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We perform the analysis of elastic scattering pp and p̄p data at low momentum transfer jtj < 0.1 GeV2

within large collider energy interval
ffiffiffi
s

p ¼ 50 GeV–13 TeV in order to evaluate quantitatively the possible
Odderon contribution. We use the two-channel eikonal model, which naturally accounts for the screening
of the Odderon amplitude by C-even (Pomeron) exchanges.
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I. INTRODUCTION

The TOTEM publication [1] of the measurements of
the total cross section and the real part of the forward elastic
pp amplitude at 13 TeV prompted a renewal of interest in
the potential existence of the high-energy C-odd (Odderon)
contribution. This is because the observed value of the ratio
of real to imaginary parts of the forward scattering
amplitude, namely, ρ ¼ ð0.09–0.10Þ � 0.01, turned out
to be noticeably smaller than the predicted value
(ρ ¼ 0.13–0.14 [2]) based on dispersion relations for the
case of pure C-even interactions.
The new ATLAS/ALFA data recently confirmed this

value of ρ [3]. However, the value of the total cross section
at 13 TeV reported by the ATLAS/ALFA team, σtot ¼
104.68� 1.09 mb, is approximately 5% lower than the
average of values determined byTOTEM(σtot¼111.6�3.4,
σtot ¼ 109.5� 3.4, and σtot ¼ 110.3� 3.5 mb),1 indicating
that a smaller value of the real part of the C-even amplitude
should be expected from the dispersion relations.
The relatively small value of ρ can be explained by the

admixture of the C-odd amplitude, which survives at high
LHC energies. Such amplitude with the intercept αOdd close
to 1 was predicted by the perturbative QCD [8–10] (see also
the reviews [11]) where at the lowest αs order it is provided

by the three gluon exchange diagrams. Alternatively, it was
shown in [12,13] that, if we do not assume a constant value
for the real part of the nuclear amplitude near jtj ¼ 0, the
whole ensemble of the elastic scattering low-jtj data (from
which the total cross sections and the ρ parameter for the
forward amplitude were extracted) can be satisfactorily
described without any Odderon contribution.2

Another indication in favor of the Odderon was claimed
in [14], where the p̄p differential cross section dσ=dt atffiffiffi
s

p ¼ 1.96 TeV was compared with the corresponding pp
cross section (measured at 2.76 TeV but extrapolated to
1.96 TeV) in the diffractive dip region. A clear difference
was observed.
The problem, however, is that using this method, any

inaccuracy in the extrapolation from one energy to another
is treated as the additional (Odderon) contribution. In
particular, we recall that using another prescription for
this (from 2.76 to 1.96 TeV) extrapolation, the authors of
[15] obtained for the Odderon signal significance less than
0.5σ (see Table 3 of [15]) analyzing the same data points.
Next, it should be noted that, at very low t close to zero

and in the diffractive dip region, we deal with different
C-odd contributions. To get a well-pronounced dip-bump
structure near the dip in pp scattering at 2.76 TeV and
rather flat behavior of p̄p at 1.96 TeV, the real part of
the Odderon pp amplitude should be positive (in agree-
ment with perturbative QCD expectation for the three gluon
exchange case [12]). On the other hand, to explain the
low value of ρ at t ¼ 0, we need a negative Odderon real
part. This negative real part could be induced by non-
perturbative effects.
In the present paper, we describe the full ensemble of the

pp and p̄p elastic differential cross section data at low
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1Recall that the ATLAS/ALFA measurements at

ffiffiffi
s

p ¼ 7 and
8 TeV [4,5] are also systematically lower than the corresponding
TOTEM results [6,7].
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jtj < 0.1 GeV2 from
ffiffiffi
s

p ¼ 50 GeV up to 13 TeV. We use a
two-channel eikonal model, which now includes the
Odderon exchange amplitude. This allows us to quantita-
tively evaluate the size of the Odderon contribution and the
parameters (the slope and the intercept) of the soft Pomeron
trajectory.
In our analysis, the Odderon amplitude is not written

separately but included in the eikonal. This inclusion
allows the eikonal model to immediately account for the
screening of the Odderon exchange by the Pomeron(s).
Moreover, we explore the tension between the dσ=dt data

measured by the TOTEM andATLAS/ALFACollaborations
since the discrepancies in the results presented by the two
experiments lead us to different scenarios for the behavior of
the forward scattering amplitude and, consequently, for the
parameters of both the Pomeron and Odderon.
The outline of this paper is as follows. In Sec. II, we

describe the model and collect the formulas used in our data
description. The results are presented and discussed in
Sec. III. In Sec. IV, we draw our conclusions.

II. FORMALISM

Our analysis is focused on differential cross section data
involving very small values of t, which requires consider-
ing the Coulomb-nuclear interference (CNI) region. The
full scattering amplitude, including the electromagnetic
(Coulomb, C) and hadronic (nuclear, N) interactions, can
be expressed as

FCþN ¼ FN þ eiαϕðtÞFC; ð1Þ

where the phase factor αϕðtÞ describes the distortion of the
pure amplitudes FC and FN arising from the simultaneous
presence of both Coulombic and hadronic scattering. We
adopt an expression for the phase ϕðtÞ derived from an
eikonal approach [16], given by

ϕðtÞ ¼ κ

�
γ þ ln

�
Bjtj
2

�
þ ln

�
1þ 8

BΛ2

�

þ 4jtj
Λ2

ln

�
Λ2

4jtj
�
−
2jtj
Λ2

�
; ð2Þ

where κ flips sign when going from pp (κ ¼ −1) to p̄p
(κ ¼ þ1). In (2),Λ2 is fixed at 0.71 GeV2 (as determined in
the dipole fit to the proton’s electromagnetic form factor),
and B is the t slope of elastic dσ=dt ∝ expðBtÞ cross
section. The α in (1) is the electromagnetic coupling, which
is usually kept constant at the value of the fine structure
constant, αð0Þ ¼ 1=137.03599911 [17]. Nevertheless, in
cases where the Coulomb peak is used in the normalization
of diffractive data, the contribution of vacuum polarization
to the Coulomb force can be significant [16,18]. This effect
results in the replacement of the fine structure constant with
an electromagnetic coupling dependent on q2,

αðq2Þ ¼ αð0Þ
1 − αð0Þ

3π lnðq2þm2
e

m2
e
Þ
; ð3Þ

where q2 ¼ −t and me ¼ 0.510998918 MeV [17] is the
mass of the electron. This corresponds to a 1% correction
for q2 ¼ 0.1 GeV2.
The Coulomb amplitude can be expressed as

FC ¼ κs
2α

jtj G
2ðtÞ: ð4Þ

Here, GðtÞ is the electromagnetic form factor of the proton,
described by the dipole form

GðtÞ ¼
�

Λ2

Λ2 þ q2

�
2

: ð5Þ

To account for the eikonalization, it is convenient to
calculate the nuclear amplitude in terms of opacities. The
opacity function Ωiðs; bÞ is related to the bare nuclear
amplitude FN

i ðs; tÞ through the Fourier-Bessel transform

Ωiðs; bÞ ¼
2

s

Z
∞

0

qdqJ0ðbqÞFN
i ðs; tÞ; ð6Þ

where i ¼ P;O represent the Pomeron and Odderon
exchanges, respectively.
The single Pomeron contribution is given by

FN
Pðs; tÞ ¼ β2PðtÞηPðtÞ

�
s
s0

�
αPðtÞ

; ð7Þ

where ηPðtÞ ¼ −e−iπ2αPðtÞ is the even signature factor, βPðtÞ
is the elastic proton-Pomeron vertex, and

αPðtÞ ¼ 1þ ϵþ α0Ptþ
m2

πβ
2
π

32π3
hðτÞ ð8Þ

is the Pomeron trajectory, where

hðτÞ ¼ −
4

τ
F2
πðtÞ

�
2τ − ð1þ τÞ3=2 ln

� ffiffiffiffiffiffiffiffiffiffiffi
1þ τ

p þ 1ffiffiffiffiffiffiffiffiffiffiffi
1þ τ

p
− 1

�

þ ln

�
m2

m2
π

��
; ð9Þ

with τ¼4m2
π=jtj, FπðtÞ¼ 1=ð1− t=m2

ρÞ, mπ ¼ 139.6 MeV,
m ¼ 1 GeV, mρ ¼ 0.776 GeV, and βπ=βIPð0Þ ¼ 2=3. The
function h accounts for the inclusion of the pion loop into
the Pomeron trajectory [19].
The Odderon contribution is given by

FN
Oðs; tÞ ¼ β2OðtÞηOðtÞ

�
s
s0

�
αOðtÞ

; ð10Þ
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where ηOðtÞ ¼ −ie−iπ2αOðtÞ is the odd signature factor, βOðtÞ
is the elastic proton-Odderon vertex, and αOðtÞ ¼ 1 is the
Odderon trajectory.
The t dependence of the β vertices is parametrized

accounting for the observed deviation from a pure expo-
nential behavior of the low-jtj dσ=dt data at LHC energies,
as identified by the TOTEM Collaboration [20–22]. To get
a better fit in the small-t region, the TOTEM group has
extended the pure exponential to a cumulant expansion,

dσ
dt

ðtÞ ¼ dσ
dt

����
t¼0

exp

�XNb

n¼1

bntn
�
; ð11Þ

where the optimal fit was achieved for Nb ¼ 3, yielding
χ2=d:o:f: ¼ 1.22 and a corresponding p value of 8.0%. The
same was done by the ATLAS/ALFA group
Based on this result, we have written the Pomeron- and

Odderon-proton vertices as

βPðtÞ ¼ βPð0ÞeðAtþBt2þCt3Þ=2 ð12Þ

and

βOðtÞ ¼ βOð0ÞeDt=2; ð13Þ

respectively.
In order to allow for the low-mass diffractive dissociation,

the Good-Walker formalism [23] is used, which provides a
convenient form to incorporate p → N� diffractive disso-
ciation. This approach introduces diffractive eigenstates
jϕki that diagonalize the interaction T matrix. In our two-
channel model (k ¼ 1, 2), the proton wave function is
described by two components with equal weights, namely,

jpi ¼
ffiffi
1
2

q
ðjϕ1i þ jϕ2iÞ. To minimize the number of free

parameters, we take the same t dependence for both
components. The Pomeron and Odderon couplings to the
two diffractive states jϕki are

βi;kðtÞ ¼ ð1� γÞβiðtÞ; ð14Þ

with i ¼ P or O, and γ ¼ 0.55.3

The eikonalized amplitude in ðs; tÞ space is then given
by [25,26]

Aðs; tÞ ¼ is
Z

∞

0

bdb J0ðbqÞ
�
1 −

1

4
eið1þγÞ2Ωðs;bÞ=2

−
1

2
eið1−γ2ÞΩðs;bÞ=2 −

1

4
eið1−γÞ2Ωðs;bÞ=2

�
; ð15Þ

where Ωðs; bÞ is the total opacity.

We consider two versions for the total opacity with
different signs for the Odderon contribution. In the first
version, referred to as “model I,” we have

Ωðs; bÞ ¼ ΩPðs; bÞ ∓ ΩOðs; bÞ; ð16Þ

in the second version, called “model II,” we have

Ωðs; bÞ ¼ ΩPðs; bÞ �ΩOðs; bÞ; ð17Þ

in both cases, the upper sign is for pp and the lower sign is
for p̄p.4

The total cross section and the ρ parameter are expressed
in terms of the nuclear eikonalized amplitude Aðs; tÞ,

σtotðsÞ ¼
4π

s
ImAðs; t ¼ 0Þ; ð18Þ

ρðsÞ ¼ ReAðs; t ¼ 0Þ
ImAðs; t ¼ 0Þ : ð19Þ

Considering the eikonalized nuclear amplitude (15) in
the presence of electromagnetic and hadronic interactions,
our full scattering amplitude will finally be written as

FCþNðs; tÞ ¼ Aðs; tÞ þ eiαϕðtÞFCðs; tÞ: ð20Þ

Thus we can write the differential and the total elastic
cross sections as

dσ
dt

ðs; tÞ ¼ π

s2
jAðs; tÞ þ eiαϕFCðs; tÞj2; ð21Þ

σelðsÞ ¼
π

s2

Z
0

−∞
dtjAðs; tÞj2: ð22Þ

III. RESULTS

The LHC has provided highly precise measurements of
diffractive processes, allowing stringent constraints on the
scattering amplitude behavior at high energies. These
measurements, particularly of the ρ parameter and the total

3With γ ¼ 0.55 at
ffiffiffi
s

p ¼ 7 TeV we get the low-mass disso-
ciation cross section σD ¼ 4.7 mb in agreement with the TOTEM
result [24] σD ¼ 2.6� 2.2 mb.

4Recall that the sign of the Odderon exchange amplitude is not
known from the beginning. In our parametrization (10) we keep
β2O > 0 to be positive. That is, model II corresponds to the case
when the Odderon contribution to the real part of the pp
amplitude is negative. This is opposite of the sign expected in
perturbative QCD for the leading order C-odd three gluon
exchange diagram [8,12]. However, at t → 0 the situation is
more complicated and may not be described by the pure three
gluon exchange. In particular, within the quark-diquark model of
the proton, the Odderon coupling β2O nullifies at t ¼ 0 (for the
pointlike diquark) and becomes positive at larger jtj values. In
such a case at t → 0 the major C-odd contribution comes from the
Pomeron-Odderon cut and the real part of C-odd pp amplitude
becomes negative.
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and differential cross sections from ATLAS/ALFA and
TOTEM experiments, play a crucial role in the accurate
determination of the Pomeron and Odderon parameters.
However, while the measurements of the ρ parameter atffiffiffi
s

p ¼ 13 TeV by both collaborations are consistent [1,3],
the total and differential cross sections at

ffiffiffi
s

p ¼ 7, 8, and
13 TeV reveal some tension between the TOTEM
[1,7,20,27,28] and ATLAS/ALFA [3–5] results. This data
discrepancy suggests different scenarios for the rise of the
total cross section and, hence, the parameters of the
Pomeron and the Odderon [29,30].
In order to systematically explore the tension between

the TOTEM and ATLAS/ALFA results, we perform global
fits to the pp and p̄p differential cross sections consid-
ering three distinct datasets: one comprising solely the
TOTEM measurements, another consisting solely of the
ATLAS/ALFA results, and the third one combining both.
These datasets are complemented by the dσ=dt data
spanning from CERN-ISR, Sp̄pS, to Tevatron energies.
Specifically, the three data ensembles can be defined as
follows:

Ensemble A: dσ
p̄p;pp

dt jCERN-ISR þ dσp̄p
dt jSp̄pS þ dσp̄p

dt jTevatronþ
dσpp
dt jATLAS=ALFA.

Ensemble T: dσp̄p;pp
dt jCERN-ISR þ dσp̄p

dt jSp̄pS þ dσp̄p
dt jTevatronþ

dσpp
dt jTOTEM.
Ensemble A⊕ T: dσp̄p;pp

dt jCERN-ISR þ dσp̄p
dt jSp̄pSþ

dσp̄p
dt jTevatron þ dσpp

dt jATLAS=ALFA þ dσpp
dt jTOTEM.

The dσp̄p;pp=dtjCERN-ISR data enclose measurements
of the differential cross section for pp scattering at

ffiffiffi
s

p ¼
52.8 [31] and 62.5 [32] GeV and p̄p scattering at

ffiffiffi
s

p ¼
52.6 [31], 53 [33], 62 [33], and 62.3 GeV [31].
The dσp̄p=dtjSp̄pS dataset comprises differential cross
section data for p̄p channel at

ffiffiffi
s

p ¼ 540 [34] and
546 GeV [35]. The dσp̄p=dtjTevatron dataset consists of
dσ=dt data for the p̄p channel at

ffiffiffi
s

p ¼ 1800 GeV [36,37].
The dσpp

dt jATLAS=ALFA contains measurements of the differ-

ential cross section for pp scattering at
ffiffiffi
s

p ¼ 7 [4], 8 [5],
and 13 TeV [3] obtained using the ATLAS Roman Pot
system ALFA [38]. Finally, the dσpp

dt jTOTEM dataset com-
prises differential cross section data for the pp channel atffiffiffi
s

p ¼ 7 [27], 8 [20], and 13 TeV [1] measured by the
TOTEM experiment.
Hence, only the elastic scattering data are included in the

analysis since the experimental σtot and ρ values were

TABLE I. Values of the parameters obtained in the global fits to ensemble A ⊕ T.

Model I Model II Model II

βPð0Þ 2.247� 0.013 2.259� 0.016 2.307� 0.022
ϵ 0.1173� 0.0021 0.1180� 0.0020 0.1134� 0.0019

α0IP (GeV−2) 0.124� 0.024 0.128� 0.022 0.133� 0.023

A (GeV−2) 5.01� 0.20 4.78� 0.21 4.72� 0.21

B (GeV−4) 6.61� 0.99 6.7� 1.1 6.9� 1.2

C (GeV−6) 20.4� 5.7 17.7� 4.0 17.0� 4.2

βOð0Þ (0.15 × 10−4) �39 0.90� 0.18 0.88� 0.18
N546 0.941 0.933 0.958
N1.8½E� 0.923 0.912 0.944

N1.8½C� 1.087 1.070 1.109

N7½A� 1.015 1.015 1.056

N8½A� 1.003 1.003 1.045

N13½A� 1.009 1.009 1.052

N7½T� 1.077 1.077 1.121

N8½T� 1.121 1.121 1.167

N13½T� 1.150 1.150 1.200

ρppð ffiffiffi
s

p ¼ 13 TeVÞ 0.114 0.111 0.109

ρp̄pð ffiffiffi
s

p ¼ 13 TeVÞ 0.114 0.119 0.116

Allowed Ni interval [0.85, 1.15] [0.85, 1.15] [0.80, 1.20]
ν 504 504 504

χ2=ν 1.44 1.11 1.03
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obtained from fitting the same dσ=dt points already
included in our analysis. Of course, to be sensitive to
the ρ, we keep all the very small jtj data points and account
for the CNI region. Moreover, to minimize the number of
free parameters, we start from the relatively large energy,
namely,

ffiffiffi
s

p
> 50 GeV, where the secondary Reggeon

contribution can be neglected, and fix the Odderon trajec-
tory [αOðtÞ ¼ 1].
The values of B to be used in the Coulomb phase

[Eq. (2)] are the ones obtained by determining the
differential cross sections at different center-of-mass ener-
gies, as indicated in the original articles. Specifically, the
values are 12.86 GeV−2 for the pp at

ffiffiffi
s

p ¼ 52.8 GeV;
13.21 GeV−2 for the pp at

ffiffiffi
s

p ¼ 62.5 GeV; 13.36 GeV−2

for the pp̄ at
ffiffiffi
s

p ¼ 52.6 GeV; 11.5 GeV−2 for the pp̄ atffiffiffi
s

p ¼ 53 GeV; 11.12 GeV−2 for the pp̄ at
ffiffiffi
s

p ¼ 62 GeV;

13.47 GeV−2 for the pp̄ at
ffiffiffi
s

p ¼ 62.3 GeV; 17.1 GeV−2

for the pp̄ at
ffiffiffi
s

p ¼ 540 GeV; 15.3 GeV−2 for the pp̄ atffiffiffi
s

p ¼ 546 GeV; 16.3 GeV−2 for the pp̄ at
ffiffiffi
s

p ¼
1800 GeV (E710); 16.98 GeV−2 for the pp̄ at

ffiffiffi
s

p ¼
1800 GeV (CDF); 19.73 GeV−2 for the pp at

ffiffiffi
s

p ¼
7 TeV (ATLAS/ALFA); 19.89 GeV−2 for the pp at

ffiffiffi
s

p ¼
7 TeV (TOTEM); 19.74 GeV−2 for the pp at

ffiffiffi
s

p ¼ 8 TeV
(ATLAS/ALFA); 19.90 GeV−2 for the pp at

ffiffiffi
s

p ¼ 8 TeV
(TOTEM); 21.14 GeV−2 for the pp at

ffiffiffi
s

p ¼ 13 TeV
(ATLAS/ALFA); and 20.40 GeV−2 for the pp at

ffiffiffi
s

p ¼
13 TeV (TOTEM).
Once our ensembles are defined, we start carrying

out a fit to the ensemble A ⊕ T. In our analyses,
we fit the CERN-ISR data with jtj ≤ 0.2 GeV2 and to
the Sp̄pS, Tevatron, and LHC data with jtj ≤ 0.1 GeV2.
We use a χ2 fitting procedure, with the value of χ2min

FIG. 1. Description of the t dependence of the elastic pp and p̄p cross sections measured at CERN-ISR [31–33]. The dashed and solid
curves depict the results obtained using models I and II, respectively.
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distributed as a χ2 distribution with ν degrees of freedom.
We adopt an interval χ2 − χ2min corresponding to a
90% confidence level.
Since the absolute values of cross sections measured at

the same energy by different groups do not agree, we have
introduced normalization factors Ni for high-energy
dσ=dt data, with i ¼ 7½A�, 8½A�, and 13½A� for the
ATLAS/ALFA data and i ¼ 7½T�, 8½T�, and 13½T� for
the TOTEM data. Here, the numbers within the indices
i correspond to the values of

ffiffiffi
s

p
, namely, 7, 8, and 13 TeV.

Analogous normalization factors are introduced
for the Tevatron data with i ¼ 1.8½E� and i ¼ 1.8½C�,
i.e., N1.8½E� for the E710 data and N1.8½C� for the CDF

data. Despite being the only dataset measured atffiffiffi
s

p ¼ 546 GeV, we also included a normalization factor
for dσp̄p=dtj ffiffi

s
p ¼546 GeV, namely, N546. Furthermore, when

dealing with the datasets incorporating normalization
factors Ni, we make use of the formula

χ2 ¼
X
ij

ðNidsthij − dsexpij Þ2
ðδremij Þ2 þ

X
i

ð1 − NiÞ2
δ2i

ð23Þ

to calculate the total χ2 value, where i, as already
specified, denotes the particular set of data, while j
denotes the point tj in this set of data; dsthij is the

FIG. 2. Description of the t dependence of the elastic pp and p̄p cross sections measured at the Sp̄pS [34,35], the Tevatron [36,37],
and the LHC colliders [1,3–6,20]. The dashed and solid curves depict the results obtained using models I and II, respectively. The lower
curves describe the ATLAS/ALFA (E710) data, while the upper curves correspond to the TOTEM (CDF) data; in both cases, the
normalization factors Ni are accounted for.
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theoretically calculated dσ=dt cross section (21),
while dsexpij is the value measured at the same ij point
experimentally; δi is the normalization uncertainty of the
given (i) set of data and δremij is the remaining error at
the point ij calculated as ðδremij Þ2 ¼ δ2tot;ij − ðδi · dsexpij Þ2.
As a rule, the value of δrem is dominantly the statistical
error.5

The values of the free parameters determined by the fit
to the ensemble A ⊕ T, as derived from models I and II,
are listed in Table I. These results were obtained by fixing
in (13) the Odderon amplitude slope D ¼ A=2. The
second and third columns exhibit the outcomes obtained
by permitting the normalization factors to fluctuate
within the interval [0.85, 1.15]; the results of these fits
are shown in Figs. 1–6. We first observe that the
parameters related to the Pomeron are not sensitive to

the chosen model (model I or II) since their values are
compatible with each other considering the associated
uncertainties. The same is not observed concerning the
Odderon coupling βOð0Þ: its value is consistent with
zero (error significantly surpassing central value)
in the case of model I. Consequently, it is clear that a
positive Odderon contribution to the real part of pp
elastic amplitude is rejected by the data, resembling a
scenario where the Pomeron dominates the scattering
amplitude. Therefore, we consider the model I as the
model without the Odderon. Moreover, from the statis-
tical standpoint, the fit using model II is appreciably
better than that of model I, as the resultant χ2=ν values are
1.11 and 1.44, respectively. Hence the inclusion of a
negative Odderon contribution to the real part of pp
elastic amplitude decreases the value of χ2 when com-
pared with the value obtained in the analysis using the
model without the Odderon; specifically, the decrease is
around 25%.

FIG. 3. The same as Fig. 2, but for the CNI region where the Odderon contribution reveals itself.

5A similar approach was used in [39].
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The value of N13½T� each time is at the edge of the
allowed interval, indicating some problem with the
TOTEM 13 TeV data. All other Ni factors are
inside the interval. For a larger interval, we get a smaller
ϵ (i.e., cross section grows slower with energy) and,
correspondingly, a smaller Odderon coupling βOð0Þ since
a smaller ϵ leads to a smaller ρ for a pure even
contribution. With a larger allowed interval, we get a
smaller χ2 (at least up to [0.6–1.4] case); however, we
would not consider such a large normalization factor as a
realistic value. Therefore, we chose the [0.85–1.15]
interval as the main one, with the fourth column of
Table I (for the interval [0.80, 1.20]) provided merely
to illustrate the trend.
The effect of incorporating the Odderon becomes nota-

bly significant when analyzing specific subsets of data. In
particular, it becomes more evident in part of the data in the
ISR region, notably in data with 0.1≲ jtj ≲ 0.2 GeV2 at
energies

ffiffiffi
s

p ¼ 53 and 62 GeV (Fig. 1). Although less

pronounced, its influence is also visible in part of the data in
the Sp̄pS region, namely, the data with 0.05≲ jtj ≲
0.1 GeV2 at energy

ffiffiffi
s

p ¼ 540 GeV (Fig. 2); in the data
in the Tevatron region, specifically in the data with 0.03≲
jtj ≲ 0.1 GeV2 at energy

ffiffiffi
s

p ¼ 1.8 TeV (Fig. 2); and in the
LHC data, particularly in the CNI region at the energiesffiffiffi
s

p ¼ 7, 8, and 13 TeV (Figs. 3 and 4).
The influence of the Odderon is also apparent in our

predictions for the behavior of the total cross section
σtotðsÞ, the total elastic cross section σelðsÞ, and the
parameter ρðsÞ. After introducing the Odderon, we can
see in Fig. 5 a slight difference between the pp (solid
curve) and the p̄p (dashed curve) channels, both in the
case of σtot and σel. For model I, the pp (dotted curve) and
p̄p (dash-dotted curve) channels are indistinguishable
since then the scattering amplitude is dominated asymp-
totically only by the even terms, the total cross section
difference behaves as jΔσj ¼ jσp̄ptot − σpptot j → 0 in the
limit s → ∞.

FIG. 4. The same as Figs. 2 and 3, but in another scale to better see the quality of precise 13 TeV data description.
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The influence of the Odderon also becomes particu-
larly evident when examining the model II predictions
for the ρ parameter (Fig. 6): there is a clear separation
between the pp and p̄p channels. As illustrated in
Table I, the model predictions for ρpp and ρp̄p at

ffiffiffi
s

p ¼
13 TeV are, respectively, 0.111 and 0.119. Conversely,
under the model I, the channels pp and p̄p predictions
are identical and equal to 0.114. Table II shows the
predictions for the high-energy total cross section and ρ
parameter, obtained using model I and model II. Note
that similar values of σtot ¼ 107.6� 1.7 mb and ρ ¼
0.11� 0.01 at 13 TeV were derived in [40] fitting the
low-jtj TOTEM 13 TeV data only, but introducing the
normalization coefficient λ (analogous to 1=N13;T in our
Table I). In this case, the fit was normalized to the
Coulomb scattering.
Regarding the behavior of the Pomeron- and

Odderon-proton vertices, note that the parameters A
and D are not independent, as they must satisfy the
unitarity constraint D < A. In this way, as previously
indicated, we choose D ¼ A=2 in our analysis. We have
studied other relations between A and D, specifically the
cases D ¼ 0.1A, D ¼ 0.3A, D ¼ 0.7A, and D ¼ 0.9A.

As illustrated in Table III, these choices do not affect
the global fits and, therefore, the model predictions.
While the Pomeron (C-even amplitude) parameters
remain relatively stable with respect to variations in
the Odderon slope D, the value of the Odderon coupling
βOð0Þ decreases monotonically as D increases (see
Table III). This can be explained by the fact that, for
a smaller D, the Odderon contribution is concentrated at
a smaller impact parameter b, where screening by the
C-even amplitude is stronger. Thus, we need larger
βOð0Þ to get the same final result.
We investigated the effect of replacing, in ensemble

A ⊕ T, the dataset of the differential cross section p̄p atffiffiffi
s

p ¼ 546 GeV [35] by the measurement of the differential
dN=dt distribution performed by the UA4=2 Collaboration
at

ffiffiffi
s

p ¼ 541 GeV [41] (see Fig. 7). This study was to
verify whether using the dN=dt distribution, carried out
with a substantial reduction in statistical uncertainty and
more rigorous control of systematic effects than the
previous measurement at

ffiffiffi
s

p ¼ 546 GeV, could affect
our results and predictions for the LHC energy. Our
analysis revealed that using the distribution dN=dt instead
of dσ=dt in ensemble A ⊕ T does not affect the results
already presented in this paper.

FIG. 5. Description of the total and elastic pp (black circle,
black up-pointing triangle, black square) and p̄p (∘) cross
sections. The data are from [4–7,27]. The dotted and dash-
dotted curves represent the results for pp and p̄p channels,
respectively, obtained from the global fit to ensemble A ⊕ T
using model I. These curves are indistinguishable. The solid and
dashed curves represent the results for pp and p̄p channels,
respectively, obtained from the global fit to ensemble A ⊕ T
using model II.

FIG. 6. ρ parameter for pp (black up-pointing triangle, black
square) and p̄p (∘) elastic amplitude. The data are from
[1,3,17,20,21]. The dotted and dash-dotted curves represent
the results for ρpp and ρp̄p, respectively, obtained from the
global fit to ensemble A ⊕ T using the model I. These curves are
indistinguishable. The solid and dashed curves represent the
results for ρpp and ρp̄p, respectively, obtained from the global fit
to ensemble A ⊕ T using model II.
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TABLE II. Predictions for σp̄p;pptot , σp̄p;ppel , and ρp̄p;pp using models I and II. These results were derived for the scenario withD ¼ A=2.

Model I Model II
ffiffiffi
s

p
(TeV) σpptot | σp̄ptot (mb) σppel | σp̄pel (mb) ρpp | jρp̄p σpptot | σp̄ptot (mb) σppel | σp̄pel (mb) ρpp | ρp̄p

0.541 64.2 | 64.2 13.2 | 13.2 0.130 | 0.130 63.8 | 64.1 13.3 | 13.5 0.117 | 0.144
1.8 78.0 | 78.0 17.6 | 17.6 0.124 | 0.124 77.6 | 77.8 17.7 | 17.9 0.116 | 0.133
7 95.9 | 95.9 23.9 | 23.9 0.117 | 0.117 95.7 | 95.9 24.0 | 24.2 0.113 | 0.123
8 97.9 | 97.9 24.5 | 24.5 0.116 | 0.116 97.6 | 97.8 24.7 | 24.8 0.113 | 0.122
13 105.1 | 105.1 27.2 | 27.2 0.114 | 0.114 104.9 | 105.1 27.3 | 27.4 0.111 | 0.119

TABLE III. Results using model II.

Ensemble A

D (GeV−2) 0.1A 0.3A 0.5A 0.7A 0.9A

βOð0Þ 0.93� 0.22 0.85� 0.22 0.80� 0.21 0.77� 0.19 0.74� 0.18
βPð0Þ 2.370� 0.035 2.384� 0.036 2.386� 0.037 2.386� 0.040 2.388� 0.039
ν 332 332 332 332 332

χ2=ν 0.96 0.97 0.97 0.97 0.96

ρppð ffiffiffi
s

p ¼ 13TeVÞ 0.105 0.105 0.105 0.104 0.104

ρp̄pð ffiffiffi
s

p ¼ 13TeVÞ 0.113 0.112 0.113 0.114 0.114

σpptot ð
ffiffiffi
s

p ¼ 13TeVÞ (mb) 98.0 98.0 98.0 98.0 98.0

σp̄ptot ð
ffiffiffi
s

p ¼ 13TeVÞ (mb) 98.2 98.2 98.2 98.2 98.1

Ensemble T

D (GeV−2) 0.1A 0.3A 0.5A 0.7A 0.9A

βOð0Þ 1.09� 0.22 0.96� 0.18 0.90� 0.16 0.86� 0.15 0.83� 0.14
βPð0Þ 2.236� 0.022 2.258� 0.016 2.260� 0.016 2.260� 0.017 2.259� 0.018
ν 418 418 418 418 418

χ2=ν 1.28 1.30 1.29 1.28 1.27

ρppð ffiffiffi
s

p ¼ 13TeVÞ 0.112 0.112 0.111 0.111 0.110

ρp̄pð ffiffiffi
s

p ¼ 13TeVÞ 0.119 0.118 0.119 0.119 0.120

σpptot ð
ffiffiffi
s

p ¼ 13TeVÞ (mb) 104.9 104.9 104.9 104.9 104.9

σp̄ptot ð
ffiffiffi
s

p ¼ 13TeVÞ (mb) 105.1 105.1 105.1 105.1 105.1

Ensemble A ⊕ T

D (GeV−2) 0.1A 0.3A 0.5A 0.7A 0.9A

βOð0Þ 1.09� 0.24 0.95� 0.19 0.90� 0.18 0.86� 0.17 0.83� 0.16
βPð0Þ 2.235� 0.023 2.257� 0.016 2.259� 0.016 2.258� 0.016 2.258� 0.017
ν 504 504 504 504 504

χ2=ν 1.11 1.12 1.11 1.10 1.09

ρppð ffiffiffi
s

p ¼ 13TeVÞ 0.112 0.112 0.111 0.111 0.110

ρp̄pð ffiffiffi
s

p ¼ 13TeVÞ 0.119 0.118 0.119 0.119 0.120

σpptot ð
ffiffiffi
s

p ¼ 13TeVÞ (mb) 104.9 104.9 104.9 104.9 104.9

σp̄ptot ð
ffiffiffi
s

p ¼ 13TeVÞ (mb) 105.1 105.1 105.1 105.1 105.1
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We further conducted an analysis focusing only on the
ATLAS/ALFA or TOTEM data (see Fig. 8). As depicted in
Table III, the ATLAS/ALFA results show slightly better
agreement with their respective ensemble. However,

accounting for all normalization factors Ni, the value
χ2=ν ¼ 1.11 remains highly satisfactory for the analysis
using the ensemble A ⊕ T.6

IV. CONCLUSIONS

The differential proton-proton and proton-antiproton
cross sections dσ=dt at low jtj < 0.1 GeV2 and collider
energies (from

ffiffiffi
s

p
> 50 GeV to 13 TeV) are successfully

described (χ2=ν ¼ 1.11) within the two-channel eikonal
model. To avoid the double counting, we do not include in
the fit the σtot and ρ data (which were obtained from the
description of the same dσ=dt data points), but rather
extend our fit to the very low-jtj values describing the
Coulomb-nuclear interference region. The model accounts
for the screening of the Odderon contribution by the
Pomerons including the C-even (Pomeron) and C-odd
(Odderon) multiple exchanges. That is the opacity Ω,
written as the sum of the bare Pomeron and the bare
Odderon amplitudes.
To resolve the discrepancy between the TOTEM and

ATLAS/ALFA (CDF and E710 in the Tevatron case) data,
we introduce the normalization coefficients Ni writing the
theoretical prediction as dσexp=dt ¼ NidσTh=dt. The
global analysis chooses Ni > 1 for TOTEM and Ni > 1
for ATLAS/ALFA. The deviation of the values ofNi from 1
compared with the published luminosity uncertainties is
included in the total χ2.
We show that the presence of the C-odd (Odderon)

contribution essentially improves the fit (see Table I),
however, it does not noticeably change the predicted value
of ρpp at 13 TeV. A larger Odderon amplitude is con-
strained by the Sp̄pS data.
For completeness, we present also the results obtained by

fitting only the TOTEM or only the ATLAS/ALFA data.
The main lessons about the Odderon coming from this

study are as follows:
(i) The description using the Odderon improves the fit

(the χ2=ν is the lowest one).
(ii) The sign of the Odderon amplitude needed to

describe the very low-jtj data is opposite of that
predicted by the perturbative QCD three gluon
exchange contribution.

(iii) The quality of the description weakly depends on the
Odderon t slope D (leading to practically the same
values of σtot and ρ). However, for smaller D we
need larger coupling βO to compensate for a stronger
absorption caused by the Pomeron screening at
small impact parameters b.

FIG. 7. Description of the p̄p differential dN=djtj distribution
in the jtj range jtj ≤ 0.1 GeV2.

FIG. 8. Description of ρ parameter for pp elastic amplitude
measured by TOTEM (black up-pointing triangle) and ATLAS/
ALFA (black square) Collaborations. The data are from
[1,3,20,21]. The dashed (solid) curve represents the predicted
ρpp from the global fit using ensemble T (ensemble A).

6A slightly larger χ2=ν in the pure TOTEM case (ensemble T)
could be caused by the fact that, in TOTEM data of 13 TeV, some
oscillations occur in the t behavior of dσpp=dt (see, e.g., [39,42])
that are not accounted for within our parametrization of the high-
energy elastic amplitude.
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(iv) The Odderon-proton coupling βO is smaller than
that for the Pomeron βP. For D ¼ A=2, we get
βO=βP ¼ 0.40; however, after accounting for
screening by the Pomeron, the final C-odd contri-
bution to ρ at 13 TeV becomes quite small, δρ ¼
ðρp̄p − ρppÞ=2 ≤ 0.004 (see Table I) and it will be
challenging to enlarge it. Otherwise, we will get too

large ρp̄p at
ffiffiffi
s

p
∼ 541 GeV in disagreement with the

data [41].
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