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The B - KKK~ decay amplitude is derived within a quasi-two-body QCD factorization framework
in terms of kaon form factors and B° to two-kaon-transition functions. The final state kaon-kaon
interactions in the S, P, and D waves are taken into account. The unitarity constraints are satisfied for the
two kaons in scalar states. It is shown that with few terms of the full decay amplitude one may reach a fair
agreement with the total branching fraction and Dalitz-plot projections published in 2010 by the Belle
Collaboration and in 2012 by the BABAR Collaboration. With 13 free parameters, our model fits
the corresponding 422 data with a y* of 583.6 which leads to a y? per degree of freedom equal to 1.43. The
dominant branching fraction arises from the fo(K*K~)K$ mode with 83.0% of the total branching. The
next important mode is dominated by d)Kg plus small @K g and pOKg modes with 18.3% of the total. Then
follows the af K¥ mode with 6.2%. Adding the other smaller modes, the total percentage sum is 107.7%
which indicates a small interference contribution. In most regions of the Dalitz plot, our model gives rather
small CP asymmetry, but in some parts its values can be large and positive or negative. Its predicted total
value is equal to —0.11%. The calculated time dependent CP-asymmetry parameters agree, within errors,
with those obtained by the BABAR analysis. Our model amplitude can be the basis for a parametrization in

experimental Dalitz plot analyses of LHCb and Belle II Collaborations.

DOI: 10.1103/PhysRevD.110.013002

I. INTRODUCTION

The charmless hadronic time dependent B — KKK~
decays have been studied a decade ago by the Belle [1] and
BABAR [2] Collaborations with the aim of extracting CP
violation parameters. These decays, currently analyzed by
the LHCb Collaboration [3], were used, together with other
charmless three-body decays of B mesons, to extract,
through Dalitz-plot amplitude analyses, the Cabibbo-
Kobayashi-Maskawa (CKM) phase y [4]. In the experi-
mental analyses the final state meson interactions are often
described by relativistic Breit-Wigner functions (isobar
model) which do not satisfy the unitarity condition." The
scalar-isovector a, resonances, present in the K°K* final

“Retired.

'"However, the S-wave f(980)-resonance contribution is fitted
though the K-matrix formalism where the two-body unitarity is
preserved.
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states, are not introduced in the Belle and BABAR analyses.
This is also the case for the @ (mainly K™K~ channel)
and p (mainly K°K* channel) resonances. Belle II
Collaboration [5] has recently measured the variation in
time of the rate asymmetries in B — gng decays. This
process, part of the B — KgK TK~, could reveal some new
physicsinthe b — ggs transitions. In these charmless three-
body decays, the contribution of diagrams with virtual
particle loops is important and consequently their study
could exhibit some physics beyond the Standard Model.

In the method, used by Ref. [4], for extracting y from
B — Kzr and B —» KKK reactions, the amplitudes are
written as combinations of momentum dependent tree and
penguin diagrams with some of them related via the assumed
SU@) flavor symmetry. There, the model amplitudes,
obtained in the different BABAR analyses for every studied
decay, are taken as experimental inputs. Among the six
possible solutions found for y in Ref. [4], one is compatible
with the world-average value [6] of (65.9f§’"§’ )°. The effect of
SU(3) symmetry breaking averaged over the Dalitz plot is
calculated to be small.

In Ref. [7] charmless three-body decays of B mesons
have been thoroughly studied within a quasi-two-body

Published by the American Physical Society
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model based on factorization approach. There, the descrip-
tion of the nonresonant (NR) background, consisting of a
pointlike weak transition and pole diagrams, is achieved
using heavy-meson chiral-perturbation theory. The momen-
tum dependence of the corresponding amplitudes is
assumed to be in the exponential form to insure that the
predicted decay rates, in general unexpectedly large, agree
reasonably well with experimental results. The final state
resonance signals are described in terms of typical relativ-
istic Breit-Wigner expressions. For the B — K$K*K~
decay, the branching ratios and the K™K~ mass spectra
are compared with the available BABAR analysis in their
Table I1I and Figs. 2(a) and 2(b), respectively. The quantum
chromodynamic (QCD) factorized expression for the B® —
KYK " K~ decay amplitude given by their Eq. (A4) will be
the starting point of our work.

Taking into account of the Belle [ 1,8] and BABAR [2] data,
the first two authors of Ref. [7] have revisited their 2007
model in Ref. [9] to compare their results with experimental
branching fractions and direct CP-violation in charmless
three-body decays of B mesons. However, their B® —
KYK " K~ branching ratio compared to that of BABAR is
too small. These Belle [8] and BABAR branching values
have been recently confirmed by the updated branching
fraction measurements of the LHCb Collaboration [10].

Let us describe succinctly some recent studies related to
charmless three-body B decays. A substantial extension of
the approach of Refs. [7,9] has been analyzed in Ref. [11].
A perturbative QCD approach to describe the resonant
contributions to the B decays into three kaons has been
applied in Ref. [12]. As in our case their B — K°K+K~
branching ratio is first dominated by the f,(980) and then
by the ¢(1020) contributions. In their Fig. 3 they show the

different f, and fg ) resonance contributions to the K* K~
invariant mass distributions but the full spectrum is not
calculated and not compared to the existing data. Quasi-
two-body charmless B decays have been recently exten-
sively analyzed in Ref. [13] under the factorization-assisted
topological-amplitude approach.

In a quasi-two-body QCD factorization (QCDF) frame-
work, the B* — K*K~K* decays have been studied in
Ref. [14]. The kaon-scalar and vector-form factors
describe the strong KTK~ final state interactions. A
unitary model, which incorporates the scalar f resonan-
ces, is built for the scalar strange and nonstrange kaon
form factors. The vector form factors originate from an
existing study on electromagnetic kaon form factors.
The four parameter fit of this model leads to an overall
reasonable agreement with the available Belle and BABAR
data as can be seen in the fit to some K'K~ mass
distributions shown in their Figs. 2 and 3. In the K" K~-
mass spectrum dominated by the S wave, a large CP
asymmetry has been predicted. These predictions have
been confirmed by BABAR [2] and LHCb [15]. With the

addition of the K*K~ — D wave, f,(1270) resonance,
an extension of the just described model [14] is
developed by two of the authors in Ref. [16]. There,
the K™K~ invariant mass squared dependence of the CP
asymmetry is reproduced in a satisfactory way in the
region below 1.9 (GeV)2

In view of further amplitude analyses, we derive here,
also within a quasi-two-body QCDF framework, the B® —
K(S)K TK~ decay amplitude in terms of kaon form factors
and B® to two-kaon-transition functions. These include the
resonant and NR parts of the two kaon interactions. It has
been shown, in quantum field theory and using dispersion
relations [17], that strong-interaction meson-meson form
factors can be calculated exactly provided one knows the
meson-meson scattering amplitudes at all energies. The
charmless three-body B-meson decays data can also be
useful for a better knowledge of the meson-meson strong
interactions. In the kaon-kaon final state interactions we
take into account the S, P, and D waves. Unitarity is
satisfied when the two kaons are in a scalar state. Here, the
final states are the same as in the D° — K9K™K~ process
which has been recently studied in Ref. [18].

A detailed QCDF calculation of the full amplitude,
following the derivation of the B* — ztz~z* decay
amplitudes performed in Ref. [19], can be done. This
amplitude includes, besides important parts, Okubo-Zweig-
lizuka (OZI) [20] suppressed terms where an explicit or an
implicit dd quark pair appears. In the present work,
neglecting the OZI terms, we show that the dominant
contributions of our amplitude can reproduce, in a reason-
able way, the total branching fraction and the Belle [1] and
BABAR [2] Dalitz-plot projections. Our model can then be
used to build a parametrization which, in a Dalitz-plot
analysis, could be an alternative to the commonly applied
sum of Breit-Wigner type amplitudes [21].

In Sec. II we describe how, starting from the effective
weak decay Hamiltonian, the decay amplitude can be
obtained within a quasi-two-body QCDF formulation.
We argue for the choice of the probably important parts
which we illustrate by tree and penguin quark Feynman
diagrams. Section III gives the explicit expressions of these
dominant terms. Results and discussion of our simulta-
neous fit of Belle [1] and BABAR [2] Collaboration data are
presented in Sec. IV. A summary of our model, together
with some concluding remarks can be found in Sec. V. A
reminder on formulas for B°-B° mixing and for the time-
dependent asymmetry Acp() is given in Appendix.

II. THE B - KgK *K~ DECAY AMPLITUDE
IN QCDF FRAMEWORK

The amplitude for this charmless-three-body hadronic
B meson decay is obtained from the effective weak
Hamiltonian [22,23]
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TABLE L

Two-body resonances R} contributing, in the B® — KKK~ decays, to the isospin 1[K°K*]{7) ), and

to the isospin O and 1 [K“LK‘]L’?‘:;‘L') final state meson-meson strong interactions. Our model amplitude does not

include the contribution of the f(1525). The resonances a,(980)
only to the OZI suppressed parts which we will neglect.

0. ay(1450)°, £,(1270) and a,(1320)° contribute

Final state L=S L=P L=D

[KOK*]I=! ao(980)*, ay(1450)™ p(770)F, p(1450)*, p(1700)* a,(1320)"
[KT K]0 f0(980), fo(1370), f,(1500) ®(782), w(1420), w(1650), ¢(1020), ¢(1680) f>(1270)
[KtK~]it ay(980)°, ay(1450)° p(770)°, p(1450)°, p(1700)° a,(1320)°

10
eﬂ _7- Zi |:C10f+c20§+ZC10l
i=3

p=itc
+ C7,07, + ngO&J +H.c., (1)

where
=V, (2)
The V,, (p' = b, s) are the CKM quark-mixing matrix

elements. For the Fermi coupling constant G we take the
value 1.166379 x 1075 GeV~2 [6]. We use the Wolfenstein
parameters given in Eq. (12.26) of Ref. [24] which lead to
A = (0.2659 — 10.7738) x 1073 and A = 0.04105 +
i0.6872 x 107%. The C;(u) are the Wilson coefficients

for the four-quark operators 05’7 )(/4) at a renormalization
scale . The O, terms are left-handed current-current
operators arising from W-boson exchange. The O;_;_i
terms are QCD and electroweak penguin operators involv-
ing a W boson loop with a u or ¢ quark while O, and
Og, are the electromagnetic and chromomagnetic dipole
operators [23].

The amplitude depends on the Mandelstam invariants

se=mi=(po+ps)®  so=mi=(pi+p-)* (3)
where pg, p. and p_ are the four-momenta of the K‘S), K*
and K~ mesons, respectively. Energy-momentum conser-
vation implies

S0+ 54+ 5 =my +mp, +2my,
(4)

where pgo is the BY four-momentum and mpo, mgo and my
denote the B°, the neutral and charged kaon masses,
respectively. In the following we derive, for the B® —
K°K* K~ decay, the contributions of the quasi two-body
processes,

pPpo=pot+pL+p_,

B - [K*K™],K°, and B°— [R°K*],K*. (5)

The final interacting-kaon pairs, [K* K~]; and [K°K*]; can
bein a scalar, L = S, vector, L = P or tensor, L = D states.
The isospin I of the [KTK~], pair can be either O or 1,
while that of the [K°K*]; pair is 1. Then, the possible final
quasi-two-body MM, pairs can be:

M~ (po + p+) = [K°(po) K* (p)IL "

and

M, (po) = K°(po).
M (o 4+ po) = K (p K~ (p)l7 . (7)

The different isospin 1, [K°K*]{7) . and isospin 0 and 1,
[K*K~J§pp. resonances R} contributing to the meson-
meson final state strong interactions are listed” in Table 1.

Applying the quasi-two-body QCDF [23] formalism for
the B® - KYK K~ decay and neglecting small CP viola-
tion effects in Kg decays by using

1
KS) ~—>

ﬁ(lK‘)) +1K%)), (8)

the matrix elements of the effective weak Hamiltonian (1)
can be written as (see Egs. (2.1) and (A1) of Ref. [7])

_ 1 _
A(SO,S_,S+)57§<KO(P0)K (p+)K=(p )|Heff|B (Pw))
_ % (9 (ROK+K-|T,|BY)
+28) (ROK K |T.|B)}. 9)
with

2Beyond this table, the isospin 1 of the K°K™ states will not be
specified unless necessary.
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(K°K*K~|T,|B°) = (K°K" K~ | {al5pu(ﬁb)V—A ® (Su)y_p +a28,,(5b)y_p ® (itu)y_n +az(5b)y_, ® Z(EICI)V—A
q

+a4z

Far(5)ya ® Y3, (@0)ya 203 @)y
q q

_ 30
Faw (@) r ® 3¢50 B)
q

where p = u or ¢ and aﬁ.p ) are effective QCDF coefficients.
For simplicity, in Eq. (10) we have not specified their

argument (M;M,). These a( )(M M,) coefficients® are
asymmetric in M| <> M, w1th M, relevant for short
distance dynamics as the final meson M, denotes the
meson which does not include the spectator d quark
of the B°. This implies that the meson M, is either the
K itself or contains it [see Eqgs. (6) and (7)]. In Eq. (10),
(70192)v=a = G7(1 F 15)q2 (G192)se4ps =01 (1 £75)q2
and e, denotes the electric charge of the quark ¢ in units
of the elementary charge e. The sum on the index g runs
over u, d, s and the summation over the color degree of
freedom has been performed. The notations sc and ps stand
for scalar and pseudoscalar, respectively. The symbol ®
indicates that the different components of the matrix
elements are to be calculated in the factorized form. The
[KTK~], states are assumed to originate from a uii or s§ or
dd pair and the [K°K*], states from a du one.

The af quantities, at next-to-leading order (NLO) in the
strong coupling constant a,, can be written in terms of the
Wilson coefficients as [25]

1] C;
a” (M My) = (Cj + ji1>Nj(M2)

N¢
Cjil CFaY 471'2
V(M —H.(M\M
Ne 4zn i( 2)+NC (M M)
+ P (M), (11)
|
MY = (ROK*|(ib)y_s

|B%) - (K™|(Su)y_al0)[a16,, + af + afy =

V A® Sq) —A+a5<Sb V- A®Z qq V+A 2a62 qb sc— ps®(§q)sc+ps

_ _ 3
®§eq (sq>sc+ps —|—(19 (Sb)V—A ® Zzeq(QQ) V-A
q

(10)

where the upper (lower) signs apply when the index j
is odd (even), N- =3 is the number of colors and
Cr = (N%—1)/2N¢. Note that in the leading-order
(LO) contribution N;(M,) =0 for M, = [K"K~]p and
j =6, 8, otherwise N;(M,)=1. The NLO quantities
V;(M,) come from one-loop vertex corrections,
H;(MM,) from hard spectator scattering interactions
and P?(M,) from penguin contractions. For j = 1, 2, 3,

5,7, and 9, the superscript p in a( )(M M) is to be omitted
since the penguin corrections are equal to zero in these
cases. The NLO hard scattering corrections require the
introduction of four phenomenological parameters to regu-
larize end point divergences related to asymptotic wave
functions [25].

From Egs. (9) and (10) one can write the full factorized
B° - KYK* K~ amplitude, A(sq, s_, s ), as (see” Eq. (A4)
of Ref. [7])

Ay HY (12)

with

(ag + ag)ry]

_ _ _ 1
MY = (KK (@), ) - R (5y0) (o - S,

Hg]’) —

(K°|(5b)y_a|B®) - (K" K~[(itu)y_a|0) (@28, + a3 + as + a7 + ag)

*In the following, as done in Eq. (10), these arguments MM, will not be specified, unless necessary.
*Following Ref. [7], we keep terms with intermediate d and d quarks in the factorized amplitude.
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H = (RO (5b)y_4s|B°) - (K*K~|(dd)y_,|0) {% +as — % (a7 + ag)]

_ _ 1
HY) = (RO (50 B) (K KI(55)y-al0) [0+ + a5 =5 a + s + )|

H = (RO|(5D),.|B) (K K™|(35) |0} (~2af + af)

HY = (K*K~|(db)

sc—ps

|BO)(K|(5d) .4 s |0) (=205 + ag)

] ] _ _ 1
H) = (ROK*K7|(3d)y_4[0) - (01(db) 4 |B°) < ) 5”%)

MY = (ROK*K~|(5d) ,,|0)(0|(db) ,,|B°) (=24 + a)).

The chiral factor rX is given by r& =2m% /[(m), + m,)
(m, + my)], my, my, m, and m; being the b-, d-, u- and
s-quark masses, respectively and p = u or c. Because the
isospin of the s quark is 0, the §s pair in Hgm and 'Héﬂ )
generates only isospin O states.

Inspection of the HE” Vin Egs. (13) tells us that some of
them are expected to make a fairly small contribution to the

B® — K°k* K~ amplitude. In H\” the formation of the final
state KK~ goes through an explicit dd pair. Inthe i = 2 and
i = 7to09 terms, this creation results from an implicit dd pair
due to the presence of a d and d quarks in their matrix
elements. These terms lead naturally to K°K° production
and they require a supplementary final state interaction to
produce a KK~ pair. At the microscopic level a dd quark
annihilation followed by s§ and iz pair creation can only be
depicted by nonplanar quark diagrams which give small
contributions to the decay amplitude. Furthermore, as can be
seen in Table 1 of Ref. [14], the NLO effective Wilson

coefficients a'”)

; for j > 2 are small and those for j > 6
smaller. For j > 1 theirreal partis only few percent of that of

ay. Accordingly, we do not calculate the parts corresponding

BO

S
S

(a)

(13)

to these OZI suppressed matrix elements, ng ), Hip ), ng )
and Hé{’g) (B® annihilation terms).

One expects large contributions to the amplitude from
6)) ng ), the Wilson coefficient a; being the dominant one

(see Table 1 of Ref. [14]) and from (ii) ng 5).6 because these
terms are proportional to the kaon form factors. The quark
processes involved in these terms can be represented by the
Feynman diagrams depicted in Figs. 1-3. The wavy lines
stand for W* exchanges, the spring-like lines, if any, for a
gluon and the straight lines with an arrow pointing to the
right (left) for a quark (antiquark). The short distance a;

contribution of H(lp ) corresponds to the color favored tree
diagram shown in Fig. 1(a). The color suppressed a, term

of ng ) arises from the tree diagram drawn in Fig. 1(b). The

a}p ), J > 2 contributions of ng ), Hg” ) and Hép ) can be
represented by the penguin diagrams of Fig. 2 and that of
H(lp ) by the penguin diagram of Fig. 3. The factorized
forms given in Egs. (13) can be understood if, in the
diagrams of Figs. 1-3 one replaces the very heavy W meson
exchange by a vacuum state creation.

d
(b)

FIG. 1. Quark Feynman tree diagrams for the decay B® — KK " K~: (a) for the color favored H(lp ) term proportional to a; and (b) for

the color suppressed Hg”) term proportional to a,.
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u K+
S
s -
U
b
u,c,t s
BO RO
W
— d
d
(@)

FIG. 2. Quark Feynman penguin diagrams for the decay B° — K°K*K~: (a) for the H(f )
The effective gluon exchange is represented by a spring like line.

W
b u,c,t s
%\<K_
B0 g K+
_ _ ;s KO
d d

FIG. 3. As in Fig. 2 but for the H\” term.

In a way similar to that developed in Ref. [19] for
the B* — ntn~n* decays, the detailed expressions for the
different A;; ;(sg,s_,s,) amplitudes which build up
the HSP )
distance terms [sum of a‘(,-p ) (MM,)] by long distance ones

which can be expressed or are given in terms of meson-
meson form factors. As mentioned in the previous para-

contributions can be given as product of short

graph, the amplitudes coming from the terms Hgﬁ >, ng )
and Hép )

factors. For HEP) one has to evaluate the matrix elements
of BY transitions to two-kaon states. As in the previous
studies [21], assuming this transition to proceed through
the dominant intermediate resonances, it can be approxi-
mated, either by a phenomenological function calculated
via a unitary equation, or as being proportional to the
isovector kaon form factors. In the calculation of the
scalar product of two matrix elements in Eqs. (13) one
makes use of Egs. (B1) and (B6) of Ref. [7]. As argued
above, only the important parts of the amplitude, needed
to reasonably reproduce the currently available experi-
mental total branching fraction and the Belle [1] and
BABAR [2] Dalitz plot projections, are given in next
Section.

are directly proportional to the kaon form

SH

(b)

term and (b) for the ng )

and 1) terms.

ITII. DOMINANT CONTRIBUTIONS
TO THE AMPLITUDE

We will give the dominant parts of the B — K°K* K~
decay amplitude and, applying charge conjugation trans-
formation, the corresponding B® — K°K~K™* ones. Within
this transformation, the final K* mesons will be exchanged
with the KT ones and the s, Mandelstam invariants with
the s ones. The decay constants and the fixed form-factor
values entering our model are given in Table II. The values
for the quark and meson masses are listed in Table III. For
the parts of the amplitude arising from the ng ) term [see
Egs. (13)] which involve the calculation of the B° transition
to two kaons, viz. (K°K*|(itb),_,|B°) our derivation will
follow partly that reported in appendix A of Ref. [19] for
the (z*z~|(itb)y_,|B~) matrix element completed by the
use of an equation similar to Eq. (20) of Ref. [18].

TABLEII. Values of the different decay constants (in GeV) and
of the fixed form factors used in our model.

Parameter Value Reference
S =fk- =Tk 0.1561 [6]
for =Fr =1 0.209 [25]

0(1 l,l .

Fo () = VEFy “(m) = VEF] () O PO
AT ) = VAR () 022
Féog; ( mm) \/_FB ag (mK maz) 0.14 [27]
TABLE III.  Values of the different quark and meson masses (in

GeV) [6] entering our model amplitude.

my, my m my
0.0022 0.0047 0.095 4.18
m_= mgo mg= mpgo
0.139570 0.497611 0.493677 5.27963
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As seen in the previous Section the different contribu-
tions to the amplitude are proportional to the sums of the
effective Wilson coefficients’ aﬁp ) (MM,) (11). We show
below that these sums are given by the functions 7, y, w,,
and w, [see Egs. (15), (23), (30), and (39)]. Following
Ref. [14], for the calculation of the Wilson coefficients,
we take into account one-loop vertex and penguin correc-
tions but neglect hard scattering ones. Then one has
a" (R°Rp) =), al’)(K°Rs)=a and a'V(RsM,) =
aﬁp)(RpMz) = aj.p)(RDMz) = a%’). We use the correspond-
ing NLO values calculated and given in Ref. [14]. These are
evaluated at the renormalization scale y = m,,/2 [25].

A. Contributions to the amplitude
with two kaons in S wave

1. The K*K ™~ contribution

We retain the part coming from the Hép ) term in
Egs. (13) where the final KK~ forms a scalar and isoscalar
state [see Fig. 2(b)]. We have for this B - K3K" K~ term

A1(50’ S_,84) = Ass.o(so’s—’h)
= GFﬂ(k0f0)<k0|(§b)sc|Bo>
x (KTK™|(35),0), (14)

with [see Eqgs. (12), (13) and also Eq. (11) in Ref. [14]]

, 1 ) 1
o=l (ot + 308, ) + 2 (~a 4305, )- (19

The intermediate scalar-isoscalar K™K~ resonances for

invariant m, masses <1.6 GeV [18] correspond to the

fo family, mainly f(980), f,(1370) and f,(1500) which

we denote as fj,. Using the s and b quark equations of
motion and Eq. (B6) of Ref. [7] one gets

2 2

(RO|(3D),,|BY) = "2 K

s, (1)

For the B to K° transition form factor, we take [28]

FER (s) = 0. (17)

where r, = 0.33 and s, = 37.46 GeV?. One introduces
(Eq. (10) of Ref. [29]) the strange form factor I'(s) with

(K™ (p1 )K= (p-)[55]0) = Bol'y" (s0)- (18)

’As pointed out in the paragraph below Eq. (10) the meson
position in the MM, pair matters.

The quantity By, is related to the vacuum quark condensate,
as in Ref. [29] we use

m2

By=—"7"— (19)

m, +my’

where m, is the charged pion mass. Then we obtain the
following contribution for the B® case,

2

2
- — mi,—m " 0=
Aj(s0.5-.5:) = Gro(R° fo) =2 BTy (s0)F§ ¥ (s0)-

mp—nmg

(20)
For the B® we have

2 _ 2
Mgy — My

Ay (59.54.5_) =Gru(K°f) BoTs* (s0) FE'X (s9),

mp—mg

(1)

with, from charge conjugation symmetry, F5'X’(sy) =
FE'® (s9) and U(Kfo) = DR foi 2y = 2" c)-

The form factor I'j(sy) has been caculated by B.
Moussallam [30,31] in the Muskhelishvili-Omnes (MO)
dispersion-relation framework [17,32]. B. Moussallam has
used the updated S matrix of the zz (channel 1), KK
(channel 2) and effective (27)(27) (channel 3) coupled-
channel model of Ref. [33]. Details on this scattering S
matrix can be found in Appendix A of Ref. [18]. As can be
seen in Fig. 4 the modulus of I'}*(sy) (E = /5;) has a

25 T T T T T T T T

20 n

151 .

S
I,

101 .

E (GeV)

FIG. 4. Modulus, [I'}], of the strange scalar-isoscalar kaon form
factor T'%(sy) (E = /5¢) calculated [30,31] in the dispersion-
relation framework using the updated [18] T matrix of the 7z
(channel 1), KK (channel 2) and effective (27)(27) (channel 3)
coupled-channel model of Ref. [33]. Solid (red) line: calculation
done with the asymptotic phase shift &;;(sg — o) = 2,
82,(s9 = 00) = 0 and 833(sy — o) = x. For the dot (blue) line:
S11(sg = ) = 27, 52y(s9 = o0) = 7 and 533(s) — o0) = 0.
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K"K~ threshold peak which is due to the f(980)
resonance. The bump near 1.5 GeV arises from the opening
of the third effective 4z channel close to 2m, where m,, is
the p(770) mass [18,33]. Here, the S matrix has several
poles located nearby and these have an important influence
on the energy behavior of I'§ (is) in this region. These poles
could be related to the f((1370) and f,(1500) resonances.
In our model, we use the form factor corresponding to the
red solid line of Fig. 4 where 8, (sqg = ), 5 (sg = ),
833(s¢g = o0) equal 27,0 and 7z, respectively.

2. The K{K* contribution

As seen from Egs. (12) and (13), the ng)
gives rise to the part A;g; with the K°K™ pair in a scalar-
isovector state (see Figs. 1(a) and 3). One has,

contribution

Az(so,s_,s )= AlSl(So»S—»SJr)
= SRy )[ROK gl (tb)y.s )
(K |(5)y-10). 22)

where the short distance part, similar to Eq. (6) of Ref. [14], is

/?’Ef){al}’ + aZy + a?Oy - {alﬁty + agy]r)l((}

[ag, + agylry - (23)

~
I

+ /IE‘S){aZy + aTO)r -

In the evaluation of the long distance matrix element
([K°K*]g|(iib)y_4|B°), we assume that the transitions of
B to the [K°K*] states go first through intermediate meson
resonances Ry which then decay into a K°K™* pair. This
decay is described by a vertex function G gog+| (s, ). For
the intermediate resonances, as can be seen in Table I, we
have Rg = a((980)" and ay(1450)*". Then using Egs. (B1)
and (B6) of Ref. [7] Eq. (22) leads to

G
_—FfK(m20 - S+)
« ZFBORS KOk

><GRS[koKﬂ(S+)<Rs[1_(°K+HM3>, (24)

Az(so7s—»s+) =

(mg)¥(RsK™)

fx being the charged kaon decay constant (Table II).
Assuming that the variation of the B° to Ry transition form
factor from one resonance to the other is small, we choose R
to be a¢(980)" which we denote as a. We can then
parametrize the sum over the Rg resonances by

®This parametrization is quite similar to that of Eq. (20)
introduced in Ref. [18] for the D° case.

| s | L | s | s | s | L |

1 15 2 25 3 35 4 45 5
m, (GeV)

]

FIG. 5. Modulus of the |G (s )| (m, = ,/s7) function which
describes the B transition to the scalar-isovector K'K™ state. The
threshold enhancement is due to the a((980)" resonance and the
peak around 1.5 GeV to the ay(1450)" one.

B0p (ROR+ K d

ZFg Rs[K°K ](m%())_/(RSK_)GRS[f(OKﬂ(S+><RS[KOK+}|ud>

Ry
=F5 %

(mi)3(ag K7)G(sy) (25)

where we use

(Rs[K°K*]|ud) = (af|ud) = 1. (26)

The function G, (s) describes the transition from a ud
pair into a KK state. It is calculated from a unitary model
with relativistic equations for the two-coupled channels 75
and KK. It is based on the two-channel model of the
a0(980) and a((1450) resonances built in Refs. [34,35].
Details on its calculation are given in chapter IV of
Ref. [18], in particular, see Eqgs. (104) to (111). The
G () function depends on two parameters r; and r, which
represent the coupling constants to the 775 and K°K ™ states,
respectively. In our model, r, is taken as a free parameter
with r;/r, = 0.88 as in Ref. [18], keeping however the
third-degree polynomial W (s) fixed to 1. The modulus of the
G, (s) function used in the present model is plotted in Fig. 5.
From Egs. (24) and (25) we get the following contribution to

the B — KK+ K~ amplitude’
— GF - + -
As(so,5-,54) = _TfKY(ao K™)(migo = s1)
Ba
x Fy " (m%)Gy(s ), (27)

"An alternative [21] could be to parametrize the B transition
to K’K™ as being proportional to the scalar-isovector form factor.
This form factor has been calculated in Ref. [36] using MO
dispersion relation approach [17,32].
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Charge conjugation transformation applied to Eq. (27) gives
the following contribution for the B? case,

G
A2(50,5+,5—> = _TFny(a(;K+)(m12;0 - s_)
x Fo 0 (m})G (s.). (28)

— 5 with 20 _ 26 Blay oy _
where y =3y with 4, = 4, |,_,. and Fy °(mg) =
RO+
Fy ().
B. Contributions to the amplitude

with two kaons in P wave

1. The K* K~ contributions

Retaining the part coming from ng ) [see Figs. 1(b)
and 2(a)] one has for this term of the B — K{K*K~
amplitude [Egs. (12) and (13)],

_ Gr - _ _
Aspi(s0.5-.84) = TFWM(KORQXKOI(Sb)v_AIB“)

(KK (@u)y-al0), (29)

with (see also Eq. (8) in Ref. [14])

w, = /?'I(JS)QZW + (’15;) +}“'(4S) ) <a3w +das,, +az, + a‘)w) (30)
and (Eq. (5) in Ref. [14])
_ _ KK
(K ()K= () @)y 410) = (p = p) P
(31)
In the above term only P-waves contribute. Following

Eq. (B6) in Ref. [7] for the evaluation of the matrix element
(K°|(5b)y_4|B®), we obtain

. G o
Asp(so,5-,54) = 7F (s, —s_)w,(K°RL)
< FPR ()P ¥ (so)  (32)

with I = 0 or 1. For the vector B°K? transition form factor,
one can use, as in Ref. [14], the parametrization given by
Eq. (30) of Ref. [28],

r I
1—S—°—|_(1—“'—°)2
m? mi

FER(s0) = (33)

with r| = 0.162, r, = 0.173 and m; = 5.41 GeV.
Reference [37] provides an evaluation of the form factor

F ,[,K+ K (s0) using vector dominance, quark model assump-

tions and isospin symmetry. It receives contributions from

the 1 =0, w(782), w(1420) and ®(1650) resonances as

well as those from the I = 1, p(770), p(1450) and p(1700)
resonances.® Following Eq. (23) of Ref. [14],

FEK (50) = FE 517 (5) + FIE X (5), (34)

with
+ p—1I= 1
Fi 0 (50) = S ek BW, (s0) + 5 BW, (50)
+ C(IS//BWIU//(SO)]’ (35)
and

Kt K] 1
FIKK] (so):z[c/’fBWp(so)—i-c,'f,BWp/(so)

+ c/)K//BW/)//(SO)]' (36)

Here the BW g1 (s0) are the energy-dependent Breit-Wigner
functions defined for each resonance R’ of mass m & and
width FRQ as

2

R

miz — 80— iy/Sol'r ’

m

BWg: (s0) = (37)

The c’lg, parameters have been determined in Ref. [37]
L

through a constrained fit to the electromagnetic kaon form
factors and we use the values given in their Table 2.

The fifth term, 'ng ) [see Fig. 2(b)], in Egs. (13) yields
also only a P-wave contribution,

. G o
Aspo(so,5-,51) = TF (54 —s_)w,(K°RY)
x FPR (s0) FEK (o), (38)

with (see also Eqgs. (10) in Ref [14])

s ¢ 1
Wy = (’1;) + /1'(4 )) |:a3w + as,, — E (a7w + a9w):|

) 1 s 1
+ /1,(4 ) <a'1w ~3 aﬁ‘OW) + /15 ) <af1w ) aiOw) : (39)

The form factor FX'X7(s,), described in terms of the
¢(1020) and ¢(1680) resonances denoted as ¢ and ¢,
is given by (see Ref. [37] and also Eq. (25) of Ref. [14])

F§+K7 (So) = —C¢BW(/,(S0) - C[/)/BW{//(S()). (40)

As above for the contributions of the w and p resonances,
the ¢ Breit-Wigner functions are given by Eq. (37) and the

*In the following the several @ and p resonances wiil be
denoted as w, w/, w!! and p, p/, p!l, respectively.
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cp(y) coefficients by the constrained fit results of Table 2
of Ref. [37].

Adding the contributions of Eqs. (32) and (38) gives for
the B case,

As(so,5_,5,) = ZASP,I(SO’S—’er) + ASP,O(SW S_.5y)

1=0,1
Gr BYK° — pKYK-
= _7<5— - S+)F1 (50) (W, F,, (50)
+ W FE K (59)). (41)

The corresponding B° part is

G -
A3<50,S+,S_> = _7F<S— - S+)F?OK0(SO>(WMF§ K (SO)

+wFE K (s0)), (42)
with FfOKO(sU) = —F{?OKO(SO), Wys = Wu,s(/lg) -
25 ) FEK (s9) = FE K (50)-

2. The KYK* contributions

From the ’Hg" ) term, using Eq. (B6) of Ref. [7] together
with relations similar to those of the Egs. (A.15) to (A.19)
of Ref. [19], one obtains, for the vector-isovector
[K°K*],K~ mode, the following contribution to the B°
amplitude (see Figs. 1(a) and 3)

Ay(s0.5-,5) E-’leP,l (S0.5-.54)
GF Mo — Mg

2 2
_ 2 2 K
_—Tf]( (SO—S_+(mBo —mK)T)

BORp[KOKT - -
XZAO ol ](m%()mRP[f(OK*]y(RPK)
Rp
X G, ko) (51 ) (Rp[KK ] |ud) (43)
where (Rp[K°K*]|ud) =1 since it is associated to the

p(770)*, p(1450)" and p(1700)* resonances. The sum
over the vertex functions G, gox+| (s ) can be parametrized

using the vector-isovector form factor [21] FK'X" (5., ) and,

ZAgoKi (s )mpg,gog+ P (RpK™)
Rp
X Gr,gox+) (s1) (Rp[KOK "] |ud)

:y(pr—_)AE“”%mi)F{f”K*(su, (44)
P

with the choice p = p(770) and f, being the charged p decay
constant (Table II). From Egs. (43) and (44) one gets for
the B°

] G Migo =13
A4(s0,s_,s+):——F]i <S0—S_+(méo_m%<) £ K>

2 f,,
x3(p KT)AS (mY)FEK (s,),  (45)

S+

The Wilson coefficient combination y(p™K~) is given by

Eq. (23). The value used for the Ago” ’ (m%) transition form
factor, determined in Ref. [25], is given in Table II. As shown

in Ref. [37] the form factor, FK'K"(s,) = 2FET (s4)
gets contributions from the three p resonances [see Eq. (36)].
The B° part reads

Grf m2, —m%

A4(SO,S+,S_>:_7Ff_1: SO_S++(méO_m%()KT
0 ,,— —

Xy (oK )AE () FER (L), (46)

with v K*) = F0 K ) 2 e = A e

BO)- BO)t 0 =0
Ay " (my) = =Ag" (mg) and F{'5 (s) = =FF'5" (s).

C. Contributions to the amplitude
with K)K* states in D wave

One cannot form a two-kaon D-wave state from the
vacuum state through the (gq),_, operator, consequently

there is no such part arising from the Hl(-p ) terms for i = 3,

5, and 6. Here the contribution coming from the H(lp ) term
(see Figs. 1(a) and 3) with a two-kaon D-wave state,
saturated by the a,(1320)" resonance, reads (see, e.g.,
Eq. (A.23) of Ref. [19]),

_ - G _
As(s0,5-,54) =Aip1(s0,5-,5;) = —TFfKD(P()’P—)

x Y FPRICK ) (s )

Rp=ay
X J(RpK™)Gp,gox+(s4)(Rp [K°K™]|ud).
(47)

With (aj [K°K*]|ud) = 1 one obtains for the B® case

Gr . _ -
AS(SO’S—ver):_?Fny(a;K )ga;f(ow

D(py.p-)
m%z =S8y = imazraz (S+)

FBa; (m%(,er),
(48)

where the Wilson coefficient combination y(aj K~) is
given by Eq. (23). The coupling constant Yat ROk~ Character-
izes the strength of the ai — K°K* transition. The
function D(pg, p_) is defined by

013002-10



AMPLITUDE ANALYSIS OF B® — KYK*K~ ...

PHYS. REV. D 110, 013002 (2024)

(IpollP=)? = (Po - P-)%.  (49)

W =

D(py.p-) =

In the K°K* center-of-mass system the moduli of the K°
and K~ momenta are given by

S+

s —(mg+mgo)?|[s, — (mg —mgo)?
w;é\/u( mgoPlls. —( 2l

ol \/{ — (/S my)? [z — (/57 = mie)’]
S+
(50)
and
4po-p. = sp— s+ Tm TR T ) gy

S+

The transition form factor FB'“ (m%,s) follows from
Ref. [27] and reads

 (m)(m2, — 5)

_(Ja+
+ b5 (m2)m2. (52)

— 'Oa
FE (. 5) = KE' (i) + b

The form factors, k2'% (m%) and b (m %) are not known.
In our model we will fix s in Eq. (52) to the a, resonance
mass squared and the value we use is given in Table II. For
the BY case, we have

G
As(s0,51,5-) = _TFny(aEKJr)ga;KOK‘

D(po.p.) FP (m3 2,
mj —s_—im, T, (s_)
(53)
with y(a3K") = 5003 K505 = 2" ) Qo =
9arkox+ and FP'% (mY, m2,) = FP'% (m%, m3,). The func-

tion D(pg, p.; ) of the K® and K™ momenta in KK center-
of-mass system is defined in a similar way to that of the
function D(py,p_) in Eq. (49) but the variables s, and
s_ have to be interchanged.

IV. RESULTS AND DISCUSSION

The Belle [1] and BABAR [2] Collaboration analyses of
the B > KYKTK~ data have been performed within a
time-dependent-Dalitz approach. As shown in Appendix
[see Eq. (A13)] the double differential branching fraction or
the Dalitz plot density distribution for the B® — K$K* K~
decay can be written as

d*Br(B?) 1
ds.dsy  32(27)*m3, Ty
+ x|A(sg, S, 5_)

[(1 = x)|A(s0. 5. 5:)

. (54)

where A(sg,s_,5,) = > 5, Ai(sg,s_,s,) is our decay
amplitude for the B — KKK~ process, A(sq, s, 5_) =
>3, Ai(sg, 54, 5_) is that for the B® decay and Iy is
the B® width. The different parts, A;(sg,s_,s,) and
A;(sg, 4, 5_), of our decay amplitudes have been given
in Sec. Ill. The parameter x gives the strength of the
contribution of the B°-B° transition process. It is equal to

1 1-2w
— = 1_ ’ 55
T2 T (Amg T2+ 1 (55)

where Am, is the difference of the heavy and light B°
mass eigenvalues and w is the fraction of events in which
the other B® meson is tagged with the incorrect flavor [2].
The double differential branching fraction or the Dalitz
plot density distribution for the B’ — K9K*K~ decay
reads

d’Br(B?) 1
= 1—x)|A 2
ds.dsy — 32(2m)*m3 o [(1 = x)|A(s0. 51, 5-)]
+X|A(s0, S_, S+)|2]. (56)

Here, compared to the BY case, the amplitude arguments
s_ and s are interchanged.

As in the Belle [1] and BABAR [2] analyses the sum over
both charge-conjugate-decay modes is implied, we com-
pare the experimental effective KK+, KK~ and K* K~
mass projections with the corresponding theoretical
distributions dBr/ds; obtained by a suitable integration
over sy or s, of the sum of the differential branching
fractions given by Egs. (54) and (56). Here s;,i =1, 2, 3
denote the squares of the three different K3K ", K%K~ and
K' K~ effective masses of the final kaon pairs, respectively.

We have made a simultaneous fit of the model param-
eters to the Belle data presented in Fig. 3 of Ref. [1] and the
BABAR data shown in Fig. 17 of Ref. [2]. The background
components have been subtracted to obtain the Belle signal
distributions. We have also omitted the first data bins in the
effective mass projections corresponding to the s values
smaller than their kinematical limits given by the masses of
the KK pairs. Among the Belle data, one has 76 points for
the K3K* mass distribution, 76 points for the K%K~ mass
distribution, 149 points for the K™ K~ mass distribution and
24 points concentrated in the narrow region of the K™K~
mass around the ¢(1020) resonance. Each set of the three
BABAR distributions consists of 32 points. Altogether we
have taken into account 325 Belle data points and 96
BABAR data values. As we fit also the branching fraction of
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the B - K°K*K~ decay, the total number of the data
points is equal to 422.

The theoretical values of the K3K*, KOK~ and K* K~
mass distributions dN""/dE; have been related to the
branching fraction distributions dBr/ds; using the relation

dN" dBr
=2EF;—, 57
JE, Fids (57)
where E; = /s; and
Ne'd,
i — BreXP . (58)

In this expression N{” is the total number of experimental

events of a given distribution with the bin width d; and

Bre* is the experimental branching fraction of the B® —

K°K*K~ decay. For the description of the Belle data we

use N{” = 1125 for every i while for the BABAR data sets

we have N{¥ = 1419, N5’ = 1415 and N§" = 1449 events.
In our fit we use the y? function defined as

dN™ (E]) _ ANS*P (E

421 2
2 dE dE J) 2
X - |: €eX] :| +XBI" (59)
; A dZEP (EJ)

where

Brth — BreXp 2
XBr = Whr {—A En ] : (60)

d¥2 (E;) is the experimental value of the mass distribution

taken at E; and A “47 (E;) is its uncertainty while ddL; (E))
is the corresponding theoretical value calculated at the same
E;. We put wg, = 20 to get a good fit for the theoretical
CP-averaged branching fraction Br'".

It turns out that to obtain a reasonable fit to the data one
needs to modify the five components of the model
amplitude. The amplitudes A; and A, are multiplied by
a sixth order polynomial P, (z) of the variable z = /s, —

2myg with

Pi(z) = ei"’lC(l + ,'X:: cizi>. (61)

This introduces 8 real free parameters, ¢b;, C and the ¢;, i =
1 to 6. The scalar-isovector KK* terms A, and A, terms
[Egs. (27) and (28)] are proportional to the G (s) function
in which the coupling constant r, [see the paragraph below
Eq. (26)] has been adjusted. Both terms have been
multiplied by the phase factor e'?2, where ¢, is a real free
parameter. The K™K~ and KK* P- wave components As,
As, Ay, Ay and the KYK* D-wave As and As ones need to

TABLE IV. Fitted strong interaction parameters of our model
amplitude. The parameters C, P;,i = 3 to 5 are dimensionless,
¢;,i = 1,2 are in radians, r, in GeV*?2 and the ¢;, i = 1 to 6 in
GeV~'. The component A, is multiplied by the complex sixth order
polynomial Py(z)=e"C(1+Y % ¢;z") with z=,/sg—2my.
The contribution A,, proportional to the function G, (s ) where
the parameter r, represents the coupling constant to the K°K™*
state, is multiplied by the phase factor e, For j=23,4,5 the
real parameters P; renormalize the corresponding Aj. The same
parameters are also introduced for the A;, j=1 to 5, in the
same way.

Parameters Values

C 0.84005
b1 —3.4691 rad
c —1.7509

cy 1.2298

c3 0.23169
cy —0.24359
Cs 0.064156
Cs —-0.0061211
rs 8.6409 GeV?/?
b 4.4632 rad
Py 1.1752

P, 0.38593
Ps 0.29155

be renormalized by the free real coefficients P5, P, and Ps,
respectively.

In our fit, we use the measured ratio Am,/T'g = 0.769 £
0.004 [6] and we put the experimental parameter w = 0, to
get from Eq. (55) the value x = 0.186. The values of the 13
fitted parameters are given in Table IV. We obtain y? =
583.6 which divided by the number of degrees of freedom,
ndf =409, leads to y?/ndf = 1.43. The total B —
KYK* K~ experimental branching fraction, (2.68 +0.11) x
1073 [6], is very well reproduced as one gets the corre-
sponding theoretical value equal to Br'* = 2.65 x 107>.

Our fit (solid line) to the mass projection distributions of
the Belle [1] and BABAR [2] experimental data is displayed
in Figs. 6 and 7, respectively. The near threshold peak in the
m(K* K~) distribution of the Belle Collaboration, Fig. 6(a),
is due to the ¢(1020) and the next one to the f(1500)
denoted as fy in Ref. [1]. The bump near 1.5 GeV in the
plot (Fig. 4) of the modulus of the strange scalar form factor
I3 (s¢) contributes to this fy peak. Furthermore, in our
model, it corresponds to the opening, close to 2m,,, of the
third effective 4z channel [18,33]. There are also some
contributions from the a(1450), p(1450) and ®(1420).
The resonance y.(1P) visible at around 3.4 GeV in
this Fig. 6(a) has not been introduced in our amplitude.
In Fig. 6(b) the threshold bump arises from the f,(980) and
the ¢(1020 peak is well reproduced. In Figs. 6(c) and 6(d)
the first bump comes from the a(1450) and the two other
ones are reflections of the ¢(1020). Besides the fact that the
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FIG. 6. The Dalitz-plot-projection fit (solid line) to the Belle [1] experimental data extracted from their Fig. 3: (a) the m(K*TK~)
distribution, (b) the m(K™K~) projection near the ¢»(1020) resonance, (c) the m(K3K~) distribution and (d) that of the m(K3K ™). The
resonance y.(1P) visible in the plot (a) at around 3.4 GeV has not been introduced in our amplitude. The two bumps in (a) correspond
to the ¢»(1020) and f,,(1500), respectively; the bump in (b) close to the threshold comes from the f(,(980); the first bump in (c) and (d) is
due to the a(1450); the two other ones in (c) and (d) are reflections of the ¢(1020). Data are represented by tiny horizontal lines with

error bars.

projection distribution in the ¢ region has not been plotted
and that the y(1P) signal has not been kept, the BABAR
distributions, in Fig. 7, have characteristics similar to those
of Belle.

For the total branching fraction we obtain Br’(B° —
KYKTK~) = 1.325 x 107 which can be compared with
Br"(B® - KYK*K~) = 1.328 x 107°. The corresponding
sum of these two branching fractions is equal to
Br =2.653 x 1073, Then the total CP asymmetry,

Br(B") — Br(B")
Br(B°) + Br(B")’

Acp = (62)

equals —0.11%. If one neglects the B® — BY transitions then
this asymmetry becomes Acp = —0.17%.
The sum Br; of the integrated branching fractions for the

B° and B decays into the KK K~ system are calculated

for the particular contributions of the modified Aj and Aj
terms. The Br; values and the ratios R; = Br;/Br are given
in Table V together with their sums for j = 1 to 5. We see
that the j = 1 term, with an S-wave-K K~ state, dominates
with a contribution of 83.0% of the total branching fraction.
It arises mainly from the fo(K*K~)K% mode. The second
sizable contribution to Br, with 18.3% of the total, is the
Jj = 3 term with the K™K~ pair in P-wave. It is dominated
by @K plus small K and p°K§ modes. Then follows the
aif KT mode with 6.2%, the p*K¥ with 0.15% and the
aF KT with 0.11%. The total percentage sum is 107.7%
which indicates a small interference contribution.

The R; results shown in Table V tell us that the
contribution to the amplitude with two kaons in isoscalar
S wave is very important. It is instructive to plot the
modulus of the modified A,(sy) contribution, |Af|=
|Pi(2)A(so)| and to compare it to the modulus of
A, (sp), this is done in Fig. 8(a). The fit to the data requires
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FIG.7. Asin Fig. 6 but for the BABAR [2] data extracted from their Fig. 17: (a) the m(KK~) distribution, (b) the m(K%K~) one and
(c) that of the m(K3K™). The y.(1P) signal is not visible in Fig. 17 of BABAR.

a reduction of |A;| below 2.5 GeV and to an increase above
which is done by |P;(z)| as seen in Fig. 8(b). Our strange
kaon form factor is too large in the energy range below
2.5 GeV and too small above. Besides this strange form
factor I3 (s9) the BY to K° transition form factor F&'K’(s,)
enters the expression of A; [Eq. (20)] and the product of

TABLE V.  Sum Br; of the integrated branching fractions for B
and B° decays into the K2K+K‘ for the different modified A.f
and Aj, their ratios R; (in %) to the total branching fraction
Br =2.6516 x 107> and their sums for j =1 to 5.

Final state modes

Contributing
J B° B° resonances Br; R;(%)
1 [KYKK® [K-KH)9K° fo 220x 1075 83.0
2 [KOKH)LK= [KOK-]LKT ag 1.64x 107 6.2
3 KTK)%RO [K-KT)%KO p+w+p°  484x107° 183
4 [ROK+)LK- [KOK-]LKT = 3.85x 1078 0.15
5 [K°K*]LK- [K°K-|LK* ay 287 x 107 0.11

5,2.86 x 107 107.7

these two form factors is constrained by the data. The
FB'K’(5,) given by Eq. (17) and evaluated in Ref. [28] from
light cone sum rules is in good agreement with that recently
calculated in a fully relativistic lattice QCD approach [38].
This can be seen comparing the values given by the
parametrization (17) to those of the curve of Fig. 16 and
Table VI of Ref. [38].

The Dalitz-plot dependence of CP asymmetry in the
framework of a QCDF model for the B* — K*K+K~ has
been compared to LHCb [15] and BABAR [2] data in
Ref. [16]. In a recent publication [39] the LHCb
Collaboration has reported measurement of CP asymme-
tries in charmless three-body decays of B*. They have
shown their distributions as a function of the three-body
phase space and have interpreted them as possibly arising
from rescattering and resonance interference effects.

For the B® — K$K* K~ decays the CP asymmetry in the
Dalitz plot can be defined using Eqgs. (54) and (56) as
follows:

d*Br(BY) _ d*BR(B?)
ds. ds ds_ds,
A — +450 -dso )
CP(SO, s+) dZBr(BO) dZBR(B())
ds, dsg ds_dsg

(63)
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FIG. 8. (a) Comparison between |A (so)| (Eq. (20), solid blue line) and |[A¥| = |P,(z)A(s)| (dashed red line) with z = E — 2my and

E = ,/50; (b) plot of |P;(z)| (Eq. (61), solid line).
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FIG. 9. Asymmetry Acp(sg, sy ) [Eq. (63)] as a function of m . for: (a) my = 3.5 GeV, (b) my =2 GeV. In plot (a), the a,(1320)™,
present in the modified A5 contribution, could be responsible for the bump around 1.3 GeV. The maximum at ~1.7 GeV can be related to
an interplay between the modified A; and A, terms where the two-kaon states are in S wave.

In a large part of the Dalitz plot the Acp(sg, 5. ) values are
rather small but there are some regions with mq 2 1.7 GeV
where they can be sizable. For instance, in Fig. 9(a) we
show a plot of Acp(sg,s,) as a function of m, for
mg = 3.5 GeV. Here we encounter large positive asym-
metry values. A small maximum at m, ~ 1.3 GeV can be
attributed to an influence of the resonance a,(1320) present
in the two-kaon-D-wave contribution of the modified As
term. The second higher maximum has no direct resonant
character. It can be related to an interplay of the two-kaon-
S-wave contributions of the modified A; and A, terms. For
other values of my and m,, for example, as seen in
Fig. 9(b), at my =2 GeV and for 1.55 GeV <m, <
2.15 GeV a significant negative asymmetry is found while
for 1.4 GeV < m, < 1.55 GeV the asymmetry is large
and positive. Also for my = 4 GeV and in the whole range
of the kinematically allowed m, values from 1 GeV to
3.4 GeV the CP asymmetry is large and positive for m_,

below 1.55 GeV and negative above. After integrations on
sg, s, in the Dalitz plot and as noted below Eq. (62), the
total CP asymmetry, equal to —0.11%, is small.

The time dependent asymmetry Acp(Af) is usually
written as

Acp(At) = —Ccos(AmyAt) + Ssin(AmyAt),  (64)

where At is defined as the time interval between the decays
of the B® and B° mesons coming from the Y(4S) state,
while C and S are coefficients which can depend on the
Dalitz plot variables like s, and s . These coefficients can
be calculated as ratios of integrals over some parts of the
Dalitz plot, namely’ C = —I./D and S = I5/D, where

See Egs. (Al14) to (A19).
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TABLE VI. CP-asymmetry parameters C and S defined in
Eq. (64) and calculated from Egs. (65), (66), and (67) integrated
over the full s, range and over the specific s, range.

/30 range (GeV) C=-Acp (%) S

1.01 < /55 < 1.03 -1.13 +0.53
V/So < 1.01 and /5y > 1.03 0.43 —0.61
full sy range 0.17 —0.42

te= [ dsods (50,505 ) = Alsus s ). (69)

DI/%MMMWNMMW+W%MJM% (66)
and
Ig= 2/ dsods  Im[e P A (s, 5_,5,)A*(s0,5,,5_)]. (67)

In Eq. (67) the angle $ is that of the unitarity triangle [6].
One can see that, when the s, s, integration is performed
over the full Dalitz plot, the coefficient C is equal to the CP
asymmetry with a minus sign, C = —Acp.

Using sin(2f) = 0.699 [6] and integrating over s, and
for three specific ranges of s, we obtain the C and S values
given in Table VI. One notices a sign flip of the coefficient
S when going from the s, range dominated by the ¢(1020)
meson contribution to the s, range outside of ¢»(1020). The
change of the § sign is related to the presence of an
additional minus sign in the amplitude A; with respect to
the corresponding A; amplitude. The charge symmetry of
the P-wave K™K~ amplitudes is responsible for that effect.
The numerical values of the time dependent CP-asymmetry
parameters are in qualitative agreement with the exper-
imental results of the BABAR Collaboration presented in
Fig. 18 of Ref. [2]. The S value in the ¢ region, 0.53, is
compatible with that of BABAR, 0.66 £ 0.17 4 0.07, given
in Table XIII of Ref [2].

V. SUMMARY AND CONCLUDING REMARKS

In view of further amplitude analyses, in particular by
LHCb and Belle II Collaborations, we have derived a B® —
K‘;K TK~ decay amplitude in a quasi-two-body QCDF
framework. Our derivation follows that developed for the
study of CP violation in the B* — ztz~z* decays [19].
The dominant parts of the decay amplitude are calculated in
terms of kaon form factors or BY to two kaons transition
functions which describe the final state two-body reso-
nances and their interferences. Unitarity constraints are
satisfied when two of the three kaons are in a scalar state.
The kaon form factors and transition functions entering this
amplitude are similar to those introduced in the Dalitz plot

studies of the D’ — K9K"K~ decays in a factorization
approach [18], the final kaon states being identical.
However, here, the larger phase space tests our model over
a wider energy range. The kaon-kaon interactions in the S,
P, and D waves are taken into account.

Starting from the effective weak decay Hamilto-
nian [22,23], a QCDF derivation of the full amplitude
within a quasi-two-body framework can be performed. The
different terms [see Eqs. (13)] appear as products of short
distance contributions, sums which depend on effective
Wilson coefficients [see Eq. (11)], times long distance ones
given by kaon form factors or parametrized with B° to
K°K™ transition functions. Some parts of the amplitude,
where the formation of the final KK~ takes place via an
implicit or explicit dd quark pair, are expected to lead to
small contributions. We have neglected these OZI [20]
suppressed terms.

The dominant part of the full amplitude has five
components and our model reproduces well the Belle [1]
and BABAR [2] Collaborations data. With 13 strong
interaction free parameters modifying the five terms of
our amplitude, we fit the 422 observables consisting of the
total branching fraction together with the Dalitz-plot
projections of Belle and BABAR with a y* of 583.6 which
leads to a y?/ndf of 1.43.

The largest contribution to the branching fraction, 83.0%
of the total as seen in Table V, comes from the modified
Ai(sg,s_,s,) and A, (sg,s,,s_) terms where the K*K~
pairs are in a scalar-isoscalar state [see the penguin
diagrams of Fig. 2(b)]. These terms are proportional to
the strange scalar-isoscalar form factor I'§(sy) receiving a
large contribution from the f,(980), f,(1370) and
f0(1500) resonances (see Fig. 4). The dominance of the
fo-resonance contributions was also found in the data
analyses of the Belle [1] and BABAR [2] Collaborations.

The best fit is obtained if the A,(sq,s_,s,) and
A (sg,s4,5_) terms [Egs. (20), (21)] are multiplied by
the phenomenological complex polynomial P, (z) with z =
/S0 — 2mg (see Eq. (61), Fig. 8(b) and Table IV). It leads
to a reduction of |A,| and |A,| below 2.5 GeV and to an
increase above [see Fig. 8(a)]. Within our approach, and
for a given B® to K° transition form factor FE'K’(s),
the fit to the B — K(S)K+K‘ Belle [1] and BABAR [2]
data would require for the modulus of our strange kaon
form factor I'(s), a smaller (larger) value for /s, below
(above) 2.5 GeV.

The next important mode, with a branching fraction
equal to 18.3% of the total is mainly the ¢ Kg one plus
some small wK9 and pK) arising from the modified
As(sg, s_, s, ) and A5(sg, s, s_) amplitudes. The dominant
part with the ¢(1020) contribution comes from the term
proportional to w, [Eq. (39)]. The parameters, for the
P-wave form factors FX'K(5,) and FK"X"(s,) [Egs. (34)
and (40)] have been determined in Ref. [37] using vector
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dominance, quark model assumptions and isospin sym-
metry. The best fit requires these A; and A; [Egs. (41)
and (42)] contributions to be renormalized by a real
parameter P; which is, however, close to 1 (see Table IV).

The modified terms A,(sq,s_,s,) and A,(sg,s,,s_)
with two kaons in a § wave of isospin 1, have a branching
faction of 6.2% of the total. Their long distance part
depends upon the function G;(s.) whose calculation,
given by Egs. (104) to (111) of Ref. [18], is based on
the zn- and KK-channel model of the a((980) and
ay(1450) resonances built in Refs. [34,35]. To obtain a
good fit, we found necessary to adjust for the G(s)
function the r, coupling to the K°K™* state and to multiply
the A, and A, terms, [Eqgs. (27) and (28)] by the phase
factor e/?2 (see Table IV). The contributions of the ag
resonances were not introduced in the Belle [1] and
BABAR [2] Collaboration analyses.

The remaining amplitudes A4 (s, s_,s,)and Ay(sg,5,,5_)
(contributions of the p(770), p(1450), and p(1700)
resonances and renormalized by the real parameter P,),
As(sg,s_,5,) and As(sg, s_, s, ) (D-wave saturated by the
a,(1320)" resonance and multiplied by the real parameter
Ps) give small branching fractions of the order of 0.1%.

For K™K~ effective masses above 1.7 GeV our model
predicts large CP asymmetries in the Dalitz plot, as can be
seen in Figs. 9(a) and 9(b). We have also calculated the
values of the time dependent CP-asymmetry parameters
and in the ¢(1020) region, the value of the S parameter,
0.53, agrees, within errors, with that obtained by BABAR
analysis [2].

The charmless three-body B® — K3K*K~ decay data
provide information on the weak interactions and can also
be useful for better knowledge of the kaon-kaon strong
interactions. Based on our model one can build a para-
metrization that can be implemented in experimental Dalitz
plot analyses. Dalitz-plot amplitude analysis of several
charmless three-body B-meson decays can lead to a better
understanding on the origin of CP asymmetry.
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APPENDIX: B’-B" MIXING AND
TIME-DEPENDENT DECAY RATE

The quantum mechanical formalism for neutral particle-
antiparticle oscillations and CP violation has been studied

and presented in the book of I. I. Bigi and A. I. Sanda [40]
(herafter cited as BS). Recent developments on the B°-B°
mixing can be found in the review by O. Schneider [41] in
the 2022 Review of Particle Physics [6]. In this appendix,
following BS we show how one can derive Eq. (3) of the
BABAR study of CP violation in Dalitz-plot analyses of the
charmless hadronic B° — KgK TK~ decay [2]. We also
give the derivation of Egs. (54), (56), and (64).

1. B*-B® mixing

The expressions for the time evolution of B® and B°
states are given by (see Egs. (6.47) and (6.48) of BS)

|B%(1)) = f+()|B°(1)) +%f-(t)ll§°(t)>,

|B%(1)) = f+()|B°(1)) +§f-(t)lB°(t)> (A1)

with'?
folt) = %e—iMSte—%Fxt(l 4 e—iAMBote—%AFBot)' (A2)

In Eq. (A2) AMp=M;-Mg and Al'p=Iy-—
I <Tg+T17y, i. e. I'g~I'p (see Eq. (11.2) of BS).
Here M;, I'; and Mg, I'g correspond to the masses and
widths of the long-life and short-life B states, respectively.
The time-dependent differential decay rate can be written as

ar e’ G(1)
ds,dsodt — 32(2m)3m3, drp’

(A3)

where 7z equal to 1/T g is the neutral B meson lifetime.
Applying the BS master equations (11.15) to (11.22) one
obtains for the B — KgK*K‘ decay (Eq. (11.58) of BS):

G(t) = AP |1+ 1P+ (1 = [pP) cos(A M)

—2Im <1AA*> sin(AMBot)] ,

) (A4)

where A = >73_| A; is the B - KKK~ decay amplitude
and (see Eq. (6.49) of BS)

2| 2

, (A5)

NI

/3 =
A being the B® — KYK~K* decay amplitude. For the
definition of p and ¢ see, e.g., Egs. (6.22) to (6.25) of
BS. In the B? case one has (Eq. (11.45) of BS and Ref. [6]),

""AM o is denoted as Amy, and f as At in Sec. IV.

013002-17



J.-P. DEDONDER et al.

PHYS. REV. D 110, 013002 (2024)

4q_ VisVia

—2iﬁ’ (A6)
)4 th th

where f is one of the angles of the CKM triangle. From
Egs. (A4) and (A5) one gets

G(t) = |A]* + |A]> + (JA]? = |A]?*) cos(AM got)
— 2Im(e"*PAA*) sin(AM got). (A7)

Following Egs. (A3) and (A7) the time dependent
double differential branching fraction of the B° decay,
with Br =T/ and Ng, = [32(27)*m;,[p)]™", reads
(with the replacement of 7 by Af)

&*Br(B") e Tl ]
s aodn; = Ve (AP AP + (AP - [AP)
ds, dsydAt 70

x cos(AM g At) — 2Im(e 2P AA¥)
X sin(AM g At)] (A8)
and that of the B°

d*Br(B") e Tyl )

- = A 2 A 2 A 2 _ A 2
ds  dsydAt Br 4ty AP + A7 + (JA] =A%)
x cos(AM g At) + 2Im (e ?PAA¥)
x sin(AM g At)] (A9)

This shows the agreement of Eqgs. (A8) and (A9) with
Eq. (3) of Ref. [2] for w = 0. Integrating over the time from
minus to plus infinity and with,

too e TyolAdl 11
/_oo dAt 41'30 COS(AMBOAt):EW’ (AlO)
and
+o0 —FBo‘AtI
/_ AT sin(AMpA) =0, (AT)

one obtains from Eqs. (A8) and (A9)

d*Br(B° .

TEJSO)_NBT[(I A0 5 )P+ A (50,55 ) .
(A12)

and

d*Br(B?) )

W:N&[(l —X)|A(So,s_,s+)|2 +X|A(S0,s_,s+)|2],

(A13)

where (introducing here the w dependence) x =

it —WL Equations (A12) and (A13) corre-

spond to Eqgs. (56) and (54).

2. Time dependent asymmetry A p(t)

Integrating over s, and s, and denoting by Br the total
branching fraction without B°-B° mixing, one obtains from
Egs. (A8) and (A9) for the B® decay

e—FBo‘Atl

BrBO (At)

|:BI'BO + BI‘Bo + (BI‘BO - BI‘Bo>
TBU

x cos(AM goAt)

—2NBI//Im(e‘2"ﬂAA*)

X sin(AMBoAt)derdso} , (Al14)

and for the BY decay

e Bo‘At|

BVBO(A[) |:BrBo + BI‘BO + (BI‘BO — BI‘BO>

TBO
x cos(AM goAt)

+2NBI//Im(e‘2’/}AA*

X sin(AMBoAt)derdso} . (A15)

The time dependent asymmetry Aqp(Ar) defined as

Brgo(At) — Bryo(At
ACP(At): rBO( ) rBO( ) (A16)
Brgo(Al‘) + BrBo(At>
is usually written as
Acp(At) = —Ccos(AM g At) 4 Ssin(AM g Ar).  (Al7)
From Egs. (A14), (A15) one obtains"!
Brgp — B
—M:—Ac% (A18)
Br[;O + BI”BO
and
G_ 2 [ [Im(e™2PAA*)ds  ds . (A19)

BI”[;O + BI”BO

Equations (A14) to (A19) are equivalent to Egs. (64)
to (67).

"As seen from Egs. (A12) and (A13) the B — B° mixing
cancels when adding B® and B° branching fractions with mixing.
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