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The B0 → K0
SK

þK− decay amplitude is derived within a quasi-two-body QCD factorization framework
in terms of kaon form factors and B0 to two-kaon-transition functions. The final state kaon-kaon
interactions in the S, P, and D waves are taken into account. The unitarity constraints are satisfied for the
two kaons in scalar states. It is shown that with few terms of the full decay amplitude one may reach a fair
agreement with the total branching fraction and Dalitz-plot projections published in 2010 by the Belle
Collaboration and in 2012 by the BABAR Collaboration. With 13 free parameters, our model fits
the corresponding 422 data with a χ2 of 583.6 which leads to a χ2 per degree of freedom equal to 1.43. The
dominant branching fraction arises from the f0ðKþK−ÞK0

S mode with 83.0% of the total branching. The
next important mode is dominated by ϕK0

S plus small ωK0
S and ρ0K0

S modes with 18.3% of the total. Then
follows the a�0 K

∓ mode with 6.2%. Adding the other smaller modes, the total percentage sum is 107.7%
which indicates a small interference contribution. In most regions of the Dalitz plot, our model gives rather
small CP asymmetry, but in some parts its values can be large and positive or negative. Its predicted total
value is equal to −0.11%. The calculated time dependent CP-asymmetry parameters agree, within errors,
with those obtained by the BABAR analysis. Our model amplitude can be the basis for a parametrization in
experimental Dalitz plot analyses of LHCb and Belle II Collaborations.
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I. INTRODUCTION

The charmless hadronic time dependent B0 → K0
SK

þK−

decays have been studied a decade ago by the Belle [1] and
BABAR [2] Collaborations with the aim of extracting CP
violation parameters. These decays, currently analyzed by
the LHCb Collaboration [3], were used, together with other
charmless three-body decays of B mesons, to extract,
through Dalitz-plot amplitude analyses, the Cabibbo-
Kobayashi-Maskawa (CKM) phase γ [4]. In the experi-
mental analyses the final state meson interactions are often
described by relativistic Breit-Wigner functions (isobar
model) which do not satisfy the unitarity condition.1 The
scalar-isovector a0 resonances, present in the K0K� final

states, are not introduced in the Belle and BABAR analyses.
This is also the case for the ω (mainly KþK− channel)
and ρ (mainly K0K� channel) resonances. Belle II
Collaboration [5] has recently measured the variation in
time of the rate asymmetries in B0 → ϕK0

S decays. This
process, part of the B0 → K0

SK
þK−, could reveal some new

physics in the b → qq̄s transitions. In these charmless three-
body decays, the contribution of diagrams with virtual
particle loops is important and consequently their study
could exhibit some physics beyond the Standard Model.
In the method, used by Ref. [4], for extracting γ from

B → Kππ and B → KKK̄ reactions, the amplitudes are
written as combinations of momentum dependent tree and
penguin diagramswith some of them related via the assumed
SU(3) flavor symmetry. There, the model amplitudes,
obtained in the different BABAR analyses for every studied
decay, are taken as experimental inputs. Among the six
possible solutions found for γ in Ref. [4], one is compatible
with theworld-average value [6] of ð65.9þ3.3

−3.5Þ∘. The effect of
SU(3) symmetry breaking averaged over the Dalitz plot is
calculated to be small.
In Ref. [7] charmless three-body decays of B mesons

have been thoroughly studied within a quasi-two-body
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1However, the S-wave f0ð980Þ-resonance contribution is fitted
though the K-matrix formalism where the two-body unitarity is
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model based on factorization approach. There, the descrip-
tion of the nonresonant (NR) background, consisting of a
pointlike weak transition and pole diagrams, is achieved
using heavy-meson chiral-perturbation theory. The momen-
tum dependence of the corresponding amplitudes is
assumed to be in the exponential form to insure that the
predicted decay rates, in general unexpectedly large, agree
reasonably well with experimental results. The final state
resonance signals are described in terms of typical relativ-
istic Breit-Wigner expressions. For the B0 → K0

SK
þK−

decay, the branching ratios and the KþK− mass spectra
are compared with the available BABAR analysis in their
Table III and Figs. 2(a) and 2(b), respectively. The quantum
chromodynamic (QCD) factorized expression for the B0 →
K0

SK
þK− decay amplitude given by their Eq. (A4) will be

the starting point of our work.
Taking into account of theBelle [1,8] andBABAR [2] data,

the first two authors of Ref. [7] have revisited their 2007
model in Ref. [9] to compare their results with experimental
branching fractions and direct CP-violation in charmless
three-body decays of B mesons. However, their B0 →
K0

SK
þK− branching ratio compared to that of BABAR is

too small. These Belle [8] and BABAR branching values
have been recently confirmed by the updated branching
fraction measurements of the LHCb Collaboration [10].
Let us describe succinctly some recent studies related to

charmless three-body B decays. A substantial extension of
the approach of Refs. [7,9] has been analyzed in Ref. [11].
A perturbative QCD approach to describe the resonant
contributions to the B decays into three kaons has been
applied in Ref. [12]. As in our case their B0 → K0KþK−

branching ratio is first dominated by the f0ð980Þ and then
by the ϕð1020Þ contributions. In their Fig. 3 they show the

different f0 and fð
0Þ
2 resonance contributions to the KþK−

invariant mass distributions but the full spectrum is not
calculated and not compared to the existing data. Quasi-
two-body charmless B decays have been recently exten-
sively analyzed in Ref. [13] under the factorization-assisted
topological-amplitude approach.
In a quasi-two-body QCD factorization (QCDF) frame-

work, the B� → KþK−K� decays have been studied in
Ref. [14]. The kaon-scalar and vector-form factors
describe the strong KþK− final state interactions. A
unitary model, which incorporates the scalar f0 resonan-
ces, is built for the scalar strange and nonstrange kaon
form factors. The vector form factors originate from an
existing study on electromagnetic kaon form factors.
The four parameter fit of this model leads to an overall
reasonable agreement with the available Belle and BABAR
data as can be seen in the fit to some KþK− mass
distributions shown in their Figs. 2 and 3. In the KþK−-
mass spectrum dominated by the S wave, a large CP
asymmetry has been predicted. These predictions have
been confirmed by BABAR [2] and LHCb [15]. With the

addition of the KþK− −D wave, f2ð1270Þ resonance,
an extension of the just described model [14] is
developed by two of the authors in Ref. [16]. There,
the KþK− invariant mass squared dependence of the CP
asymmetry is reproduced in a satisfactory way in the
region below 1.9 ðGeVÞ2.
In view of further amplitude analyses, we derive here,

also within a quasi-two-body QCDF framework, the B0 →
K0

SK
þK− decay amplitude in terms of kaon form factors

and B0 to two-kaon-transition functions. These include the
resonant and NR parts of the two kaon interactions. It has
been shown, in quantum field theory and using dispersion
relations [17], that strong-interaction meson-meson form
factors can be calculated exactly provided one knows the
meson-meson scattering amplitudes at all energies. The
charmless three-body B-meson decays data can also be
useful for a better knowledge of the meson-meson strong
interactions. In the kaon-kaon final state interactions we
take into account the S, P, and D waves. Unitarity is
satisfied when the two kaons are in a scalar state. Here, the
final states are the same as in the D0 → K0

SK
þK− process

which has been recently studied in Ref. [18].
A detailed QCDF calculation of the full amplitude,

following the derivation of the B� → πþπ−π� decay
amplitudes performed in Ref. [19], can be done. This
amplitude includes, besides important parts, Okubo-Zweig-
Iizuka (OZI) [20] suppressed terms where an explicit or an
implicit dd̄ quark pair appears. In the present work,
neglecting the OZI terms, we show that the dominant
contributions of our amplitude can reproduce, in a reason-
able way, the total branching fraction and the Belle [1] and
BABAR [2] Dalitz-plot projections. Our model can then be
used to build a parametrization which, in a Dalitz-plot
analysis, could be an alternative to the commonly applied
sum of Breit-Wigner type amplitudes [21].
In Sec. II we describe how, starting from the effective

weak decay Hamiltonian, the decay amplitude can be
obtained within a quasi-two-body QCDF formulation.
We argue for the choice of the probably important parts
which we illustrate by tree and penguin quark Feynman
diagrams. Section III gives the explicit expressions of these
dominant terms. Results and discussion of our simulta-
neous fit of Belle [1] and BABAR [2] Collaboration data are
presented in Sec. IV. A summary of our model, together
with some concluding remarks can be found in Sec. V. A
reminder on formulas for B0-B̄0 mixing and for the time-
dependent asymmetry ACPðtÞ is given in Appendix.

II. THE B0 → K0
SK

+K − DECAY AMPLITUDE
IN QCDF FRAMEWORK

The amplitude for this charmless-three-body hadronic
B meson decay is obtained from the effective weak
Hamiltonian [22,23]
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Heff ¼
GFffiffiffi
2

p
X
p¼u;c

λðsÞp

�
C1O

p
1 þ C2O

p
2 þ

X10
i¼3

CiOi

þ C7γO7γ þ C8gO8g

�
þ H:c:; ð1Þ

where

λðsÞp ¼ VpbV�
ps: ð2Þ

The Vpp0 (p0 ¼ b, s) are the CKM quark-mixing matrix
elements. For the Fermi coupling constant GF we take the
value 1.166379 × 10−5 GeV−2 [6]. We use the Wolfenstein
parameters given in Eq. (12.26) of Ref. [24] which lead to

λðsÞu ¼ ð0.2659 − i 0.7738Þ × 10−3 and λðsÞc ¼ 0.04105þ
i0.6872 × 10−6. The CiðμÞ are the Wilson coefficients

for the four-quark operators OðpÞ
i ðμÞ at a renormalization

scale μ. The Op
1;2 terms are left-handed current-current

operators arising from W-boson exchange. The Oi¼3–10

terms are QCD and electroweak penguin operators involv-
ing a W boson loop with a u or c quark while O7γ and
O8g are the electromagnetic and chromomagnetic dipole
operators [23].
The amplitude depends on the Mandelstam invariants

s� ¼m2
� ¼ ðp0þp�Þ2; s0¼m2

0¼ðpþþp−Þ2; ð3Þ

where p0, pþ and p− are the four-momenta of the K0
S, K

þ

and K− mesons, respectively. Energy-momentum conser-
vation implies

pB0 ¼p0þpþþp−; s0þ sþþ s−¼m2
B0 þm2

K0 þ2m2
K;

ð4Þ

where pB0 is the B0 four-momentum and mB0 , mK0 and mK

denote the B0, the neutral and charged kaon masses,
respectively. In the following we derive, for the B̄0 →
K̄0KþK− decay, the contributions of the quasi two-body
processes,

B̄0 → ½KþK−�LK̄0; and B̄0 → ½K̄0K��LK∓: ð5Þ

The final interacting-kaon pairs, ½KþK−�L and ½K̄0K��L can
be in a scalar, L ¼ S, vector, L ¼ P or tensor, L ¼ D states.
The isospin I of the ½KþK−�L pair can be either 0 or 1,
while that of the ½K̄0K��L pair is 1. Then, the possible final
quasi-two-body M1M2 pairs can be:

MI¼1
1 ðp0 þ pþÞ≡ ½K̄0ðp0ÞKþðpþÞ�I¼1

L ;

M2ðp−Þ≡ K−ðp−Þ; ð6Þ

and

M1ðp0Þ≡ K̄0ðp0Þ;
MI¼0;1

2 ðpþ þ p−Þ≡ ½KþðpþÞK−ðp−Þ�I¼0;1
L : ð7Þ

The different isospin 1, ½K̄0Kþ�I¼1
S;P;D, and isospin 0 and 1,

½KþK−�I¼0;1
S;P;D, resonances RI

L contributing to the meson-
meson final state strong interactions are listed2 in Table I.
Applying the quasi-two-body QCDF [23] formalism for

the B̄0 → K0
SK

þK− decay and neglecting small CP viola-
tion effects in K0

S decays by using

jK0
Si ≈

1ffiffiffi
2

p ðjK0i þ jK̄0iÞ; ð8Þ

the matrix elements of the effective weak Hamiltonian (1)
can be written as (see Eqs. (2.1) and (A1) of Ref. [7])

Āðs0; s−; sþÞ≡ 1ffiffiffi
2

p hK̄0ðp0ÞKþðpþÞK−ðp−ÞjHeff jB̄0ðpB0Þi

¼ GF

2
fλðsÞu hK̄0KþK−jTujB̄0i

þ λðsÞc hK̄0KþK−jTcjB̄0ig; ð9Þ

with

TABLE I. Two-body resonances RI
L contributing, in the B̄0 → K̄0KþK− decays, to the isospin 1½K̄0Kþ�I¼1

S;P;D, and
to the isospin 0 and 1 ½KþK−�I¼0;1

S;P;D final state meson-meson strong interactions. Our model amplitude does not
include the contribution of the f02ð1525Þ. The resonances a0ð980Þ0, a0ð1450Þ0, f2ð1270Þ and a2ð1320Þ0 contribute
only to the OZI suppressed parts which we will neglect.

Final state L ¼ S L ¼ P L ¼ D

½K̄0Kþ�I¼1
L a0ð980Þþ, a0ð1450Þþ ρð770Þþ, ρð1450Þþ, ρð1700Þþ a2ð1320Þþ

½KþK−�I¼0
L f0ð980Þ, f0ð1370Þ, f0ð1500Þ ωð782Þ, ωð1420Þ, ωð1650Þ, ϕð1020Þ, ϕð1680Þ f2ð1270Þ

½KþK−�I¼1
L a0ð980Þ0, a0ð1450Þ0 ρð770Þ0, ρð1450Þ0, ρð1700Þ0 a2ð1320Þ0

2Beyond this table, the isospin 1 of the K̄0Kþ states will not be
specified unless necessary.
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hK̄0KþK−jTpjB̄0i¼ hK̄0KþK−j
�
a1δpuðūbÞV−A ⊗ ðs̄uÞV−Aþa2δpuðs̄bÞV−A ⊗ ðūuÞV−Aþa3ðs̄bÞV−A ⊗

X
q

ðq̄qÞV−A

þap4
X
q

ðq̄bÞV−A ⊗ ðs̄qÞV−Aþa5ðs̄bÞV−A ⊗
X
q

ðq̄qÞVþA−2ap6
X
q

ðq̄bÞsc−ps⊗ ðs̄qÞscþps

þa7ðs̄bÞV−A ⊗
X
q

3

2
eqðq̄qÞVþA−2ap8

X
q

ðq̄bÞsc−ps⊗
3

2
eqðs̄qÞscþpsþa9ðs̄bÞV−A⊗

X
q

3

2
eqðq̄qÞV−A

þa10
X
q

ðq̄bÞV−A ⊗
3

2
eqðs̄qÞV−A

�
jB̄0i; ð10Þ

where p ¼ u or c and aðpÞj are effective QCDF coefficients.
For simplicity, in Eq. (10) we have not specified their

argument ðM1M2Þ. These aðpÞj ðM1M2) coefficients3 are
asymmetric in M1 ↔ M2 with M2 relevant for short
distance dynamics as the final meson M2 denotes the
meson which does not include the spectator d̄ quark
of the B̄0. This implies that the meson M1 is either the
K̄0 itself or contains it [see Eqs. (6) and (7)]. In Eq. (10),
ðq̄1q2ÞV∓A ¼ q̄1γμð1 ∓ γ5Þq2, ðq̄1q2Þsc�ps¼ q̄1ð1� γ5Þq2
and eq denotes the electric charge of the quark q in units
of the elementary charge e. The sum on the index q runs
over u, d, s and the summation over the color degree of
freedom has been performed. The notations sc and ps stand
for scalar and pseudoscalar, respectively. The symbol ⊗
indicates that the different components of the matrix
elements are to be calculated in the factorized form. The
½KþK−�L states are assumed to originate from a uū or ss̄ or
dd̄ pair and the ½K̄0Kþ�L states from a d̄u one.
The apj quantities, at next-to-leading order (NLO) in the

strong coupling constant αs, can be written in terms of the
Wilson coefficients as [25]

aðpÞj ðM1M2Þ ¼
�
Cj þ

Cj�1

NC

�
NjðM2Þ

þ Cj�1

NC

CFαs
4π

�
VjðM2Þ þ

4π2

NC
HjðM1M2Þ

�
þ Pp

j ðM2Þ; ð11Þ

where the upper (lower) signs apply when the index j
is odd (even), NC ¼ 3 is the number of colors and
CF ¼ ðN2

C − 1Þ=2NC. Note that in the leading-order
(LO) contribution NjðM2Þ ¼ 0 for M2 ¼ ½KþK−�P and
j ¼ 6, 8, otherwise NjðM2Þ ¼ 1. The NLO quantities
VjðM2Þ come from one-loop vertex corrections,
HjðM1M2Þ from hard spectator scattering interactions
and Pp

j ðM2Þ from penguin contractions. For j ¼ 1, 2, 3,

5, 7, and 9, the superscript p in aðpÞj ðM1M2Þ is to be omitted
since the penguin corrections are equal to zero in these
cases. The NLO hard scattering corrections require the
introduction of four phenomenological parameters to regu-
larize end point divergences related to asymptotic wave
functions [25].
From Eqs. (9) and (10) one can write the full factorized

B̄0 → K0
SK

þK− amplitude, Āðs0; s−; sþÞ, as (see4 Eq. (A4)
of Ref. [7])

Āðs0; s−; sþÞ ¼
X9
i¼1

X
L¼S;P;D

X
I¼0;1

ĀiL;Iðs0; s−; sþÞ

¼ GF

2

X9
i¼1

X
p¼u;c

λðsÞp HðpÞ
i ð12Þ

with

HðpÞ
1 ¼ hK̄0KþjðūbÞV−AjB̄0i · hK−jðs̄uÞV−Aj0i½a1δpu þ ap4 þ ap10 − ðap6 þ ap8 ÞrKχ �

HðpÞ
2 ¼ hKþK−jðd̄bÞV−AjB̄0i · hK̄0jðs̄dÞV−Aj0i

�
ap4 −

1

2
ap10

�

HðpÞ
3 ¼ hK̄0jðs̄bÞV−AjB̄0i · hKþK−jðūuÞV−Aj0iða2δpu þ a3 þ a5 þ a7 þ a9Þ

3In the following, as done in Eq. (10), these arguments M1M2 will not be specified, unless necessary.
4Following Ref. [7], we keep terms with intermediate d and d̄ quarks in the factorized amplitude.
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HðpÞ
4 ¼ hK̄0jðs̄bÞV−AjB̄0i · hKþK−jðd̄dÞV−Aj0i

�
a3 þ a5 −

1

2
ða7 þ a9Þ

�

HðpÞ
5 ¼ hK̄0jðs̄bÞV−AjB̄0i · hKþK−jðs̄sÞV−Aj0i

�
a3 þ ap4 þ a5 −

1

2
ða7 þ a9 þ ap10Þ

�

HðpÞ
6 ¼ hK̄0jðs̄bÞscjB̄0ihKþK−jðs̄sÞscj0ið−2ap6 þ ap8 Þ

HðpÞ
7 ¼ hKþK−jðd̄bÞsc−psjB̄0ihK̄0jðs̄dÞscþpsj0ið−2ap6 þ ap8 Þ

HðpÞ
8 ¼ hK̄0KþK−jðs̄dÞV−Aj0i · h0jðd̄bÞV−AjB̄0i

�
ap4 −

1

2
ap10

�

HðpÞ
9 ¼ hK̄0KþK−jðs̄dÞpsj0ih0jðd̄bÞpsjB̄0ið−2ap6 þ ap8 Þ: ð13Þ

The chiral factor rKχ is given by rKχ ¼ 2m2
K=½ðmb þmdÞ

ðmu þmsÞ�, mb, md, mu and ms being the b-, d-, u- and
s-quark masses, respectively and p ¼ u or c. Because the

isospin of the s quark is 0, the s̄s pair in HðpÞ
5 and HðpÞ

6

generates only isospin 0 states.

Inspection of the HðpÞ
i in Eqs. (13) tells us that some of

them are expected to make a fairly small contribution to the

B̄0 → K̄0KþK− amplitude. InHðpÞ
4 the formation of the final

stateKþK− goes through an explicitdd̄ pair. In the i ¼ 2 and
i ¼ 7 to 9 terms, this creation results from an implicit dd̄ pair
due to the presence of a d and d̄ quarks in their matrix
elements. These terms lead naturally to K0K̄0 production
and they require a supplementary final state interaction to
produce a KþK− pair. At the microscopic level a dd̄ quark
annihilation followed by ss̄ and uū pair creation can only be
depicted by nonplanar quark diagrams which give small
contributions to the decay amplitude. Furthermore, as can be
seen in Table 1 of Ref. [14], the NLO effective Wilson

coefficients aðpÞj for j > 2 are small and those for j > 6

smaller. For j > 1 their real part is only few percent of that of
a1. Accordingly, we do not calculate the parts corresponding

to these OZI suppressed matrix elements, HðpÞ
2 , HðpÞ

4 , HðpÞ
7

and HðpÞ
8;9 (B̄0 annihilation terms).

One expects large contributions to the amplitude from

(i) HðpÞ
1 , the Wilson coefficient a1 being the dominant one

(see Table 1 of Ref. [14]) and from (ii)HðpÞ
3;5;6 because these

terms are proportional to the kaon form factors. The quark
processes involved in these terms can be represented by the
Feynman diagrams depicted in Figs. 1–3. The wavy lines
stand for W� exchanges, the spring-like lines, if any, for a
gluon and the straight lines with an arrow pointing to the
right (left) for a quark (antiquark). The short distance a1
contribution of HðpÞ

1 corresponds to the color favored tree
diagram shown in Fig. 1(a). The color suppressed a2 term

ofHðpÞ
3 arises from the tree diagram drawn in Fig. 1(b). The

aðpÞj ; j > 2 contributions of HðpÞ
3 , HðpÞ

5 and HðpÞ
6 can be

represented by the penguin diagrams of Fig. 2 and that of

HðpÞ
1 by the penguin diagram of Fig. 3. The factorized

forms given in Eqs. (13) can be understood if, in the
diagrams of Figs. 1–3 one replaces the very heavyW meson
exchange by a vacuum state creation.

FIG. 1. Quark Feynman tree diagrams for the decay B̄0 → K̄0KþK−: (a) for the color favoredHðpÞ
1 term proportional to a1 and (b) for

the color suppressed HðpÞ
3 term proportional to a2.
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In a way similar to that developed in Ref. [19] for
the B� → πþπ−π� decays, the detailed expressions for the
different ĀiL;Iðs0; s−; sþÞ amplitudes which build up

the HðpÞ
i contributions can be given as product of short

distance terms [sum of aðpÞj ðM1M2Þ] by long distance ones
which can be expressed or are given in terms of meson-
meson form factors. As mentioned in the previous para-

graph, the amplitudes coming from the terms HðpÞ
3 , HðpÞ

5

and HðpÞ
6 are directly proportional to the kaon form

factors. For HðpÞ
1 one has to evaluate the matrix elements

of B̄0 transitions to two-kaon states. As in the previous
studies [21], assuming this transition to proceed through
the dominant intermediate resonances, it can be approxi-
mated, either by a phenomenological function calculated
via a unitary equation, or as being proportional to the
isovector kaon form factors. In the calculation of the
scalar product of two matrix elements in Eqs. (13) one
makes use of Eqs. (B1) and (B6) of Ref. [7]. As argued
above, only the important parts of the amplitude, needed
to reasonably reproduce the currently available experi-
mental total branching fraction and the Belle [1] and
BABAR [2] Dalitz plot projections, are given in next
Section.

III. DOMINANT CONTRIBUTIONS
TO THE AMPLITUDE

We will give the dominant parts of the B̄0 → K̄0KþK−

decay amplitude and, applying charge conjugation trans-
formation, the corresponding B0 → K0K−Kþ ones. Within
this transformation, the final K� mesons will be exchanged
with the K∓ ones and the s� Mandelstam invariants with
the s∓ ones. The decay constants and the fixed form-factor
values entering our model are given in Table II. The values
for the quark and meson masses are listed in Table III. For

the parts of the amplitude arising from the HðpÞ
1 term [see

Eqs. (13)] which involve the calculation of the B̄0 transition
to two kaons, viz. hK̄0KþjðūbÞV−AjB̄0i our derivation will
follow partly that reported in appendix A of Ref. [19] for
the hπþπ−jðūbÞV−AjB̄−i matrix element completed by the
use of an equation similar to Eq. (20) of Ref. [18].

FIG. 2. Quark Feynman penguin diagrams for the decay B̄0 → K̄0KþK−: (a) for the HðpÞ
3 term and (b) for the HðpÞ

5 and HðpÞ
6 terms.

The effective gluon exchange is represented by a spring like line.

FIG. 3. As in Fig. 2 but for the HðpÞ
1 term.

TABLE II. Values of the different decay constants (in GeV) and
of the fixed form factors used in our model.

Parameter Value Reference

fKþ ¼ fK− ≡ fK 0.1561 [6]
fρþ ¼ fρ− ≡ fρ 0.209 [25]

F
B̄0aþ

0

0 ðm2
KÞ ¼

ffiffiffi
2

p
F
B̄0a0

0

0 ðm2
KÞ ¼

ffiffiffi
2

p
FB̄0f0
0 ðm2

KÞ 0.18 [26]

AB0ρþ
0 ðm2

KÞ ¼
ffiffiffi
2

p
AB0ρ0

0 ðm2
KÞ 0.52 [25]

FB̄0aþ
2 ðm2

K;m
2
a2Þ ¼

ffiffiffi
2

p
FB̄0a0

2ðm2
K;m

2
a2Þ 0.14 [27]

TABLE III. Values of the different quark and meson masses (in
GeV) [6] entering our model amplitude.

mu md ms mb

0.0022 0.0047 0.095 4.18
mπ� mK0 mK� mB0

0.139570 0.497611 0.493677 5.27963
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As seen in the previous Section the different contribu-
tions to the amplitude are proportional to the sums of the

effective Wilson coefficients5 aðpÞj ðM1M2Þ (11). We show
below that these sums are given by the functions ν̄, ȳ, w̄u,
and w̄s [see Eqs. (15), (23), (30), and (39)]. Following
Ref. [14], for the calculation of the Wilson coefficients,
we take into account one-loop vertex and penguin correc-
tions but neglect hard scattering ones. Then one has

aðpÞj ðK̄0RPÞ≡aðpÞjw , aðpÞj ðK̄0RSÞ≡aðpÞjν and aðpÞj ðRSM2Þ¼
aðpÞj ðRPM2Þ¼ aðpÞj ðRDM2Þ≡aðpÞjy . We use the correspond-
ing NLO values calculated and given in Ref. [14]. These are
evaluated at the renormalization scale μ ¼ mb=2 [25].

A. Contributions to the amplitude
with two kaons in S wave

1. The K +K − contribution

We retain the part coming from the HðpÞ
6 term in

Eqs. (13) where the finalKþK− forms a scalar and isoscalar
state [see Fig. 2(b)]. We have for this B̄0 → K0

SK
þK− term

Ā1ðs0; s−; sþÞ≡ Ā6S;0ðs0; s−; sþÞ
¼ GFν̄ðK̄0f0ÞhK̄0jðs̄bÞscjB̄0i
× hKþK−jðs̄sÞscj0i; ð14Þ

with [see Eqs. (12), (13) and also Eq. (11) in Ref. [14] ]

ν̄¼ λðsÞu

�
−au6νþ

1

2
au8ν

�
þλðsÞc

�
−ac6νþ

1

2
ac8ν

�
: ð15Þ

The intermediate scalar-isoscalar KþK− resonances for
invariant m0 masses ≲1.6 GeV [18] correspond to the
f0 family, mainly f0ð980Þ, f0ð1370Þ and f0ð1500Þ which
we denote as f0. Using the s and b quark equations of
motion and Eq. (B6) of Ref. [7] one gets

hK̄0jðs̄bÞscjB̄0i ¼ m2
B0 −m2

K

mb −ms
FB̄0K̄0

0 ðs0Þ: ð16Þ

For the B̄0 to K̄0 transition form factor, we take [28]

FB̄0K̄0

0 ðsÞ ¼ r0
1 − s

st

; ð17Þ

where r0 ¼ 0.33 and st ¼ 37.46 GeV2. One introduces
(Eq. (10) of Ref. [29]) the strange form factor Γs

2ðs0Þ with

hKþðpþÞK−ðp−Þjs̄sj0i ¼ B0Γs�
2 ðs0Þ: ð18Þ

The quantity B0 is related to the vacuum quark condensate,
as in Ref. [29] we use

B0 ¼
m2

π

mu þmd
; ð19Þ

where mπ is the charged pion mass. Then we obtain the
following contribution for the B̄0 case,

Ā1ðs0;s−;sþÞ¼GFν̄ðK̄0f0Þ
m2

B0 −m2
K0

mb−ms
B0Γs�

2 ðs0ÞFB̄0K̄0

0 ðs0Þ:

ð20Þ

For the B0 we have

A1ðs0;sþ;s−Þ¼GFνðK0f0Þ
m2

B0 −m2
K0

mb−ms
B0Γs�

2 ðs0ÞFB0K0

0 ðs0Þ;

ð21Þ

with, from charge conjugation symmetry, FB0K0

0 ðs0Þ ¼
FB̄0K̄0

0 ðs0Þ and νðK0f0Þ ¼ ν̄ðK̄0f0; λ
ðsÞ
p → λðsÞ�p jp¼u;cÞ.

The form factor Γs
2ðs0Þ has been caculated by B.

Moussallam [30,31] in the Muskhelishvili-Omnès (MO)
dispersion-relation framework [17,32]. B. Moussallam has
used the updated S matrix of the ππ (channel 1), KK̄
(channel 2) and effective ð2πÞð2πÞ (channel 3) coupled-
channel model of Ref. [33]. Details on this scattering S
matrix can be found in Appendix A of Ref. [18]. As can be
seen in Fig. 4 the modulus of Γs�

2 ðs0Þ (E ¼ ffiffiffiffiffi
s0

p
) has a

0 1 2 3 4 5
E (GeV)

0

5

10

15

20

25

|�
2s |

FIG. 4. Modulus, jΓs
2j, of the strange scalar-isoscalar kaon form

factor Γs
2ðs0Þ (E ¼ ffiffiffiffiffi

s0
p

) calculated [30,31] in the dispersion-
relation framework using the updated [18] T matrix of the ππ
(channel 1), KK̄ (channel 2) and effective ð2πÞð2πÞ (channel 3)
coupled-channel model of Ref. [33]. Solid (red) line: calculation
done with the asymptotic phase shift δ11ðs0 → ∞Þ ¼ 2π,
δ22ðs0 → ∞Þ ¼ 0 and δ33ðs0 → ∞Þ ¼ π. For the dot (blue) line:
δ11ðs0 → ∞Þ ¼ 2π, δ22ðs0 → ∞Þ ¼ π and δ33ðs0 → ∞Þ ¼ 0.

5As pointed out in the paragraph below Eq. (10) the meson
position in the M1M2 pair matters.
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KþK− threshold peak which is due to the f0ð980Þ
resonance. The bump near 1.5 GeVarises from the opening
of the third effective 4π channel close to 2mρ where mρ is
the ρð770Þ mass [18,33]. Here, the S matrix has several
poles located nearby and these have an important influence
on the energy behavior of Γs

2ðs0Þ in this region. These poles
could be related to the f0ð1370Þ and f0ð1500Þ resonances.
In our model, we use the form factor corresponding to the
red solid line of Fig. 4 where δ11ðs0 → ∞Þ, δ22ðs0 → ∞Þ,
δ33ðs0 → ∞Þ equal 2π; 0 and π, respectively.

2. The K0
SK

+ contribution

As seen from Eqs. (12) and (13), the HðpÞ
1 contribution

gives rise to the part Ā1S;1 with the K̄0Kþ pair in a scalar-
isovector state (see Figs. 1(a) and 3). One has,

Ā2ðs0; s−; sþÞ≡ Ā1S;1ðs0; s−; sþÞ

¼ GF

2
ȳðRSK−Þh½K̄0Kþ�SjðūbÞV−AjB̄0i

· hK−jðs̄uÞV−Aj0i; ð22Þ

where the short distance part, similar to Eq. (6) ofRef. [14], is

ȳ ¼ λðsÞu fa1y þ au4y þ au10y − ½au6y þ au8y�rKχ g
þ λðsÞc fac4y þ ac10y − ½ac6y þ ac8y�rKχ g: ð23Þ

In the evaluation of the long distance matrix element
h½K̄0Kþ�SjðūbÞV−AjB̄0i, we assume that the transitions of
B̄0 to the ½K̄0Kþ�S states go first through intermediate meson
resonances RS which then decay into a K̄0Kþ pair. This
decay is described by a vertex function GRS½K̄0Kþ�ðsþÞ. For
the intermediate resonances, as can be seen in Table I, we
have RS ≡ a0ð980Þþ and a0ð1450Þþ. Then using Eqs. (B1)
and (B6) of Ref. [7] Eq. (22) leads to

Ā2ðs0; s−; sþÞ ¼ −
GF

2
fKðm2

B0 − sþÞ

×
X
RS

FB̄0RS½K̄0Kþ�
0 ðm2

KÞȳðRSK−Þ

×GRS½K̄0Kþ�ðsþÞhRS½K̄0Kþ�jud̄i; ð24Þ

fK being the charged kaon decay constant (Table II).
Assuming that the variation of the B̄0 to RS transition form
factor from one resonance to the other is small, we chooseRS

to be a0ð980Þþ which we denote as aþ0 . We can then
parametrize the sum over the RS resonances by6

X
RS

FB̄0RS½K̄0Kþ�
0 ðm2

KÞ ȳðRSK−ÞGRS½K̄0Kþ�ðsþÞhRS½K̄0Kþ�jud̄i

≃F
B̄0aþ

0

0 ðm2
KÞȳðaþ0 K−ÞG1ðsþÞ ð25Þ

where we use

hRS½K̄0Kþ�jud̄i ¼ haþ0 jud̄i ¼ 1: ð26Þ

The function G1ðsÞ describes the transition from a ud̄
pair into a K̄0Kþ state. It is calculated from a unitary model
with relativistic equations for the two-coupled channels πη
and KK̄. It is based on the two-channel model of the
a0ð980Þ and a0ð1450Þ resonances built in Refs. [34,35].
Details on its calculation are given in chapter IV of
Ref. [18], in particular, see Eqs. (104) to (111). The
G1ðsÞ function depends on two parameters r1 and r2 which
represent the coupling constants to the πþη and K̄0Kþ states,
respectively. In our model, r2 is taken as a free parameter
with r1=r2 ¼ 0.88 as in Ref. [18], keeping however the
third-degree polynomialWðsÞ fixed to 1. Themodulus of the
G1ðsÞ function used in the present model is plotted in Fig. 5.
FromEqs. (24) and (25) we get the following contribution to
the B̄0 → K0

SK
þK− amplitude7

Ā2ðs0; s−; sþÞ ¼ −
GF

2
fKȳðaþ0 K−Þðm2

B0 − sþÞ

× F
B̄0aþ

0

0 ðm2
KÞG1ðsþÞ; ð27Þ

FIG. 5. Modulus of the jG1ðsþÞj (mþ ¼ ffiffiffiffiffi
sþ

p
) function which

describes the B̄0 transition to the scalar-isovector K̄0Kþ state. The
threshold enhancement is due to the a0ð980Þþ resonance and the
peak around 1.5 GeV to the a0ð1450Þþ one.

6This parametrization is quite similar to that of Eq. (20)
introduced in Ref. [18] for the D0 case.

7An alternative [21] could be to parametrize the B̄0 transition
to K̄0Kþ as being proportional to the scalar-isovector form factor.
This form factor has been calculated in Ref. [36] using MO
dispersion relation approach [17,32].
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Charge conjugation transformation applied to Eq. (27) gives
the following contribution for the B0 case,

A2ðs0; sþ; s−Þ ¼ −
GF

2
fKyða−0KþÞðm2

B0 − s−Þ

× F
B0a−

0

0 ðm2
KÞG1ðs−Þ; ð28Þ

where y ¼ ȳ with λðsÞp → λðsÞ�p jp¼u;c and F
B0a−

0

0 ðm2
KÞ ¼

F
B̄0aþ

0

0 ðm2
KÞ.

B. Contributions to the amplitude
with two kaons in P wave

1. The K +K − contributions

Retaining the part coming from HðpÞ
3 [see Figs. 1(b)

and 2(a)] one has for this term of the B̄0 → K0
SK

þK−

amplitude [Eqs. (12) and (13)],

Ā3L;Iðs0; s−; sþÞ ¼
GF

2
w̄uðK̄0RI

LÞhK̄0jðs̄bÞV−AjB̄0i
· h½KþK−�ILjðūuÞV−Aj0i; ð29Þ

with (see also Eq. (8) in Ref. [14])

w̄u ¼ λðsÞu a2wþðλðsÞu þλðsÞu Þða3wþa5wþa7wþa9wÞ ð30Þ

and (Eq. (5) in Ref. [14])

h½KþðpþÞK−ðp−Þ�ILjðūuÞV−Aj0i¼ ðpþ−p−ÞF½KþK−�IL
u :

ð31Þ

In the above term only P-waves contribute. Following
Eq. (B6) in Ref. [7] for the evaluation of the matrix element
hK̄0jðs̄bÞV−AjB̄0i, we obtain

Ā3P;Iðs0; s−; sþÞ ¼
GF

2
ðsþ − s−Þw̄uðK̄0RI

PÞ

× FB̄0K̄0

1 ðs0ÞF½KþK−�I
u ðs0Þ ð32Þ

with I ¼ 0 or 1. For the vector B̄0K̄0 transition form factor,
one can use, as in Ref. [14], the parametrization given by
Eq. (30) of Ref. [28],

FB̄0K̄0

1 ðs0Þ ¼
r1

1 − s0
m2

1

þ r2
ð1 − s0

m2
1

Þ2 ð33Þ

with r1 ¼ 0.162, r2 ¼ 0.173 and m1 ¼ 5.41 GeV.
Reference [37] provides an evaluation of the form factor

F½KþK−�I
u ðs0Þ using vector dominance, quark model assump-

tions and isospin symmetry. It receives contributions from
the I ¼ 0, ωð782Þ;ωð1420Þ and ωð1650Þ resonances as

well as those from the I ¼ 1, ρð770Þ; ρð1450Þ and ρð1700Þ
resonances.8 Following Eq. (23) of Ref. [14],

FKþK−
u ðs0Þ¼F½KþK−�I¼0

u ðs0ÞþF½KþK−�I¼1

u ðs0Þ; ð34Þ

with

F½KþK−�I¼0

u ðs0Þ ¼
1

2
½cKωBWωðs0Þ þ cKω0BWω0ðs0Þ

þ cKω00BWω00ðs0Þ�; ð35Þ

and

F½KþK−�I¼1

u ðs0Þ ¼
1

2
½cKρ BWρðs0Þ þ cKρ0BWρ0ðs0Þ

þ cKρ00BWρ00ðs0Þ�: ð36Þ

Here the BWRI
L
ðs0Þ are the energy-dependent Breit-Wigner

functions defined for each resonance RI
L of mass mRI

L
and

width ΓRI
L
as

BWRI
L
ðs0Þ ¼

m2
RI
L

m2
RI
L
− s0 − i

ffiffiffiffiffi
s0

p ΓRI
L

: ð37Þ

The cKRI
L
parameters have been determined in Ref. [37]

through a constrained fit to the electromagnetic kaon form
factors and we use the values given in their Table 2.

The fifth term, HðpÞ
5 [see Fig. 2(b)], in Eqs. (13) yields

also only a P-wave contribution,

Ā5P;0ðs0; s−; sþÞ ¼
GF

2
ðsþ − s−Þw̄sðK̄0R0

PÞ
× FB̄0K̄0

1 ðs0ÞFKþK−
s ðs0Þ; ð38Þ

with (see also Eqs. (10) in Ref [14])

w̄s ¼ ðλðsÞu þ λðcÞu Þ
�
a3w þ a5w −

1

2
ða7w þ a9wÞ

�

þ λðsÞu

�
au4w −

1

2
au10w

�
þ λðsÞc

�
ac4w −

1

2
ac10w

�
: ð39Þ

The form factor FKþK−
s ðs0Þ, described in terms of the

ϕð1020Þ and ϕð1680Þ resonances denoted as ϕ and ϕ0,
is given by (see Ref. [37] and also Eq. (25) of Ref. [14])

FKþK−
s ðs0Þ ¼ −cϕBWϕðs0Þ − cϕ0BWϕ0 ðs0Þ: ð40Þ

As above for the contributions of the ω and ρ resonances,
the ϕ Breit-Wigner functions are given by Eq. (37) and the

8In the following the several ω and ρ resonances wiil be
denoted as ω;ω0;ω00 and ρ; ρ0; ρ00, respectively.
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cϕðϕ0Þ coefficients by the constrained fit results of Table 2
of Ref. [37].
Adding the contributions of Eqs. (32) and (38) gives for

the B̄0 case,

Ā3ðs0; s−; sþÞ≡
X
I¼0;1

Ā3P;Iðs0; s−; sþÞ þ Ā5P;0ðs0; s−; sþÞ

¼ −
GF

2
ðs− − sþÞFB̄0K̄0

1 ðs0Þðw̄uFKþK−
u ðs0Þ

þ w̄sFKþK−
s ðs0ÞÞ: ð41Þ

The corresponding B0 part is

A3ðs0; sþ; s−Þ ¼ −
GF

2
ðs− − sþÞFB0K0

1 ðs0ÞðwuFK−Kþ
u ðs0Þ

þ wsFK−Kþ
s ðs0ÞÞ; ð42Þ

with FB0K0

1 ðs0Þ ¼ −FB̄0K̄0

1 ðs0Þ, wu;s ¼ w̄u;sðλðsÞp →

λðsÞ�p jp¼u;cÞ, FK−Kþ
uðsÞ ðs0Þ ¼ FKþK−

uðsÞ ðs0Þ.

2. The K0
SK

� contributions

From the HðpÞ
1 term, using Eq. (B6) of Ref. [7] together

with relations similar to those of the Eqs. (A.15) to (A.19)
of Ref. [19], one obtains, for the vector-isovector
½K̄0Kþ�PK− mode, the following contribution to the B̄0

amplitude (see Figs. 1(a) and 3)

Ā4ðs0;s−;sþÞ≡Ā1P;1ðs0;s−;sþÞ

¼−
GF

2
fK

�
s0−s−þðm2

B0 −m2
KÞ

m2
K0 −m2

K

sþ

�

×
X
RP

AB̄0RP½K̄0Kþ�
0 ðm2

KÞmRP½K̄0Kþ�ȳðRPK−Þ

×GRP½K̄0Kþ�ðsþÞhRP½K̄0Kþ�jud̄i ð43Þ

where hRP½K̄0Kþ�jud̄i ¼ 1 since it is associated to the
ρð770Þþ, ρð1450Þþ and ρð1700Þþ resonances. The sum
over the vertex functionsGRP½K̄0Kþ�ðsþÞ can be parametrized

using the vector-isovector form factor [21] FK̄0Kþ
1 ðsþÞ and,X

RP

AB̄0K−

0 ðsþÞmRP½K̄0Kþ�ȳðRPK−Þ

×GRP½K̄0Kþ�ðsþÞhRP½K̄0Kþ�jud̄i

¼ ȳðρK−Þ
fρ

AB̄0ρþ
0 ðm2

KÞFK̄0Kþ
1 ðsþÞ; ð44Þ

with the choice ρ≡ ρð770Þ andfρ being the charged ρ decay
constant (Table II). From Eqs. (43) and (44) one gets for
the B̄0

Ā4ðs0;s−;sþÞ¼−
GF

2

fK
fρ

�
s0−s−þðm2

B0 −m2
KÞ

m2
K0 −m2

K

sþ

�

× ȳðρþK−ÞAB̄0ρþ
0 ðm2

KÞFK̄0Kþ
1 ðsþÞ; ð45Þ

The Wilson coefficient combination ȳðρþK−Þ is given by

Eq. (23). The value used for the AB̄0ρþ
0 ðm2

KÞ transition form
factor, determined inRef. [25], is given inTable II. As shown

in Ref. [37] the form factor, FK̄0Kþ
1 ðsþÞ ¼ 2F½KþK−�I¼1

u ðsþÞ
gets contributions from the three ρ resonances [see Eq. (36)].
The B0 part reads

A4ðs0;sþ;s−Þ¼−
GF

2

fK
fρ

�
s0− sþþðm2

B0 −m2
KÞ

m2
K0 −m2

K

s−

�

×yðρ−KþÞAB0ρ−

0 ðm2
KÞFK0K−

1 ðs−Þ; ð46Þ

with yðρ−KþÞ ¼ ȳðρþK−Þ; λðsÞp jp¼u;c → λðsÞ�p jp¼u;c,

AB0ρ−

0 ðm2
KÞ ¼ −AB̄0ρþ

0 ðm2
KÞ and FK0K−

1 ðsÞ ¼ −FK̄0Kþ
1 ðsÞ.

C. Contributions to the amplitude
with K0

SK
� states in D wave

One cannot form a two-kaon D-wave state from the
vacuum state through the ðq̄qÞV−A operator, consequently

there is no such part arising from the HðpÞ
i terms for i ¼ 3,

5, and 6. Here the contribution coming from the HðpÞ
1 term

(see Figs. 1(a) and 3) with a two-kaon D-wave state,
saturated by the a2ð1320Þþ resonance, reads (see, e.g.,
Eq. (A.23) of Ref. [19]),

Ā5ðs0;s−;sþÞ≡ Ā1D;1ðs0;s−;sþÞ¼−
GF

2
fKD̄ðp0;p−Þ

×
X

RD≡aþ
2

FB̄0RD½K̄0Kþ�ðm2
K;sþÞ

× ȳðRDK−ÞGRD½K̄0Kþ�ðsþÞhRD½K̄0Kþ�jud̄i:
ð47Þ

With haþ2 ½K̄0Kþ�jud̄i ¼ 1 one obtains for the B̄0 case

Ā5ðs0;s−;sþÞ¼−
GF

2
fKȳðaþ2 K−Þgaþ

2
K̄0Kþ

×
D̄ðp0;p−Þ

m2
a2 − sþ− ima2Γa2ðsþÞ

FB̄0aþ
2 ðm2

K;sþÞ;

ð48Þ

where the Wilson coefficient combination ȳðaþ2 K−Þ is
given by Eq. (23). The coupling constant gaþ

2
K̄0Kþ character-

izes the strength of the aþ2 → K̄0Kþ transition. The
function D̄ðp0;p−Þ is defined by
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D̄ðp0;p−Þ ¼
1

3
ðjp0jjp−jÞ2 − ðp0 · p−Þ2: ð49Þ

In the K̄0Kþ center-of-mass system the moduli of the K̄0

and K− momenta are given by

jp0j ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½sþ− ðmKþmK0Þ2�½sþ− ðmK −mK0Þ2�

sþ

s
;

jp−j ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½m2

B0 − ð ffiffiffiffiffi
sþ

p þmKÞ2�½m2
B0 − ð ffiffiffiffiffi

sþ
p −mKÞ2�

sþ

s
;

ð50Þ

and

4p0 · p− ¼ s0 − s− þ ðm2
B0 −m2

KÞðm2
K0 −m2

KÞ
sþ

: ð51Þ

The transition form factor FB̄0aþ
2 ðm2

K; sÞ follows from
Ref. [27] and reads

FB̄0aþ
2 ðm2

K; sÞ ¼ kB̄
0aþ

2 ðm2
KÞ þ b

B̄0aþ
2þ ðm2

KÞðm2
B0 − sÞ

þ b
B̄0aþ

2− ðm2
KÞm2

K: ð52Þ

The form factors, kB̄
0aþ

2 ðm2
KÞ and bB̄

0aþ
2

� ðm2
KÞ are not known.

In our model we will fix s in Eq. (52) to the a2 resonance
mass squared and the value we use is given in Table II. For
the B0 case, we have

A5ðs0;sþ;s−Þ¼−
GF

2
fKyða−2KþÞga−

2
K0K−

×
Dðp0;pþÞ

m2
a2 − s− − ima2Γa2ðs−Þ

FB0a−
2 ðm2

K;m
2
a2Þ;

ð53Þ

with yða−2KþÞ ¼ ȳðaþ2 K−; λðsÞp → λðsÞ�p jp¼u;cÞ, ga−
2
K0K− ¼

gaþ
2
K̄0Kþ and FB0a−

2 ðm2
K;m

2
a2Þ ¼ FB̄0aþ

2 ðm2
K;m

2
a2Þ. The func-

tionDðp0;pþÞ of theK0 andKþ momenta inK0Kþ center-
of-mass system is defined in a similar way to that of the
function D̄ðp0;p−Þ in Eq. (49) but the variables sþ and
s− have to be interchanged.

IV. RESULTS AND DISCUSSION

The Belle [1] and BABAR [2] Collaboration analyses of
the B0 → K0

SK
þK− data have been performed within a

time-dependent-Dalitz approach. As shown in Appendix
[see Eq. (A13)] the double differential branching fraction or
the Dalitz plot density distribution for the B̄0 → K0

SK
þK−

decay can be written as

d2BrðB̄0Þ
dsþds0

¼ 1

32ð2πÞ3m3
B0ΓB0

½ð1 − xÞjĀðs0; s−; sþÞj2

þ xjAðs0; sþ; s−Þj2�; ð54Þ

where Āðs0; s−; sþÞ ¼
P

5
i¼1 Āiðs0; s−; sþÞ is our decay

amplitude for the B̄0 → K0
SK

þK− process, Aðs0; sþ; s−Þ ¼P
5
i¼1 Aiðs0; sþ; s−Þ is that for the B0 decay and ΓB0 is

the B0 width. The different parts, Āiðs0; s−; sþÞ and
Aiðs0; sþ; s−Þ, of our decay amplitudes have been given
in Sec. III. The parameter x gives the strength of the
contribution of the B0-B̄0 transition process. It is equal to

x ¼ 1

2

�
1 −

1 − 2w
ðΔmd=ΓB0Þ2 þ 1

�
; ð55Þ

where Δmd is the difference of the heavy and light B0

mass eigenvalues and w is the fraction of events in which
the other B0 meson is tagged with the incorrect flavor [2].
The double differential branching fraction or the Dalitz
plot density distribution for the B0 → K0

SK
þK− decay

reads

d2BrðB0Þ
dsþds0

¼ 1

32ð2πÞ3m3
B0ΓB0

½ð1 − xÞjAðs0; sþ; s−Þj2

þ xjĀðs0; s−; sþÞj2�: ð56Þ

Here, compared to the B̄0 case, the amplitude arguments
s− and sþ are interchanged.
As in the Belle [1] and BABAR [2] analyses the sum over

both charge-conjugate-decay modes is implied, we com-
pare the experimental effective K0

SK
þ, K0

SK
− and KþK−

mass projections with the corresponding theoretical
distributions dBr=dsi obtained by a suitable integration
over s0 or sþ of the sum of the differential branching
fractions given by Eqs. (54) and (56). Here si; i ¼ 1, 2, 3
denote the squares of the three different K0

SK
þ, K0

SK
− and

KþK− effective masses of the final kaon pairs, respectively.
We have made a simultaneous fit of the model param-

eters to the Belle data presented in Fig. 3 of Ref. [1] and the
BABAR data shown in Fig. 17 of Ref. [2]. The background
components have been subtracted to obtain the Belle signal
distributions. We have also omitted the first data bins in the
effective mass projections corresponding to the s values
smaller than their kinematical limits given by the masses of
the KK̄ pairs. Among the Belle data, one has 76 points for
the K0

SK
þ mass distribution, 76 points for the K0

SK
− mass

distribution, 149 points for theKþK− mass distribution and
24 points concentrated in the narrow region of the KþK−

mass around the ϕð1020Þ resonance. Each set of the three
BABAR distributions consists of 32 points. Altogether we
have taken into account 325 Belle data points and 96
BABAR data values. As we fit also the branching fraction of
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the B0 → K0KþK− decay, the total number of the data
points is equal to 422.
The theoretical values of the K0

SK
þ, K0

SK
− and KþK−

mass distributions dNth=dEi have been related to the
branching fraction distributions dBr=dsi using the relation

dNth

dEi
¼ 2EiFi

dBr
dsi

; ð57Þ

where Ei ¼
ffiffiffi
s

p
i and

Fi ¼
Nev

i di
Brexp

: ð58Þ

In this expression Nev
i is the total number of experimental

events of a given distribution with the bin width di and
Brexp is the experimental branching fraction of the B0 →
K0KþK− decay. For the description of the Belle data we
use Nev

i ¼ 1125 for every i while for the BABAR data sets
we have Nev

1 ¼ 1419, Nev
2 ¼ 1415 and Nev

3 ¼ 1449 events.
In our fit we use the χ2 function defined as

χ2 ¼
X421
j¼1

�dNth

dE ðEjÞ − dNexp

dE ðEjÞ
Δ dNexp

dE ðEjÞ
�2

þ χ2Br; ð59Þ

where

χ2Br ¼ wBr

�
Brth − Brexp

ΔBrexp

�
2

; ð60Þ

dNexp

dE ðEjÞ is the experimental value of the mass distribution

taken at Ej and Δ dNexp

dE ðEjÞ is its uncertainty while dNth

dE ðEjÞ
is the corresponding theoretical value calculated at the same
Ej. We put wBr ¼ 20 to get a good fit for the theoretical
CP-averaged branching fraction Brth.
It turns out that to obtain a reasonable fit to the data one

needs to modify the five components of the model
amplitude. The amplitudes Ā1 and A1 are multiplied by
a sixth order polynomial P1ðzÞ of the variable z ¼ ffiffiffiffiffi

s0
p −

2mK with

P1ðzÞ ¼ eiϕ1C

�
1þ

X6
i¼1

cizi
�
: ð61Þ

This introduces 8 real free parameters, ϕ1, C and the ci; i ¼
1 to 6. The scalar-isovector K0K� terms Ā2 and A2 terms
[Eqs. (27) and (28)] are proportional to the G1ðsÞ function
in which the coupling constant r2 [see the paragraph below
Eq. (26)] has been adjusted. Both terms have been
multiplied by the phase factor eiϕ2, where ϕ2 is a real free
parameter. The KþK− and K0

SK
� P- wave components Ā3,

A3, Ā4, A4 and the K0
SK

� D-wave Ā5 and A5 ones need to

be renormalized by the free real coefficients P3, P4 and P5,
respectively.
In our fit, we use the measured ratioΔmd=ΓB0 ¼ 0.769�

0.004 [6] and we put the experimental parameter w ¼ 0, to
get from Eq. (55) the value x ¼ 0.186. The values of the 13
fitted parameters are given in Table IV. We obtain χ2 ¼
583.6 which divided by the number of degrees of freedom,
ndf ¼ 409, leads to χ2=ndf ¼ 1.43. The total B0 →
K0KþK− experimental branching fraction, ð2.68� 0.11Þ ×
10−5 [6], is very well reproduced as one gets the corre-
sponding theoretical value equal to Brth ¼ 2.65 × 10−5.
Our fit (solid line) to the mass projection distributions of

the Belle [1] and BABAR [2] experimental data is displayed
in Figs. 6 and 7, respectively. The near threshold peak in the
mðKþK−Þ distribution of the Belle Collaboration, Fig. 6(a),
is due to the ϕð1020Þ and the next one to the f0ð1500Þ
denoted as fX in Ref. [1]. The bump near 1.5 GeV in the
plot (Fig. 4) of the modulus of the strange scalar form factor
Γs
2ðs0Þ contributes to this fX peak. Furthermore, in our

model, it corresponds to the opening, close to 2mρ, of the
third effective 4π channel [18,33]. There are also some
contributions from the a0ð1450Þ; ρð1450Þ and ωð1420Þ.
The resonance χc0ð1PÞ visible at around 3.4 GeV in
this Fig. 6(a) has not been introduced in our amplitude.
In Fig. 6(b) the threshold bump arises from the f0ð980Þ and
the ϕð1020 peak is well reproduced. In Figs. 6(c) and 6(d)
the first bump comes from the a0ð1450Þ and the two other
ones are reflections of the ϕð1020Þ. Besides the fact that the

TABLE IV. Fitted strong interaction parameters of our model
amplitude. The parameters C; Pi; i ¼ 3 to 5 are dimensionless,
ϕi; i ¼ 1, 2 are in radians, r2 in GeV3=2 and the ci, i ¼ 1 to 6 in
GeV−i. The component Ā1 ismultiplied by the complex sixth order
polynomial P1ðzÞ¼ eiϕ1Cð1þP

6
i¼1ciz

iÞ with z¼ ffiffiffiffiffi
s0

p −2mK .
The contribution Ā2, proportional to the function G1ðsþÞ where
the parameter r2 represents the coupling constant to the K̄0Kþ

state, is multiplied by the phase factor eiϕ2. For j ¼ 3, 4, 5 the
real parameters Pj renormalize the corresponding Āj. The same
parameters are also introduced for the Aj, j ¼ 1 to 5, in the
same way.

Parameters Values

C 0.84005
ϕ1 −3.4691 rad
c1 −1.7509
c2 1.2298
c3 0.23169
c4 −0.24359
c5 0.064156
c6 −0.0061211
r2 8.6409 GeV3=2

ϕ2 4.4632 rad
P3 1.1752
P4 0.38593
P5 0.29155
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projection distribution in the ϕ region has not been plotted
and that the χc0ð1PÞ signal has not been kept, the BABAR
distributions, in Fig. 7, have characteristics similar to those
of Belle.
For the total branching fraction we obtain BrthðB̄0 →

K0
SK

þK−Þ ¼ 1.325 × 10−5 which can be compared with
BrthðB0 → K0

SK
þK−Þ ¼ 1.328 × 10−5. The corresponding

sum of these two branching fractions is equal to
Br ¼ 2.653 × 10−5. Then the total CP asymmetry,

ACP ¼ BrðB̄0Þ − BrðB0Þ
BrðB̄0Þ þ BrðB0Þ ; ð62Þ

equals −0.11%. If one neglects the B0 − B̄0 transitions then
this asymmetry becomes ACP ¼ −0.17%.
The sum Brj of the integrated branching fractions for the

B̄0 and B0 decays into the K0
SK

þK− system are calculated

for the particular contributions of the modified Āj and Aj
terms. The Brj values and the ratios Rj ¼ Brj=Br are given
in Table V together with their sums for j ¼ 1 to 5. We see
that the j ¼ 1 term, with an S-wave-KþK− state, dominates
with a contribution of 83.0% of the total branching fraction.
It arises mainly from the f0ðKþK−ÞK0

S mode. The second
sizable contribution to Br, with 18.3% of the total, is the
j ¼ 3 term with the KþK− pair in P-wave. It is dominated
by ϕK0

S plus small ωK0
S and ρ

0K0
S modes. Then follows the

a�0 K
∓ mode with 6.2%, the ρ�K∓ with 0.15% and the

a�2 K
∓ with 0.11%. The total percentage sum is 107.7%

which indicates a small interference contribution.
The Rj results shown in Table V tell us that the

contribution to the amplitude with two kaons in isoscalar
S wave is very important. It is instructive to plot the
modulus of the modified Ā1ðs0Þ contribution, jĀF

1 j≡
jP1ðzÞĀ1ðs0Þj and to compare it to the modulus of
Ā1ðs0Þ, this is done in Fig. 8(a). The fit to the data requires

FIG. 6. The Dalitz-plot-projection fit (solid line) to the Belle [1] experimental data extracted from their Fig. 3: (a) the mðKþK−Þ
distribution, (b) the mðKþK−Þ projection near the ϕð1020Þ resonance, (c) the mðK0

SK
−Þ distribution and (d) that of the mðK0

SK
þÞ. The

resonance χc0ð1PÞ visible in the plot (a) at around 3.4 GeV has not been introduced in our amplitude. The two bumps in (a) correspond
to the ϕð1020Þ and f0ð1500Þ, respectively; the bump in (b) close to the threshold comes from the f0ð980Þ; the first bump in (c) and (d) is
due to the a0ð1450Þ; the two other ones in (c) and (d) are reflections of the ϕð1020Þ. Data are represented by tiny horizontal lines with
error bars.
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a reduction of jĀ1j below 2.5 GeVand to an increase above
which is done by jP1ðzÞj as seen in Fig. 8(b). Our strange
kaon form factor is too large in the energy range below
2.5 GeV and too small above. Besides this strange form
factor Γs�

2 ðs0Þ the B̄0 to K0 transition form factor FB̄0K̄0

0 ðs0Þ
enters the expression of Ā1 [Eq. (20)] and the product of

these two form factors is constrained by the data. The
FB̄0K̄0

0 ðs0Þ given by Eq. (17) and evaluated in Ref. [28] from
light cone sum rules is in good agreement with that recently
calculated in a fully relativistic lattice QCD approach [38].
This can be seen comparing the values given by the
parametrization (17) to those of the curve of Fig. 16 and
Table VI of Ref. [38].
The Dalitz-plot dependence of CP asymmetry in the

framework of a QCDF model for the B� → K�KþK− has
been compared to LHCb [15] and BABAR [2] data in
Ref. [16]. In a recent publication [39] the LHCb
Collaboration has reported measurement of CP asymme-
tries in charmless three-body decays of B�. They have
shown their distributions as a function of the three-body
phase space and have interpreted them as possibly arising
from rescattering and resonance interference effects.
For the B0 → K0

SK
þK− decays the CP asymmetry in the

Dalitz plot can be defined using Eqs. (54) and (56) as
follows:

ACPðs0; sþÞ ¼
d2BrðB̄0Þ
dsþds0

− d2BRðB0Þ
ds−ds0

d2BrðB̄0Þ
dsþds0

þ d2BRðB0Þ
ds−ds0

: ð63Þ

FIG. 7. As in Fig. 6 but for the BABAR [2] data extracted from their Fig. 17: (a) the mðKþK−Þ distribution, (b) the mðK0
SK

−Þ one and
(c) that of the mðK0

SK
þÞ. The χc0ð1PÞ signal is not visible in Fig. 17 of BABAR.

TABLE V. Sum Brj of the integrated branching fractions for B̄0

and B0 decays into the K0
SK

þK− for the different modified Āj

and Aj, their ratios Rj (in %) to the total branching fraction
Br ¼ 2.6516 × 10−5 and their sums for j ¼ 1 to 5.

Final state modes

j B̄0 B0

Contributing
resonances Brj Rjð%Þ

1 ½KþK−�0SK̄0 ½K−Kþ�0SK0 f0 2.20 × 10−5 83.0
2 ½K̄0Kþ�1SK− ½K0K−�1SKþ a�0 1.64 × 10−6 6.2
3 ½KþK−�0;1P K̄0 ½K−Kþ�0;IP K0 ϕþ ωþ ρ0 4.84 × 10−6 18.3
4 ½K̄0Kþ�1PK− ½K0K−�1PKþ ρ� 3.85 × 10−8 0.15
5 ½K̄0Kþ�1DK− ½K0K−�1DKþ a�2 2.87 × 10−8 0.11P

5
j¼1 2.86 × 10−5 107.7
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In a large part of the Dalitz plot the ACPðs0; sþÞ values are
rather small but there are some regions with m0 ≳ 1.7 GeV
where they can be sizable. For instance, in Fig. 9(a) we
show a plot of ACPðs0; sþÞ as a function of mþ for
m0 ¼ 3.5 GeV. Here we encounter large positive asym-
metry values. A small maximum at mþ ≃ 1.3 GeV can be
attributed to an influence of the resonance a2ð1320Þ present
in the two-kaon-D-wave contribution of the modified A5

term. The second higher maximum has no direct resonant
character. It can be related to an interplay of the two-kaon-
S-wave contributions of the modified A1 and A2 terms. For
other values of m0 and mþ, for example, as seen in
Fig. 9(b), at m0 ¼ 2 GeV and for 1.55 GeV≲mþ ≲
2.15 GeV a significant negative asymmetry is found while
for 1.4 GeV < mþ < 1.55 GeV the asymmetry is large
and positive. Also for m0 ¼ 4 GeV and in the whole range
of the kinematically allowed mþ values from 1 GeV to
3.4 GeV the CP asymmetry is large and positive for mþ

below 1.55 GeV and negative above. After integrations on
s0; sþ in the Dalitz plot and as noted below Eq. (62), the
total CP asymmetry, equal to −0.11%, is small.
The time dependent asymmetry ACPðΔtÞ is usually

written as

ACPðΔtÞ ¼ −C cosðΔmdΔtÞ þ S sinðΔmdΔtÞ; ð64Þ

where Δt is defined as the time interval between the decays
of the B0 and B̄0 mesons coming from the ϒð4SÞ state,
while C and S are coefficients which can depend on the
Dalitz plot variables like s0 and sþ. These coefficients can
be calculated as ratios of integrals over some parts of the
Dalitz plot, namely9 C ¼ −IC=D and S ¼ IS=D, where

FIG. 8. (a) Comparison between jĀ1ðs0Þj (Eq. (20), solid blue line) and jĀF
1 j≡ jP1ðzÞĀ1ðs0Þj (dashed red line) with z ¼ E − 2mK and

E ¼ ffiffiffiffiffi
s0

p
; (b) plot of jP1ðzÞj (Eq. (61), solid line).

FIG. 9. Asymmetry ACPðs0; sþÞ [Eq. (63)] as a function of mþ for: (a) m0 ¼ 3.5 GeV, (b) m0 ¼ 2 GeV. In plot (a), the a2ð1320Þþ,
present in the modified A5 contribution, could be responsible for the bump around 1.3 GeV. The maximum at ∼1.7 GeV can be related to
an interplay between the modified A1 and A2 terms where the two-kaon states are in S wave.

9See Eqs. (A14) to (A19).
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IC¼
Z

ds0dsþðjĀðs0;s−;sþÞj2− jAðs0;sþ;s−Þj2Þ; ð65Þ

D¼
Z

ds0dsþðjĀðs0;s−;sþÞj2þjAðs0;sþ;s−Þj2Þ; ð66Þ

and

IS¼2

Z
ds0dsþIm½e−2iβĀðs0;s−;sþÞA�ðs0;sþ;s−Þ�: ð67Þ

In Eq. (67) the angle β is that of the unitarity triangle [6].
One can see that, when the s0; sþ integration is performed
over the full Dalitz plot, the coefficient C is equal to the CP
asymmetry with a minus sign, C ¼ −ACP.
Using sinð2βÞ ¼ 0.699 [6] and integrating over sþ and

for three specific ranges of s0, we obtain the C and S values
given in Table VI. One notices a sign flip of the coefficient
S when going from the s0 range dominated by the ϕð1020Þ
meson contribution to the s0 range outside of ϕð1020Þ. The
change of the S sign is related to the presence of an
additional minus sign in the amplitude A3 with respect to
the corresponding Ā3 amplitude. The charge symmetry of
the P-wave KþK− amplitudes is responsible for that effect.
The numerical values of the time dependent CP-asymmetry
parameters are in qualitative agreement with the exper-
imental results of the BABAR Collaboration presented in
Fig. 18 of Ref. [2]. The S value in the ϕ region, 0.53, is
compatible with that of BABAR, 0.66� 0.17� 0.07, given
in Table XIII of Ref [2].

V. SUMMARY AND CONCLUDING REMARKS

In view of further amplitude analyses, in particular by
LHCb and Belle II Collaborations, we have derived a B0 →
K0

SK
þK− decay amplitude in a quasi-two-body QCDF

framework. Our derivation follows that developed for the
study of CP violation in the B� → πþπ−π� decays [19].
The dominant parts of the decay amplitude are calculated in
terms of kaon form factors or B0 to two kaons transition
functions which describe the final state two-body reso-
nances and their interferences. Unitarity constraints are
satisfied when two of the three kaons are in a scalar state.
The kaon form factors and transition functions entering this
amplitude are similar to those introduced in the Dalitz plot

studies of the D0 → K0
SK

þK− decays in a factorization
approach [18], the final kaon states being identical.
However, here, the larger phase space tests our model over
a wider energy range. The kaon-kaon interactions in the S,
P, and D waves are taken into account.
Starting from the effective weak decay Hamilto-

nian [22,23], a QCDF derivation of the full amplitude
within a quasi-two-body framework can be performed. The
different terms [see Eqs. (13)] appear as products of short
distance contributions, sums which depend on effective
Wilson coefficients [see Eq. (11)], times long distance ones
given by kaon form factors or parametrized with B̄0 to
K̄0Kþ transition functions. Some parts of the amplitude,
where the formation of the final KþK− takes place via an
implicit or explicit dd̄ quark pair, are expected to lead to
small contributions. We have neglected these OZI [20]
suppressed terms.
The dominant part of the full amplitude has five

components and our model reproduces well the Belle [1]
and BABAR [2] Collaborations data. With 13 strong
interaction free parameters modifying the five terms of
our amplitude, we fit the 422 observables consisting of the
total branching fraction together with the Dalitz-plot
projections of Belle and BABAR with a χ2 of 583.6 which
leads to a χ2=ndf of 1.43.
The largest contribution to the branching fraction, 83.0%

of the total as seen in Table V, comes from the modified
Ā1ðs0; s−; sþÞ and A1ðs0; sþ; s−Þ terms where the KþK−

pairs are in a scalar-isoscalar state [see the penguin
diagrams of Fig. 2(b)]. These terms are proportional to
the strange scalar-isoscalar form factor Γs

2ðs0Þ receiving a
large contribution from the f0ð980Þ, f0ð1370Þ and
f0ð1500Þ resonances (see Fig. 4). The dominance of the
f0-resonance contributions was also found in the data
analyses of the Belle [1] and BABAR [2] Collaborations.
The best fit is obtained if the Ā1ðs0; s−; sþÞ and

A1ðs0; sþ; s−Þ terms [Eqs. (20), (21)] are multiplied by
the phenomenological complex polynomial P1ðzÞ with z ¼ffiffiffiffiffi
s0

p − 2mK (see Eq. (61), Fig. 8(b) and Table IV). It leads
to a reduction of jĀ1j and jA1j below 2.5 GeV and to an
increase above [see Fig. 8(a)]. Within our approach, and
for a given B̄0 to K0 transition form factor FB̄0K̄0

0 ðs0Þ,
the fit to the B0 → K0

SK
þK− Belle [1] and BABAR [2]

data would require for the modulus of our strange kaon
form factor Γs

2ðs0Þ, a smaller (larger) value for
ffiffiffiffiffi
s0

p
below

(above) 2.5 GeV.
The next important mode, with a branching fraction

equal to 18.3% of the total is mainly the ϕ K0
S one plus

some small ωK0
S and ρK0

S arising from the modified
Ā3ðs0; s−; sþÞ and A3ðs0; sþ; s−Þ amplitudes. The dominant
part with the ϕð1020Þ contribution comes from the term
proportional to ws [Eq. (39)]. The parameters, for the
P-wave form factors FKþK−

s ðs0Þ and FKþK−
u ðs0Þ [Eqs. (34)

and (40)] have been determined in Ref. [37] using vector

TABLE VI. CP-asymmetry parameters C and S defined in
Eq. (64) and calculated from Eqs. (65), (66), and (67) integrated
over the full sþ range and over the specific s0 range.

ffiffiffiffiffi
s0

p
range (GeV) C ¼ −ACP (%) S

1.01 <
ffiffiffiffiffi
s0

p
< 1.03 −1.13 þ0.53ffiffiffiffiffi

s0
p

< 1.01 and
ffiffiffiffiffi
s0

p
> 1.03 0.43 −0.61

full s0 range 0.17 −0.42
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dominance, quark model assumptions and isospin sym-
metry. The best fit requires these Ā3 and A3 [Eqs. (41)
and (42)] contributions to be renormalized by a real
parameter P3 which is, however, close to 1 (see Table IV).
The modified terms Ā2ðs0; s−; sþÞ and A2ðs0; sþ; s−Þ

with two kaons in a S wave of isospin 1, have a branching
faction of 6.2% of the total. Their long distance part
depends upon the function G1ðs�Þ whose calculation,
given by Eqs. (104) to (111) of Ref. [18], is based on
the πη- and KK̄-channel model of the a0ð980Þ and
a0ð1450Þ resonances built in Refs. [34,35]. To obtain a
good fit, we found necessary to adjust for the G1ðsÞ
function the r2 coupling to the K̄0Kþ state and to multiply
the Ā2 and A2 terms, [Eqs. (27) and (28)] by the phase
factor eiϕ2 (see Table IV). The contributions of the a0
resonances were not introduced in the Belle [1] and
BABAR [2] Collaboration analyses.
The remaining amplitudes Ā4ðs0;s−;sþÞ andA4ðs0;sþ;s−Þ

(contributions of the ρð770Þ, ρð1450Þ, and ρð1700Þ
resonances and renormalized by the real parameter P4),
Ā5ðs0; s−; sþÞ and A5ðs0; s−; sþÞ (D-wave saturated by the
a2ð1320Þþ resonance and multiplied by the real parameter
P5) give small branching fractions of the order of 0.1%.
For KþK− effective masses above 1.7 GeV our model

predicts large CP asymmetries in the Dalitz plot, as can be
seen in Figs. 9(a) and 9(b). We have also calculated the
values of the time dependent CP-asymmetry parameters
and in the ϕð1020Þ region, the value of the S parameter,
0.53, agrees, within errors, with that obtained by BABAR
analysis [2].
The charmless three-body B0 → K0

SK
þK− decay data

provide information on the weak interactions and can also
be useful for better knowledge of the kaon-kaon strong
interactions. Based on our model one can build a para-
metrization that can be implemented in experimental Dalitz
plot analyses. Dalitz-plot amplitude analysis of several
charmless three-body B-meson decays can lead to a better
understanding on the origin of CP asymmetry.
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APPENDIX: B0-B̄0 MIXING AND
TIME-DEPENDENT DECAY RATE

The quantum mechanical formalism for neutral particle-
antiparticle oscillations and CP violation has been studied

and presented in the book of I. I. Bigi and A. I. Sanda [40]
(herafter cited as BS). Recent developments on the B0-B̄0

mixing can be found in the review by O. Schneider [41] in
the 2022 Review of Particle Physics [6]. In this appendix,
following BS we show how one can derive Eq. (3) of the
BABAR study of CP violation in Dalitz-plot analyses of the
charmless hadronic B0 → K0

SK
þK− decay [2]. We also

give the derivation of Eqs. (54), (56), and (64).

1. B0-B̄0 mixing

The expressions for the time evolution of B0 and B̄0

states are given by (see Eqs. (6.47) and (6.48) of BS)

jB0ðtÞi ¼ fþðtÞjB0ðtÞi þ q
p
f−ðtÞjB̄0ðtÞi;

jB̄0ðtÞi ¼ fþðtÞjB̄0ðtÞi þ p
q
f−ðtÞjB0ðtÞi ðA1Þ

with10

f�ðtÞ ¼
1

2
e−iMSte−

1
2
ΓStð1� e−iΔMB0 te−

1
2
ΔΓB0 tÞ: ðA2Þ

In Eq. (A2) ΔMB0 ≡ML−MS and ΔΓB0 ≡ ΓS −
ΓL ≪ ΓS þ ΓL, i. e. ΓS ≃ ΓL (see Eq. (11.2) of BS).
Here ML, ΓL and MS, ΓS correspond to the masses and
widths of the long-life and short-life B0 states, respectively.
The time-dependent differential decay rate can be written as

dΓ
dsþds0dt

¼ e−ΓB0 t

32ð2πÞ3m3
B0

GðtÞ
4τB0

; ðA3Þ

where τB0 equal to 1=ΓB0 is the neutral B meson lifetime.
Applying the BS master equations (11.15) to (11.22) one
obtains for the B0 → K0

SK
þK− decay (Eq. (11.58) of BS):

GðtÞ ¼ jAj2
�
1þ jρ̄j2 þ ð1 − jρ̄j2Þ cosðΔMB0tÞ

− 2Im

�
q
p
ĀA�

�
sinðΔMB0tÞ

�
; ðA4Þ

where A ¼ P
5
i¼1 Ai is the B0 → K0

SK
þK− decay amplitude

and (see Eq. (6.49) of BS)

ρ̄ ¼ Ā
A
¼ 1

ρ
; ðA5Þ

Ā being the B̄0 → K0
SK

−Kþ decay amplitude. For the
definition of p and q see, e.g., Eqs. (6.22) to (6.25) of
BS. In the B0 case one has (Eq. (11.45) of BS and Ref. [6]),

10ΔMB0 is denoted as Δmd and t as Δt in Sec. IV.
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q
p
¼ V�

tbVtd

VtbV�
td
≃ e−2iβ; ðA6Þ

where β is one of the angles of the CKM triangle. From
Eqs. (A4) and (A5) one gets

GðtÞ ¼ jAj2 þ jĀj2 þ ðjAj2 − jĀj2Þ cosðΔMB0tÞ
− 2Imðe−2iβĀA�Þ sinðΔMB0tÞ: ðA7Þ

Following Eqs. (A3) and (A7) the time dependent
double differential branching fraction of the B0 decay,
with Br ¼ Γ=ΓB0 and NBr ≡ ½32ð2πÞ3m3

B0ΓB0Þ�−1, reads
(with the replacement of t by Δt)

d2BrðB0Þ
dsþds0dΔt

¼ NBr
e−ΓB0 jΔtj

4τB0

½jAj2 þ jĀj2 þ ðjAj2 − jĀj2Þ

× cosðΔMB0ΔtÞ − 2Imðe−2iβĀA�Þ
× sinðΔMB0ΔtÞ� ðA8Þ

and that of the B̄0

d2BrðB0Þ
dsþds0dΔt

¼ NBr
e−ΓB0 jΔtj

4τB0

½jĀj2 þ jAj2 þ ðjĀj2 − jAj2Þ

× cosðΔMB0ΔtÞ þ 2Imðe−2iβĀA�Þ
× sinðΔMB0ΔtÞ� ðA9Þ

This shows the agreement of Eqs. (A8) and (A9) with
Eq. (3) of Ref. [2] for w ¼ 0. Integrating over the time from
minus to plus infinity and with,

Z þ∞

−∞
dΔt

e−ΓB0 jΔtj

4τB0

cosðΔMB0ΔtÞ¼ 1

2

1

ðΔMB0

ΓB0
Þ2þ1

; ðA10Þ

and

Z þ∞

−∞
dΔt

e−ΓB0 jΔtj

4τB0

sinðΔMB0ΔtÞ ¼ 0; ðA11Þ

one obtains from Eqs. (A8) and (A9)

d2BrðB0Þ
dsþds0

¼NBr½ð1−xÞjAðs0;sþ;s−Þj2þxjĀðs0;sþ;s−Þj2�;

ðA12Þ

and

d2BrðB̄0Þ
dsþds0

¼NBr½ð1−xÞjĀðs0;s−;sþÞj2þxjAðs0;s−;sþÞj2�;

ðA13Þ

where (introducing here the w dependence) x ¼
1
2
½1 − 1−2w

ðΔMB0=ΓB0 Þ2þ1
�. Equations (A12) and (A13) corre-

spond to Eqs. (56) and (54).

2. Time dependent asymmetry ACPðtÞ
Integrating over sþ and s0 and denoting by B̃r the total

branching fraction without B0-B̄0 mixing, one obtains from
Eqs. (A8) and (A9) for the B0 decay

BrB0ðΔtÞ ¼ e−ΓB0 jΔtj

2τB0

�
B̃rB0 þ B̃rB̄0 þ ðB̃rB0 − B̃rB̄0Þ

× cosðΔMB0ΔtÞ

− 2NBr

Z Z
Imðe−2iβĀA�Þ

× sinðΔMB0ΔtÞdsþds0
�
; ðA14Þ

and for the B̄0 decay

BrB̄0ðΔtÞ ¼ e−ΓB0 jΔtj

2τB0

�
B̃rB̄0 þ B̃rB0 þ ðB̃rB̄0 − B̃rB0Þ

× cosðΔMB0ΔtÞ

þ 2NBr

Z Z
Imðe−2iβĀA�Þ

× sinðΔMB0ΔtÞdsþds0
�
: ðA15Þ

The time dependent asymmetry ACPðΔtÞ defined as

ACPðΔtÞ ¼
BrB̄0ðΔtÞ − BrB0ðΔtÞ
BrB̄0ðΔtÞ þ BrB0ðΔtÞ ðA16Þ

is usually written as

ACPðΔtÞ ¼ −C cosðΔMB0ΔtÞ þ S sinðΔMB0ΔtÞ: ðA17Þ

From Eqs. (A14), (A15) one obtains11

C ¼ −
BrB̄0 − BrB0

BrB̄0 þ BrB0

¼ −ACP; ðA18Þ

and

S ¼ 2
R R

Imðe−2iβĀA�Þdsþds0
BrB̄0 þ BrB0

: ðA19Þ

Equations (A14) to (A19) are equivalent to Eqs. (64)
to (67).

11As seen from Eqs. (A12) and (A13) the B0 − B̄0 mixing
cancels when adding B0 and B̄0 branching fractions with mixing.

J.-P. DEDONDER et al. PHYS. REV. D 110, 013002 (2024)

013002-18



[1] Y. Nakahama et al. (Belle Collaboration), Measurement of
CP violating asymmetries in B0 → KþK−K0

S decays with a
time dependent Dalitz approach, Phys. Rev. D 82, 073011
(2010).

[2] J. P. Lees et al. (BABAR Collaboration), Study of CP
violation in Dalitz-plot analyses of B0 → KþK−K0

S, B
þ →

KþK−Kþ and Bþ → K0
SK

0
SK

þ, Phys. Rev. D 85, 112010
(2012).

[3] Thomas Grammatico, Measurement of the branching frac-
tions of B0 → K0

Sh
þhð0Þ− decays in LHCb, insights on the

CKM angle γ, and monitoring of the Scintillating Fibre
Tracker for the LHCb upgrade, Doctor of Philosophy
thesis, Sorbonne Université, January 2022, pdf available
on Google, its web access can be obtained with: NNT :
2022SORUS018.

[4] Emilie Bertholet, Eli Ben-Haim, Bhubanjyoti Bhattacharya,
Matthew Charles, and David London, Extraction of the
CKM phase γ using charmless three-body decays of B
mesons, Phys. Rev. D 99, 114011 (2019).

[5] I. Adachi et al. (Belle II Collaboration), Measurement of CP
asymmetries in B0 → ϕK0

S decays with Belle II, Phys. Rev.
D 108, 072012 (2023).

[6] R. L. Workman et al. (Particle Data Group), Review of
particle physics, Prog. Theor. Exp. Phys. 2022, 083C01
(2022).

[7] H-Y. Cheng, C-K. Chua, and A. Soni, Charmless three-body
decays of B mesons, Phys. Rev. D 76, 094006 (2007).

[8] A. Garmash et al. (Belle Collaboration), Study of B meson
decays to three-body charmless hadronic final states, Phys.
Rev. D 69, 012001 (2004).

[9] H.-Y. Cheng and C.-K. Chua, Branching fractions and direct
CP-violation in charmless three-body decays of B mesons,
Phys. Rev. D 88, 114014 (2013).

[10] The LHCb Collaboration, Updated branching fraction
measurements of B0

ðsÞ → K0
Sh

þh0− decays, J. High Energy
Phys. 11 (2017) 027.

[11] H.-Y. Cheng, C.-K. Chua, and Z.-Q. Zhang, Direct CP-
violation in charmless three-body decays of B mesons,
Phys. Rev. D 94, 094015 (2016).

[12] Z. T. Zou, Y. Li, Q. X. Li, and X. Liu, Resonant contribu-
tions to three-body B → KKK decays in perturbative QCD
approach, Eur. Phys. J. C 80, 394 (2020).

[13] S.-H. Zhou, X.-X. Hai, R.-H. Li, and C.-D. Lü, Analysis
of three-body charmless B-meson decays under the
factorization-assisted topological-amplitude approach,
Phys. Rev. D 107, 116023 (2023).

[14] A. Furman, R. Kamiński, L. Leśniak, and P. Żenczykowski,
Final state interactions in B� → KþK−K� decays, Phys.
Lett. B 699, 102 (2011).

[15] R. Aaij et al. (LHCb Collaboration), Measurement of CP
violation in the phase space of B� → K�πþπ− and B� →
K�KþK− decays, Phys. Rev. Lett. 111 (2013) 101801.

[16] L. Leśniak and P. Żenczykowski, Dalitz-plot dependence of
CP asymmetry in B� → K�KþK− decays, Phys. Lett. B
737, 201 (2014).

[17] G. Barton, Introduction to Dispersion Techniques in Field
Theory (Benjamin, New York, 1965), ISBN: 0805305904,
9780805305906.

[18] J.-P. Dedonder, R. R Kamiński, L. Leśniak, and B.
Loiseau, Dalitz plot studies of D0 → K0

SK
þK− decays

in a factorization approach, Phys. Rev. D 103, 114028
(2021).

[19] J.-P. Dedonder, A. Furman, R Kamiński, L. Leśniak, and
B. Loiseau, Final state interactions and CP violation in
B� → πþπ−π� decays, Acta Phys. Pol. B 42, 2013
(2011).

[20] S. Okubo, ϕ-meson and unitary symmetry model, Phys.
Lett. 5, 165 (1963); G. Zweig, An SU(3) model for strong
interaction symmetry and its breaking. Version 2, CERN
Report No. 8419 TH 412, 1964 (unpublished); J. Iizuka, A
systematics and phenomenology of meson family, Prog.
Theor. Phys. Suppl. 37-38, 21 (1966).

[21] D. Boito, J.-P. Dedonder, B. El-Bennich, R. Escribano, R.
Kamiński, L. Leśniak, and B. Loiseau, Parametrization of
three-body hadronic B- and D-decay amplitudes in terms of
analytic and unitary meson-meson form factors, Phys. Rev.
D 96, 113003 (2017).

[22] A. Ali, G. Kramer, and Cai-Dian Lü, Experimental tests of
factorization in charmless nonleptonic two-body B decays,
Phys. Rev. D 58, 094009 (1998).

[23] M. Beneke, G. Buchalla, M. Neubert, and C. T.
Sachrajda, QCD factorization in B → πK; ππ decays and
extraction of Wolfenstein parameters, Nucl. Phys. B606,
245 (2001).

[24] M. Tanabashi et al. (Particle Data Group), Review of
particle physics, Phys. Rev. D 98, 030001 (2018).

[25] M. Beneke and M. Neubert, QCD factorization for B → PP
and B → PV decays, Nucl. Phys. B675, 333 (2003).

[26] B. El-Bennich, O. Leitner, J.-P. Dedonder, and B. Loiseau,
Scalar meson f0ð980Þ in heavy-meson decays, Phys. Rev. D
79, 076004 (2009).

[27] C. S. Kim, J.-P. Lee, and S. Oh, Nonleptonic two-body
charmless B decays involving a tensor meson in the ISGW2
model, Phys. Rev. D 67, 014002 (2003).

[28] P. Ball and R. Zwicky, New results on B → π; K; η decay
form factors from light-cone sum rules, Phys. Rev. D 71,
014015 (2005).

[29] A. Furman, R. Kamiński, L. Leśniak, and B. Loiseau,
Long-distance effects and final state interactions in
B → ππK and B → KK̄K decays, Phys. Lett. B 622, 207
(2005).

[30] B. Moussallam, Nf dependence of the quark condensate
from a chiral sum rule, Eur. Phys. J. C 14, 111 (2000).

[31] B. Moussallam (private communication).
[32] N. I. Muskhelishvili, Singular Integral Equations (P.

Noordhoff Ltd., Gröningen, The Netherlands, 1953); R.
Omnès, On the solution of certain singular integral equa-
tions of quantum field theory, Nuovo Cimento 8, 316
(1958).

[33] R. Kamiński, L. Leśniak, and B. Loiseau, Scalar mesons
and multichannel amplitudes, Eur. Phys. J. C 9, 141
(1999).

[34] A. Furman and L. Leśniak, Coupled channel study of a0
resonances, Phys. Lett. B 538, 266 (2002).

[35] A. Furman and L. Leśniak, Properties of the a0 resonances,
Nucl. Phys. B, Proc. Suppl. 121, 127 (2003).

AMPLITUDE ANALYSIS OF B0 → K0
SK

þK− … PHYS. REV. D 110, 013002 (2024)

013002-19

https://doi.org/10.1103/PhysRevD.82.073011
https://doi.org/10.1103/PhysRevD.82.073011
https://doi.org/10.1103/PhysRevD.85.112010
https://doi.org/10.1103/PhysRevD.85.112010
https://doi.org/10.1103/PhysRevD.99.114011
https://doi.org/10.1103/PhysRevD.108.072012
https://doi.org/10.1103/PhysRevD.108.072012
https://doi.org/10.1093/ptep/ptac097
https://doi.org/10.1093/ptep/ptac097
https://doi.org/10.1103/PhysRevD.76.094006
https://doi.org/10.1103/PhysRevD.69.012001
https://doi.org/10.1103/PhysRevD.69.012001
https://doi.org/10.1103/PhysRevD.88.114014
https://doi.org/10.1007/JHEP11(2017)027
https://doi.org/10.1007/JHEP11(2017)027
https://doi.org/10.1103/PhysRevD.94.094015
https://doi.org/10.1140/epjc/s10052-020-7925-7
https://doi.org/10.1103/PhysRevD.107.116023
https://doi.org/10.1016/j.physletb.2011.03.065
https://doi.org/10.1016/j.physletb.2011.03.065
https://doi.org/10.1103/PhysRevLett.111.101801
https://doi.org/10.1016/j.physletb.2014.08.052
https://doi.org/10.1016/j.physletb.2014.08.052
https://doi.org/10.1103/PhysRevD.103.114028
https://doi.org/10.1103/PhysRevD.103.114028
https://doi.org/10.5506/APhysPolB.42.2013
https://doi.org/10.5506/APhysPolB.42.2013
https://doi.org/10.1016/S0375-9601(63)92548-9
https://doi.org/10.1016/S0375-9601(63)92548-9
https://doi.org/10.1143/PTPS.37.21
https://doi.org/10.1143/PTPS.37.21
https://doi.org/10.1103/PhysRevD.96.113003
https://doi.org/10.1103/PhysRevD.96.113003
https://doi.org/10.1103/PhysRevD.58.094009
https://doi.org/10.1016/S0550-3213(01)00251-6
https://doi.org/10.1016/S0550-3213(01)00251-6
https://doi.org/10.1103/PhysRevD.98.030001
https://doi.org/10.1016/j.nuclphysb.2003.09.026
https://doi.org/10.1103/PhysRevD.79.076004
https://doi.org/10.1103/PhysRevD.79.076004
https://doi.org/10.1103/PhysRevD.67.014002
https://doi.org/10.1103/PhysRevD.71.014015
https://doi.org/10.1103/PhysRevD.71.014015
https://doi.org/10.1016/j.physletb.2005.07.022
https://doi.org/10.1016/j.physletb.2005.07.022
https://doi.org/10.1007/s100520000303
https://doi.org/10.1007/BF02747746
https://doi.org/10.1007/BF02747746
https://doi.org/10.1007/s100530050414
https://doi.org/10.1007/s100530050414
https://doi.org/10.1016/S0370-2693(02)01998-6
https://doi.org/10.1016/S0920-5632(03)01827-9


[36] M. Albaladejo and B. Moussallam, Form factors of the
isoscalar scalar current and the ηπ phase shifts, Eur. Phys.
J. C 75, 488 (2015).

[37] C. Bruch, A. Khodjamirian, and J. H. Kühn, Modeling the
pion and kaon form factors in the timelike region, Eur. Phys.
J. C 39, 41 (2005).

[38] W. G. Parrott, C. Bouchard, and C. T. H. Davies (HPQCD
Collaboration), B → K and D → K form factors from fully
relativistic lattice QCD, Phys. Rev. D 107, 014510 (2023).

[39] R. Aaij et al. (LHCb Collaboration), Direct CP violation in
charmless three-body decays of B� mesons, Phys. Rev. D
108, 012008 (2023).

[40] I. I. Bigi and A. I. Sanda, CP Violation (Cambridge Uni-
versity Press, Cambridge, England, 2000).

[41] O. Schneider (EPFL), B0-B̄0 mixing, Particle Data Group
(.gov) https://pdg.lbl.gov/2023/reviews/rpp2022-rev-b-bar-
mixing.pdf.

J.-P. DEDONDER et al. PHYS. REV. D 110, 013002 (2024)

013002-20

https://doi.org/10.1140/epjc/s10052-015-3715-z
https://doi.org/10.1140/epjc/s10052-015-3715-z
https://doi.org/10.1140/epjc/s2004-02064-3
https://doi.org/10.1140/epjc/s2004-02064-3
https://doi.org/10.1103/PhysRevD.107.014510
https://doi.org/10.1103/PhysRevD.108.012008
https://doi.org/10.1103/PhysRevD.108.012008
https://pdg.lbl.gov/2023/reviews/rpp2022-rev-b-bar-mixing.pdf
https://pdg.lbl.gov/2023/reviews/rpp2022-rev-b-bar-mixing.pdf
https://pdg.lbl.gov/2023/reviews/rpp2022-rev-b-bar-mixing.pdf
https://pdg.lbl.gov/2023/reviews/rpp2022-rev-b-bar-mixing.pdf
https://pdg.lbl.gov/2023/reviews/rpp2022-rev-b-bar-mixing.pdf

