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CP violation in baryon decay processes is still undiscovered to date. We present a general analysis of the
decay-angular distributions and the corresponding CP asymmetries in cascade decays of the type
H → Rð→ abÞc, where H is a heavy hadron that decays through weak interactions H → Rc and the
resonance R decays strongly via R → ab. Based on the analysis, we propose to search for CP violation in
the decay-angular distributions in the cascade decay processes B → BM, with B or M subsequently
decaying through strong interactions, where B is the mother baryon, B and M are the daughter baryon and
meson, respectively, and M has to be spin nonzero. We also present some typical decay channels in which
the search for such kinds of CP asymmetries can be performed.
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I. INTRODUCTION

In the observable Universe, the density of baryons is by
far larger than that of antibaryons [1], which is a clear
evidence of charge-parity (CP) violation and charge-
conjugate (C) violation, according to Sakharov’s criteria
for the generation of the baryon asymmetry of the
Universe [2]. CP violation has been observed in the decays
ofK [3],D [4], B [5–7], and Bs [8] mesons, all of which are
consistent with the description of the Standard Model of
particle physics, in which a single C-violating weak phase
in the Cabibbo-Kobayashi-Maskawa (CKM) matrix is the
origin of CP violation [9,10]. Nevertheless, CP violation in
baryon decay processes is still undiscovered in laboratories
to date, despite the fact that many efforts have been made.
In baryon decay processes, the nonzero baryon spin

provides us with more freedom to construct CP violation
observables. The CP asymmetries induced by the decay
asymmetry parameters in the hyperon weak decay transi-
tions 1

2
þ → 1

2
þ þ 0− such asΞ → Λπ andΛ → pπ are typical

examples. The decay asymmetry parameters of transitions
1
2
þ → 1

2
þ þ 0− are induced by the interference of the parity-

even S-wave and the parity-odd P-wave amplitudes [11].
They can bemeasured from the decay-angular distribution if
(1) the mother baryon is polarized and/or (2) the daughter

baryon decays subsequently via weak interactions. The
decay asymmetry parameter-induced CP asymmetries in
hyperon decays, which have been investigated extensively
on the theoretical side [12–15], are expected to be larger than
those induced by the branching ratios in the aforementioned
hyperon decay channels. Recently, experimental studies on
the hyperon decay asymmetry parameter-inducedCP asym-
metries were performed by BESIII and Belle, with precision
at about the one-percent level [16,17]. Moreover, decay
asymmetry parameter-induced CP asymmetries in various
charmed baryon decay channels such as Λþ

c → ðΛ;Σ0Þhþ
and Σ0

c → Σ−πþ were also investigated by Belle [17,18].
However, they are still too small to be confirmed exper-
imentally at the current stage for both the hyperon and the
charmed baryon decays. Theoretical analyses of CPA
induced by the decay parameters were also made in bottom
baryon decays such as Λ0

b → ΛD [19,20], while the corre-
sponding experimental study is still absent in bottom baryon
decays.
Just like the case of the aforementioned decay asym-

metry parameter-induced CPAs, the mechanism of gener-
ating CP violation via the interference between different
canonical amplitudes is a good idea for decay processes
with particles of nonzero spin involved and is comple-
mentary to CPAs corresponding to the partial decay width.
It should be pointed out, however, that the interference
between the parity-even and parity-odd amplitudes can
only show up in the angular distributions of the final
particles when the subsequent decay is also a weak one.
In the situation where the corresponding subsequent decay
is through strong or electromagnetic interactions which
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respect parity symmetry, the interference between parity-
even and parity-odd amplitudes would simply be absent.1

Interestingly, for some decay processes, when more than
one parity-even and/or parity-odd amplitude enters in the
decay, the interference between the amplitudes with the
same parity can then show up in the decay-angular
distributions, even when the subsequent decay is a strong
one. We will analyze this in more detail here.
This paper is organized as follows. In Sec. II, we present

the general analysis of the decay-angular-distribution-cor-
related CPAs. In Sec. III, by expressing the decay-angular
distribution in terms of the canonical decay amplitudes, the
interfering behavior between different canonical decay
amplitudes can be seen in a more transparent way. In
Sec. IV, we present some suggested decay channels in
which the decay-angular-distribution-correlated CPAs are
suitable to search for. In the last section, we make our
conclusion.

II. GENERAL ANALYSIS OF THE DECAY-
ANGULAR DISTRIBUTIONS AND THE
CORRELATED CP ASYMMETRIES

In general, we will consider a mother hadron H decaying
via a weak decay process H → Rc with the intermediate
resonance R decaying through strong interactions R → ab.
The differential decay width of the aforementioned cascade
decay process H → Rð→abÞc for unpolarized H can be
expressed as [8]2

dΓH→Rð→abÞc
dsabdsac

¼ 1

ð2πÞ3
1

32m3
H
jMj2; ð1Þ

where sij is the invariant mass squared of the particle i

and particle j system, mH is the mass of H, and jMj2
is the spin-averaged decay amplitude squared of the
cascade decay H → Rð→abÞc, which is defined as

jMj2 ≡ 1
2sHþ1

P
mz;λa;λb;λc jM

sH;mz
λaλbλc

j2. Here, MsH;mz
λaλbλc

is the
covariant decay amplitude for the cascade decay
H → Rð→abÞc; sH is the spin of H and mz is its z
component (the direction of z is irrelevant here since we
are dealing with unpolarized H); and λa, λb, and λc are the
helicities of a, b, and c, respectively. The decay amplitude
squared can be further expressed as [22]

jMj2 ¼
X

0≤j≤2sR
j even

wðjÞPjðcθÞ; ð2Þ

where Pj is the jth Legendre polynomial; cθ ≡ cos θ, with
θ being the helicity angle of particle a with respect to c (or,
equivalently, to H) in the center-of-mass frame of the a& b
system; and sR is the spin quantum number for resonance
R. Note that j can only take even values (from 0 to 2sR)
because the decay of R is through strong interactions which
respect the parity symmetry [22].
Obviously, all the weights wðjÞ describe the decay-

angular distributions, i.e., the angular distributions of
the final particles. The weight wðjÞ for the jth Legendre
polynomial in Eq. (2) can be expressed as

wðjÞ ¼ hsR;−sR; sR; sRjsRsRj0i2
jsab −m2

R þ imRΓRj2
WðjÞSðjÞ; ð3Þ

whereWðjÞ and SðjÞ contain the information for the decays
H → Rc and R → ab, respectively, and can be expressed in
terms of the helicity decay amplitudes as

WðjÞ ¼
X
σ

ð−Þσ−sRhsR;−σ; sR; σjsRsRj0i
hsR;−sR; sR; sRjsRsRj0i

X
λc

jF sH
σλc

j2 ð4Þ

and

SðjÞ ¼
X
λaλb

ð−Þ−λþsRhsR;−λ; sR; λjsRsRj0i
hsR;−sR; sR; sRjsRsRj0i

jGsR
λaλb

j2
����
λ¼λa−λb

;

ð5Þ

with F sH
σλc

and GsR
λaλb

being the helicity decay amplitudes of
H → Rc and R → ab, respectively; σ being the helicity of
R; and “h� � � j � � �i” being the notation for Clebsch-Gordan
coefficients. Our definitions of WðjÞ and SðjÞ are slightly
different from those in previous works such as Ref. [22],
i.e., with an extra factor 1

hsR;−sR;sR;sRjsRsRj0i. The motivation

for the introduction of this factor is to guarantee that
Wð0Þ ¼ P

σ;λc jF
sH
σλc

j2 and Sð0Þ ¼ P
λaλb

jGsR
λaλb

j2. Moreover,
one can see that all the coefficients in front of the helicity
amplitudes squared in WðjÞ and SðjÞ are now simple
rational numbers. One can relax the constraint on j taking
even values in Eq. (2) because SðjÞ automatically equals 0
for odd j due to the parity symmetry in R → ab [22].
We will focus on the decay-angular distributions with

respect to the helicity angle θ. To this end, we need to
integrate out sab. In the narrow width approximation of R,
the differential decay width of the cascade decay H →
Rð→abÞc can then be expressed as

1

ΓH→Rð→abÞc

dΓH→Rð→abÞc
dcθ

¼ 1

2

X
0≤j≤2sR
j even

γðjÞH→Rð→abÞcPjðcθÞ; ð6Þ

1The interference between parity-even and parity-odd ampli-
tudes will show up when there are two resonances with similar
masses but opposite parities [21,22].

2One reason why we only consider the unpolarized case is that
the polarizations of the heavy baryons produced on colliders are
still too small to be detected [23–25].
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where γðjÞH→Rð→abÞc can be further parametrized as

γðjÞH→Rð→abÞc ¼ λðjÞH→Rcα
ðjÞ
R→ab, with λðjÞH→Rc and αðjÞR→ab being

defined as

λðjÞH→Rc ≡ hsR;−sR; sR; sRjsRsRj0i
hsR;−sR; sR; sRjsRsR00i

WðjÞ

Wð0Þ ð7Þ

and

αðjÞR→ab ¼
hsR;−sR; sR; sRjsRsRj0i
hsR;−sR; sR; sRjsRsR00i

SðjÞ

Sð0Þ ; ð8Þ

respectively. Here, αðjÞR→ab are a set of decay parameters of

R → ab. On the other hand, λðjÞH→Rc (j ¼ 1;…; 2sR)
describe the polarization of R, as can be seen from
Eq. (4).3 They can be viewed as the generalization of
the polarization from spin-half particles to particles of any
spins produced in weak decay processes. We say that R is

unpolarized if λðjÞH→Rc ¼ 0, for all j ¼ 1; 2;…; 2sR.
The differences between λðjÞH→Rc and their CP correspon-

dence λðjÞH̄→R̄ c̄ are measures of CP violation. One can define
the decay-angular-distribution-correlated CP asymmetries
as [26–28]

AðjÞ
CP ≡ 1

2

�
λðjÞH→Rc − λðjÞH̄→R̄ c̄

�
: ð9Þ

Note that Að0Þ
CP ≡ 0 by definition. From the experimental

side, the direct observables are

ÃðjÞ
CP ¼ AðjÞ

CPα
ðjÞ
R→ab; ð10Þ

from which one can see that the observability of AðjÞ
CP is

restricted by the values of αðjÞR→ab. In other words, Ã
ðjÞ
CP can be

observed only when both AðjÞ
CP and αðjÞR→ab are not too small.

In practice, the following definition of CP asymmetry
observables is more easily accessible experimentally. The
null points of PjðcθÞ divide the interval of cθ ∈ ½−1; 1� into
jþ 1 subintervals, which can be ordered from right
(cθ ¼ þ1) to left (cθ ¼ −1) as the 1st, 2nd, � � �, kth, � � �,
(jþ 1)th subintervals. Denoting the event yields of each

subinterval as NðjÞ
k and NðjÞ

k for k ¼ 1;…; jþ 1, the CP
asymmetry observables can be defined as

ÂðjÞ
CP ≡

Pjþ1
k¼1ð−Þk

h
NðjÞ

k − NðjÞ
k

i
P

k

h
NðjÞ

k þ NðjÞ
k

i : ð11Þ

It can be easily seen that Âð0Þ
CP is in fact the conventionally

defined CP asymmetries corresponding to the branching
ratios, ACPðH → Rð→ abÞcÞ.

III. INTERFERENCE BEHAVIOR
OF CANONICAL DECAY AMPLITUDES

IN THE DECAY-ANGULAR DISTRIBUTIONS

Interference between amplitudes with different weak
phases may generate large CP asymmetry parameters,
provided that there is also a large strong phase difference.
Potential final-state interactions may generate such non-
perturbative strong phase differences in different canoni-
cal partial-wave amplitudes [29]. In addition, the
interference behavior is quite obscure in Eq. (4) since
there are no interfering terms between different helicity
amplitudes for the current situation. Consequently, it will
be more transparent to see the interference pattern if we
reexpress WðjÞ in terms of canonical amplitudes, which
reads

WðjÞ ¼
X
ls;l0s0

ρðjÞls;l0s0a
sH
ls a

sH�
l0s0 ; ð12Þ

where asHls ’s are the canonical decay amplitudes of
H → Rc and are related to the helicity amplitudes
through [30,31]

F sH
σλc

¼
X
ls

�
2lþ 1

2sH þ 1

�1
2hsR; σ; sc;−λcjsRscsðσ − λcÞi

× hl; 0; s; σ − λcjlssHðσ − λcÞiasHls ; ð13Þ

or, inversely,

asHls ¼
X
σλc

�
2lþ 1

2sH þ 1

�1
2hsR; σ; sc;−λcjsRscsðσ − λcÞi

× hl; 0; s; σ − λcjlssHðσ − λcÞiF sH
σλc

; ð14Þ

and the rotational-invariant coefficient ρðjÞls;l0s0 reads

3We can further parametrize λðjÞH→Rc as λðjÞH→Rc ¼ PðjÞ
R κðjÞH→Rc,

where PðjÞ
R are the normalized polarization parameters which are

defined asPðjÞ
R ≡ WðjÞ

WðjÞ
abs

, and κðjÞH→Rc can be viewed as the production

asymmetry ratio and are defined as κðjÞH→Rc ≡ WðjÞ
abs

Wð0Þ, where

WðjÞ
abs ≡

P
σ;λc j

ð−Þσ−sR hsR;−σ;sR;σjsRsRj0i
hsR;−sR;sR;sRjsRsRj0i jjF sH

σλc
j2.
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ρðjÞls;l0s0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2lþ 1Þð2l0 þ 1Þp

ð2sH þ 1ÞhsR;−sR; sR; sRjsRsRj0i
X
σλc

ð−Þσ−sRhsR;−σ; sR; σjsRsRj0i

× hl; 0; s; σ − λcjlssHðσ − λcÞihsR; σ; sc;−λcjsRscsðσ − λcÞi
× hl0; 0; s0; ðσ − λcÞjl0s0sHðσ − λcÞihsR; σ; sc;−λcjsRscs0ðσ − λcÞi: ð15Þ

In general, the presence of the interference between two canonical decay amplitudes in certainWðjÞ is constrained by the
properties of the coefficients ρðjÞls;l0s0 . The following two properties of the coefficients ρ

ðjÞ
ls;l0s0 , which can be proven with the aid

of the properties of the Clebsch-Gordan coefficients, turn out to be very important for our analysis here:
(1) For a given value of j satisfying 0 ≤ j ≤ 2sR, the indices of the nonzero elements of ρðjÞls;l0s0 fulfill the triangle

inequality (necessary condition):

jl − l0j ≤ j ≤ lþ l0; ð16Þ

js − s0j ≤ j ≤ sþ s0: ð17Þ

(2) Zero elements:

ρjls;l0s0 ¼ 0; if

�
j is even; one of l and l0 is even and the other is odd;

j is odd; both l and l0 are even or odd:
ð18Þ

The first consequence of property 2 is that—since j can
only take even values in Eq. (2)—the interference between
parity-even and parity-odd amplitudes is absent in the
decay amplitude squared of Eq. (2) when the subsequential
decay of R is strong, where the parity of the canonical
decay amplitude asHls is determined according to
Πa

sH
ls
¼ ð−ÞlΠHΠRΠc, with Π representing parity. This

means that there can only be interference of asHls and asHl0s0
in WðjÞ of Eq. (2) when both l and l0 are even or odd
simultaneously for even j (so that asHls and asHl0s0 have the
same parity).
Of course, property 1 can also set constraints on the

presence of the interfering terms inWðjÞ. For example, there
will be no interfering terms between different canonical
amplitudes in Wð0Þ because, according to property 1, l ¼ l0

and s ¼ s0 for j ¼ 0. Hence, one has ρ0ls;l0s0 ¼ δll0δss0 when

j ¼ 0, so that Wð0Þ ¼ P
σλc

jF sH
σλc

j2 ¼ P
ls jasHls j2, from

which one can see that there is no interference between
different canonical amplitudes in wð0Þ, as expected.
For the weak process H → Rc, it can be proved that the

number of independent canonical decay amplitudes, which
is of course the same as that of the independent helicity
decay amplitudes, is in total

Nc:a: ¼ ð2s1 þ 1Þð2s2 þ 1Þ − κðκ þ 1Þ; ð19Þ

where κ ≡max fs1 þ s2 − s3; 0g. Here, s1, s2, and s3
represent the spins of the particles involved in the weak
decay, H, R, and c, which are ordered according to

s1 ≤ s2 ≤ s3. Moreover, it can be proved that the number
of parity-even and parity-odd canonical amplitudes will be
either the same (when Nc:a: is an even number) or with a
difference of 1 (when Nc:a: is an odd number).
Consequently, in order for the presence of the interferences
between the canonical decay amplitudes with the same
parity in wðjÞ for certain j, the number of the independent
canonical decay amplitudes should be no less than 3, so that
at least two of them share the same parity. The first few
combinations of ðs1; s2; s3Þ that fulfill this requirement are
(0, 1, 1), (0, 1, 2), ð0; 3

2
; 3
2
Þ, (0, 2, 2), ð1

2
; 1
2
; 1Þ, ð1

2
; 1
2
; 2Þ,

ð1
2
; 1; 3

2
Þ, and ð1

2
; 3
2
; 2Þ, with the number of independent

canonical decay amplitudes being 3, 3, 4, 5, 4, 4, 6, and 8,
respectively. Phenomenologically, if we confine ourselves
only to discussions of unstable H dominated by weak
decays, the first four combinations will be the cases of
pseudoscalar heavy meson decays, while the last four
combinations will be the cases of heavy baryon decays.
Take the typical weak transition of the type B → BV

(1
2
þ → 1

2
þ þ 1−), such as Λb → Λρ0, as an example, where

the vector meson decays subsequently to two pseudoscalar
mesons through strong interactions. It can be easily seen
that there are four independent weak decay canonical
amplitudes in total, according to Eq. (19). There are, in
total, three WðjÞ’s for j ¼ 0, 1, and 2, which can be
respectively expressed in terms of the helicity amplitudes
as well as the canonical ones as

Wð0Þ ¼ jF 11
2
j2 þ jF−1−1

2
j2 þ jF 01

2
j2 þ jF 0−1

2
j2; ð20Þ
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Wð1Þ ¼ jF 11
2
j2 − jF−1−1

2
j2; ð21Þ

Wð2Þ ¼ jF 11
2
j2 þ jF−1−1

2
j2 − 2

�
jF 01

2
j2 þ jF 0−1

2
j2
�
; ð22Þ

and

Wð0Þ ¼
�
ja01

2
j2 þ ja11

2
j2 þ ja13

2
j2 þ ja23

2
j2
�
; ð23Þ

Wð1Þ ¼ 2ffiffiffi
3

p
	 ffiffiffi

2
p

ℜ
�
a01

2
a�
11
2

�
þℜ

�
a01

2
a�
13
2

�

þℜ
�
a11

2
a�
23
2

�
þ

ffiffiffi
1

2

r
ℜ
�
a13

2
a�
23
2

�

; ð24Þ

Wð2Þ ¼ −
�
ja13

2
j2 þ ja23

2
j2
�

− 2
ffiffiffi
3

p
ℜ
�
a01

2
a�
23
2

þ a11
2
a�
13
2

�
; ð25Þ

where the symbolℜð� � �Þmeans that we take the real part of
the term in the parentheses. From the helicity forms ofWð1Þ

and Wð2Þ, one can clearly see that they describe the
polarization of the vector meson V: Note that Wð1Þ
represents the asymmetry between helicity þ1 and −1 of
V, while Wð2Þ represents the asymmetry of transverse and
longitudinal polarizations of V. The factor 2 in front of the
longitudinal polarization parts is important and also under-
standable. It reflects the simple fact that the degrees of
freedom for the transverse polarizations (σ ¼ �1) and the
longitudinal parts (σ ¼ 0) are different. On the other hand,
the interference behavior between different amplitudes is
easier to see from the canonical forms of Wð1Þ and Wð2Þ.
The differential decay width can then be expressed as4

1

Γ
dΓ

d cos θ
¼ 1

2
þ Wð2ÞSð2Þ

2Wð0ÞSð0Þ P2ðcθÞ

¼ 1

2
−

1ffiffiffi
2

p λð2ÞB→BVP2ðcθÞ: ð26Þ

Note that Sð0Þ and Sð2Þ are correlated according to
Sð2Þ=Sð0Þ ¼ −

ffiffiffi
2

p
. The reason for the correlation is under-

standable. Since the vector meson decays into two pseu-
doscalar mesons, there can only be one independent
helicity amplitude. Both Sð0Þ and Sð2Þ must be proportional

to the square of this helicity amplitude; hence, they are
correlated. If the relative strong phase differences between
a01

2
and a23

2
and/or a11

2
and a13

2
are not small, the contribu-

tions of the corresponding interfering terms to the CP
asymmetries associated with the decay-angular distribu-

tions Að2Þ
CP could be large.

To see the CP asymmetry behavior in more detail, let us
first parametrize the canonical decay amplitudes asHls and

their CP counterparts asHls as

asHls ¼
�
aTls þ aPlse

iðϕwþδPTls Þ
�
eiδls ; ð27Þ

asHls ¼
�
aTls þ aPlse

ið−ϕwþδPTls Þ
�
eiδls ; ð28Þ

where aTls and aPls are the tree and penguin parts of the
canonical decay amplitudes, respectively; ϕw and δPTls are,
respectively, the weak and the strong phase difference
between the tree and penguin parts of the same canonical
decay amplitude als; and δls is the overall strong phase of
the canonical amplitudes asHls . The CP asymmetry param-
eters will behave as

AðjÞ
CP ∼ 2 sinϕw

X
ls;l0s0

ρðjÞls;l0s0

�
aTlsa

P
l0s0 sin

h
ðδls − δl0s0 Þ − δPTl0s0

i

− aPlsa
T
l0s0 sin

h
ðδls − δl0s0 Þ þ δPTls

i�
: ð29Þ

It is naturally expected (although this is only a possibility)
that the relative strong phases between different canonical
decay amplitudes could be relatively large, compared to the
strong phase difference of the tree and penguin parts with
different weak phases within the same canonical decay
amplitude,

δls − δl0s0 > δPTls ∼ δPTl0s0 : ð30Þ

This means that the CP asymmetry parameter(s) AðjÞ
CP will

have a good chance of being dominated by the interference
terms between different canonical decay amplitudes:

AðjÞ
CP ∼ 2 sinϕw

X
ls≠l0s0

ρðjÞls;l0s0

�
aTlsa

P
l0s0 − aPlsa

T
l0s0

�
sin ðδls − δl0s0 Þ:

ð31Þ

Since there is no interference between different canonical

decay amplitudes in Âð0Þ
CP, it is likely that A

ðjÞ
CP for j ≠ 0 will

be larger than Âð0Þ
CP, provided that the relative strong phases

between different canonical decay amplitudes δls − δl0s0 are
large. It should be emphasized that, in order to get large

ÂðjÞ
CP’s, the relative strong phases between different

4The behavior in the expression seems to be different from the
one used in the literature such as in [32]. One can see from
Eq. (13) of Ref. [32] that there are interference terms of S- and
D-waves in the integrated decay width Γ, while there is no
such term (interference between a01

2
and a23

2
in our notation) in

Eq. (24). This is because the definitions of the canonical
amplitudes are different. In the current paper, als are the canonical
amplitudes in the sense that they transform irreducibly under
SO(3), while the S- and D-waves in Ref. [32] are not.
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canonical decay amplitudes is not enough; the weak phase
ϕw and the term aTlsa

P
l0s0 − aPlsa

T
l0s0 should not be too small

either.
While the presence of the strong phase difference

between different partial-wave amplitudes is an important
necessary condition for large CP asymmetry corresponding
to the decay-angular distributions, it should be pointed out
that this is not a sufficient condition. To see this, let us again
use the decay B → BV as an example. Theoretical analyses
of this type of decay have been performed via the
generalized factorization approach (GFA) for bottom
baryon decays [33–35]. Based on helicity decay amplitudes
obtained from GFA, it can be shown that the canonical
decay amplitudes and their CP conjugates take the forms
als ¼ CVKls and als ¼ CVKls, where Kls is the kinematical
part which depends on l and s, and the parameters CV and
CV contain the CKM matrix elements and are universal for
all als. In particular, CV and CV are independent of l and s.
While we can generate a nonzero direct CP asymmetry
corresponding to the branching ratios, the CP asymmetries
corresponding to the decay-angular distributions, which are
defined in Eq. (11), are predicted to be exactly zero by GFA

because the universal CV (CV) is canceled out in λðjÞH→Rc

(λðjÞH̄→R̄ c̄) so that λðjÞH→Rc ¼ λðjÞH̄→R̄ c̄. In other words, there can
be only one CP asymmetry in the approach of GFA, i.e.,

CP asymmetry corresponding to the branching ratios, Ãð0Þ
CP.

Consequently, it is crucially important to go beyond GFA
for the predictions of CP asymmetry corresponding to the
decay-angular distributions.

IV. SUGGESTED CHANNELS FOR SEARCHING
FOR DECAY-ANGULAR-DISTRIBUTION-

CORRELATED CP ASYMMETRIES
IN BARYON DECAYS

It is very hard to make a concrete prediction of any
decay-distribution-correlated CP asymmetries in heavy
baryon cascade decays. Nevertheless, our analyses provide
some guidelines for searching for such CP asymmetries in
certain decay processes. According to the above analysis,
two of the guidelines are especially important. The first one
is that the number of independent canonical decay ampli-
tudes Nc:a: should be no less than 3, which will constrain
the spins of the particle involved according to Eq. (19). The
second one is that j can only take even values from 0 to 2sR,
which implies that sR should be no less than 1 in order for
the nontrivial decay-angular distributions (j ≥ 2) to appear.

Of course, the properties of the coefficients ρðjÞls;l0s0 can
provide us with more detailed information on the interfer-
ence of different canonical decay amplitudes in WðjÞ.
The above guidelines suggest that we can study the

decay-angular distributions and the corresponding CP
asymmetries in the following two immediate situations.
The first one is that H is a pseudoscalar heavy meson,

which will be denoted asM for this situation. From Eq. (19)
one can see that, in this situation, the necessary condition
for Nc:a: ≥ 3 is that the spins of both R and c should be
nonzero and larger than half. As aforementioned, typical
examples for the spin combinations ðs1; s2; s3Þ ofM, R, and
c that fulfill this requirement are (0, 1, 1), (0, 1, 2), ð0; 3

2
; 3
2
Þ,

(0, 2, 2). The simplest decays which can be used to perform
the search for decay-angular-distribution-correlated CP
asymmetries are (1) M → V1V2, with V1 or V2 decaying
strongly to two pseudoscalar mesons; (2) M → B�

1B
�
2, with

B�
1 and B�

2 being spin-one-and-a-half baryons and one of
them decaying via strong interactions. Since our main
concern is heavy baryon decay processes, we will not go
through the heavy meson decay processes any further [36].
The second situation, which is our main concern in this

paper, is that H represents a spin-half heavy baryon, which
will be denoted as B in what follows. In this case, since
either R or c is a baryon, in order for Nc:a: ≥ 3, Eq. (19)
indicates that the other particle must be a spin-nonzero
meson. In view of the above constraints, we propose to
search for decay-distribution-correlated CP violation in
cascade decays of the following types: (1) B → BM,
M → M1M2, with the spin of the meson M being nonzero;
(2) B → BM, B → B0M0, with the spin of the baryon
resonance B being larger than 1

2
, and the spin of M being

nonzero. Here, B and B0 represent light baryons, and M,
M0, M1, and M2 represent light mesons.
The first type seems to be more common and more

applicable, among which the most relevant decay type is of
the form B → BV, with a subsequent strong decay of the
vector resonance V → P1P2. Typical decays of the form
B→BV include (1) b → duū transitions: Λ0

b → pρð770Þþ,
Λ0
b → Nð1520Þ�ρð770Þþ; (2) b → suū transitions:

Λ0
b → Λρð770Þ0, Λ0

b → pK�ð892Þ−, Λ0
b → Nð1520ÞK�;

(3) c → udd̄ transitions: Λþ
c → pρð770Þ0, Ξþ

c →
pK�ð892Þ0; and (4) c → uss̄ transitions: Λþ

c → pϕ,
Λþ
c → ΣþK�ð892Þ0.
For the second type,B → BM,B → B0M0, where the spin

of the intermediate baryon resonance is no less than 3
2

and the spin of M is no less than 1, typical decays include
(1) c → udd̄ transitions: Λþ

c → Nð1520Þ�ρð770Þ0,
Ξþ
c → Nð1520Þ�K�ð892Þ0; (2) c → uss̄ transitions:

Λþ
c → Nð1520Þ�ϕ, Λþ

c → ΣþK�ð892Þ0; (3) the b → duū
transition: Λ0

b → Nð1520Þ�ρð770Þþ; and (4) the b → suū
transition: Λ0

b → Nð1520ÞK�. For most of the cases, the
study of AðjÞ and/or ÂðjÞ for j ¼ 2 will be enough since all
the spins of the resonances mentioned in the above
examples are less than 2.

V. SUMMARY AND CONCLUSION

CP violation in baryon decay processes has not been
observed yet. In this paper, the decay-angular-distribution-
correlatedCP asymmetries for cascade decays of unpolarized

ZHAO, ZHANG, and GUO PHYS. REV. D 110, 013007 (2024)

013007-6



heavy hadrons are analyzed. By expressing the differential
decay width in terms of the canonical decay amplitudes, we
analyze the general condition for the presence of the
interfering terms between different canonical decay ampli-
tudes. The presence of the interfering terms is important for
the generation of large decay-angular-distribution-correlated
CP asymmetries.
We focus mainly on one typical type of decay, in which

the heavy baryon decays weakly into two daughter
hadrons, with one of them decaying strongly into two
granddaughter hadrons. The analysis indicates that when
the two daughter hadrons are both spin nonzero, there will
be at least two parity-even and parity-odd canonical
amplitudes. The interference between the canonical ampli-
tudes with the same parity properties will be present in the
angular distributions of the final particles. With a possible

large strong phase between different canonical amplitudes,
it is possible that a large CP asymmetry corresponding to
the decay-angular distributions may emerge. We also
present some typical decay channels in which the search
for such CP asymmetries can be performed.
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