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It has long been recognized that the scattering of electroweak particles at very high energies is dominated
by vector boson fusion, which probes the origin of electroweak symmetry breaking and offers a unique
window into the ultraviolet regime of the Standard Model (SM). Previous studies assume SM-like
couplings and rely on the effectiveW approximation (or electroweak parton distribution), whose validity is
well established within the SM but not yet studied in the presence of anomalous Higgs couplings. In this
work, we critically examine the electroweak production of two Higgs bosons in the presence of anomalous
VVh and VVhh couplings. We compute the corresponding helicity amplitudes and compare the cross
section results in the effective W approximation with the full fixed-order calculation. In particular, we
identify two distinct classes of anomalous Higgs couplings, whose effects are not captured by vector boson
fusion and effectiveW approximation. Such very-high-energy electroweak scatterings can be probed at the
muon shot, a multi-TeV muon collider upon which we base our study, although similar considerations
apply to other high-energy colliders.
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I. INTRODUCTION

With the discovery of the 125 GeV Higgs boson in 2012
at the Large Hadron Collider (LHC), the Standard Model
(SM) of particle physics is a UV-consistent theory.
Although the Higgs boson is often hailed as the origin
of mass for (almost) all fundamental particles, a key feature
of the SM Higgs lies in the fact that it unitarizes the
electroweak vector boson scattering. In particular, if cou-
plings of the 125 GeV Higgs with the electroweak vector
bosons deviate from the SM predictions even just a tiny bit,
the amplitude for vector boson scattering would grow with
energy and eventually violates perturbative unitarity.
Consider the two-to-two scattering WþW− → WþW− in

the SM as shown in Fig. 1. Besides the triple and quartic
gauge interactions, it includes the Higgs boson (h) as an
intermediate particle. In the absence of the Higgs contri-
bution, the leading behavior of the amplitude from the top
row has the parametric dependence [1]

MðWþW− → WþW−Þ ∼ s
v2

; ð1Þ

where s ¼ ðp1 þ p2Þ2 is the center-of-mass energy squared
and v is the vacuum expectation value of the Higgs field.
The energy growth eventually leads to unitarity violation.
This behavior can be seen explicitly from the polarization
vectors for the transversely (T) and longitudinally (L)
polarized W boson along the ẑ axis as

ϵμT ¼
�
0;� 1ffiffiffi

2
p ;−

iffiffiffi
2

p ;0

�
; ϵμL ¼

1

mW
ðjk⃗j;0;0;EWÞ; ð2Þ

where k⃗ is the three-momentum and EW ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jk⃗j2 þm2

W

q
is

the energy of the W boson. In the high-energy limit,
EW ≫ mW , ϵ

μ
L ≈ kμ=mW þOðmW=EWÞ, thus

ϵW
þ

T · ϵW
−

T ∼ 1; ϵW
þ

L · ϵW
−

L ≈
kWþ · kW−

m2
W

∼
s

2m2
W
: ð3Þ

Although the leading behavior of each individual diagram
is ðϵWþ

L · ϵW
−

L Þ2 ∼ s2=m4
W , the gauge invariance guarantees

that terms proportional to s2 cancel and only the linear term
in s remains when all diagrams in the top row are included.
In the absence of the Higgs, the linear growth in s in Eq. (1)
is completely analogous to the pion-pion (ππ) scattering
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near the threshold in low-energy QCD. There the energy
growth is due to the fact that Nambu-Goldstone bosons are
derivatively coupled [2–7].
The analogy between WW scattering and pion-pion

scattering actually highlights a great mystery in the SM:
in QCD the ππ scattering is partially unitarized by a series
of resonances until the QCD confinement scale ∼1 GeV,
including the spin-1 ρ meson, while the WW scattering is
unitarized by a single scalar particle—the Higgs boson.
Why is there such a distinction? More importantly, using a
single particle to unitarize the WW scattering means
couplings of the Higgs with the vector bosons, the VVh
coupling, must have the exact form and strength as
predicted by the SM. If the VVh coupling deviates from
the SM even just by a small amount, the cancellation would
be incomplete and an energy-growing term in Eq. (1)
reappears. Pion-pion scattering in low-energy QCD, to the
contrary, is unitarized sequentially by a tower of resonan-
ces, each of which pushes the scale of unitarity violation
further to a higher energy, eventually reaching above the
scale of chiral symmetry breaking. When chiral symmetry
is restored, pions cease to exist. In the Standard Model, the
125 GeV Higgs alone would unitarize VV scattering up to
an arbitrarily high scale. This was one of the clearest
indicators on the presence of a Higgs-like particle before
the discovery of the 125 GeV Higgs. Experimentally, at the
LHC, we have measured the HVV coupling to be con-
sistent with the SM expectation up to Oð10%Þ uncertainty,

which suggests the 125 GeV Higgs is responsible for
unitarizing VV scattering up to 10 TeV. Nevertheless, for
such a critical prediction of the SM, it is important to
continue to investigate whether the 125 GeV Higgs could
unitarize VV scattering up to an even higher energy scale.
These arguments are the reason why vector boson

scattering, or vector boson fusion (VBF), is among the
top priorities in current and future experimental programs at
a high-energy collider. In this work we will focus on the
production of two Higgs bosons at very-high energies,
which in the SM is dominated by the subprocess VV → hh.
This process is of particular importance for several reasons,
in addition to what has already been articulated. In the SM
VV → hh involves diagrams shown in Fig. 2, which
contains both the four-point VVhh coupling and the
trilinear hhh coupling, neither of which has been measured
experimentally. The VVhh coupling arises from the Higgs
kinetic term,

DμH†DμH ⊃
h2

v2

�
m2

WW
−
μWμþ þ 1

2
m2

ZZμZμ

�
; ð4Þ

where H is the Higgs doublet. While the trilinear hhh
coupling is part of the Higgs potential that triggers the
electroweak symmetry breaking,

VðHÞ ⊃ −
m2

h

2v
h3; ð5Þ

FIG. 1. SM Feynman diagrams contribute to the scattering WþW− → WþW−.

FIG. 2. Feynman diagrams contribute to the scatteringWþW− → hh. From left to right they are the s-, t-, u-channel, and the four-point
interaction channel.
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where v ¼ 246 GeV is the vacuum expectation value
(VEV) of the Higgs. Therefore VV → hh allows us to
probe three important aspects of the SM: (1) unitarity in
VBF, (2) gauge invariance in the Higgs sector, and (3) the
shape of the Higgs potential, all of which have yet to be
verified experimentally.
Recently there has been significant interest in a multi-

TeVmuon collider1 [9–11], which would offer direct access
to the high-energy behavior of the SM and the potential
discovery for beyond the Standard Model (BSM) new
physics. At an energy scale much larger than the electro-
weak scale, all relevant degrees of freedom become light
and the probability for an energetic electroweak particle to
emit an electroweak gauge boson is enhanced by the
collinear singularity, which is regulated by the nonzero
masses and manifests itself through the collinear loga-
rithms. At the same time it is a good approximation to treat
the electroweak gauge bosons as on-shell particles, which
is known as the effectiveW approximation (EWA) [12–14].
This formalism has been further developed to a partonic
picture of the electroweak (EW) interactions in high-energy
collisions [15–18]. A very-high-energy lepton collider,
such as a multi-TeV muon collider, thus serves as a vector
boson collider [18–21]. The cross section for VV → hh in
leptonic collisions was first calculated in Ref. [22], and
subsequently studied in [23–25]. However, previous studies
always assumed SM tensor structures in Eq. (4) and only
modified the coupling strength. We will not make the same
assumption and instead will consider the possibility of
anomalous Higgs coupling in a general framework of
nonlinear effective field theory (EFT) [26–29]. Allowing
for anomalous couplings offers a unique opportunity to
understand the dominance of VBF in electroweak scatter-
ing, as well as the associated EWA, in a broader context
when the 125 GeV Higgs does not completely unitarize the
vector boson scattering. Indeed, we will see that, after
including anomalous couplings, there are effects not
captured by the VBF and EWA, and a full fixed-order
calculation is warranted.
The rest of the paper is organized as follows. In Sec. II,

we set up our effective field theory notation, and discuss the
linear and nonlinear realization of the Higgs boson. In
Sec. III, we give the scattering amplitudes of the W boson
pair into a pair of Higgs boson, and discuss the threshold
and the high-energy limit behaviors. In Sec. IV B, we
analyze the double Higgs production at a multi-TeV muon
collider and discuss the validity of the EWA in the context
of EFT. In Sec. V, we discuss the kinematic features of the
double Higgs production at muon colliders. We conclude in
Sec. VI. The Feynman rules for the anomalous Higgs-W
couplings and the general helicity amplitudes are given in
two appendixes.

II. EFT: LINEAR VERSUS NONLINEAR
REALIZATION

An EFT by construction consists of an infinite number of
operators with increasing powers of derivatives and fields.
Using scalar fields as an illustration and denoting by
Φ ¼ fϕ1;ϕ2; � � �g a generic set of scalars, an EFT is a
double expansion in

∂μ

Λ
and

Φ
f
; ð6Þ

where Λ and f are two mass scales characterizing the
momentum expansion and the field expansion. Then the
effective Lagrangian has the following general form:

Leff ¼ Λ2f2L̃ð∂=Λ;Φ=fÞ; ð7Þ

where dimensionless coefficients in L̃ are assumed to be
order unity and the overall factor is fixed by requiring a
canonically normalized kinetic term, which contains two
derivatives and two scalars. Then naive dimensional analy-
sis [30–32] indicates that loop effects below the scale Λ are
suppressed by a factor of

L ¼ 1

16π2

�
Λ
f

�
2

; ð8Þ

when comparing to the tree-level effect. This suggests
defining g ¼ Λ=f as some sort of “coupling constant” in
the EFT. The effective Lagrangian L̃ in Eq. (7) now has the
following structure,

L̃ ¼ L̃ð0Þð∂=Λ;Φ=fÞ þ g2

16π2
L̃ð1Þð∂=Λ;Φ=fÞ

þ g4

ð16π2Þ2 L̃
ð2Þð∂=Λ;Φ=fÞ þ � � � : ð9Þ

Then, in a weakly coupled theory characterized by

g≲Oð1Þ and Λ ∼ f; ð10Þ

one does not distinguish between Λ and f in the EFT. This
is the assumption underlying a linear EFT such as the
Standard Model effective field theory (SMEFT) [33–36].
On the other hand, if the effective theory becomes strongly
coupled at a certain scale and

g≲ 4π; ð11Þ

then there could be a distinction between Λ and f.
However, the separation could at most be

Λ ∼ 4πf; ð12Þ
1The program toward a multi-TeV muon collider is coined the

“muon shot” in Ref. [8].
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where g ∼ 4π. In this case the EFT loses predictive power at
the energy scale ∼4πf and needs to be UV completed. This
is usually referred to as a nonlinear realization of the EFT.2

The most well-known example arises from the chiral
Lagrangian in low-energy QCD [38]. Another example
is the composite Higgs model [39,40], where the Higgs
boson is a pseudo-Nambu-Goldstone boson (pNGB), and
its modern incarnations [41–49].3
A weakly coupled EFT makes qualitatively different

low-energy predictions from a strongly coupled EFT. For
example, given the discovery of the 125 GeV Higgs boson,
it is commonly accepted that the electroweak SUð2ÞL ×
Uð1ÞY symmetry is linearly realized. Then in a weakly
coupled EFT such as the SMEFT, where one does not
distinguish between the derivative expansion ∂μ=Λ and
Φ=f, the leading corrections to VVh and VVhh vertices
come from dim-6 operators and they are correlated,

1

Λ2
ðH†HÞ �OVV →

v2

2Λ2

�
h2

v2
þ 2h

v
þ 1

�
�OVV; ð13Þ

where the vacuum expectation value hHi ¼ ð0; vÞT= ffiffiffi
2

p
and OVV represents a dim-4 operator containing two
electroweak gauge bosons V ¼ fW;Z; γg. Therefore, once
we measure VVh couplings, the quartic VVhh couplings
are also known in SMEFT, until one further introduces dim-
8 operators. But of course if the power counting of the EFT
is well defined, the effect of dim-8 operators must be
smaller than those from the dim-6 operators.
This strong correlation between VVh and VVhh vertices

is not present in a strongly coupled EFT like in the
composite Higgs models. The reason is because one could
be making a measurement at an energy scale E such that

v
f
≳ E
Λ
; ð14Þ

in which case we would need to include corrections that are
to all orders in 1=f expansion, and organize the power
counting by the ∂=Λ expansion. For example, at the leading
two-derivative order we could have, in the unitary gauge,4

Fðh=fÞ �
�
m2

WW
þ
μ W−μ þ 1

2
m2

ZZμZμ

�
; ð15Þ

where F is an analytic function resumming all the 1=f
effect and mW=Z is the mass of the W=Z boson. Here we
have normalized in a way such that Fð0Þ ¼ 1. We have
also assumed the SUð2ÞC custodial invariance in the
Higgs sector. After electroweak symmetry breaking and
h → hþ v, the corrections to VVh and VVhh vertices are
given by

�
F0ð0Þh

f
þF00ð0Þh

2

f2

�
�
�
m2

WW
þ
μ W−μþ1

2
m2

ZZμZμ

�
: ð16Þ

One sees explicitly that, unlike in SMEFT, corrections to
VVh and VVhh vertices are now independent, governed by
the underlying theory encoded in F.
In this work we would like to consider the more general

possibility that VVh and VVhh vertices are not correlated,
and thus focus on the pNGBHiggsmodels. There are dozens
of pNGB Higgs models in the literature [51] and they differ
in the choices of an extended (approximate) global sym-
metryG in the UVwhich is spontaneously broken down to a
subgroup H ⊃ SUð2ÞL ×Uð1ÞY in the IR. For a phenom-
enologically successful model, it is important to impose the
custodial invariance in the Higgs sector andH ⊃ SOð4Þ [51]
and the four real components of the Higgs doublet transform
as the fundamental representation under SOð4Þ. We adopt
this assumption here.
For a pNGB Higgs, the function Fðh=fÞ turns out to

have some very interesting properties that were not realized
until recently. In explicit models, Fðh=fÞ looks seemingly
different for different choices of symmetry breaking pattern
G=H. However, it was discovered recently that Fðh=fÞ
actually only depends on the IR quantum number of the
Higgs boson [6,26], up to the normalization of f. So in
models where the Higgs doublet belongs to the funda-
mental representation of an SOð4Þ subgroup of H, Fðh=fÞ
is in fact universal among different G=H, after a suitable
rescaling of f, and has the form after electroweak symmetry
breaking

Fðh=fÞ ¼ f2

v2

�
v
f
cos

h
f
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2=f2

q
sin

h
f

�
2

¼ f2

v2
sin2ðθ þ h=fÞ; ð17Þ

where sin θ≡ v=f ¼ ffiffiffi
ξ

p
. This will give rise to the ratio as

follows:

F00ð0Þ
F0ð0Þ ¼ 2

ffiffiffi
ξ

p ffiffiffiffiffiffiffiffiffiffi
1 − ξ

p
1 − 2ξ

: ð18Þ

The only free parameter is then f, the Goldstone boson
decay constant, which needs to be determined experimen-
tally as a theory input. It is worth emphasizing that,
although at the two-derivative order, the function Fðh=fÞ
is determined from the infrared, higher-derivative

2See Ref. [37] for a recent classification of the effective field
theories (linear versus nonlinear) based on the analyticity of
the Lagrangian with respect to the Higgs doublet.

3Strictly speaking, a pNGB Higgs does not necessarily imply a
“composite” Higgs in the sense that the proton is composite,
because one could UV complete a pNGB Higgs into a weakly
coupled description à la the linear sigma model. (See, for
example, Ref. [50].)

4Recall that each gauge boson is counted as one derivative,
because of covariant derivative Dμ ¼ ∂μ − ieAμ.

TAO HAN, DA LIU, IAN LOW, and XING WANG PHYS. REV. D 110, 013005 (2024)

013005-4



contributions, say Oðp4Þ corrections, it encodes the
unknown UV physics through the uncalculable Wilson
coefficients, as is common in EFTs.
In composite Higgs models, corrections to VVh and

VVhh interactions that are next-to-leading order in the
derivative expansion were enumerated in Refs. [27,28],
following which we write down the following nonlinear
effective Lagrangian involving WWh and WWhh vertices
up to Oðp4Þ, in the unitary gauge

LEFT¼LSMþ
�
2Ch

0

h
v
þC2h

0

h2

v2

��
m2

WW
þ
μ W−μþ1

2
m2

ZZμZμ

�

þCh
5

�
h
v
Wþ

μ DμνW−
ν þH:c:

�
þCh

6

h
v
Wþ

μνW−μν

þC2h
5

�
h2

v2
Wþ

μ DμνW−
ν þH:c:

�
þC2h

6

h2

v2
Wþ

μνW−μν

þC2h
9

ð∂νhÞ2
v2

Wþ
μ W−μþC2h

10

∂
μh∂νh
v2

Wþ
μ W−

ν ; ð19Þ

where Dμν ¼ ∂
μ
∂
ν − ημν∂2. Here and henceforth, we

choose to normalize the higher-dimensional operators to
the Higgs VEV v. For the reader’s convenience, we
provide the Feynman rules for the interacting vertices in
Appendix A. The Wilson coefficients Ch

i and C2h
i are

assumed to be independent of each other, and both enter the
electroweak double Higgs production.5 Equation (19)
makes it convenient to compare with experimental observ-
ables [29]. However, the power counting rule in Eq. (6) is
not manifest in the unitary gauge and the natural size of the
Ci’s is not order unity. This motivates the following
rescaling,

Ch=2h
i → C̃h=2h

i � v
2

f2
; i ¼ 0; 5; 6;

Ch=2h
j → C̃h=2h

j � v
4

f4
; j ¼ 9; 10; ð20Þ

which makes it clear that operators multiplied by Ch=2h
i are

matched to dim-6 operators in SMEFT at the leading order,
while those multiplied by Ch=2h

j are matched to dim-8

operators. After the rescaling, the C̃h=2h’s are expected to be
order unity. Note that the coupling coefficients can be
written as the Wilson coefficients of the SMEFT operators
as follows [27,28]:

C2h
0 ¼4Ch

0¼−
v2

2f2
cH;

C2h
5 ¼1

2
Ch
5 ¼2

m2
W

m2
ρ
ðcWþcHWÞ; C2h

6 ¼1

2
Ch
6 ¼−2

m2
W

m2
ρ
cHW;

C2h
9 ¼m2

Wv
2

f4
cð8ÞH;1; C2h

10 ¼
m2

Wv
2

f4
cð8ÞH;2: ð21Þ

We have adopted the strongly interacting light Higgs basis
[52] for the dimension-6 operators:

OH ¼ 1

2
∂μðH†HÞ∂μðH†HÞ;

OW ¼ ig
2
ðH†σaD

↔μ
HÞDνWa

μν;

OHW ¼ igðDμHÞ†σaðDνHÞWa
μν; ð22Þ

and the relevant dimension-8 operators are given by

Oð8Þ
H;1 ¼ ðDμH†DμHÞ2;

Oð8Þ
H;2 ¼ DμH†DνHDμH†DνH: ð23Þ

The effective Lagrangian is parametrized as

LSMEFT ¼ cH
f2

OH þ
X

i¼W;B;HW;HB

ci
m2

ρ
Oð6Þ

i þ
X

i¼H;1;H;2

ci
f4

Oð8
i :

ð24Þ

A few comments are in order for the operators listed in
Eq. (19). First we see that Ch;2h

0 have the same structures as
the SM VVh and VVhh interactions and would only
modify the coupling strength. Moreover, the gauge bosons
contained in Ch;2h

9 and Ch;2h
10 also have the same structure as

in the SM. Those operators were referred as “genuine dim-6
Higgs operators” [52,53]. We will see that for these
anomalous couplings the EWAworks quite well, following
the dynamical structure of the SM. On the other hand, both
Ch;2h
5 and Ch;2h

6 introduce new Lorentz structures with two
or more derivatives on the gauge bosons, implying new
underlying dynamics at a higher scale. In particular, Ch;2h

5

terms vanish for on-shellW gauge bosons and Ch;2h
6 mainly

contribute to transverse gauge boson processes. As we will
see later on, the presence of these structures necessitates a
careful examination of the interplay between the EWA and
full fixed-order calculations, and provides valuable insights
into the VBF process in very-high-energy electroweak
scatterings.

III. VECTOR BOSON FUSION: ANATOMY
OF W +W − → hh

In our study we will assume the amplitudes are domi-
nated by the SM contributions—otherwise the perturbative

5We focus onWW → hh in this work. It would be desirable to
include ZZ → hh in future studies, due to the inability to
distinguish the two channels in a very-high-energy collider [25].
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expansion in p2 would become invalid. Therefore, the
leading effects of new physics beyond the SM will be
probed through its interference with the SM contribution.
In the following, to be self-consistent, we only keep
terms linear in the Wilson coefficients C̃h

i and C̃2h
i in the

expression.
It is informative to present a detailed analytical study of

the partonic level process WþW− → hh. We start with the
helicity amplitudes by employing the Wigner d-function in
Sec. III A, then study the threshold behavior in Sec. III B
and the high-energy limits in Sec. III C.

A. Helicity amplitudes

The Feynman diagrams contributing toWþW− → hh are
shown in Fig. 2. The helicity amplitude can be expressed in
terms of the Wigner d-function dJ0Δλ;0ðθÞ,

MðWþ
λ W

−
λ̄
→ hhÞ ¼ M̃λλ̄ð−1Þλ̄dJ0Δλ;0ðθÞ; ð25Þ

where λðλ̄Þ is the helicity of the incoming WþðW−Þ boson,
Δλ ¼ λ − λ̄, and J0 ¼ jΔλj. We follow the convention in
Ref. [54]. The relevant Wigner d-functions are [55]

d00;0¼1; d1�1;0¼� 1ffiffiffi
2

p sinθ; d2�2;0¼
ffiffiffi
3

8

r
sin2θ; ð26Þ

where θ is the polar angle of the outgoing Higgs boson in
the center-of-mass (c.m.) frame, with the z axis defined
by the incomingWþ boson. Bose symmetry in the outgoing
Higgs bosons requires the total amplitudes must be
invariant under θ → π − θ.
In Eq. (25) M̃λλ̄ is the reduced amplitude and can be

decomposed into four terms corresponding to the four
diagrams in Fig. 2:

M̃ ¼ M̃s þ M̃t þ M̃u þ M̃4: ð27Þ

In the c.m. frame, we have

βa ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
a

s

r
; γa ¼ ð1 − β2aÞ−1=2 ¼

ffiffiffi
s

p
2ma

; ð28Þ

wherema is the mass and βa is the velocity of the particle a
in natural units. The Mandelstam invariants t and u can then
be written as

t ¼ m2
W þm2

h −
s
2
ð1 − βWβh cos θÞ;

u ¼ m2
W þm2

h −
s
2
ð1þ βWβh cos θÞ: ð29Þ

Since we will be studying the threshold and high-energy
behaviors of the amplitudes, it will be convenient to

factor the couplings and propagators out of the reduced
amplitudes as the following,

M̃s
λλ̄ ¼

g2

4

s
s −m2

h

As
λλ̄
¼ g2

4

1

1 −m2
h=s

As
λλ̄
;

M̃t
λλ̄ ¼

g2

4

−s=2
t −m2

W
At

λλ̄
¼ g2

4

1

1 − βWβh cos θ − 2m2
h=s

At
λλ̄
;

M̃u
λλ̄ ¼

g2

4

−s=2
u −m2

W
Au

λλ̄
¼ g2

4

1

1þ βWβh cos θ − 2m2
h=s

Au
λλ̄
;

M̃4
λλ̄ ¼

g2

4
A4

λλ̄
; ð30Þ

where we have defined the “dimensionless propagators” by
adding a factor of s and s=2 to the s-channel and t-=u-
channel propagators, respectively. We compute the reduced
amplitudes, including contributions from the nonlinear EFT
in Eq. (19) and up to terms linear in the Wilson coefficients
Ch=2h
i . Using the Feynman rules in Appendix A, the full

results for the helicity amplitudes Ai
λλ̄
ði ¼ s; t; u; 4Þ are

listed in Appendix B. In Table I we show how new physics
interactions in Eq. (19) contribute to the helicity amplitudes
in various channels. The three-point couplingsCh

i only enter
into the first three diagrams in Fig. 2, while the four-point
couplings C2h

i only enter into the last diagram. Among
the three cubic couplings, Ch

0;5 contributes to the ð�;∓Þ
helicity amplitudes while Ch

6 does not. The four-point
couplings C2h

i , i ¼ 5, 6, 9, only show up in the (0,0) and
ð�;�Þ helicities.
For later reference, we present the helicity amplitudes in

the SM explicitly here as

TABLE I. New physics contributions to different helicity
amplitudes in various channels. For comparison we include
the SM in the table. Center dots denote no contribution in that
particular helicity channel.

Helicity Diagram SM Ch
0 Ch

5 Ch
6 C2h

0 C2h
5 C2h

6 C2h
9 C2h

10

(0,0) ð�;�Þ s-channel ✓ ✓ ✓ ✓ � � � � � � � � � � � � � � �
t-channel ✓ ✓ ✓ ✓ � � � � � � � � � � � � � � �
u-channel ✓ ✓ ✓ ✓ � � � � � � � � � � � � � � �
Four-point ✓ � � � � � � � � � ✓ ✓ ✓ ✓ ✓

ð�;∓Þ s-channel � � � � � � � � � � � � � � � � � � � � � � � � � � �
t-channel ✓ ✓ ✓ � � � � � � � � � � � � � � � � � �
u-channel ✓ ✓ ✓ � � � � � � � � � � � � � � � � � �
Four-point � � � � � � � � � � � � � � � � � � � � � � � � ✓

ð�; 0Þ ð0;�Þ s-channel � � � � � � � � � � � � � � � � � � � � � � � � � � �
t-channel ✓ ✓ ✓ ✓ � � � � � � � � � � � � � � �
u-channel ✓ ✓ ✓ ✓ � � � � � � � � � � � � � � �
Four-point � � � � � � � � � � � � � � � � � � � � � � � � ✓
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As
0;0 ¼

12λ

g2
ð1þ β2WÞ; A4

0;0 ¼ 2γ2Wð1þ β2WÞ;

At
0;0 ¼ −2ð1þ β2WÞ− 2γ2WðβW − βh cosθÞ2;

Au
0;0 ¼ −2ð1þ β2WÞ− 2γ2WðβW þ βh cosθÞ2;

At
�;0 ¼At

0;∓ ¼ −2γWβhðβW − βh cosθÞ;
Au

�;0 ¼Au
0;∓ ¼ 2γWβhðβW þ βh cosθÞ;

At
�;∓ ¼Au

�;∓ ¼ −
4ffiffiffi
6

p β2h; As
�;� ¼ −

12λ

g2
1

γ2W
;

At
�;� ¼Au

�;� ¼ ð2γ−2W þ β2hsin
2θÞ; A4

�;� ¼ −2: ð31Þ

where λ is the Higgs quartic coupling in the SM, and enters
into the Lagrangian through λjHj4. All other helicity
amplitudes vanish in the SM. The polarized partonic cross
section can be computed

σ̂λλ̄¼
1

2βWs
jMλλ̄j2dPS2; dPS2¼

1

2

1

ð4πÞ2
βh
2
dΩ: ð32Þ

The extra factor 1=2 is a symmetry factor for identical
particles in the final state.

B. Threshold regime

We consider the amplitudes and cross section near the
production threshold

ffiffiffi
s

p
∼ 2mh, which is equivalent to

Taylor expand them in terms of small Higgs boson velocity
βh ≪ 1. Note that in this regime, the velocity of W boson
βW ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −m2

W=m
2
h

p
≈ 0.77 and the boost factor γW ≈

mh=mW ≈ 1.55 are all Oð1Þ parameters. This is an impor-
tant kinematic region to explore because in high-energy
colliders most of the Higgs bosons in the VBF channel are
produced near the threshold. Note that in this case the
dimensionless propagators in Eq. (30) approach constants

s
s −m2

h

→
4

3
;

−s=2
t −m2

W
→ 2;

−s=2
u −m2

W
→ 2: ð33Þ

Keeping only terms that are leading orders in βh in each
helicity amplitude, the amplitudes simplify to

M̃0;0 ¼ −g2
�
1

2
ð1þ 4β2W þ 2γ2WÞ −

4λ

g2
ð1þ β2WÞ þ Ch

0

�
4β2W þ 4γ2W −

4λ

g2
ð1þ β2WÞ

�
−
1

2
C2h
0 γ2Wð1þ β2WÞ

þ Ch
5

�
2þ 4β2W −

4λ

g2
ð1þ β2WÞ

�
þ Ch

6

�
4β2W þ 4λ

g2
γ−2W

�

þ C2h
6 − γ2WC

2h
5 ð1þ β2WÞ þ

1

2
γ4W ½C2h

9 ð1þ β2WÞ þ C2h
10β

2
W �;

�

M̃0;� ¼ M̃0;∓ ¼ 2g2γW

�
ð1 − 2β2WÞð1þ 2Ch

0 þ 2Ch
5Þ − 4Ch

6β
2
W þ 1

4
C2h
10γ

2
W

�
β2h cos θ;

M̃�;∓ ¼ −g2
4ffiffiffi
6

p
�
1þ 2Ch

0 þ 2Ch
5 þ

1

4
C2h
10γ

2
W

�
β2h;

M̃�;� ¼ g2
�
3

2
− 2β2W −

4λ

g2
γ−2W þ 4Ch

0

�
1 −

λ

g2

�
γ−2W −

1

2
C2h
0 þ 2Ch

5

�
1 − 2β2W −

2λ

g2
γ−2W

�

− 4Ch
6

�
β2W −

λ

g2
ð1þ β2WÞ

�
− C2h

5 þ γ2W

�
C2h
6 ð1þ β2WÞ þ

1

2
C2h
9

��
: ð34Þ

Observe that M̃0;0 and M̃�;� are constant in βh due to the S-wave behavior, while M̃0;�, M̃0;∓, and M̃�;∓ are Oðβ2hÞ,
owing to the higher partial waves, and are thus highly suppressed in the threshold region. Therefore we expect the
production cross section to be dominated by the (0,0) and ð�;�Þ amplitudes. More explicitly, the polarized partonic cross
sections are

σ̂0;0 →
πα2

s4Wm
2
hβW

βh
8

��
1

2
ð1þ 4β2W þ 2γ2WÞ −

4λ

g2
ð1þ β2WÞ

�
2

þ 2

�
1

2
ð1þ 4β2W þ 2γ2WÞ −

4λ

g2
ð1þ β2WÞ

�

×

�
Ch
0

�
4β2W þ 4γ2W −

4λ

g2
ð1þ β2WÞ

�
− 1

2
C2h
0 γ2Wð1þ β2WÞ þ Ch

5

�
2þ 4β2W −

4λ

g2
ð1þ β2WÞ

�

þ Ch
6

�
4β2W þ 4λ

g2
γ−2W

�
þ C2h

6 − γ2WC
2h
5 ð1þ β2WÞ þ

1

2
γ4WðC2h

9 ð1þ β2WÞ þ C2h
10β

2
WÞ

��
;
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σ̂�;0 ¼ σ̂0;� →
πα2

s4Wm
2
hβW

β5h
30

m2
h

m2
W

�
ð1 − 2β2WÞ2 þ 2ð1 − 2β2WÞ

�
2ð1 − 2β2WÞðCh

0 þ Ch
5Þ − 4Ch

6β
2
W þ 1

4
C2h
10γ

2
W

��
;

σ̂�;∓ →
πα2

s4Wm
2
hβW

β5h
15

�
1þ 2

�
2Ch

0 þ 2Ch
5 þ

1

4
C2h
10γ

2
W

��
;

σ̂�;� →
πα2

s4Wm
2
hβW

βh
8

��
3

2
− 2β2W −

4λ

g2
γ−2W

�
2

þ 2

�
3

2
− 2β2W −

4λ

g2
γ−2W

��
4Ch

0

�
1 −

λ

g2

�
γ−2W −

1

2
C2h
0

þ 2Ch
5

�
1 − 2β2W −

2λ

g2
γ−2W

�
− 4Ch

6

�
β2W −

λ

g2
ð1þ β2WÞ

�
− C2h

5 þ γ2W

�
C2h
6 ð1þ β2WÞ þ

1

2
C2h
9

���
; ð35Þ

where α ¼ g2s2W=4π.
To gain some intuition on the relative contributions from different operators, it is instructive to plug in the explicit

numbers near threshold. In this regime M̃0;� and M̃�;∓ are all of order β2h, according to Eqs. (34), and hence can be
neglected. The remaining helicity amplitudes are M̃0;0 and M̃�;�,

M̃0;0 ¼ −g2
�
2.17þ v2

f2
ð10.09C̃h

0 − 1.92C̃2h
0 þ 2.43C̃h

5 þ 2.84C̃h
6 − 3.83C̃2h

5 þ C̃2h
6 Þ þ v4

f4
ð4.63C̃2h

9 þ 1.71C̃2h
10Þ

�
;

M̃�;� ¼ −g2
�
0.17þ v2

f2
ð−1.16C̃h

0 þ 0.5C̃2h
0 þ 0.84C̃h

5 þ 0.43C̃h
6 þ C̃2h

5 − 3.83C̃2h
6 Þ − 1.21

v4

f4
C̃2h
9

�
; ð36Þ

where we have indicated the natural power counting of the Wilson coefficients by way of Eq. (20). All the hatted quantities
are expected to be order unity. The dominant partonic cross sections arise from the longitudinal and transverse polarizations:

σ̂LL→ σ̂0;0¼ σ̂0βh

�
0.59þv2

f2
ð5.48C̃h

0−1.04C̃2h
0 þ1.32C̃h

5þ1.54C̃h
6−2.08C̃2h

5 þ0.54C̃2h
6 Þþv4

f4
ð2.51C̃2h

9 þ0.93C̃2h
10Þ

�
;

σ̂TT→
1

2
σ̂þ;þ¼ σ̂0βh

�
0.002−

v2

f2
ð0.025C̃h

0−0.011C̃2h
0 þ0.018C̃h

5−0.009C̃h
6þ0.022C̃2h

5 þ0.082C̃2h
6 Þ−0.026

v4

f4
C̃2h
9

�
; ð37Þ

where σ0 ¼ πα2=s2Wm
2
hβW and terms neglected are of Oðβ2hÞ.

Note that, near the threshold region, the longitudinal
cross section is about 2 orders of magnitude larger than the
transverse cross section as a result of total angular
momentum conservation. This will have important impli-
cations when we discuss the effectiveW approximation and
the electroweak parton distribution functions [18,56]. It is
also interesting to see in Eq. (37) that C̃h

0 term has an
anomalously large coefficient, which appears to be a
numerical accident. This feature is already present in the
helicity amplitude in Eq. (36), and gets further enhanced
after the phase space integration in the cross section.

C. High-energy limit

Next we consider the behavior of the amplitudes in the
very-high-energy limit,

s ≫ m2
W;m

2
h; βW; βh → 1; γW; γh → ∞: ð38Þ

In this limit, the longitudinal polarization of the vector
boson scales with its momentum, leading to the sensitive
probe of the high-energy behavior as already discussed in

the Introduction. Two important features become promi-
nent in this limit:

(i) The particles involved in the scattering amplitudes
become effectively massless, and the t- and u-
channels exhibit the collinear singularity which
enhances the scattering in the forward and backward
directions, respectively. This can be seen directly
from the behaviors of the dimensionless propagators
in Eqs. (30), which in the high-energy limit yield

s
s −m2

h

→ 1;
−s=2
t −m2

W
→

1

1 − cos θ
;

−s=2
u −m2

W
→

1

1þ cos θ
: ð39Þ

(ii) The amplitude now exhibits energy-growing behav-
ior because the VVh and VVhh vertices are modi-
fied from the SM expectations and the cancellation
of energy-growing terms in the amplitudes becomes
incomplete. Unitarity will be violated at a certain
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energy and new physics is expected at that particu-
lar scale.

These considerations motivate the following decomposition
of the amplitudes according to their

ffiffiffi
s

p
dependence [23]:

M ¼ −s=2
t −m2

W
At þ

−s=2
u −m2

W
Au þAreg þ

ffiffiffi
s

p
2mW

Að1Þ

þ
� ffiffiffi

s
p
2mW

�
2

Að2Þ þ
� ffiffiffi

s
p
2mW

�
3

Að3Þ þ
� ffiffiffi

s
p
2mW

�
4

Að4Þ:

ð40Þ

The coefficients in the above equation are given in Table II,
where the contribution from each helicity amplitude is made
explicit. We have also collected the leading energy depend-
ence from each operator in the nonlinear Lagrangian in
Eq. (19), including the SM contribution. Notice that Mreg,
which is constant in

ffiffiffi
s

p
, contains contributions from both the

s-channel and the four-point diagrams in Fig. 2. In Table III,
we indicate the leading s behavior for the helicity amplitudes
for different anomalous couplings.
Let us first consider the SM amplitude in the high-energy

limit,

MðSMÞ ¼ g2

2

�
1 −

2

1 − cos θ
−

2

1þ cos θ

�
þ 2λ; ð41Þ

where we have put back the s-channel propagator to write
the expression in a more illuminating form. In the expres-
sions above, only the leading terms in s are kept. In
particular, after regulated by masses, the divergences in the
forward/backward region lead to

Z
d cos θ

1

1 ∓ cos θ
→ ln

s
m2

W
;

Z
d cos θ

�
1

1 ∓ cos θ

�
2

→
s

2m2
W
: ð42Þ

While growing rather slowly, the logarithmic terms are not
significantly larger than constant terms at realistic energies
for future colliders. Therefore, we also keep the constant
terms next to the logarithmic terms in the expressions.
Taking the high-energy limit of the helicity amplitudes
involving the anomalous couplings, after the integration
over the angle, the partonic helicity cross sections are

σ̂0;0 ≈
πα2

4s4Wm
2
W

�
1þ

�
2ðCh

0 − C2h
0 =2 − Ch

5 − C2h
5 Þ þ ð2Ch

6 þ C2h
6 Þ 4m

2
W

s
þ 2C2h

9

s
4m2

W

��
ln

s
m2

W
−
1

2
−

m2
h

4m2
W

�

þ 4ðCh
0 þ Ch

5Þ − Ch
6

�
2 −

m2
h

m2
W

�
4m2

W

s
þ C2h

10

s
4m2

W

�
ln

s
m2

W
−
4

3
− −

m2
h

6m2
W

��
;

σ̂�;0; σ̂0;� ≈
πα2

8s4Ws

�
1 −

m2
h

2m2
W

���
ð1þ 4Ch

0 þ 4Ch
5Þ
�
1 −

m2
h

2m2
W

�
4m2

W

s
− 4Ch

6

��
ln

s
m2

W
− 3

�
þ 2

3
C2h
10

s
4m2

W

�
;

σ̂�;∓ ≈
πα2

8s4Ws

�
1þ 4Ch

0 þ 4Ch
5 þ

2

3
C2h
10

s
4m2

W

�
;

σ̂�;� ≈
πα2m2

W

4s4Ws
2

�
1þ 4

�
Ch
0 − Ch

5 −
�
2 −

3m2
h

4m2
W

�
Ch
6 − C2h

5 þ ð2C2h
6 þ C2h

9 Þ s
4m2

W

��
ln

s
m2

W
þ 2 −

5m2
h

2m2
W

�

þ 4ðCh
0 þ Ch

5Þ þ 4Ch
6

�
2 −

m2
h

m2
W

�
þ 5C2h

10

�
2

3
−

m2
h

3m2
W

�
s

4m2
W

�
: ð43Þ

TABLE II. Helicity amplitudes in the high-energy limit, using the decomposition in Eq. (40).

Helicity (0,0) ð�;�Þ ð�;∓Þ ð�; 0Þ
At −g2ð1þ 2Ch

0 þ 2Ch
5Þ 0 0 0

Au −g2ð1þ 2Ch
0 þ 2Ch

5Þ 0 0 0
Areg 2λþ g2=2 − g2ð2Ch

6 þ C2h
6 Þ g2ð−Ch

0 þ C2h
0 =2þ Ch

5 þ C2h
5 Þ

þð2g2 − 6λÞCh
6

g2ð1
2
þ Ch

0 þ Ch
5Þ 0

Að1Þ 0 0 0 ∓ ffiffiffi
2

p
g2Ch

6 cot θ
Að2Þ g2ð−2Ch

0 þ C2h
0 þ 2Ch

5 þ 2C2h
5 Þ −g2ð2C2h

6 þ C2h
9 þ 1

4
C2h
10sin

2θÞ g2

4
C2h
10 sin

2 θ 0

Að3Þ 0 0 0 � g2

4
ffiffi
2

p C2h
10 sin 2θ

Að4Þ −g2ð2C2h
9 þ 1þcos2 θ

2
C2h
10Þ 0 0 0
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In Fig. 3, we present the SM partonic cross sections as a
function of the partonic center-of-mass energy for the
process WþW− → hh, using the amplitudes given in
Eq. (30) and further detailed in Appendix B with different
polarized initialWþW− states, LL, TL, and TT. Excluding
the anomalous Higgs couplings, the constant behavior of
the LL cross section seen in Fig. 3 is due to the t-channel
singularity as discussed in the previous section. The TL
component falls quickly as ð1=sÞ lnðs=m2

WÞ, and the TT
contribution falls even faster and scales like 1=s, as naively
expected. It is thus important to determine the high-energy
behavior of the cross sections in the hope of identifying the
BSM new physics.

IV. BEYOND VBF AT HIGH ENERGIES

In the previous section, we studied in detail the helicity
amplitudes and partonic cross section for theWþW− → hh.
To apply our results to practical applications, it is impor-
tant to establish the extent to which the commonly
adopted approach, the EWA, is valid when dealing with

higher-dimensional operators. For illustration, we analyze
the double Higgs production at a multi-TeV muon collider
by comparing the EWA method and the full leading order
(LO) matrix element calculations. We will compare the two
methods in detail for the SM case in Sec. IVA, while in
Sec. IV B we will also include the contribution from the
anomalous couplings. It is important to note that, although
we adopt the simplest formalism in the EWA for the sake of
illustration, our results are equally applicable to the general
partonic framework in terms of the EW parton distribution
functions (PDFs) in the SM [14,16–18,57].
Particle splitting is the dominant phenomena in the EW

sector of the SM at very high energies s ≫ m2
W;m

2
h. The

EWA approach is the generalization of the effective photon
approximation to the (nearly massless) EW sector, and the
approximate formulation for the partonic picture of the
high-energy colliding beams. In the high-energy scattering,
we expect that the short-distance physics will be factorized
from the long-distance (collinear or soft) behavior. Similar
to the QCD case, the electroweak scattering total cross
section can be written as the hard-scattering subprocesses
convolved with the parton distribution function of theW, Z
gauge bosons. For the Higgs pair production in μþμ−
collisions, we write

σ½μþμ− → hhνμν̄μ�

¼
Z

1

4m2
h

S

dτ
X
h1;h2

dLh1h2

dτ
σ̂½Wþ

h1
W−

h2
→ hh�ðτSÞ; ð44Þ

with the polarized parton luminosities defined as

dLh1h2

dτ
¼

Z
1

τ
fμþ=Wþ

h1
ðx;Q2Þfμ−=W−

h2

�
τ

x
;Q2

�
dx
x
: ð45Þ

Here S is the center-of-mass energy squared of the muon
pairs and τ ¼ shh=S is the ratio between the invariant mass
of the two Higgs bosons and invariant mass of the two
muons. Much progress has been made recently in devel-
oping the EW PDFs [14,16–18,57]. For simplicity, we
adopt the leading order gauge boson PDFs for unpolarized
leptons, and the transverse (�) and longitudinal (L) vector
bosons are given by [12,14,16]

FIG. 3. Partonic cross sections of WþW− → hh with longi-
tudinal-longitudinal ðLLÞ, transverse-longitudinal ðTLÞ, and
transverse-transverse ðTTÞ polarized initial states, respectively.

TABLE III. The leading energy dependence of the amplitudes in the central region θ ∼ π=2 in the high-energyffiffiffi
s

p
→ ∞ limit. s0 means the amplitude is independent of s, while center dots imply the particular operator does not

contribute to the helicity amplitude.

Helicity SM Ch
0 C2h

0 Ch
5 Ch

6 C2h
5 C2h

6 C2h
9 C2h

10

(0,0) s0 s s s s0 s s0 s2 s2

ð�;�Þ s−1 s0 s0 s0 s0 s0 s s s
ð�; 0Þ 1=

ffiffiffi
s

p
1=

ffiffiffi
s

p � � � 1=
ffiffiffi
s

p ffiffiffi
s

p � � � � � � � � � s3=2

ð�;∓Þ s0 s0 � � � s0 � � � � � � � � � � � � s
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fμ−=Vþðx;Q2Þ ¼ fμþ=V−
ðx;Q2Þ

¼ 1

16π2x
ðC2

Lð1 − xÞ2 þ C2
RÞ ln

Q2

m2
V
; ð46Þ

fμ−=V−
ðx;Q2Þ ¼ fμþ=Vþðx;Q2Þ

¼ 1

16π2x
ðC2

L þ C2
Rð1 − xÞ2Þ ln Q

2

m2
V
; ð47Þ

fμ−=VL
ðx;Q2Þ ¼ fμþ=VL

ðx;Q2Þ ¼ C2
L þ C2

R

8π2
1 − x
x

; ð48Þ

where Q is the factorization scale of PDF and for the W
boson:

CV ¼ −CA ¼ g

2
ffiffiffi
2

p ; CL ¼ gffiffiffi
2

p ; CR ¼ 0; ð49Þ

while for the Z boson:

CV ¼ g
cos θW

�
1

2
T3L −Qsin2θW

�
;

CA ¼ −
g

cos θW

1

2
T3L; ð50Þ

CL ¼ g
cos θW

ðT3L −Qsin2θWÞ;

CR ¼ −
g

cos θW
Qsin2θW: ð51Þ

In contrast to the photons and gluons, we have the
longitudinal splitting function. It comes from the power
correctionm2

W=p
2
T and can be much larger than the Yukawa

coupling contributions of the Goldstone boson to light
fermions. It is not enhanced by the large logarithmic factors
and exhibits an “ultracollinear” behavior [16]. Due to the
larger coupling for the W boson than for the Z boson, we
expect the cross section for the double Higgs production to
be dominated by WþW− fusion.

A. SM case

In this subsection, we will compare the EWA approach
with the MadGraph5 LO calculations [58] in the SM case
[14,18]. The results obtained by the two methods are shown
in Fig. 4, where different WþW− helicity contributions for
the EWA calculations as in Eq. (44) are also presented. We
have shown two cross sections: one without any kinematic
cut and one with a minimal cut of 200 GeV on the
transverse momenta of the Higgs bosons in the Higgs
boson pair rest frame (ph;cm

T > 200 GeV). In the EWA, this
is the partonic c.m. frame. Moreover, we present the EWA
calculation by varying the W PDF factorization scale fromffiffiffi
s

p
=2 to 2

ffiffiffi
s

p
as an estimate of uncertainties due to higher

order corrections. In general, the resummation of the higher
order logarithms may lead to an enhancement of the
production cross section beyond the tree-level calculations,
as already established in QCD calculations.
First we note that the EWA tends to yield a larger cross

section than that from a leading order result by MG5

FIG. 4. Left panel: contributions from different helicity configurations to the SM cross sections of μþμ− → hhνμν̄μ as functions of the
μþμ− collision energy

ffiffiffi
S

p
, using the EWA. The blue, green, and red lines represent longitudinal-longitudinal ðLLÞ, transverse-

transverse ðTTÞ, and longitudinal-transverse ðLTÞ helicities, respectively. The black lines represent the sum of all helicities, and the
purple line is the full LO matrix element calculation by MadGraph5 [58]. No pT cut was applied on the Higgs pair. The bands
correspond to varying the W PDF scale from Q ¼ ffiffiffi

s
p

=2 (dashed lines) to Q ¼ 2
ffiffiffi
s

p
(solid lines). Right panel: same as the left plot but

with a cut on the transverse momentum of the Higgs bosons ph;cm
T > 200 GeV.
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without any kinematical cuts. The main cause is due to the
threshold effects at the order of m2

W=s;m
2
W=t. When we

apply the hardness cut ph;cm
T > 200 GeV to improve its

validity s; jtj; juj ≫ m2
W, the two methods agree better,

especially within the uncertainty bands determined by
varying the PDF factorization scales. This behavior is
expected from the theoretical study of the literature
[12,59,60]. Secondly, as expected from the partonic cross
section formula, the LLmode dominates over all the energy
regime due to the t-channel singularity, although in the real
experiment, we always have a finite range cover of the
rapidity. In fact, we do see from the right panel of Fig. 4 that
after the ph;cm

T cut, the dominance of the LLmode becomes
weaker and at low c.m. energy of the muon pairs, TT
modes start to become dominant. The contribution from the
LT modes quickly becomes irrelevant after the hardness
cut, as can be understood from the Goldstone equivalence
theorem. Finally, as discussed earlier, the threshold behav-
ior in terms of the power of the speed of the Higgs boson
βh ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −m2

h=E
2
h

p
governs the cross section increase over

the c.m. energy.

B. EWA in the presence of anomalous couplings

We now compare the EWA results with the full LO
calculation by switching on the anomalous couplings in
Eq. (19) one by one without and with the kinematic cuts on
the ph;cm

T . In Figs. 5–7, we show the linear dependency Ai
on the anomalous couplings, as defined in

σðμþμ− → hhνν̄Þ ¼ σSMð1þ AiCi þ � � �Þ: ð52Þ

The dashed lines are computed using the full LO matrix
element method by MadGraph5, while the colored
bands are computed using the EWA with the PDF scale
varied from Q ¼ ffiffiffi

s
p

=2 to 2
ffiffiffi
s

p
. We find that for

fCh;2h
0 ; Ch;2h

9 ; Ch;2h
10 g, the two calculations agree very well,

but a large discrepancy shows up when turning on the
couplings Ch;2h

5 and Ch;2h
6 . The reasons behind them are

different, as we explain in the following.
Let us start with the case of Ch;2h

5 :

LC5
¼

�
Ch
5

h
v
þ C2h

5

h2

v2

�
ðWþ

μ DμνW−
ν þ H:c:Þ: ð53Þ

The unique feature here is the presence of Lorentz structure
DμνW−

ν , which for the on-shell W is equivalent to the mass
term m2

WW
−μ. This means that the EWA approach com-

pletely neglects the off-shellness of the gauge bosons. To be
more concrete, we can rewrite the C5 interactions by using
the equation of motion

DνWa
μν ¼ igH† σ

a

2
D
↔

μH þ g
X
f

f̄L
σa

2
γμfL: ð54Þ

The result reads

LC5
¼

�
Ch
5

h
v
þ C2h

5

h2

v2

��
2m2

W

�
1þ h

v

�
2

Wþ
μ W−μ

þ gffiffiffi
2

p WμþX
f

f̄uLγμfdL þ H:c:þOðW3Þ
�
: ð55Þ

FIG. 5. The linear dependence Ai on the anomalous couplings, as defined σðμþμ− → hhνν̄Þ ¼ σSMð1þ AiCi þ � � �Þ. The solids lines
are computed using the EWA, and the dashed lines come from the full matrix element calculation by MadGraph5. The bands
correspond to varying theW PDF scale fromQ ¼ ffiffiffi

s
p

=2 toQ ¼ 2
ffiffiffi
s

p
. Left panel: no pT cut applied on the Higgs pair. Right panel: same

as the left plots but with a cut on the transverse momentum of the Higgs bosons ph;cm
T > 200 GeV.
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FIG. 6. The linear coefficients Ai for the anomalous couplings Ch;2h
5 and Ch;2h

6 without pT cuts. See the caption of Fig. 5 for a detailed
description.

FIG. 7. The linear coefficients Ai for the anomalous couplings Ch;2h
5 and Ch;2h

6 with the cut ph;cm
T > 200 GeV. See the caption of Fig. 5

for a detailed description.

FIG. 8. Representative Feynman diagrams induced by Ch
5 and C2h

5 for the scattering μþμ− → hhνμν̄μ.
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This is in agreement with the SMEFT operator relation
[61,62]

OW ¼ g2
�
−
3

2
OH þ 2O6 þ

1

2
ðOyu þOyd þOyeÞ

þ 1

4

X
f¼q;l

Oð3Þf
L

�
ð56Þ

where the contact interactions hðh2ÞWff̄ come from the

operators Oð3Þf
L

Oð3Þq
L ¼ iðH†σaD

↔

μHÞQ̄Lσ
aγμQL;

Oð3Þl
L ¼ iðH†σaD

↔

μHÞL̄Lσ
aγμLL: ð57Þ

FIG. 9. The linear dependence Ah
5 on the anomalous couplings Ch

5 . The solid red lines are computed using EWA, the solid green lines
are the sum of the EWA calculation and the contribution from the Higgs-fermion-gauge boson contact interactions, and the dashed lines
come from the full matrix element calculation by MadGraph5. The bands correspond to varying the W PDF scale from Q ¼ ffiffiffî

s
p

=2 to
Q ¼ 2

ffiffiffî
s

p
. Left panel: no pT cut applied on the Higgs pair. Right panel: same as the left plots but with cut on the transverse momentum

of the Higgs bosons ph;cm
T > 200 GeV.

FIG. 10. The linear dependence A2h
5 on the anomalous couplings C2h

5 . The solid red lines are computed using the EWA, the solid green
lines are the sum of the EWA calculation and the contribution from the Higgs-fermion-gauge boson contact interactions, and the dashed
lines come from the full matrix element calculation by MadGraph5. The bands correspond to varying theW PDF scale fromQ ¼ ffiffiffî

s
p

=2
to Q ¼ 2

ffiffiffî
s

p
. Left panel: no pT cut applied on the Higgs pair. Right panel: same as the left plots but with a cut on the transverse

momentum of the Higgs bosons ph;cm
T > 200 GeV.
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Using the equation of motion, the Feynman diagrams
that are relevant for Ch

5 can be rearranged accordingly, as
shown in Fig. 8. Figure 8(a) is induced by the first term in
Eq. (55), which can be captured by the EWA. However,
Figs. 8(b) and 8(c), induced by the Higgs-fermion-gauge
bosons contact interaction in Eq. (55), have very different
pole structures in the scattering amplitudes, and therefore,
cannot be captured by VBF and the EWA at all. In Figs. 9
and 10, we show the impact of such a contact interaction to
Ch
5 and C2h

5 when using the EWA. Once the contribution
from the contact interactions is added to the EWA results, a
much better agreement is achieved for energy regimes away
from the threshold. One also notices that the first term has
the same structure as C0 and to be more explicit, by

neglecting the second contact term, the coupling Ch
5

corresponds to the following identification:

Ch
0 ¼ Ch

5; C2h
0 ¼ 4Ch

5; ð58Þ

and the coupling C2h
5 corresponds to

C2h
0 ¼ 2C2h

5 : ð59Þ

This further explains the behaviors of the C0, C5 combi-
nations in Table II.
Next we consider the case of C6. We expect that the

discrepancy comes from terms neglected in the EWA.
To see this, it is worth recalling the generalized EWA

FIG. 11. μþμ− → hhνμν̄μ: cos θh;cm distributions (top panels) and mhh distributions (bottom panels) for the SM and BSM linear
interference contribution at the 3 TeV muon collider. The SM distributions are shown as black lines. All the lines are normalized to the
SM total cross section. The dashed lines indicate negative values for destructive interference. (Ch

0 ; C
2h
0 ; Ch

5; C
h
6; C

2h
5 ; C2h

6 ; C2h
9 ; C2h

10Þ ¼
ð0.1; 0.1; 0.05; 0.5; 0.05; 0.3; 0.01; 0.01Þ.
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(gEWA) formula introduced in Ref. [60], which states
that the full amplitude of the μþμ− → hhνμν̄μ can be
approximately written as the sum of three on-shell
subamplitudes:

AgEWA ¼ 4C1C2

V2
1V

2
2

X
h1h2

p̃−h1⊥ q̃h2⊥ g−h1ðx1Þgh2ðx2Þ

×Aon-shellðWþ
h1
ðk⃗1ÞW−

h2
ðk⃗2Þ → hhÞ; ð60Þ

where k⃗1;2 are the three momenta of the W�:

k⃗1 ¼ ð−p⃗⊥; x1EÞ; k⃗2 ¼ ð−q⃗⊥;−x2EÞ; ð61Þ

where p⃗⊥ and q⃗⊥ are the transverse momenta of the
outgoing neutrinos with respect to the incoming beam.
The splitting g-functions are given in Eq. (46) of Ref. [60],
which are not relevant in the following discussion. We have
also abbreviated the helicity-dependent transverse momen-
tum dependence factors as

p̃þ1⊥ ¼ p̃⊥ ¼ p⊥e−iϕ1 ; p̃−1⊥ ¼ p̃�⊥ ¼ p⊥eþiϕ1 ;

p̃0⊥ ¼ mW; ð62Þ

and similarly for q̃h2⊥ . Here ϕ1;ϕ2 are the azimuthal angles
of the outgoing ν̄μ; νμ respectively. The inversion of the
helicities in the splitting functions for the Wþ is due to CP
invariance. Note that the EWA in Eq. (44) is obtained by
setting p⃗⊥; q⃗⊥ to zero in the three-momenta of the W
bosons and integrating over the azimuthal angles of the
outgoing neutrinos.
Corrections to the EWA can arise when expanding the

on-shell amplitudes Ah1h2 in terms of the transverse
momenta:

Ah1h2ðk⃗1; k⃗2Þ ∼Að00;00Þ
h1h2

þAð10;00Þ
h1h2

p̃⊥
E

þAð01;00Þ
h1h2

p̃�⊥
E

þAð00;10Þ
h1h2

q̃⊥
E

þAð00;01Þ
h1h2

q̃�⊥
E

þ � � � : ð63Þ

After integrating out the azimuthal angles of the outgoing
neutrinos, subleading terms in the above equation can lead
to interference between the longitudinal polarization and
the transverse ones:

Z
ϕ
jAgEWAj2 ∼ p2⊥q2⊥jAð00;00Þ

TT j2 þm4
W jAð00;00Þ

LL j2

þm2
Wp

2⊥jAð00;00Þ
TL j2

þm2
Wp

2⊥
mW

E
Að01;00Þ

LL Að00;00Þ
TL þ � � � ð64Þ

where p⊥; q⊥ are the transverse momenta of the outgoing
neutrinos. The last term arises from the interference

between the leading term of ATL and the subleading term
ofALL. The EWA only keeps the first three terms and treats
the last term as higher order corrections. The last term is
usually suppressed by factors of mW=E compared with the
leading terms, as the helicity amplitudes in the SM at tree
level for two-to-two scattering are at most constant in the
high-energy limit. However, this is not true anymore in the
presence of anomalous couplings, where energy-growing
behaviors are expected. As can be seen from Table III, in
the high-energy limit and in the central region, which is
relevant for a large ph

T cut, the interference between
SM and the anomalous coupling contribution is con-
stant over energy in the same helicity components
ð0; 0Þ; ð�;�Þ; ð�; 0Þ for Ch

6 and ð0; 0Þ; ð�;�Þ for C2h
6 .

In contrast, the interference between the SM (0,0) helicity
amplitude and Ch

6ð�; 0Þ is growing with energy as
ffiffiffi
s

p
,

while for the SM (0,0) helicity amplitude and C2h
6 ð�;�Þ

are growing with energy as s. But for Ch
6ðC2h

6 Þ, the final
(second last) term is in the same order as the leading
terms. Similar observation has been made for the anoma-
lous triple gauge couplings [63]. For other anomalous
couplings, similar issues do not appear because the leading
energy-growing behaviors exist in the LL component.
More insights could be obtained if one could quantify
the contribution of these subleading corrections to the
discrepancy between EWA and full fixed-order calcula-
tions. We leave this for future studies.

V. KINEMATIC FEATURES AT A HIGH-ENERGY
MUON COLLIDER

In this section, we present kinematic distributions for
double Higgs production at the 3 and 10 TeV muon
colliders, both with and without the presence of anomalous

FIG. 12. μþμ− → hhνμν̄μ: demonstration of the cos θh;cm dis-
tribution for C2h

5 .
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couplings. A detailed collider study on the expected
sensitivity on constraining the anomalous couplings is
beyond the scope of the present work.
In Fig. 11, we plot the distributions of cos θh;cm, where

θh;cm is the scattering angle in the partonic c.m. frame of the
two Higgs bosons, and mhh, the invariant mass of the two
Higgs bosons, at the 3 TeV muon collider without any
kinematic cuts, normalized to the SM cross section. The
simulation is performed using MadGraph5 at the LO. To
highlight the difference between the case of SM and that of
anomalous couplings, we are only showing leading con-
tributions from the interference terms dσi which linearly
depend on the anomalous couplings,

dσBSM ≡ dσSM þ dσiðCiÞ þOðC2
i ; CiCjÞ: ð65Þ

Dashed lines indicate negative values for destructive
interference. The following values for the anomalous
couplings are chosen as benchmark points:

ðCh
0; C

2h
0 ; Ch

5; C
h
6; C

2h
5 ; C2h

6 ; C2h
9 ; C2h

10Þ
¼ ð0.1; 0.1; 0.05; 0.5; 0.05; 0.3; 0.01; 0.01Þ: ð66Þ

We show the results for C0;9;10 in the left panels, and C5;6 in
the right panels. We see clearly from the distributions of
cos θh;cm that the presence of the anomalous couplings
tends to make two Higgs bosons more central. As can be
seen from Table II, this is due to the fact that the energy-
growing pieces of the interference terms have at most one
power of t-=u- channel singularity [(0,0) helicity configu-
ration], while for the SM cross section, t-=u- channel

FIG. 13. μþμ− → hhνμν̄μ: cos θh;cm distributions (top panels) and mhh distributions (bottom panels) for the SM and BSM linear
interference contribution at a 10 TeV muon collider. The SM distributions are shown as black lines. All the lines are normalized to the
SM total cross section. The dashed lines indicate negative values for destructive interference. (Ch

0 ; C
2h
0 ; Ch

5; C
h
6; C

2h
5 ; C2h

6 ; C2h
9 ; C2h

10Þ ¼
ð0.1; 0.1; 0.05; 0.5; 0.05; 0.3; 0.01; 0.01Þ.
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singularity is at the second power. The only exception is
C2h
5 , where the distribution is suppressed in the central

region compare with SM. As demonstrated in Fig. 12, this
is due to the cancellation between two contributions: the
EWA, which is obtained by convolving theW PDF with the
helicity amplitudes calculated in Sec. III A, and the contact
term contribution, which is obtained by implementing the
μνμWhh vertex in Eq. (55).
Determining the kinematic distributions for the hh

production is of fundamental importance in exploring
the underlying dynamics within or beyond the SM.
From the mhh distributions in Fig. 11, we examine the
energy-growing behavior of various anomalous couplings
at the linear order of the interference with the SM
contributions,

dσi=dmhh

dσSM=dmhh
∼

8>>>>><
>>>>>:

m2
hh lnmhh; C2h

9 ; C2h
10;

lnmhh; Ch;2h
0 ;

ðlnmhhÞ2; Ch;2h
5 ;

1=m2
hh lnmhh; Ch;2h

6 :

ð67Þ

As discussed in the previous section, the scaling behaviors
for Ch;2h

0 and C2h
9;10 can be understood within the EWA,

where the di-Higgs invariant mass mhh is given by the
partonic center-of-mass energy

ffiffiffi
s

p
:

dσi=dmhh

dσSM=dmhh
∼
σ̂0;0BSMð

ffiffiffi
s

p ¼ mhhÞ
σ̂0;0SMð

ffiffiffi
s

p ¼ mhhÞ
; ð68Þ

and the partonic cross section behaviors can be obtained
from Eq. (43). Note that the energy

ffiffiffi
s

p
dependence in the

EW PDFs cancels because both the SM contribution and
the BSM contribution induced by Ch;2h

0 and C2h
9;10 are

dominated by the scattering of the longitudinally polarized
W bosons. The enhancement at higher

ffiffiffi
s

p ¼ mhh is due to
the nature of higher-dimensional operators, and the loga-
rithmic factor comes from the t- and u-channel singularity
in the interference terms, as discussed in Sec. III C.
Although the EWA provides an intuitive understanding
of the scaling behaviors for Ch;2h

0 and C2h
9;10, it does not

necessarily capture the correct scaling behaviors for Ch;2h
5

and Ch;2h
6 , which have distinct energy dependence, as

pointed out in Sec. IV B and given in Eq. (67).
Therefore, measuring the energy spectrum of the mhh
distribution would shed light on the underlying physics
for different operators. Similar behaviors are also observed
at higher colliding c.m. energies. We illustrate those in
Fig. 13 for a 10 TeV muon collider, where we have also
plotted the distributions of cos θh;cm at 10 TeV.

VI. DISCUSSIONS AND CONCLUSION

One of the unique roles of the SMHiggs boson lies in the
fact that its couplings to other SM particles unitarize the
energy-growing behaviors in high-energy scatterings
involving gauge bosons and the Higgs boson. Studying
these processes could potentially reveal the microscopic
nature of the Higgs boson, whether it belongs to an
electroweak doublet, and whether it is an elementary scalar
or a composite particle à la a pseudo-Nambu-Goldstone
boson. Among the relevant processes, VV → hh offers an
additional opportunity to measure VVhh coupling and
trilinear Higgs coupling, both of which have not been
verified experimentally and have posed significant chal-
lenges for future experiments. Moreover, when considering
possible modifications to the SM Higgs couplings, it is
important to keep open the possibility that some new
coupling structures beyond those in the SM may show
up and have a sizable presence, due to either accidentally
large contributions from higher-dimensional operators or
the nonlinear structure of the EFT.
In this paper, we studied in detail the very-high-energy

scattering of electroweak particles, which is dominated by
vector boson fusion and directly probes the origin of
electroweak symmetry breaking. Using the production of
the Higgs pair at a multi-TeV muon collider as the prime
example, μþμ− → hhνμν̄μ, we critically examine the
validity of the EWA/EW PDF approach versus a full
fixed-order calculation in the presence of the anomalous
couplings defined in Eq. (19). An important feature of our
study is to treat the single Higgs anomalous couplings VVh
as independent from the double Higgs anomalous cou-
plings VVhh, and also include new Lorentz structures up to
two derivatives on the fields.
To facilitate the comparison between the EWA and

the full fixed-order calculations, we computed in detail the
helicity amplitudes of the subprocess WþW− → hh in the
presence of the anomalous WWh and WWhh couplings,
paying particular attention to the threshold behaviors and in
the high-energy limits. We found agreements between the
two formulisms in the couplings Ch;2h

0 and C2h
9;10, where

there is no derivative acting on the electroweak gauge
bosons and the Lorentz structures do not deviate qualita-
tively from those in the SM. However, when there are
derivatives acting on the gauge bosons, we found signifi-
cant discrepancies between EWA/EW PDF and the full
fixed-order calculations in the anomalous couplings Ch;2h

5

and Ch;2h
6 . In the former case we identified the reason

behind the discrepancies as a missing contact term in
Eq. (55), which is not captured by the EWA. In the latter
case, we observe that the difference arises from “sublead-
ing” interference terms between different helicity configu-
rations as in Eq. (64). Our findings suggest, in order to
study effects of anomalous Higgs couplings in very-
high-energy electroweak scatterings, the employment of
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electroweak PDFs should be dealt with with care to account
for the potential discrepancies discovered in the present
study. It boils down to two essential points:

(i) The EWA/EW PDF approach relies on the collinear
factorization of the high-energy scattering in the SM,
which may miss important contributions due to
certain new four-point interactions Ch;2h

5 .
(ii) The EWA/EW PDF approach performs an incoher-

ent sum of different initial state helicity contribu-
tions, which may miss certain sizable interference
effects from off-shell noncollinear W’s Ch;2h

6 .
We hope to come up with concrete implementations to
capture the characteristic features of the new physics in a
future work.
We also presented the distributions of kinematic varia-

bles, the cosine of the scattering angle of the Higgs boson in
the partonic center-of-mass frame cos θh;cm and the invari-
ant mass of the di-Higgs systemmhh. We included effects of
anomalous Higgs couplings in the LO simulations of the
full process μþμ− → hhνν̄. We found that, with the
exception of C2h

5 , anomalous couplings tend to make the
distribution of the scattering angle more central. In addi-
tion, there were energy-growing behaviors observed in
the inclusive cross section for the anomalous couplings
C2h
9;10. We reiterate the importance to study the detailed

kinematical distributions in probing the underlying
BSM physics. These will provide insights into future
studies on the prospects for measuring these anomalous

couplings at a very-high-energy muon collider and hadron
collider.
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APPENDIX A: FEYNMAN RULES FOR THE
HIGGS-W COUPLINGS

The relevant Feynman rules for the hhh, WWh, and
WWhh vertices are given below,

ðA1Þ

ðA2Þ

ðA3Þ
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APPENDIX B: REDUCED HELICITY AMPLITUDES FOR W +W − → hh

In this appendix, we collect the full formulas for the reduced helicity amplitudes defined in Eq. (30) for the subprocess
WþW− → hh:

As
0;0 ¼

12λ

g2
½ð1þ β2WÞð1þ Ch

0 þ Ch
5Þ − Ch

6γ
−2
W �; ðB1Þ

At
0;0 ¼ ½−2ð1þ β2WÞ − 2γ2WðβW − βh cos θÞ2�ð1þ 2Ch

0Þ

þ 2Ch
5

�
−ð1þ β2WÞ

m2
h

m2
W
þ 2βWβh cos θ þ 2γ2Wðβ2W − βh cos θÞðβ2W þ βh cos θÞ

�
− 4C6

hðβW − βh cos θÞ; ðB2Þ

Au
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