�
Lþ
32 þ β

∂ξ

∂β
Lþ
32

þ β3
∂C
∂β

Kþ
32 − 2β2Kþ

32

�
; ð88Þ

with ξ ¼ β
ϵþP. Equation (84) describes the ERTA result of

shear viscous evolution in the presence of a magnetic field.
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We compared our results with conventional RTA results
and observed that our results are consistent with other
studies at various limits as follows:

(i) In our estimation, we used Eq. (39) to describe the
relaxation time with l as the parameter that controls
the momentum dependence of the τR. At the B ≠ 0
and l ¼ 0 case, Eq. (84) reduces to that of Ref. [51]
in the massless limit. It is seen that magnetic field-
dependent transport coefficients are significantly
modified within the current ERTA setup. In Fig. 2,
we showed the impact of l on the coefficients δπB
and δπnB. With an increase in the value of l, the
TδπB decreases; however, the behavior is quite
the opposite for δπnB. We have correctly reproduced
the RTA estimations, δπB ¼ β

2
and δπnB ¼ 2

5
, respec-

tively, at l ¼ 0 [51]. The l dependence of δπB will
further affect the first-order anisotropic shear vis-
cous coefficients of the magnetized medium in the
Navier-Stokes limit, as shown in the next sub-
section.

(ii) At B ¼ 0, μ ¼ 0, and l ¼ 0, we note that our result
is consistent with the previous study [91]. Also, in
the limit where B ¼ 0, μ ≠ 0, and l ¼ 0, Eq. (84)
reduces to that in Ref. [77]. We have also reproduced
the results of Ref. [74] in the case of B ¼ 0, μ ¼ 0,
and l ≠ 0.

D. The Navier-Stokes limit: Magnetic
field-dependent shear coefficients

In the formulation of magnetohydrodynamics, the
magnetic field is taken to be of leading order or Oð1Þ
in gradients since it does not get screened, unlike the
electric field. This is due to the absence of magnetic
monopoles leading to the Bianchi identity. Keeping all the
terms of OðKnÞ and OðχKnÞ (i.e., first order in gradient)
in Eq. (84), we obtain the Navier-Stokes form of the
constitutive relation for the shear stress tensor within
ERTA as

�
gμγgνρ

τπ
− δπBΔ

μν
ηβqBb

γηgβρ
�
πγρ ¼ 2βπσ

μν: ð89Þ

The second law of local thermodynamics along with the
Curie principle leads to a general form of πμν as

πμν ¼
�
2η00ðΔμαΔνβÞþ η01

�
Δμν−

3

2
Ξμν

��
Δαβ −

3

2
Ξαβ

�

− 2η02ðΞμαbνbβ þΞναbμbβÞ− 2η03ðΞμαbνβ þΞναbμβÞ

þ 2η04ðbμαbνbβ þbναbμbβÞ
�
σαβ: ð90Þ

The projection operators in the presence of a magnetic
field and their properties are presented in Appendix B.
Substituting Eq. (90) into Eq. (89), and comparing various
tensorial structures on the left-hand and the right-hand
sides of Eq. (89), we obtain

η00 ¼
βπτπ

1þ ð2qBτπδπBÞ2
; ð91Þ

η01 ¼
16βπτπðqBτπδπBÞ2
3þ ð2 ffiffiffi

3
p

qBτπδπBÞ2
; ð92Þ

η02 ¼
3βπτπðqBτπδπBÞ2

1þ 5ðqBτπδπBÞ2 þ 4ðqBτπδπBÞ4
; ð93Þ

η03 ¼
βπτπðqBτπδπBÞ
1þ ð2qBτπδπBÞ2

; ð94Þ

η04 ¼
βπτπðqBτπδπBÞ
1þ ðqBτπδπBÞ2

: ð95Þ

In the limit of vanishing magnetic field η00 → η0, and we
get back the first-order constitutive relation πμν ¼ 2η0σ

μν

from Eq. (90), where η0 ¼ βπτπ. In Fig. 3, we showed
the momentum dependence of relaxation time on the

FIG. 2. Coefficients TδπB (left panel) and δπnB (right panel) as a function of the momentum dependence parameter l of the relaxation
time. At l ¼ 0, i.e., in the RTA limit, we obtain TδπB ¼ 1

2
and δπnB ¼ 2

5
[51].
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anisotropic shear coefficients in the presence of a mag-
netic field. The relative strength of these coefficients in
comparison with the case of B ¼ 0 is expressed in terms of
η0i
η0
. We observed that the RTA shear coefficients in the

presence of a magnetic field are significantly modified
with the ERTA setup. This arises from the ERTA-modified
shear stress tensor coupling with the magnetic field that
enters through the coefficient δπB. We also notice that at
l ¼ 0, or the momentum-independent RTA case with a
constant τ0, the coefficient δπB → 2J−22=J

þ
32 that agrees

with the value of δπB in Ref. [51] and ηi=η0 ratios matches
with the one found in the RTA limit. For a finite l, the
coefficients behave differently. For instance, the value of
η00
η0

at l ¼ 0.5 is lower than the l ¼ 0 case, while the
behavior is opposite for η01

η0
. The ERTA-modified shear

viscous evolution is anticipated to play a crucial role in
phenomenological studies.

IV. CONCLUSION AND OUTLOOK

In this study, we derived the shear viscous evolution
equations and determined the associated transport coef-
ficients for the QCD matter utilizing the recently devel-
oped ERTA approach. The near-equilibrium distribution
function is estimated by solving the extended-Boltzmann
equation using a Chapman-Enskog-like gradient expan-
sion by incorporating a momentum-dependent relaxa-
tion time. First, we calculated the evolution of the shear
stress tensor for a charge-conserved conformal system.
Subsequently, we expanded the ERTA framework to
analyze the relativistic, nonresistive, magnetohydrody-
namic evolution of the shear tensor. The sensitivity of
the first- and second-order shear viscous coefficients to
the momentum dependence of the relaxation time has
been explored in this study. Notably, our finding reveals

that the ERTA framework substantially alters the coupling
of the shear stress tensor with a particle diffusion current
and with a magnetic field as follows:

(i) Within the conventional RTA-based Chapman-En-
skog-like gradient expansion method, it has been
observed that the second-order evolution equations
for the shear stress tensor and the dissipative charge
current are decoupled for a charge conserved con-
formal system [77]. In the present study within the
ERTA framework, we have found new transport
coefficients that introduce coupling between shear
viscous evolution and the charge current. These
coefficients emerge due to the momentum depend-
ence of the thermal relaxation time at the finite
chemical potential. In Ref. [92], it has been noted
that the inclusion of mass (going beyond the con-
formal limit) may also introduce a coupling with
shear evolution and other dissipative terms in the
medium along with the diffusion current. For the
conclusive physical interpretation of this coupling, an
extensive analysis of dissipative hydrodynamics for a
nonconformal fluid (particles with finite mass) would
be necessary. We verified the consistency of our
results with parallel studies across various limiting
cases and with the exact Boltzmann predictions.

(ii) In the presence of a magnetic field, we observed that
the ERTA-based approach significantly modifies
the shear stress tensor coupling with the magnetic
field. We have compared our results with the rela-
tivistic, nonresistive magnetohydrodynamics equa-
tions within the RTA at the appropriate limits. In the
Navier-Stokes limit, we obtained the magnetic field-
dependent anisotropic shear coefficients. Notably,
the momentum dependence of the relaxation time
has a visible impact on the shear coefficients
depending upon the strength of the magnetic field
and the temperature of the medium.

The current study primarily focuses on the significance
of the momentum dependence of relaxation time on the
dissipative (magneto)hydrodynamic evolution equations.
As a first step, we considered a conformal system with a
parametrization of the relaxation time. The iterative way of
solving ERTA Boltzmann will become more intricate for a
resistive viscous nonconformal system. Looking forward,
we intend to delve deeper into the physical implications of
the coupling of shear evolution and number current by
analyzing a more general system, specifically a massive,
resistive, charge-conserved fluid with the ERTA frame-
work. Notably, in the presence of a magnetic field, it has
been observed that the QCD medium possesses a finite
magnetization, which alters its thermodynamic and trans-
port properties [93]. Exploring the evolution equation of a
medium with a nonzero magnetization presents another
intriguing avenue for research. We leave these aspects for
future studies.

FIG. 3. Comparison of the ERTA magnetic field-dependent
shear coefficients with that of the RTA estimations. Solid lines are
the ERTA calculations by choosing l ¼ 0.5 and dashed lines
denote the RTA results.
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APPENDIX A: DEFINITION OF
THERMODYNAMIC INTEGRALS

AND THEIR PROPERTIES

In the present study, we come across the following
six kinds of integrals that can be used to compute various
quantities given a particular microscopic distribution
function, f:

Kα1α2α3���αn
ðmÞ� ¼

Z
dP

τRðx; pÞ
ðu · pÞm pα1pα2pα3 � � �pαnðf0 � f̄0Þ;

ðA1Þ

Lα1α2α3���αn
ðmÞ� ¼

Z
dP

τ2R
ðu · pÞm pα1pα2pα3 � � �pαnðf0 � f̄0Þ;

ðA2Þ

Mα1α2α3���αn
ðmÞ� ¼

Z
dPτR

∂τR
∂ðu · pÞ

pα1pα2pα3 � � �pαn

ðu · pÞm ðf0 � f̄0Þ;

ðA3Þ

Nα1α2α3���αn
ðmÞ� ¼

Z
dPτR

∂τR
∂β

pα1pα2pα3 � � �pαn

ðu · pÞm ðf0 � f̄0Þ;

ðA4Þ

M̄α1α2α3���αn
ðmÞ� ¼

Z
dP

∂τR
∂ðu · pÞ

pα1pα2pα3 � � �pαn

ðu · pÞm ðf0 � f̄0Þ;

ðA5Þ

N̄α1α2α3���αn
ðmÞ� ¼

Z
dP

∂τR
∂ðu · pÞ

pα1pα2pα3 � � �pαn

ðu · pÞm ðf0 � f̄0Þ:

ðA6Þ

Each of the above momentum moments can be decom-
posed in terms of the hydrodynamic degrees of freedom.
For a generic moment like Qα1α2���αn

ðmÞ� , we have the following

decomposition:

Qα1α2���αn
ðmÞ� ¼ QðmÞ�

n0 uα1uα2uα3 � � � uαn þQðmÞ�
n1 ðuα1uα2uα3 � � �uαn−2Δαn−1αn þ permÞ

þQðmÞ�
n2 ðuα1uα2 � � � uαn−4Δαn−3αn−2Δαn−1αn þ permÞ þ � � �

þQðmÞ�
nq ðuα1Δα2α3Δα4α5 � � �Δαn−1αn|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

q−Δterms

þ permÞ; ðA7Þ

where n ≥ 2q. Each term above is made up of all the nontrivial permutations of the α indices according to the symmetric
property of theΔαβ projector. The coefficients of these terms can then be derived using the orthogonality property of each of
these terms, and these are called the thermodynamic integrals that can be used to express macroscopic quantities such as
number density n, energy density ϵ, and pressure P. The corresponding thermodynamic integrals are

KðmÞ�
nq ¼ 1

ð2qþ 1Þ!!
Z

dPτRðu · pÞn−2q−mðΔαβpαpβÞqðf0 � f̄0Þ; ðA8Þ

LðrÞ�
nq ¼ 1

ð2qþ 1Þ!!
Z

dPτ2Rðu · pÞn−2q−mðΔαβpαpβÞqðf0 � f̄0Þ; ðA9Þ

MðmÞ�
nq ¼ 1

ð2qþ 1Þ!!
Z

dPτR
∂τR

∂ðu · pÞ ðu · pÞn−2q−mðΔαβpαpβÞqðf0 � f̄0Þ; ðA10Þ

NðmÞ�
nq ¼ 1

ð2qþ 1Þ!!
Z

dPτR
∂τR
∂β

ðu · pÞn−2q−mðΔαβpαpβÞqðf0 � f̄0Þ; ðA11Þ

M̄ðmÞ�
nq ¼ 1

ð2qþ 1Þ!!
Z

dP
∂τR

∂ðu · pÞ ðu · pÞn−2q−mðΔαβpαpβÞqðf0 � f̄0Þ; ðA12Þ

N̄ðmÞ�
nq ¼ 1

ð2qþ 1Þ!!
Z

dP
∂τR
∂β

ðu · pÞn−2q−mðΔαβpαpβÞqðf0 � f̄0Þ: ðA13Þ
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In the massless case, we have the following relation for
each of these thermodynamic integrals:

QðmÞ�
n;q ¼ −

�
1

2qþ 1

�
QðmÞ�

n;q−1: ðA14Þ

The MðmÞ�
nq and NðmÞ�

nq integrals can be expressed in LðmÞ�
nq

integrals as follows:

MðmÞ�
nq ¼ 1

2T
LðmÞ�
nq −

nþ 1

q
LðmÞ�
n−1;q; n > −1; ðA15Þ

2NðmÞ�
n;q ¼ LðmÞ�

nþ1;q − nTLðmÞ�
n;q : ðA16Þ

We also have the following relations for each of the
thermodynamic integrals:

QðmÞ�
n;q ¼ T

h
−QðmÞ�

n−1;q−1 þ ðn − 2qÞQðmÞ�
n−1;q

i
; ðA17Þ

N̄ðmÞ�
nq ¼ KðmÞ�

nþ1;q − ðnþ 1ÞTKðmÞ�
nq : ðA18Þ

The above relations can be used to check the limiting cases
when we take τR → τ0 as well as for B → 0.

APPENDIX B: PROJECTION OPERATORS
IN THE PRESENCE OF A MAGNETIC FIELD

To ensure semipositive entropy production, we can
represent the constitutive relation as

πμν ¼ ημναβσαβ; ðB1Þ

where ημναβ follows the properties of πμν; i.e., ημναβ is
traceless, is orthogonal to uμ, and is symmetric under the
exchange of μ and ν indices. Also, ημναβ is constructed from
the tensors uμ, bμ, gμν, and bμν. This can be achieved by
using the following tensorial structures [36]:

ðiÞ Δμν ¼ gμν − uμuν;

ðiiÞ Ξμν ¼ Δμν þ bμbν;

ðiiiÞ bμbν;
ðivÞ bμν; ðB2Þ

where Δμν projects onto a subspace orthogonal to uμ and
Ξμν projects onto the two-dimensional subspace orthogonal
to both uμ and bμ. Using these we can construct a set of five
tensorial combinations that follows the properties of πμν as

ðiÞ ΔμαΔνβ þ ΔμβΔνα −
2

3
ΔμνΔαβ;

ðiiÞ
�
Δμν −

3

2
Ξμν

��
Δαβ −

3

2
Ξαβ

�
;

ðiiiÞ − Ξμαbνbβ − Ξνβbμbα − Ξμβbνbα − Ξναbμbβ;

ðivÞ − Ξμαbνβ − Ξνβbμα − Ξμβbνα − Ξναbμβ;

ðivÞ bμαbνbβ þ bνβbμbα þ bμβbνbα þ bναbμbβ: ðB3Þ

The coefficients of these combinations are the various η0i
components of the shear coefficient. Using these along with
the symmetric nature of σαβ, we obtain

πμν ¼
�
2η00ðΔμαΔνβÞþ η01

�
Δμν−

3

2
Ξμν

��
Δαβ −

3

2
Ξαβ

�

− 2η02ðΞμαbνbβ þΞναbμbβÞ− 2η03ðΞμαbνβ þΞναbμβÞ

þ 2η04ðbμαbνbβ þbναbμbβÞ
�
σαβ: ðB4Þ

APPENDIX C: DERIVATION OF SECOND-
ORDER MAGNETOHYDRO EVOLUTION

OF SHEAR STRESS

From Eq. (83), we define the shear stress tensor as the
sum of these five integrals as

πμνð2Þ ¼ I1 þ I2 þ I3 þ I4 þ I5; ðC1Þ
where the Ii terms can be described as

I1 ¼ Δμν
αβ

Z
dP

�
−
ðΔuð2Þ · pÞ

T
þ ðu · p − μÞ

T2
ΔTð2Þ

þ Δμð2Þ
T

�
f0 þ f0 → f̄0; ðC2Þ

I2 ¼ −Δμν
αβ

Z
dPpαpβ τR

ðu · pÞp
γ
∂γf0 þ f0 → f̄0; ðC3Þ

I3 ¼ −Δμν
αβ

Z
dPpαpβ τR

ðu · pÞp
γ
∂γ

�
−
Cpl∇lα

T2
f0

þ τR

��
n

ϵþ P
−

1

ðu · pÞ
�
pl∇lαþ βplpmσlm

ðu · pÞ

−
β

ϵþ P
qpkBbkσnσ

�
f0

	
þ f0 → f̄0; ðC4Þ

I4 ¼ Δμν
αβ

Z
dPpαpβ τR

ðu · pÞ qBb
σkpk

∂

∂pσ

�
−
Cpl∇lα

T2
f0

þ τR

��
n

ϵþ P
−

1

ðu · pÞ
�
pl∇lαþ βplpmσlm

ðu · pÞ

−
β

ϵþ P
qpνBbσνnσ

�
f0

	
þ f0 → f̄0; ðC5Þ
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I5 ¼Δμν
αβ

Z
dPpαpβ τR

ðu ·pÞqBb
kσpk

∂f0
∂pσ þf0 → f̄0: ðC6Þ

For analytical simplicity, we evaluate the integrals only for
particles, but the final expressions are presented as the
combined result for particles and antiparticles. Solving I1,
we have

I1 ¼ Δμν
αβ

Z
dPpαpβ

�
−
ðΔuð2Þ · pÞ

T
þ ðu · p − μÞ

T2
ΔTð2Þ

þ Δμð2Þ
T

�
f0; ðC7Þ

where Δuð2Þ, ΔTð2Þ, and Δμð2Þ contain terms till second
order in gradients. Using the properties of thermodynamic
integrals and the four-rank symmetric tensor, Eq. (C7)
further leads to

I1 ¼ −Δμν
αβI

αβγ
þ

Δuγð2Þ
T

þ Δμν
αβI

αβγ
þ uγ

ΔTð2Þ
T2

− Δμν
αβI

αβ
− μ

ΔTð2Þ
T2

þ Δμν
αβI

αβ
−
Δμð2Þ
T

¼ 0: ðC8Þ

This indicates that the second-order matching con-
dition does not affect the shear calculations. However,
as we will see, the first-order matching condition will
contribute to the shear viscous evolution. Now, let us
evaluate I2,

I2 ¼ −Δμν
αβ

Z
dPpαpβ τR

ðu · pÞp
γ
∂γf0

¼ −Δμν
αβ

Z
dPpαpβ τR

ðu · pÞ
× pγf−∂γβðu · pÞ − βpk

∂γuk þ ∂γαgf0
¼ Δμν

αβK
αβγ
þ ∂γβ þ Δμν

αβK
αβγk
ð1Þþβ∂γuk þ Δμν

αβK
αβγ
ð1Þ−∂γα

¼ 2Kð1Þþ
42 βσμν ¼ πμνð1Þ: ðC9Þ

We observe that I2 is not affected by either the magnetic
field or any second-order term coming from ∇μβ. Now, we
evaluate I3:

I3 ¼ −Δμν
αβ

Z
dPpαpβ τR

ðu · pÞp
γ
∂γ

�
−
Cpl∇lα

T2
f0 þ τR

��
n

ϵþ P
−

1

ðu · pÞ
�
pl∇lαþ βplpmσlm

ðu · pÞ −
β

ϵþ P
qpkBbkσnσ

�
f0

	

¼ I3A þ I3B þ I3C; ðC10Þ

where

I3A ¼ Δμν
αβ

Z
dPpαpβτRD

�
Cpl∇lα

T2
f0 − τR

��
n

ϵþ P
−

1

ðu · pÞ
�
pl∇lαþ βplpmσlm

ðu · pÞ
�
f0

	
;

I3B ¼ Δμν
αβ

Z
dPpαpβ τR

ðu · pÞp
γ∇γ

�
Cpl∇lα

T2
f0 − τR

��
n

ϵþ P
−

1

ðu · pÞ
�
pl∇lαþ βplpmσlm

ðu · pÞ
�
f0

	
;

I3C ¼ Δμν
αβ

Z
dPpαpβ τR

ðu · pÞp
γ
∂γ

�
β

ϵþ P
τRqpkBbkσnσf0

	
:

We obtain I3A and I3B as

I3A ¼ −Δμν
αβD½2βσαβLþ

32� þ u̇hμ∇νiα
�
2Cβ2Kþ

31 −
2n

ϵþ P
Lþ
31 þ 2L−

21 − 2Cβ2M̄þ
42 þ

2n
ϵþ P

Mþ
42 − 2M−

32

�
þ 2

3
β2θσhμνiNþ

32;

I3B ¼ 2∇hμ
�
Cβ2Kþ

32 −
n

ϵþ P
Lþ
32 þ L−

22

�
∇να − 2∇hμα

�
β

ϵþ P
qBbνiσnσ

��
Cβ2N̄þ

32 −
n

ϵþ P
Nþ

32 þ
N−

22

2

�

−
�
8βσhμγσνiγ þ 14

3
θβσμν

�
ðMð2Þþ

63 þ Lð3Þþ
63 Þ þ 4βσhμγ ωνiγLþ

32 − 4σhμγσνiγ βLþ
32 −

10

3
θβσμνLþ

32

þ∇hμα∇νiα
�

2n2

ðϵþ PÞ2 N
þ
32 −

2Cβ2n
ðϵþ PÞ N̄

þ
32 −

n
ϵþ P

N−
22

�
þ u̇hμ∇νiα

�
2Cβ3N̄þ

32 −
2nβ
ϵþ P

Nþ
32 þ βN−

22

�
: ðC11Þ
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Further, we express I3C as follows:

I3C ¼ Δμν
αβ

Z
dPpαpβ τR

ðu · pÞp
γð∂γτRÞ

�
β

ϵþ P
τRqpkBbkσnσf0

	

þ Δμν
αβ

Z
dPpαpβ τ2R

ðu · pÞp
kpγ

∂γ

�
β

ϵþ P
qBbkσnσf0

	
:

Solving this, we obtain

I3C ¼ 2u̇hμ
�

β

ϵþ P
qBbνiσnσ

�
ðMþ

42 þ Lþ
31 − 2Mþ

31 þ βNþ
32Þ þ 2∇hμ

�
Lþ
32

β

ϵþ P
qBbνiσnσ

�

þ 2Nþ
32

�
β

ϵþ P
qBbhμσnσ

�
β

ϵþ P
qBbνiγnγ

��
−

2n
ϵþ P

�
β

ϵþ P
qBbhμσnσ

�
∇νiαNþ

32: ðC12Þ

Hence, we obtain the expression for I3 as

I3 ¼ −Δμν
αβD½2βσαβLþ

32� þ u̇hμ∇νiα
�
2Cβ2Kþ

31 −
2n

ϵþ P
Lþ
31 þ 2L−

21 − 2Cβ2M̄þ
42 þ

2n
ϵþ P

Mþ
42 − 2M−

32

�

þ 2

3
β2θσhμνiNþ

32 þ 2∇hμ
�
Cβ2Kþ

32 −
n

ϵþ P
Lþ
32 þ L−

22

�
∇να − 2∇hμ

�
β

ϵþ P
qBbνiσnσ

��
Cβ2N̄þ

32 −
n

ϵþ P
Nþ

32 þ
N−

22

2

�

−
�
8βσhμγσνiγ þ 14

3
θβσμν

�
ðMð2Þþ

63 þ Lð3Þþ
63 Þ þ∇hμα∇νiα

�
2n2

ðϵþ PÞ2N
þ
32 −

2Cβ2n
ðϵþ PÞ N̄

þ
32 −

n
ϵþ P

N−
22

�

þ u̇hμ∇νiα
�
2Cβ3N̄þ

32 −
2nβ
ϵþ P

Nþ
32 þ βN−

22

�
þ 4βσhμγ ωνiγLþ

32 − 4σhμγσνiγ βLþ
32 −

10

3
θβσμνLþ

32

þ 2u̇hμ
�

β

ϵþ P
qBbνiσnσ

�
ðMþ

42 þ Lþ
31 − 2Mþ

31 þ βNþ
32Þ þ 2∇hμ

�
Lþ
32

β

ϵþ P
qBbνiσnσ

�

þ 2Nþ
32

�
β

ϵþ P
qBbhμσnσ

�
β

ϵþ P
qBbνiγnγ

��
−

2n
ϵþ P

�
β

ϵþ P
qBbhμσnσ

�
∇νiαNþ

32: ðC13Þ

Next, we evaluate I4 which have direct magnetic field contributions,

I4 ¼ Δμν
αβ

Z
dPpαpβ τR

ðu · pÞ qBb
σkpk

∂

∂pσ

�
−
Cpl∇lα

T2
f0 þ τR

��
n

ϵþ P
−

1

ðu · pÞ
�
pl∇lα

þ βplpmσlm
ðu · pÞ −

β

ϵþ P
qpνBbσνnσ

�
f0

	
: ðC14Þ

Using the properties ∂f0
∂pσ ∝ uσ,

∂τR
∂pσ ∝ uσ, and

∂pl

∂pσ ¼ δlσ, we obtain

I4 ¼ Δμν
αβ

Z
dPpαpβpk τR

ðu · pÞ qBb
σ
k

�
−
C∇σα

T2
þ uσ
T2

−
τR

ðu · pÞ ∂σ þ
τRβ

ðu · pÞp
lð∂luσÞ

	
f0

¼
�
4βqBbσhμσνiσ þ 4

3
θβqBbhμνi

�
L−
22: ðC15Þ

Here, we have employed the relation, ∂

∂pσ ð∂lf0Þ ¼ −βð∂luσÞf0. We can also show that bhμνi ¼ 0. Hence, I4 can be
written as

I4 ¼ 4βqBbσhμσνiσ L−
22: ðC16Þ

The term I5 vanishes since ∂f0
∂pσ ∝ uσ and bkσuσ ¼ 0. Adding all the parts above we get the following expression for the

second-order evolution equation for shear tensor in the presence of a magnetic field within the ERTA as
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πμνð2Þ ¼ I1þI2þI3þI4þI5

¼ 2ησμν−Δμν
αβD½2βσαβLþ

32�þ u̇hμ∇νiα
�
2Cβ2Kþ

31−
2n

ϵþP
Lþ
31þ2L−

21−2Cβ2M̄þ
42þ

2n
ϵþP

Mþ
42−2M−

32−
2nβ
ϵþP

Nþ
32

þ2Cβ3N̄þ
32þβN−

22

�
þ∇hμ

�
2Cβ2Kþ

32−
2n

ϵþP
Lþ
32þ2L−

22

�
∇νiαþ∇hμα∇νiα

�
2n2

ðϵþPÞ2N
þ
32−

2Cβ2n
ðϵþPÞN̄

þ
32−

n
ϵþP

N−
22

�

þθσμν
�
2β2

3
Nþ

32−
4β

3
Lþ
32−2βLþ

32−
14β

3
Mþ

43−
14β

3
Lþ
33

�
þ4βLþ

32σ
hμ
γ ωνiγ −σhμγσνiγ ð4βLþ

32þ8βMþ
43þ8βLþ

33Þ

−qB∇hμαbνiσ nσ
�

2nβ
ðϵþPÞ2N

þ
32−

2Cβ3

ðϵþPÞN̄
þ
32−

β

ϵþP
N−

22

�
þ2u̇hμ

�
β

ϵþP
qBbνiσnσ

�
ðMþ

42þLþ
31−2Mþ

31þβNþ
32Þ

þ2Nþ
32

�
β

ϵþP
qBbhμσnσ

�
β

ϵþP
qBbνiγnγ

��
−

2n
ϵþP

�
β

ϵþP
qBbhμσnσ

�
∇νiαNþ

32

þ2∇hμ
�
Lþ
32

β

ϵþP
qBbνiσnσ

�
−4βqBσhμγbνiγ L−

22:

In the limit of l ¼ 0, i.e., the conventional RTA framework
with a finite magnetic field, the evolution equation of the
shear stress tensor reduces to the result in Ref. [51], in the
massless limit. We also observe that for the case withB ¼ 0,
μ ¼ 0, and l ≠ 0, the above expression reduces to the form
of second-order shear stress evolution as given in Ref. [74].

APPENDIX D: REALIZATION OF
CONSERVATION LAWS IN THE SECOND-

ORDER ERTA FRAMEWORK

Here, we show that the energy-momentum and number
conservation laws are indeed satisfied in the ERTA frame-
work up to the second order. For simplicity, we only
consider a system of particles but the generalization to
antiparticles is straightforward. The Boltzmann equation in
the ERTA model is

pμ
∂μf ¼ −

ðu · pÞ
τR

ðδf − δf�Þ: ðD1Þ

1. Number conservation: ∂μNμ = 0

We start with the Nμ conservation. The zeroth momen-
tum moment of the Boltzmann equation gives rise to the

number conservation law. To this end, we consider the
zeroth moment of the collision kernel that can be defined as
follows:

Z
dPC½f� ¼ −

Z
dP

ðu · pÞ
τR

ðδf − δf�Þ: ðD2Þ

The above equation up to second order in gradients can be
evaluated using the expression for Δfð2Þ − Δf�ð2Þ from

Eq. (27),

Z
dPC½f� ¼

Z
dPpα

∂αf0 −
Z

dPpα
∂α

�
τR

ðu · pÞp
β
∂βf0

�

þ
Z

dPpβ
∂βδf�ð1Þ

¼ IA þ IB þ IC: ðD3Þ

It is important to emphasize that the term IC that depends
on δf�ð1Þ solely arises due to the momentum dependence of

relaxation time and in general depends on δμ ¼ μ� − μ,
δT ¼ T� − T, and δuμ ¼ u�μ − uμ. Using Eq. (28), we
evaluate A as

IA ¼
Z

dPpα
∂αf0

¼ −
Z

ðu · pÞ
��

n
ϵþ P

−
1

ðu · pÞ
�
pm∇mαþ β

pmpn

ðu · pÞ σmn −
β

ϵþ P
fpm∇nπ

n
m − pmπnmu̇ng

þ fAn −Dnðu · pÞg∂αnα þ
�
AΠ −

�
DΠ þ β

ðϵþ PÞ
�
ðu · pÞ

	
παβσαβ

�
f0

¼ −
βI20
ϵþ P

παβσαβ þ ðDnI20 − AnI10Þ∂αnα þ
��

DΠ þ β

ϵþ P

�
I20 − AΠI10

	
παβσαβ: ðD4Þ
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Using the definitions of An,Dn, AΠ, andDΠ from Eqs. (12)
and (13) along with the definitions of the thermodynamic
integrals introduced in Appendix A, we have the following
relations:

βI20
ϵþ P

¼ 3β

4
; ðD5Þ

AnI10 ¼ DnI20 þ 1; ðD6Þ

AΠI10 ¼
�
DΠ þ β

ϵþ P

�
I20 −

3β

4
: ðD7Þ

With the above relations, we obtain IA ¼ −∂αnα. Similarly,
evaluating B keeping terms up to second order in gradients,

IB ¼ −
Z

dPpα
∂α

�
τR

ðu · pÞp
β
∂βf0

�

¼
Z

dPpα
∂α

�
τR

�
n

ϵþ P
−

1

ðu · pÞ
�
pβ∇βα

þ β
τRpmpn

ðu · pÞ σmn

	
f0

¼ ∂α

��
n

ϵþ P
K21 − K11

�
∇αα

�
: ðD8Þ

Using the expression of δf�ð1Þ as defined in Eq. (20) and the
first-order matching conditions in Eq. (23) for a conformal
system, we obtain IC as

IC ¼
Z

dPpα
∂αδf�ð1Þ ¼ −∂α½Cβ2I21∇αα�: ðD9Þ

Now, we evaluate the zeroth moment of the ERTA collision
term, and by using the definition of first-order number
diffusion from Eq. (26), we obtain

Z
dPC½f� ¼ IA þ IB þ IC ¼ −∂αnα

þ ∂α

��
n

ϵþ P
K21 − K11

�
∇αα − Cβ2I21∇αα

�

¼ −∂αnα þ ∂αnα ¼ 0: ðD10Þ

Hence, we have verified that the zeroth moment of the
ERTA collision kernel becomes zero where the extra part
introduced due to the momentum dependence of the
relaxation time is exactly canceled by the δf�ð1Þ term’s
contribution that we got from the first-order matching
condition. This ensures the number conservation law
holds in this model.

2. Energy-momentum conservation: ∂μTμν = 0

To verify the energy-momentum conservation in the
current model, we need to show that the first momentum
moment of the collision kernel is zero. To that end, we
calculate the following

Z
dPpμC½f� ¼

Z
dPpμpα

∂αf0 −
Z

dPpμpα
∂α

�
τR

ðu · pÞp
β
∂βf0

�
þ
Z

dPpμpβ
∂βδf�ð1Þ

¼ ID þ IE þ IF : ðD11Þ

Again, using Eq. (28), we obtain

ID ¼
Z

dPpμpα
∂αf0

¼ −
Z

ðu · pÞ
��

n
ϵþ P

−
1

ðu · pÞ
�
pμpm∇mαþ βpμ p

μpmpn

ðu · pÞ σmn −
βpμ

ϵþ P
fpm∇nπ

n
m − pmπnmu̇ng

þ fAn −Dnðu · pÞgpμ
∂αnα þ

�
AΠ −

�
DΠ þ β

ðϵþ PÞ
�
ðu · pÞ

	
pμπαβσαβ

�
f0

¼
�
−

nI31
ϵþ P

þ I21

�
∇μαþ

�
βI31
ϵþ P

−
βI30
ϵþ P

�
uμπαβσαβ þ

βI31
ϵþ P

ð∇απ
αμ − παμu̇αÞ

þ ðDnI30 − AnI20Þ∂αnα þ
��

DΠ þ β

ϵþ P

�
I30 − AΠI20

�
uμπαβσαβ: ðD12Þ

Using Eqs. (12) and (13) along with the definitions of the
thermodynamic integrals, we find

βI30
ϵþ P

¼ 3; ðD13Þ

βI31
ϵþ P

¼ −1; ðD14Þ

nI31
ϵþ P

¼ I21; ðD15Þ
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DnI30 ¼ AnI20; ðD16Þ

DΠI30 ¼ 1þ AΠI20: ðD17Þ

Using the above relations, we find that ID ¼ πμαu̇α −∇απ
μα. By evaluating IE , we have

IE ¼ −
Z

dPpμpα
∂α

�
τR

ðu · pÞp
β
∂βf0

�

¼
Z

dPpμpα
∂α

�
τR

�
n

ϵþ P
−

1

ðu · pÞ
�
pβ∇βα

þ β
τRpmpn

ðu · pÞ σmn

	
f0

¼ ∂α

��
nK31

ϵþ P
− K21

�
ðuμ∇ααþ uα∇μαÞ

�

þ ∂α½2βKð1Þ
42 σ

μα�:

By employing Eq. (25), the last term in the above equation
can be written as ∂απμα ¼ −u̇απμα þ∇απ

μα,

IE ¼ ∂α

��
nK31

ϵþ P
− K21

�
ðuμ∇ααþ uα∇μαÞ

�

− u̇απμα þ∇απ
μα: ðD18Þ

Similar to the previous subsection, using the expression for
δf�ð1Þ, which solely arises due to the momentum depend-
ence of thermal relaxation time, obtained from the match-
ing condition, we obtain

IF ¼
Z

dPpμpα
∂αδf�ð1Þ ¼ −∂α½Cβ2I31ðuμ∇α þ uα∇μαÞ�:

ðD19Þ

Finally, we estimate the first moment of the collision
kernel as

Z
dPpμC½f� ¼ ID þ IE þ IF

¼ ∂α

���
nK31

ϵþ P
− K21

�
− Cβ2I31

	

× ðuμ∇α þ uα∇μαÞ
�
: ðD20Þ

Using the fact that

�
nK31

ϵþ P
− K21

�
¼ Cβ2I31; ðD21Þ

we obtain

Z
dPpμC½f� ¼ 0: ðD22Þ

Hence, we have verified that the first moment of the ERTA
collision term vanishes, thereby guaranteeing the conser-
vation of the energy-momentum tensor in the current
model. We find that the contribution to the distribution
function from the first-order matching condition exactly
cancels out the remaining nonzero part due to the momen-
tum-dependent relaxation time. In general, we note that the
forms of μ� ¼ μþ δμ, T� ¼ T þ δT, and u�μ ¼ uμ þ δuμ
are important in obtaining the conservation equations. The
definitions of δμ, δT, and δuμ incorporate the counterterms
that arise due to the momentum dependence of relaxation
time for the satisfaction of the conservation equations. The
definition of these quantities in the first order in gradients
are defined in Eq. (23). For the present system, we have
further defined δuμ in terms of thermodynamic integrals
(using the distribution function) as

u�μ ¼ uμ þ
1

βIþ31

�
n

ϵþ P
Kþ

31 − K−
21

�
∇μα:

However, one needs to define these quantities until the
second order for the third-order hydrodynamic estimations.
For a simplified system of massless particles at the vanishing
chemical potential, these can be defined as follows [74]:

u�μ ¼ uμ þ
5K32

Tðϵþ PÞ2 ðπ
μνu̇ν −∇νπ

μν − παβσαβuμÞ

þ 2L32

Tðϵþ PÞ ð2σ
μνu̇ν þ∇νσ

μν þ σαβσαβuμÞ;

T� ¼ T þ 5K32

3ðϵþ PÞ2 π
μνσμν þ

1

ϵþ P

�
L32 −

L42

3T

�
σμνσμν:

The contribution from these quantities becomes essential to
ensure the conservation laws within the framework of third-
order hydrodynamics, which is beyond the scope of the
present analysis.
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