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Recently entanglement suppression was proposed to be one possible origin of emergent symmetries.
Here we test this conjecture in the context of heavy meson scatterings. The low-energy interactions of
Dð�ÞD̄ð�Þ and Dð�ÞDð�Þ are closely related to the hadronic molecular candidates Xð3872Þ and Tccð3875Þþ,
respectively, and can be described by a nonrelativistic effective Lagrangian manifesting heavy-quark spin
symmetry, which includes only constant contact potentials at leading order. We explore entanglement
suppression in a tensor-product framework to treat both the isospin and spin degrees of freedom. Using the
Xð3872Þ and Tccð3875Þþ as inputs, we find that entanglement suppression indeed leads to an emergent
symmetry, namely, a light-quark spin symmetry, and as such the Dð�ÞD̄ð�Þ or Dð�ÞDð�Þ interaction strengths
for a given total isospin do not depend on the total angular momentum of light (anti)quarks. The Xð3872Þ
and Tccð3875Þþ are predicted to have five isoscalar partners and one isoscalar partner, respectively, while
the corresponding partner numbers derived solely from heavy-quark spin symmetry are three and one,
respectively. The predictions need to be confronted with experimental data and lattice quantum
chromodynamics results to further test the entanglement suppression conjecture.

DOI: 10.1103/PhysRevD.110.014001

I. INTRODUCTION

Symmetries play a crucial role in physics, serving as
fundamental principles for understanding nature and
revealing the properties of elementary particles and inter-
actions. Particularly at low energies, the behavior of many
systems can be attributed to the influence of their sym-
metries. Symmetries at low energies often manifest as local
approximations of high-energy theories, and additional
symmetries, known as “emergent symmetries” which are
not in the action of the theory, may arise. In recent years,
the concept of quantum entanglement has been introduced
to the study and description of emergent symmetries,
providing a new perspective for uncovering novel physical

phenomena and understanding the behavior of low-energy
systems [1–7].
Entanglement measures the degree to which a system

is entangled and quantifies the deviation from the tensor-
product structure for a given state [8,9] (and if the
tensor-product structure is considered quasiclassical, then
entanglement signifies the deviation from the classical
structure). Given the ability to quantify the entanglement
of a state, it is natural to extend this concept to quantify
the entanglement of an operator [10]. This can be achieved
by averaging the entanglement measure of the states
produced by applying the operator to all tensor-product
states. It is evident that the entanglement of an operator
measures its capacity to generate entanglement, termed as
“entanglement power” in the literature.
Since the Smatrix is also an operator, it is conceivable to

assign an entanglement power to it. We know that the S
matrix carries all the information of a scattering process;
hence its entanglement power measures the deviation of a
specific scattering process from classical structure. It is
natural to consider extreme cases, such as when the
entanglement of the S matrix reaches its maximum or
minimum value (which can always be zero). Reference [1]
examines the latter, revealing some intriguing clues: the
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inherent SUð2Þisospin × SUð2Þspin symmetry of nucleon-
nucleon scattering enlarges to Wigner’s SU(4) symmetry
[11–13] when the entanglement vanishes, leading to the
conjecture that entanglement suppression could be the
origin of emergent symmetries.
If the hypothesis holds, one may speculate that minimal

entanglement would constrain the parameter space of low-
energy hadron reactions, and thus would determine the
emergence of new structures in hadronic interactions in the
low-energy region. Consequences of entanglement sup-
pression have been examined for nucleon-nucleon inter-
actions [1,2], the pionic scattering [3], the scattering
between light octet baryons [4,6], and the relativistic
scattering of Higgs doublets [5]. In this paper, we will
extend the study of entanglement suppression to the
scattering of heavy mesons, where there are numerous
intriguing near-threshold structures under intensive inves-
tigations. Two of the prominent examples in this regard are
the Xð3872Þ [14], also known as the χc1ð3872Þ [15], and
the Tccð3875Þþ [16,17], which have been proposed to be
potentialDD̄� [18–23] andD�D [24–27] hadronic molecu-
lar states, respectively (for reviews, see Refs. [28–37]). We
will investigate to what consequences their existence
together with entanglement suppression can lead.
The interaction between a pair of ground-state heavy

mesons near threshold is closely related to the formation
of hadronic molecular states [31]. Therefore, we will
analyze the near-threshold scattering processes of a pair of
heavy mesons (namely, the Dð�ÞDð�Þ and Dð�ÞD̄ð�Þ scatter-
ing), where particles can be treated using a nonrelativistic
approximation and the interaction is dominated by the
lowest partial wave, i.e., the S wave. Moreover, the mass
of charm quark, mc, is much larger than the nonperturba-
tive energy scale of quantum chromodynamics (QCD),
denoted by ΛQCD. Therefore, when studying physical
processes involving momentum scales of OðΛQCDÞ, we
can treat ΛQCD=mc as a small parameter and expand it in a
power series to construct an effective field theory. The
leading order (LO) is given by the heavy-quark limit
(mc → ∞), where the heavy-quark spin symmetry
(HQSS) [38] exists. HQSS has been used to predict
heavy-quark spin partners of hadronic molecules contain-
ing heavy quark(s) [39–42]. This paper will investigate
whether entanglement suppression will enlarge HQSS,
then obtaining an emergent symmetry, which can predict
more potential siblings of Xð3872Þ and Tccð3875Þþ than
HQSS does.
Furthermore, enlarged symmetries in the low-energy

region can also emerge in the large-Nc limit, with Nc
the number of colors. For the Wigner’s SU(4) symmetry,
the large-Nc limit makes the same prediction, but for some
other cases [1,4], the results obtained from the entangle-
ment suppression and the large-Nc limit differ, making it
also meaningful to examine the differences between the
two in the Dð�ÞDð�Þ and Dð�ÞD̄ð�Þ systems.

The outline of this paper is as follows: In Sec. II, the
entanglement power is considered in detail. The S matrix
is formulated in a basis convenient for calculation in
Sec. III A. Then in Sec. III B, we demonstrate how to
relate the parametrization of the S matrix to the amplitudes.
In Sec. III C, we present the effective Lagrangians and
compute the amplitudes for Dð�ÞDð�Þ and Dð�ÞD̄ð�Þ scatter-
ings. In Sec. IV, we derive the constraints imposed by
entanglement suppression on the S matrix, and in Sec. V,
these results are connected to hadronic molecules, and we
will show that with the Xð3872Þ and Tccð3875Þþ as inputs,
there emerges a light-quark spin symmetry. Subsequently,
we conduct a brief large-Nc-limit analysis for the heavy
meson scatterings in Sec. VI. Finally, a concise summary is
provided in Sec. VII.

II. ENTANGLEMENT POWER

The degree to which a system is entangled, or its
deviation from a tensor-product structure, provides a
measure of how “nonclassical” it is [1,2]. An entanglement
measure is a way to quantify the degree of entanglement of
any given state. For a bipartite system jψi, the commonly
employed linear entropy is defined as (see, e.g., Refs. [3,4])

EðjψiÞ ¼ 1 − Tr1½ρ21�; ð1Þ

where ρ ¼ jψihψ j is the density matrix, and ρ1 ¼ Tr2ðρÞ is
the reduced density matrix obtained after tracing over
subsystem 2. EðjψiÞ serves as a semipositive definite
measure of entanglement which vanishes only on tensor-
product states jψi¼jψ1i⊗ jψ2i, as shown in the Appendix.
Entanglement measure quantifies the entanglement in a

quantum state jψi, while entanglement power measures the
ability of a quantum-mechanical operator U to generate
entanglement by averaging over states obtained by actingU
on all tensor-product states [10]:

EðUÞ ¼ EðUjψiÞ; jψi ¼ jψ1i ⊗ jψ2i: ð2Þ

By describing the average action of U transiting a tensor-
product state to an entangled state, entanglement power
expresses a state-independent entanglement measure that is
also semipositive definite and vanishes, i.e., is minimized,
only when Ujψi remains a tensor-product state for any
jψi ¼ jψ1i ⊗ jψ2i.
In general, a low-energy scattering event can entangle

position, spin, and other quantum numbers, and it is
therefore natural to assign an entanglement power to the
S matrix for such a scattering process. Moreover, the small
mass splitting between u and d quarks leads to the
approximate SU(2) isospin symmetry, so it is instructive
to take into account the isospin invariance, which intro-
duces interesting interplay between flavor and spin quan-
tum numbers [4]. Based on the above discussion, we
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choose to define the entanglement power of the S matrix in
the initial two-particle isospin ⊗ spin space. Since the
S-wave heavy mesons are isospin-1=2 and spin-0 (D) or
spin-1 (D�), it is expedient to focus on the following
two cases.
The first one is where there are two isospin states (a

qubit) for each particle, the isospin-1=2 case. This is just
like the discussion of the spin states for the nucleon-
nucleon case in Ref. [3]. The most general initial isospin-
1=2 state can be parametrized using the two complex
parameters or four real parameters. Among them, one
parameter can be removed by normalization, and one gives
an overall irrelevant phase. Finally only two real parameters
are left, which parametrize a CP1 manifold, also known as
the two-sphere S2 or the Bloch sphere [3,43]. It can be
parametrized as

jψi ¼
�
cos

θ

2
; eiϕ sin

θ

2

�
T
; ð3Þ

with θ∈ ½0; π� and ϕ∈ ½0; 2πÞ. Therefore, the incoming
state of two isospin-1=2 particles is mapped to a point on
the product manifold, CP1 × CP1, while the entanglement
power EðSÞ of the S matrix is defined as

EðSÞ ¼ 1 −
Z

dΩ1

4π

dΩ2

4π
Tr1½ρ21�; ð4Þ

where we have defined ρ¼jψoutihψoutj and jψouti¼Sjψ ini,
jψ ini ¼ jψ1i ⊗ jψ2i.
In the spin-1 case, we have three spin states (a qutrit)

which involve three complex parameters, similar to the
isospin space of the ππ scattering discussed in Ref. [3]. Four
real parameters are left after considering normalization and
removing the overall phase, and they parametrize the CP2

manifold. Thus, an arbitrary qutrit can be written as

jψi ¼ ðcos β sin α; eiμ sin β sin α; eiν cos αÞT; ð5Þ

where α; β∈ ½0; π=2� and μ; ν∈ ½0; 2πÞ. Similarly to
Eq. (4), the entanglement power EðSÞ of the S matrix can
be defined as

EðSÞ ¼ 1 −
Z

dω1dω2Tr1½ρ21�; ð6Þ

with dω ¼ ð2=π2Þ cos αsin3 αdα cos β sin βdβdμdν the
normalized measure that describes the geometry of
CP2 [43,44].

III. HEAVY MESON SCATTERING

A. S matrix

In this paper, we primarily study the scattering of heavy
mesons in the near-threshold region, which is dominated by

the S-wave interaction. In general, the S matrix can be
expressed as

S ¼
X
I;J

J J ⊗ I Ie2iδIJ ; ð7Þ

where we define J J ⊗ I I the projection operators onto
subspaces of definite isospin I and total spin J, and δIJ the
corresponding phase shift.
Let us start with Dð�ÞDð�Þ scattering. The construction of

the S matrix proceeds straightforwardly [3,4]:

SDD ¼ I0 e2iδ00 þ I1 e2iδ10 ; ð8Þ
SD�D ¼ I0 e2iδ01 þ I1 e2iδ11 ; ð9Þ

SD�D� ¼
X
I¼0;1

X
J¼0;1;2

I I ⊗ J J e2iδIJ� ; ð10Þ

with the isospin space projectors

I0 ≡ 1 − τ1 · τ2
4

; I1 ≡ 3þ τ1 · τ2
4

; ð11Þ

and the spin space projectors

J 0 ≡ −
1

3
½1 − ðt1 · t2Þ2�;

J 1 ≡ 1 −
1

2
ðt1 · t2Þ −

1

2
ðt1 · t2Þ2;

J 2 ≡ 1

3

�
1þ 3

2
ðt1 · t2Þ þ

1

2
ðt1 · t2Þ2

�
; ð12Þ

where ðta1;2Þbc ¼ −iϵabc, τ are Pauli matrices in the flavor
space, and the D�D� scattering phase shifts are denoted as
δIJ�, to be distinguished from the Dð�ÞD scattering phase
shifts δIJ. The S matrices for DD and D�D scattering are
exclusively parametrized in the isospin space. This is
because in these two processes, the total spin has only
one specific value for each. Additionally, the Bose-Einstein
statistics dictates that (i) δ00 ¼ 0 for DD scattering;
(ii) δ00� ¼ δ02� ¼ δ11� ¼ 0 for D�D� scattering, i.e., the
total isospin I ¼ 0 projects into spin triplet 3S1 while I ¼ 1

projects into both spin singlet 1S0 and quintuplet 5S2 [26].
For Dð�ÞD̄ð�Þ scattering, there are two additional intri-

cacies: (i) electrically neutralDð�ÞD̄ð�Þ combinations should
have definite C parities; (ii) there is no Bose-Einstein
statistics. This implies that the S matrix for Dð�ÞD̄ð�Þ
scattering should be written as

SDD̄ ¼ I0 e2iδ̄00 þ I1 e2iδ̄10 ; ð13Þ

SDD̄�� ¼ I0 e2iδ̄01� þ I1 e2iδ̄11� ; ð14Þ

SD�D̄� ¼
X
I¼0;1

X
J¼0;1;2

I I ⊗ J J e2iδ̄IJ� : ð15Þ
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The phase shifts of DD̄ and D�D̄� scatterings are denoted
as δ̄IJ and δ̄IJ�, respectively. The JPC combinations that a
pair of Dð�Þ and D̄ð�Þ can form are as follows [31,45]:

0þþ∶ DD̄;D�D̄�;

1þ−∶
1ffiffiffi
2

p ðDD̄� þD�D̄Þ; D�D̄�;

1þþ∶
1ffiffiffi
2

p ðDD̄� −D�D̄Þ;

2þþ∶ D�D̄�: ð16Þ

Thus, it is seen in Eq. (14) that there are two independent S
matrices in the DD̄� channel, with C ¼ � and thus the
corresponding subindex “ �”. Here the phase convention
for the charge conjugation is chosen as ĈjDi ¼ jD̄i and
ĈjD�i ¼ −jD̄�i.

B. Effective range expansion

In this subsection, we will first derive the effective range
expansion that will be utilized later, and then discuss how to
relate phase shifts to amplitudes in different physical cases.
We start by considering the effective Lagrangian for two

nonrelativistic spinless bosons ϕi with only the LO contact
interaction in a derivative (nonrelativistic) expansion:

L ¼
X
i¼1;2

ϕ†
i

�
i∂t −mi þ

∇2

2mi

�
ϕi − C0ϕ

†
1ϕ

†
2ϕ1ϕ2: ð17Þ

It is easy to write down the amplitude for the process
ϕ1ϕ2 → ϕ1ϕ2 shown in Fig. 1:

iM ¼ −iC0 þ ð−iC0ÞðiGÞð−iC0Þ þ � � �

¼ −
i

C−1
0 −G

; ð18Þ

where we define the two-point loop function

G¼ i
Z

dk0d3k
ð2πÞ4

��
k0−

k2

2m1

þ iϵ

��
E−k0−

k2

2m2

þ iϵ

��−1

¼−
μ

2π
ðΛþ ipÞ; ð19Þ

with m1 and m2 the boson masses, μ the reduced mass,
p¼ ffiffiffiffiffiffiffiffiffi

2μE
p

the magnitude of the center-of-mass momentum,

and Λ the cutoff introduced to regularize the loop
integral.
Meanwhile, the S matrix for nonrelativistic elastic

scattering can be written as

S ¼ e2iδ ¼ 1þ μp
π

iM; ð20Þ

where δ is the phase shift. Hence, one has

iM ¼ 2π

μ

i
p cot δ − ip

; ð21Þ

which, combined with Eq. (18), directly yields

p cot δ ¼ −
2π

μC0

− Λ; ð22Þ

which is the effective range expansion [46] at LO (see,
e.g., Refs. [47,48]), with a ¼ ð2π=ðμC0Þ þ ΛÞ−1 the S-
wave scattering length.
Based on the above discussion, we can deduce the

contact potential C0 for certain phase shift values. In
particular, the noninteracting and unitary limit cases are
of utmost importance at LO:

δ ¼ 0∶ a ¼ 0 or C0 ¼ 0; ð23Þ

δ ¼ π

2
∶ a ¼ ∞ or C0 ¼ −

2π

μΛ
: ð24Þ

In fact, at LO only these two limits are momentum
independent since the phase shift δðpÞ is in general a
function of p, so if the entanglement suppression constraint
(see Sec. IV) is enforced at one value of momentum it will
generically not hold at other values of momentum.
Additionally, both the free theory (δ ¼ 0) and the theory
at the unitarity limit (δ ¼ π=2) are invariant under the
Schrödinger symmetry [2,49], which is the nonrelativistic
conformal group and the largest symmetry group preserving
the Schrödinger equation. These two limits correspond to
the two fixed points of renormalization group running of
nonrelativistic two-body scattering by a short-range poten-
tial [50].

FIG. 1. The first few diagrams contributing to the S-wave amplitude for the process ϕ1ϕ2 → ϕ1ϕ2. The solid black dot represents the
−iC0 vertex.
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C. LO effective field theory for heavy
meson scattering

At very low energies, the LO Dð�ÞDð�Þ interaction in the
nonrelativistic effective field theory follows from the
effective Lagrangian which contains only constant contact
potentials [26,51],

LHH ¼ −
D00

8
Tr½Ha†HbHb†Ha�

−
D01

8
Tr½Ha†Hbσ

mHb†Haσ
m�

−
D10

8
Tr½Ha†HbHc†Hd�τda · τbc

−
D11

8
Tr½Ha†Hbσ

mHc†Hdσ
m�τda · τbc; ð25Þ

where σ denotes the Pauli matrices in the SU(2) spinor
space, D00;01;10;11 are light-flavor-independent low-energy
constants (LECs), Tr½·� takes trace in the spinor space,
and τ · τ sums over all Pauli matrices in the flavor space.
The above Lagrangian respects both HQSS and isospin
symmetry.
Moreover, the LO Lagrangian for the low-energy S-wave

interaction between a pair of heavy and antiheavy mesons
containing only constant contact terms reads as [45,52,53]1

LHH̄ ¼−
1

4
Tr½Ha†Hb�Tr½H̄cH̄†

d�ðFAδ
b
aδ

d
c þFτ

Aτ
b
a · τdcÞ

þ 1

4
Tr½Ha†Hbσ

m�Tr½H̄cH̄†
dσ

m�ðFBδ
b
aδ

d
c þFτ

Bτ
b
a · τdcÞ:
ð26Þ

Again, there are four light-flavor-independent LECs FðτÞ
A;B.

In the above Lagrangians, the heavy and antiheavy
mesons are grouped into superfields as [54,55]

Ha ¼ Pa þ P�
a · σ; H̄a ¼ P̄a þ P̄�a · σ; ð27Þ

with Pa and P�
a annihilating the ground-state pseudoscalar

and vector charmed mesons, respectively, and P̄a and P̄�a
annihilating the anticharmed mesons.
The contact potentials for the different isospin/

spin-parity Dð�ÞDð�Þ S-wave channels derived from the
Lagrangian of Eq. (25) read as [26]

TIJ¼00ðDDÞ ¼ 1

2
ðD00 þ 3D01 þD10 þ 3D11Þ; ð28Þ

TIJ¼01ðD�DÞ ¼ −2ðD01 − 3D11Þ; ð29Þ

TIJ¼11ðD�DÞ ¼ D00 þD01 þD10 þD11; ð30Þ

TIJ¼01ðD�D�Þ ¼ −2ðD01 − 3D11Þ; ð31Þ

TIJ¼10ðD�D�Þ ¼ −
1

2
ðD00 − 5D01 þD10 − 5D11Þ; ð32Þ

TIJ¼12ðD�D�Þ ¼ D00 þD01 þD10 þD11: ð33Þ

All other potentials vanish, where we have used the fact that
the isoscalar (isovector) wave function for two identical
particles with isospin I ¼ 1=2 are antisymmetric (symmet-
ric), respectively.
When it comes to the Dð�ÞD̄ð�Þ case, the four LECs that

appear in Eq. (26) are often rewritten for convenience into
C0a, C0b and C1a, C1b [56], which stand for the LECs in the
isospin I ¼ 0 and I ¼ 1 channels, respectively. The rela-
tions read as

C0a ¼ FA þ 10

3
Fτ
A; C1a ¼ FA −

2

3
Fτ
A;

C0b ¼ FB þ 10

3
Fτ
B; C1b ¼ FB −

2

3
Fτ
B: ð34Þ

Then the contact potentials can be expressed utilizing these
four LECs [53]:

TIJ¼00ðDD̄Þ ¼ C0a;

TIJ¼10ðDD̄Þ ¼ C1a; ð35Þ

TIJ¼01
− ðDD̄�Þ ¼ C0a − C0b;

TIJ¼11
− ðDD̄�Þ ¼ C1a − C1b; ð36Þ

TIJ¼01þ ðDD̄�Þ ¼ C0a þ C0b;

TIJ¼11þ ðDD̄�Þ ¼ C1a þ C1b; ð37Þ

TIJ¼00ðD�D̄�Þ ¼ C0a − 2C0b;

TIJ¼10ðD�D̄�Þ ¼ C1a − 2C1b; ð38Þ

TIJ¼01ðD�D̄�Þ ¼ C0a − C0b;

TIJ¼11ðD�D̄�Þ ¼ C1a − C1b; ð39Þ

TIJ¼02ðD�D̄�Þ ¼ C0a þ C0b;

TIJ¼12ðD�D̄�Þ ¼ C1a þ C1b; ð40Þ

where the lower indices “�” represent ðDD̄� ∓ D�D̄Þ= ffiffiffi
2

p
with different C parities in Eq. (16).

IV. RESULTS

Having set up the theoretical framework, we can now
calculate the entanglement power and require it to vanish,

1One can check that the double-trace form can also be rewritten
in the single-trace form like Eq. (25) using the completeness
relation for the Pauli matrices, 2δliδ

j
k ¼ δjiδ

l
k þ σji · σ

l
k, as shown in

Ref. [41].
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which gives constraints on phase shifts. In this way, we can
check the consequences of the constraints on amplitudes,
which lead to relations among the LECs in the Lagrangian.
It is not difficult for scatterings involving pseudoscalar
mesons, as entanglement occurs solely in the isospin space,
while forD�D� andD�D̄� scatterings, it is useful to express
what minimal entanglement means in a tensor-product
space. Clearly, entanglement being zero in a large space
is equivalent to it being zero in all of its subspaces.
For instance, applying I I0 ≡ I I0 ⊗ 1 to S ¼ P

I;J I I ⊗
J J e2iδIJ� gives

I I0S ¼
X
I;J

I I0I I ⊗ J Je2iδIJ� ¼ I I0 ⊗
X
J

J Je2iδIJ0�

≡ I I0 ⊗ SI0 : ð41Þ

So the vanishing of entanglement implies that the entan-
glement vanishes in this spin subspace with isospin I0.
Similarly, for any isospin subspace with a specific total
spin, the entanglement should also be zero. Nucleon-
nucleon scattering is also a process entangled in both spin
and isospin spaces. In Ref. [1], the parametrization was
carried out only in spin space. This is because Fermi-Dirac
statistics results in entanglement effectively occurring in
only one space. Similarly, we find that in Dð�ÞDð�Þ
scattering, spin entanglement and isospin entanglement
also yield completely consistent results, so it is actually
sufficient to compute entanglement in only one space.
However, for Dð�ÞD̄ð�Þ scattering, there is no Bose-Einstein
statistics, so this tensor-product structure is necessary, and
such a formalism can be extended to cases entangling more
quantum numbers.
Based on the above discussion, we only need to compute

the entanglement power in two scenarios using Eqs. (4) and
(6). At LO of the heavy quark expansion, the D and D�
masses are the same. We also consider the isospin sym-
metric limit such that charged and neutral mesons in the
same isospin multiplet are degenerate. Thus we will take
μ ¼ M=2 with M denoting the charmed meson mass in the
following.
We start with the S matrix in the isospin subspace with a

specific total spin J (both particles are isospin-1=2 states):

SJ ¼ I0e2iδ0J þ I1e2iδ1J : ð42Þ

The Bose-Einstein forbidden cases of DD and D�D�
scatterings are formally included by requiring δ00 ¼ 0
and δ00� ¼ δ02� ¼ δ11� ¼ 0 [recall that in Eq. (10) we have
introduced the “ �” subindex for vector-vector scattering
phase shifts], respectively. Evaluating the entanglement
power using Eq. (4) yields

EðSJÞ ¼
1

6
sin2½2ðδ0J − δ1JÞ�; ð43Þ

which vanishes only when

jδ0J − δ1Jj ¼ 0 or
π

2
: ð44Þ

The solutions to equation jδ0J − δ1Jj ¼ π=2, namely
δ0J ¼ 0 and δ1J ¼ π=2 (or vice versa), correspond to the
cases of no interaction and the unitarity limit, respectively.
The latter is equivalent to taking the limit of exactly infinite
scattering length.
For vector meson scatterings, one also needs to consider

the S matrix in the spin subspace with a specific isospin I:

SI ¼ J 0e2iδI0� þ J 1e2iδI1� þ J 2e2iδI2� : ð45Þ

Again, Bose-Einstein statistics requires δ00� ¼ δ02� ¼
δ11� ¼ 0 for D�D� scattering, while it does not constrain
anything for D�D̄� scattering, as mentioned above. The
entanglement power can be calculated using Eq. (6) and
reads as

EðSIÞ ¼
1

648
f156 − 6 cos½4ðδI0� − δI1�Þ�

− 65 cos½2ðδI0� − δI2�Þ� − 10 cos½4ðδI0� − δI2�Þ�
− 60 cos½4ðδI2� − δI1�Þ�
− 15 cos½2ðδI0� þ δI2� − 2δI1�Þ�g; ð46Þ

which has only two nonentangling solutions:

jδI0� − δI1�j ¼ jδI2� − δI1�j ¼ 0 or
π

2
: ð47Þ

The subsequent step involves relating these solutions to
the amplitudes using Eq. (22), which can be then be
confronted to experimental or lattice QCD results, or use
such empirical results as further input to select solutions
and explore their implications.

V. CONSEQUENCES ON HEAVY-MESON
HADRONIC MOLECULES

It is already known that the near-threshold interaction
between a pair of ground-state heavy mesons is closely
related to formation of hadronic molecular states [31]. The
Xð3872Þ [14] has been proposed as a candidate of an
isoscalarDD̄� hadronic molecule with JPC ¼ 1þþ quantum
numbers [57] for a long while [18–23]. Moreover, in 2021
the LHCb Collaboration announced the discovery of
Tccð3875Þþ with preferred quantum numbers IðJPÞ ¼
0ð1þÞ [16,17], a double-charm D�D molecular candidate
[24–27], which reveals itself as a high-significance peaking
structure in the D0D0πþ and DþD0π0 invariant mass
distributions just below the nominal D�þD0 threshold.
The masses of these two particles are extremely close to
the D0D̄�0 and D�þD0 thresholds, respectively,
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MX −MD0 −MD̄�0 ¼ 0.00þ0.09
−0.15 MeV;

MTþ
cc
−MD�þ −MD0 ¼ ð−0.36� 0.04Þ MeV; ð48Þ

where we have used the charmed meson masses from
Ref. [15], the Xð3872Þ mass from the Flatté analysis in
Ref. [58], and the Tccð3875Þþ mass from the coupled-
channel analysis with full DDπ three-body effects in
Ref. [26].
The existence of the isoscalar Xð3872Þ and Tccð3875Þþ

states so close to the DD̄� and D�D thresholds, respec-
tively, implies that the near-threshold S-wave interactions
in both channels approach the unitary limit, with the
corresponding S-wave scattering lengths being infinitely
large. By taking these conditions as input, the entanglement
suppression solutions can be further pinned down.
Consequently, partners of the Xð3872Þ and Tccð3875Þþ
states can be predicted. If some of these partners are not
predicted by the intrinsic HQSS, one can assert that they
arise from an emergent symmetry dictated by entanglement
suppression.
For Dð�ÞDð�Þ scattering, the Tccð3875Þþ implies

δ01 ¼ π=2. Then one obtains two solutions:

δ01 ¼ δ01� ¼
π

2
; δ10 ¼ δ11 ¼ δ10� ¼ δ12� ¼ 0; ð49Þ

or

δ01 ¼ δ01� ¼ δ10 ¼ δ11 ¼ δ10� ¼ δ12� ¼
π

2
: ð50Þ

In both scenarios, an additionalD�D� zero-energy bound
molecular state in the isoscalar JP ¼ 1þ sector, T�þ

cc , can be
predicted based on Eqs. (49) and (50), i.e., δ01� ¼ π=2.
However, it is not a result of entanglement suppression
but stems from HQSS [26,27], as can be seen from
TIJ¼01ðD�DÞ ¼ TIJ¼01ðD�D�Þ in Eqs. (29) and (31).
The additional consequences of entanglement suppression
are that the interaction strengths of the isovector channels
are all the same, either noninteracting as in Eq. (49) or at the
unitary limit as in Eq. (50). In the latter instance, we would
also anticipate four extra weakly bound states near the
Dð�ÞDð�Þ threshold. The results are shown in Table I. In both
cases, it means that the symmetry for the spin degree of
freedom of the light quarks in the heavy meson pair is
enlarged from SUð2Þ × SUð2Þ to SU(4).
It is also instructive to explicitly write out the solution of

the LECs for the first case (49):

D00þD10¼ 0; D01¼
π

4μΛ
; D11¼−

π

4μΛ
; ð51Þ

which yields the Lagrangian as

LHH ¼ −
D00

8
Tr½Ha†HbHb†Ha�

−
π

32μΛ
Tr½Ha†Hbσ

mHb†Haσ
m�

þD00

8
Tr½Ha†HbHc†Hd�τda · τbc

þ π

32μΛ
Tr½Ha†Hbσ

mHc†Hdσ
m�τda · τbc: ð52Þ

It is seen in Eq. (49) that all amplitudes for isovector
channels vanish, in agreement with the Lagrangian (52)
proportional to the projector onto isoscalar subspace,
I0 ¼ ð1 − τ1 · τ2Þ=4.
ForDð�ÞD̄ð�Þ scattering, the Xð3872Þ implies δ̄01þ ¼ π=2,

wherewe use δ̄ to denoteDð�ÞD̄ð�Þ scattering phase shifts and
the subscript “ þ” denotes the positive C-parity combination
of DD̄� in Eq. (16). One obtains

δ̄00 ¼ δ̄01� ¼ δ̄0J� ¼
π

2
; δ̄10 ¼ δ̄11� ¼ δ̄1J� ¼ 0; ð53Þ

or

δ̄00 ¼ δ̄01� ¼ δ̄0J� ¼ δ̄10 ¼ δ̄11� ¼ δ̄1J� ¼
π

2
; ð54Þ

where J ¼ 0; 1; 2. Then the solutions of the LECs read as

C0a ¼ −
2π

μΛ̄
; C0b ¼ C1a ¼ C1b ¼ 0; ð55Þ

or

C0a ¼ C1a ¼ −
2π

μΛ̄
; C0b ¼ C1b ¼ 0; ð56Þ

where Λ̄ denotes the cutoff for the Dð�ÞD̄ð�Þ system.
In both scenarios, we conclude that Xð3872Þ should have

five spin partner states, all of them being isoscalar states,

TABLE I. Partners of the Tccð3875Þþ predicted by HQSS or
the two solutions of entanglement suppression given in Eqs. (49)
and (50). The symbol “⊙” denotes the input Tccð3875Þþ state,
“⊗” represents its predicted partners, “⊘” indicates that no near-
threshold state is allowed, ○ is forbidden by Bose-Einstein
statistics, and “−” signifies that no prediction can be made
without further inputs.

Channel

HQSS Eq. (49) predictions Eq. (50) predictions

I¼0 I¼1 I¼0 I¼1 I¼0 I¼1

DDð0þÞ ○ − ○ ⊘ ○ ⊗
D�Dð1þÞ ⊙ − ⊙ ⊘ ⊙ ⊗
D�D�ð0þÞ ○ − ○ ⊘ ○ ⊗
D�D�ð1þÞ ⊗ ○ ⊗ ○ ⊗ ○

D�D�ð2þÞ ○ − ○ ⊘ ○ ⊗
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like the Xð3872Þ itself, so there are in total six weakly
bound states in the isospin-0 channels of Dð�ÞD̄ð�Þ scatter-
ing. Also, it is noted that HQSS predicts only three
isoscalar spin partners in the strict heavy-quark limit
[59,60], one D�D̄� state with JPC ¼ 2þþ (40) and two
mixing states with JPC ¼ 0þþ and JPC ¼ 1þ−:

JPC ¼ 0þþ∶ cos
π

6
jDD̄;I¼ 0iþ sin

π

6
jD�D̄�; I¼ 0i; ð57Þ

JPC ¼ 1þ−∶ cos
π

4

���� 1ffiffiffi
2

p ðDD̄� þD�D̄Þ; I ¼ 0

�

þ sin
π

4
jD�D̄�; I ¼ 0i: ð58Þ

Therefore, as in the double-charm case, entanglement
suppression again enlarges the symmetry for the spin
degree of freedom of the light quarks from SUð2Þ ×
SUð2Þ to SU(4) [see Eqs. (53) and (54)], predicting more
states than HQSS.
Furthermore, if nature chooses the solution in Eq. (54),

there would be six isovector hadronic molecules in addi-
tion, as listed in Table II. Two of these isovector states have
quantum numbers JPC ¼ 1þ−, and thus are in line with the
existence of Zcð3900Þ [61,62] and Zcð4020Þ [63,64] near
the DD̄� and D�D̄� thresholds, respectively. The existence
of two IðJPCÞ ¼ 1ð1þ−Þ molecular states likely implies the
existence of in total six isovector states, as first proposed in
Refs. [40,65] based on HQSS in the analysis of the spin
structure of the Zbð10610Þ and Zbð10650Þ discovered by
the Belle Collaboration [66]. Voloshin also proposed that
the existence of both Zbð10610Þ and Zbð10650Þ could
imply a light-quark spin symmetry [67]. Here we have
shown that by imposing entanglement suppression only a
single Zc or Zb state with JPC ¼ 1þ− is needed as input to
select the solution in Eq. (54), which predicts five more

isovector charmoniumlike or bottomoniumlike molecular
states.

VI. LARGE-Nc PERSPECTIVE

In the real world, the gauge symmetry of QCD is SU(3).
One can treat the number of colors, Nc, as a parameter and
study gauge theories for any Nc, and in particular the large-
Nc limit, where intriguing results can be obtained [68,69].
Here we analyze the 1=Nc scaling of the Dð�ÞDð�Þ and
Dð�ÞD̄ð�Þ scattering amplitudes.
In the large-Nc limit, a quark propagator is depicted by a

straight line, with each quark carrying a color index,
symbolizing the flow of color. On the contrary, gluons
in the adjoint representation of SUðNcÞ carry two color
indices. As Nc approaches infinity, the difference between
N2

c − 1 and N2
c can be neglected so one may represent

gluons like a quark-antiquark pair as double lines.
Moreover, for closed color lines, the indices are unre-
stricted by initial and final states, allowing them to be of
any color. Summing over all possibilities, a closed color
line contributes a factor of Nc. Moving on to the behavior
of the QCD coupling constant g in the large-Nc limit, it is
crucial to maintain color confinement without alteration
while keeping ΛQCD ¼ OðN0

cÞ, which necessitates choos-

ing the coupling constant gs to be of OðN−1=2
c Þ [68,69].

According to the Lehmann-Symanzik-Zimmermann reduc-
tion formula, the 1=Nc scaling of a scattering amplitude
may be obtained by counting the power of Nc for a
correlation function and dividing it by those of the
amplitudes creating a meson from vacuum by an inter-
polating operator, such as hDð�Þþjcd̄jΩi. Such an amplitude
scales as OðN1=2

c Þ.
For the Dð�ÞD̄ð�Þ sector, let us analyze the scattering

amplitude in the isovector Dð�ÞþD̄ð�Þ0 channel. In the
heavy-quark limit, we neglect the contribution from
exchanging charm quarks. One diagram at LO of 1=Nc
counting is shown in Fig. 2. In the large-Nc limit, there are
two closed color loops, four gluonic vertices, each con-
tributing a factor of gs, and four hDð�Þþjcd̄jΩi or
hD̄ð�Þ0jc̄ujΩi factors to be taken out. Hence, the order of
the amplitude is

TI¼1ðDð�ÞD̄ð�ÞÞ ¼ OðN2
c × ðN−1=2

c Þ4 ÷ ðN1=2
c Þ4Þ

¼ OðN−2
c Þ: ð59Þ

This amplitude is 1=Nc more suppressed than the isoscalar
Dð�ÞD̄ð�Þ amplitude, in line with the Okubo-Zweig-Iizuka
rule [70–72]. The isoscalar scattering can proceed through
annihilating and creating light quark-antiquark pairs, and
thus the LO color line diagrams without gluonic vertices
consist of only one closed color loop. Correspondingly,
one has

TABLE II. Partners of the Xð3872Þ predicted by HQSS or the
two solutions of entanglement suppression given in Eqs. (53) and
(54). The symbol “⊙” denotes the input Xð3872Þ, “⊗” represents
its predicted partners, “⊘” indicates no near-threshold state is
allowed, and “−” signifies that no prediction can be made without
further inputs. Moreover, “⊕” means that the corresponding
meson pair needs to be mixed with another one to get a spin
partner of Xð3872Þ; see Eqs. (57) and (58).

HQSS Eq. (53) predictions Eq. (54) predictions

Channel I¼0 I¼1 I¼0 I¼1 I¼0 I¼1

DD̄ð0þþÞ ⊕ − ⊗ ⊘ ⊗ ⊗
DD̄�ð1þþÞ ⊙ − ⊙ ⊘ ⊙ ⊗
DD̄�ð1þ−Þ ⊕ − ⊗ ⊘ ⊗ ⊗
D�D̄�ð0þþÞ ⊕ − ⊗ ⊘ ⊗ ⊗
D�D̄�ð1þ−Þ ⊕ − ⊗ ⊘ ⊗ ⊗
D�D̄�ð2þþÞ ⊗ − ⊗ ⊘ ⊗ ⊗
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TI¼0ðDð�ÞD̄ð�ÞÞ ¼ OðNc ÷ ðN1=2
c Þ4Þ ¼ OðN−1

c Þ: ð60Þ

The situation in the Dð�ÞDð�Þ sector is different, since the
two charm mesons can always interact through exchange of
light antiquarks no matter whether the total isospin is 0 or 1;
see Fig. 3. Therefore, the 1=Nc scaling of the scattering
amplitude is similar to that in Eq. (60),

TI¼0;1ðDð�ÞDð�ÞÞ ¼ OðNc ÷ ðN1=2
c Þ4Þ ¼ OðN−1

c Þ: ð61Þ

One sees that the 1=Nc, together with HQSS and the
Xð3872Þ input, would lead to the same scenario as in
Eq. (53). However, the existence of Zcð3900Þ, Zcð4020Þ
and Zbð10610Þ, Zbð10650Þ implies subleading OðN−2

c Þ
contributions in the 1=Nc expansion might be important
for the scattering of a heavy-antiheavy meson pair.2 As
such, the solution in Eq. (54) is beyond consequences of the
large-Nc limit. Moreover, HQSS constrains that the LO
Dð�ÞDð�Þ or Dð�ÞD̄ð�Þ interaction strengths for each isospin
depends on two LECs [for instance, C0a, C0b for I ¼ 0 and
C1a, C1b for I ¼ 1 in Eq. (34)]. Without introducing more
detailed dynamics, the large-Nc limit does not provide a
connection between these two LECs.3 On the contrary,

entanglement suppression predicts that the interaction
strengths for each isospin are the same.

VII. SUMMARY AND DISCUSSION

In this study, inspired by the findings of previous works
[1–4], we studied consequences of entanglement suppres-
sion in the low-energy Dð�ÞDð�Þ and Dð�ÞD̄ð�Þ scatterings.
These processes are currently of high interest due to the
discoveries of the Xð3872Þ and Tccð3875Þþ, which are
proposed to be hadronic molecules of DD̄� and D�D,
respectively. Using the Xð3872Þ and Tccð3875Þþ as inputs,
we found that entanglement suppression results in the same
interaction strengths for all Dð�ÞDð�Þ pairs with the same
isospin, unless the interaction is forbidden due to Bose-
Einstein statistics; the same also holds for Dð�ÞD̄ð�Þ. The
isoscalar channels are at the unitary limit, thanks to the
inputs ofXð3872Þ and Tccð3875Þþ, andmolecular states are
predicted as listed in Tables I and II. The isovector channels
would be uncertain, being either noninteracting or at the
unitary limit, corresponding to the two possible fixed points
of two-body nonrelativistic scattering by a short-range
potential. However, for the Dð�ÞD̄ð�Þ pairs, the existence
of a single Zcð3900Þ or Zcð4020Þ [or Zbð10610Þ or
Zbð10650Þ in the bottomonium sector] state with JPC ¼
1þ− allows one to select the solution with all isovector
channels at the unitary limit. In this case, entanglement
suppression together with HQSS predicts five more iso-
vector states around the Dð�ÞD̄ð�Þ thresholds; see Table II.
The spin symmetry of the light degrees of freedom from

HQSS is SUð2Þ × SUð2Þ, and it is now enlarged to SU(4)
as the interaction between the heavy mesons does not
depend on the total angular momentum of the light degrees
of freedom, which is referred to as the light-quark spin
symmetry, first proposed in Ref. [67].4 Therefore, we
conclude that entanglement suppression does result in an
emergent symmetry, which is light-quark spin SU(4)
symmetry for systems of a pair of S-wave heavy mesons,
in addition to the inherent HQSS in the low-energy sector
of heavy mesons.

FIG. 2. One of the LO diagrams for Dð�ÞþD̄ð�Þ0 scattering (left), and the corresponding diagram with the double-line representation of
gluons (right).

FIG. 3. One LO diagram for Dð�ÞþDð�Þþ scattering.

2In Ref. [73], it has been shown that the interaction between
two J=ψ through the exchange of soft gluons, the amplitude of
which also scales as OðN−2

c Þ, might be strong enough to form a
molecular state.

3In Refs. [74,75], using a light-vector meson exchange model,
the authors find that the Dð�ÞD̄ð�Þ potentials are the same for a
given isospin; the pattern also holds for the Dð�ÞDð�Þ potentials.
When the ρ and ω meson masses are set to be equal, which holds
in the large-Nc limit [69], the isovector Dð�ÞD̄ð�Þ potentials
obtained there vanish, consistent with the large-Nc results.

4Such a scenario is realized in the light-vector-meson exchange
model considering only vector couplings of the light-vector
mesons to heavy hadrons [74,75].

ENTANGLEMENT SUPPRESSION AND LOW-ENERGY … PHYS. REV. D 110, 014001 (2024)

014001-9



The predictions made here need to be contrasted with
future experimental data or lattice QCD results, in order to
test the validity of the conjecture connecting entanglement
suppression to the origin of emergent symmetries made
in Ref. [1].
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APPENDIX: ENTANGLEMENT MEASURE

This Appendix presents a brief discussion of entangle-
ment measure. In particular, we will show that the linear
entropy employed in this paper is semipositive definite and
vanishes only on tensor-product states.
A general density matrix is defined as

ρ ¼ jψihψ j; jψi ¼
X
i;j

aijji1i ⊗ jj2i; ðA1Þ

and the normalization of jψi, hψ jψi ¼ 1, means

X
i;j

aija�ij ¼ TrðAA†Þ ¼ 1; ðA2Þ

where ðAÞij ¼ aij. Since H ¼ AA† is a semipositive
definite Hermitian matrix, TrðHÞ is simply the sum of
all its eigenvalues which are all real and ≥0,

P
i λi.

The reduced density matrix can be obtained by tracing
over subsystem 2:

ρ1 ¼ Tr2ðρÞ ¼
X
i;j;k

aika�jkji1ihj1j: ðA3Þ

Then one can calculate

Tr1½ρ21� ¼
X
i;j;k;l

aija�kjakla
�
il ¼ TrðAA†AA†Þ ¼

X
i

λ2i ; ðA4Þ

and therefore prove the semipositivity of the linear entropy:

EðjψiÞ ¼ 1 − Tr1½ρ21� ¼
�X

i

λi

�
2

−
X
i

λ2i ≥ 0; ðA5Þ

where we have used the fact that the eigenvalues of a
density matrix sum up to unity. The equality holds only
when one of the λi is equal to 1 and the rest are 0, which
means that A can be decomposed into the product of two
vectors, A ¼ UVT , or equivalently, aij ¼ uivj, and this
suggests jψ > should be a tensor product:

jψi ¼
�X

i

uiji1i
�

⊗
�X

j

vjjj2i
�
: ðA6Þ

[1] S. R. Beane, D. B. Kaplan, N. Klco, and M. J. Savage,
Entanglement suppression and emergent symmetries of
strong interactions, Phys. Rev. Lett. 122, 102001 (2019).

[2] I. Low and T. Mehen, Symmetry from entanglement
suppression, Phys. Rev. D 104, 074014 (2021).

[3] S. R. Beane, R. C. Farrell, and M. Varma, Entanglement
minimization in hadronic scattering with pions, Int. J. Mod.
Phys. A 36, 2150205 (2021).

[4] Q. Liu, I. Low, and T. Mehen, Minimal entanglement and
emergent symmetries in low-energy QCD, Phys. Rev. C
107, 025204 (2023).

[5] M. Carena, I. Low, C. E. M. Wagner, and M.-L. Xiao,
Entanglement suppression, enhanced symmetry, and a
standard-model-like Higgs boson, Phys. Rev. D 109,
L051901 (2024).

[6] Q. Liu and I. Low, Hints of entanglement suppression in
hyperon-nucleon scattering, arXiv:2312.02289.

[7] T. Kirchner, W. Elkamhawy, and H.-W. Hammer, Entangle-
ment in few-nucleon scattering events, Few-Body Syst. 65,
29 (2024).

[8] A. Einstein, B. Podolsky, and N. Rosen, Can quantum
mechanical description of physical reality be considered
complete?, Phys. Rev. 47, 777 (1935).

[9] J. S. Bell, On the Einstein-Podolsky-Rosen paradox, Phys.
Phys. Fiz. 1, 195 (1964).

[10] P. Zanardi, Entanglement of quantum evolutions, Phys. Rev.
A 63, 040304 (2001).

[11] E. Wigner, On the consequences of the symmetry of the
nuclear Hamiltonian on the spectroscopy of nuclei, Phys.
Rev. 51, 106 (1937).

TAO-RAN HU, SU CHEN, and FENG-KUN GUO PHYS. REV. D 110, 014001 (2024)

014001-10

https://doi.org/10.1103/PhysRevLett.122.102001
https://doi.org/10.1103/PhysRevD.104.074014
https://doi.org/10.1142/S0217751X21502055
https://doi.org/10.1142/S0217751X21502055
https://doi.org/10.1103/PhysRevC.107.025204
https://doi.org/10.1103/PhysRevC.107.025204
https://doi.org/10.1103/PhysRevD.109.L051901
https://doi.org/10.1103/PhysRevD.109.L051901
https://arXiv.org/abs/2312.02289
https://doi.org/10.1007/s00601-024-01897-2
https://doi.org/10.1007/s00601-024-01897-2
https://doi.org/10.1103/PhysRev.47.777
https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195
https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195
https://doi.org/10.1103/PhysRevA.63.040304
https://doi.org/10.1103/PhysRevA.63.040304
https://doi.org/10.1103/PhysRev.51.106
https://doi.org/10.1103/PhysRev.51.106


[12] E. Wigner, On the structure of nuclei beyond oxygen, Phys.
Rev. 51, 947 (1937).

[13] E. P. Wigner, On coupling conditions in light nuclei and the
lifetimes of beta-radioactivities, Phys. Rev. 56, 519 (1939).

[14] S. K. Choi et al. (Belle Collaboration), Observation
of a narrow charmonium-like state in exclusive B� →
K�πþπ−J=ψ decays, Phys. Rev. Lett. 91, 262001 (2003).

[15] R. L.Workman et al. (ParticleDataGroup), Reviewof particle
physics, Prog. Theor. Exp. Phys. 2022, 083C01 (2022).

[16] R. Aaij et al. (LHCb Collaboration), Observation of an
exotic narrow doubly charmed tetraquark, Nat. Phys. 18,
751 (2022).

[17] R. Aaij et al. (LHCb Collaboration), Study of the doubly
charmed tetraquark Tþ

cc, Nat. Commun. 13, 3351 (2022).
[18] F. E. Close and P. R. Page, The D�0D̄0 threshold resonance,

Phys. Lett. B 578, 119 (2004).
[19] S. Pakvasa and M. Suzuki, On the hidden charm state at

3872 MeV, Phys. Lett. B 579, 67 (2004).
[20] M. Voloshin, Interference and binding effects in decays of

possible molecular component of X(3872), Phys. Lett. B
579, 316 (2004).

[21] E. S. Swanson, Short range structure in the Xð3872Þ, Phys.
Lett. B 588, 189 (2004).

[22] E. Braaten and M. Kusunoki, Low-energy universality and
the new charmonium resonance at 3870 MeV, Phys. Rev. D
69, 074005 (2004).

[23] N. A. Törnqvist, Isospin breaking of the narrow charmo-
nium state of Belle at 3872 MeV as a deuson, Phys. Lett. B
590, 209 (2004).

[24] N. Li, Z.-F. Sun, X. Liu, and S.-L. Zhu, Perfect DD�

molecular prediction matching the Tcc observation at
LHCb, Chin. Phys. Lett. 38, 092001 (2021).

[25] Q. Xin and Z.-G. Wang, Analysis of the doubly-charmed
tetraquark molecular states with the QCD sum rules, Eur.
Phys. J. A 58, 110 (2022).

[26] M.-L. Du, V. Baru, X.-K. Dong, A. Filin, F.-K. Guo, C.
Hanhart, A. Nefediev, J. Nieves, and Q. Wang, Coupled-
channel approach to Tþ

cc including three-body effects, Phys.
Rev. D 105, 014024 (2022).

[27] M. Albaladejo, Tþ
cc coupled channel analysis and predic-

tions, Phys. Lett. B 829, 137052 (2022).
[28] A. Hosaka, T. Iijima, K. Miyabayashi, Y. Sakai, and S.

Yasui, Exotic hadrons with heavy flavors: X, Y, Z, and
related states, Prog. Theor. Exp. Phys. 2016, 062C01
(2016).

[29] R. F. Lebed, R. E. Mitchell, and E. S. Swanson, Heavy-
quark QCD exotica, Prog. Part. Nucl. Phys. 93, 143 (2017).

[30] A. Esposito, A. Pilloni, and A. D. Polosa, Multiquark
resonances, Phys. Rep. 668, 1 (2017).

[31] F.-K. Guo, C. Hanhart, U.-G. Meißner, Q. Wang, Q. Zhao,
and B.-S. Zou, Hadronic molecules, Rev. Mod. Phys. 90,
015004 (2018); Rev. Mod. Phys. 94, 029901(E) (2022).

[32] S. L. Olsen, T. Skwarnicki, and D. Zieminska, Nonstandard
heavy mesons and baryons: Experimental evidence, Rev.
Mod. Phys. 90, 015003 (2018).

[33] M. Karliner, J. L. Rosner, and T. Skwarnicki, Multiquark
states, Annu. Rev. Nucl. Part. Sci. 68, 17 (2018).

[34] Y. S. Kalashnikova and A. V. Nefediev, xð3872Þ in the
molecular model, Phys. Usp. 62, 568 (2019).

[35] N. Brambilla, S. Eidelman, C. Hanhart, A. Nefediev, C.-P.
Shen, C. E. Thomas, A. Vairo, and C.-Z. Yuan, The XYZ
states: Experimental and theoretical status and perspectives,
Phys. Rep. 873, 1 (2020).

[36] H.-X. Chen, W. Chen, X. Liu, Y.-R. Liu, and S.-L. Zhu, An
updated review of the new hadron states, Rep. Prog. Phys.
86, 026201 (2022).

[37] L. Meng, B. Wang, G.-J. Wang, and S.-L. Zhu, Chiral
perturbation theory for heavy hadrons and chiral effective
field theory for heavy hadronic molecules, Phys. Rep. 1019,
2266 (2023).

[38] N. Isgur and M. B. Wise, Weak decays of heavy mesons in
the static quark approximation, Phys. Lett. B 232, 113
(1989).

[39] F.-K. Guo, C. Hanhart, and U.-G. Meißner, Implications of
heavy quark spin symmetry on heavy meson hadronic
molecules, Phys. Rev. Lett. 102, 242004 (2009).

[40] M. B. Voloshin, Radiative transitions from ϒð5SÞ to
molecular bottomonium, Phys. Rev. D 84, 031502
(2011).

[41] T. Mehen and J. W. Powell, Heavy quark symmetry pre-
dictions for weakly bound B-meson molecules, Phys. Rev.
D 84, 114013 (2011).

[42] M. Cleven, F.-K. Guo, C. Hanhart, Q. Wang, and Q. Zhao,
Employing spin symmetry to disentangle different models
for the XYZ states, Phys. Rev. D 92, 014005 (2015).

[43] I. Bengtsson and K.Życzkowski, Geometry of Quantum
States: An Introduction to Quantum Entanglement, 2nd ed.
(Cambridge University Press, Cambridge, England, 2017).

[44] I. Bengtsson, J. Brännlund, and K. Życzkowski, CPn, or,
entanglement illustrated, Int. J. Mod. Phys. A 17, 4675
(2002).

[45] J. Nieves and M. P. Valderrama, The heavy quark spin
symmetry partners of the Xð3872Þ, Phys. Rev. D 86, 056004
(2012).

[46] H. A. Bethe, Theory of the effective range in nuclear
scattering, Phys. Rev. 76, 38 (1949).

[47] D. B. Kaplan, M. J. Savage, and M. B. Wise, Nucleon-
nucleon scattering from effective field theory, Nucl. Phys. B
478, 629 (1996).

[48] H.-W. Hammer, S. König, and U. van Kolck, Nuclear
effective field theory: Status and perspectives, Rev. Mod.
Phys. 92, 025004 (2020).

[49] T. Mehen, I. W. Stewart, and M. B. Wise, Conformal
invariance for nonrelativistic field theory, Phys. Lett.
B474, 145 (2000).

[50] M. C. Birse, J. A. McGovern, and K. G. Richardson, A
renormalization group treatment of two-body scattering,
Phys. Lett. B 464, 169 (1999).

[51] S. Fleming, R. Hodges, and T. Mehen, Tþ
cc decays: Differ-

ential spectra and two-body final states, Phys. Rev. D 104,
116010 (2021).

[52] M. T. AlFiky, F. Gabbiani, and A. A. Petrov, Xð3872Þ:
Hadronic molecules in effective field theory, Phys. Lett.
B 640, 238 (2006).

[53] T. Ji, X.-K. Dong, M. Albaladejo, M.-L. Du, F.-K. Guo, and
J. Nieves, Establishing the heavy quark spin and light flavor
molecular multiplets of the Xð3872Þ, Zcð3900Þ, and
Xð3960Þ, Phys. Rev. D 106, 094002 (2022).

ENTANGLEMENT SUPPRESSION AND LOW-ENERGY … PHYS. REV. D 110, 014001 (2024)

014001-11

https://doi.org/10.1103/PhysRev.51.947
https://doi.org/10.1103/PhysRev.51.947
https://doi.org/10.1103/PhysRev.56.519
https://doi.org/10.1103/PhysRevLett.91.262001
https://doi.org/10.1093/ptep/ptac097
https://doi.org/10.1038/s41567-022-01614-y
https://doi.org/10.1038/s41567-022-01614-y
https://doi.org/10.1038/s41467-022-30206-w
https://doi.org/10.1016/j.physletb.2003.10.032
https://doi.org/10.1016/j.physletb.2003.11.005
https://doi.org/10.1016/j.physletb.2003.11.014
https://doi.org/10.1016/j.physletb.2003.11.014
https://doi.org/10.1016/j.physletb.2004.03.033
https://doi.org/10.1016/j.physletb.2004.03.033
https://doi.org/10.1103/PhysRevD.69.074005
https://doi.org/10.1103/PhysRevD.69.074005
https://doi.org/10.1016/j.physletb.2004.03.077
https://doi.org/10.1016/j.physletb.2004.03.077
https://doi.org/10.1088/0256-307X/38/9/092001
https://doi.org/10.1140/epja/s10050-022-00752-4
https://doi.org/10.1140/epja/s10050-022-00752-4
https://doi.org/10.1103/PhysRevD.105.014024
https://doi.org/10.1103/PhysRevD.105.014024
https://doi.org/10.1016/j.physletb.2022.137052
https://doi.org/10.1093/ptep/ptw045
https://doi.org/10.1093/ptep/ptw045
https://doi.org/10.1016/j.ppnp.2016.11.003
https://doi.org/10.1016/j.physrep.2016.11.002
https://doi.org/10.1103/RevModPhys.90.015004
https://doi.org/10.1103/RevModPhys.90.015004
https://doi.org/10.1103/RevModPhys.94.029901
https://doi.org/10.1103/RevModPhys.90.015003
https://doi.org/10.1103/RevModPhys.90.015003
https://doi.org/10.1146/annurev-nucl-101917-020902
https://doi.org/10.3367/UFNe.2018.08.038411
https://doi.org/10.1016/j.physrep.2020.05.001
https://doi.org/10.1088/1361-6633/aca3b6
https://doi.org/10.1088/1361-6633/aca3b6
https://doi.org/10.1016/j.physrep.2023.04.003
https://doi.org/10.1016/j.physrep.2023.04.003
https://doi.org/10.1016/0370-2693(89)90566-2
https://doi.org/10.1016/0370-2693(89)90566-2
https://doi.org/10.1103/PhysRevLett.102.242004
https://doi.org/10.1103/PhysRevD.84.031502
https://doi.org/10.1103/PhysRevD.84.031502
https://doi.org/10.1103/PhysRevD.84.114013
https://doi.org/10.1103/PhysRevD.84.114013
https://doi.org/10.1103/PhysRevD.92.014005
https://doi.org/10.1142/S0217751X02010820
https://doi.org/10.1142/S0217751X02010820
https://doi.org/10.1103/PhysRevD.86.056004
https://doi.org/10.1103/PhysRevD.86.056004
https://doi.org/10.1103/PhysRev.76.38
https://doi.org/10.1016/0550-3213(96)00357-4
https://doi.org/10.1016/0550-3213(96)00357-4
https://doi.org/10.1103/RevModPhys.92.025004
https://doi.org/10.1103/RevModPhys.92.025004
https://doi.org/10.1016/S0370-2693(00)00006-X
https://doi.org/10.1016/S0370-2693(00)00006-X
https://doi.org/10.1016/S0370-2693(99)00991-0
https://doi.org/10.1103/PhysRevD.104.116010
https://doi.org/10.1103/PhysRevD.104.116010
https://doi.org/10.1016/j.physletb.2006.07.069
https://doi.org/10.1016/j.physletb.2006.07.069
https://doi.org/10.1103/PhysRevD.106.094002


[54] A. V. Manohar and M. B. Wise, Heavy Quark Physics,
Cambridge Monographs on Particle Physics Nuclear Phys-
ics and Cosmology Vol. 10 (Cambridge University Press,
Cambridge, England, 2000).

[55] J. Hu and T. Mehen, Chiral Lagrangian with heavy quark-
diquark symmetry, Phys. Rev. D 73, 054003 (2006).

[56] C. Hidalgo-Duque, J. Nieves, and M. P. Valderrama, Light
flavor and heavy quark spin symmetry in heavy meson
molecules, Phys. Rev. D 87, 076006 (2013).

[57] R. Aaij et al. (LHCb Collaboration), Determination of the
Xð3872Þ meson quantum numbers, Phys. Rev. Lett. 110,
222001 (2013).

[58] R. Aaij et al. (LHCb Collaboration), Study of the lineshape
of the χc1ð3872Þ state, Phys. Rev. D 102, 092005 (2020).

[59] C. Hidalgo-Duque, J. Nieves, A. Ozpineci, and V.
Zamiralov, X(3872) and its partners in the heavy quark
limit of QCD, Phys. Lett. B 727, 432 (2013).

[60] V.Baru,E.Epelbaum,A. A.Filin,C.Hanhart,U.-G.Meißner,
and A. V. Nefediev, Heavy-quark spin symmetry partners of
the Xð3872Þ revisited, Phys. Lett. B 763, 20 (2016).

[61] M. Ablikim et al. (BESIII Collaboration), Observation of a
charged charmoniumlike structure in eþe− → πþπ−J=ψ atffiffiffi
s

p ¼ 4.26 GeV, Phys. Rev. Lett. 110, 252001 (2013).
[62] Z. Q. Liu et al. (Belle Collaboration), Study of eþe− →

πþπ−J=ψ and observation of a charged charmoniumlike
state at Belle, Phys. Rev. Lett. 110, 252002 (2013); Phys.
Rev. Lett. 111, 019901(E) (2013).

[63] M. Ablikim et al. (BESIII Collaboration), Observation
of a charged ðDD̄�Þ� mass peak in eþe− → πDD̄� atffiffiffi
s

p ¼ 4.26 GeV, Phys. Rev. Lett. 112, 022001 (2014).

[64] M. Ablikim et al. (BESIII Collaboration), Observation of a
charged charmoniumlike structure in eþe− → ðD�D̄�Þ�π∓
at

ffiffiffi
s

p ¼ 4.26 GeV, Phys. Rev. Lett. 112, 132001 (2014).
[65] A. E. Bondar, A. Garmash, A. I. Milstein, R. Mizuk, and

M. B. Voloshin, Heavy quark spin structure in Zb resonan-
ces, Phys. Rev. D 84, 054010 (2011).

[66] A. Bondar et al. (Belle Collaboration), Observation of two
charged bottomonium-like resonances in ϒð5SÞ decays,
Phys. Rev. Lett. 108, 122001 (2012).

[67] M. B. Voloshin, Light quark spin symmetry in Zb reso-
nances?, Phys. Rev. D 93, 074011 (2016).

[68] G. ’t Hooft, A planar diagram theory for strong interactions,
Nucl. Phys. B72, 461 (1974).

[69] E. Witten, Baryons in the 1=N expansion, Nucl. Phys. B160,
57 (1979).

[70] S. Okubo, Phi meson and unitary symmetry model, Phys.
Lett. 5, 165 (1963).

[71] G. Zweig, An SU(3) model for strong interaction symmetry
and its breaking. Version 1, CERN-TH-401,1964,
10.17181/CERN-TH-401.

[72] J. Iizuka, Systematics and phenomenology of meson family,
Prog. Theor. Phys. Suppl. 37, 21 (1966).

[73] X.-K. Dong, V. Baru, F.-K. Guo, C. Hanhart, A. Nefediev,
and B.-S. Zou, Is the existence of a J=ψJ=ψ bound state
plausible?, Sci. Bull. 66, 2462 (2021).

[74] X.-K. Dong, F.-K. Guo, and B.-S. Zou, A survey of heavy-
antiheavy hadronic molecules, Prog. Phys. 41, 65 (2021).

[75] X.-K. Dong, F.-K. Guo, and B.-S. Zou, A survey of heavy–
heavy hadronic molecules, Commun. Theor. Phys. 73,
125201 (2021).

TAO-RAN HU, SU CHEN, and FENG-KUN GUO PHYS. REV. D 110, 014001 (2024)

014001-12

https://doi.org/10.1103/PhysRevD.73.054003
https://doi.org/10.1103/PhysRevD.87.076006
https://doi.org/10.1103/PhysRevLett.110.222001
https://doi.org/10.1103/PhysRevLett.110.222001
https://doi.org/10.1103/PhysRevD.102.092005
https://doi.org/10.1016/j.physletb.2013.10.056
https://doi.org/10.1016/j.physletb.2016.10.008
https://doi.org/10.1103/PhysRevLett.110.252001
https://doi.org/10.1103/PhysRevLett.110.252002
https://doi.org/10.1103/PhysRevLett.111.019901
https://doi.org/10.1103/PhysRevLett.111.019901
https://doi.org/10.1103/PhysRevLett.112.022001
https://doi.org/10.1103/PhysRevLett.112.132001
https://doi.org/10.1103/PhysRevD.84.054010
https://doi.org/10.1103/PhysRevLett.108.122001
https://doi.org/10.1103/PhysRevD.93.074011
https://doi.org/10.1016/0550-3213(74)90154-0
https://doi.org/10.1016/0550-3213(79)90232-3
https://doi.org/10.1016/0550-3213(79)90232-3
https://doi.org/10.1016/S0375-9601(63)92548-9
https://doi.org/10.1016/S0375-9601(63)92548-9
https://doi.org/10.17181/CERN-TH-401
https://doi.org/10.1143/PTPS.37.21
https://doi.org/10.1016/j.scib.2021.09.009
https://doi.org/10.13725/j.cnki.pip.2021.02.001
https://doi.org/10.1088/1572-9494/ac27a2
https://doi.org/10.1088/1572-9494/ac27a2

