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Derivation of the string equation of motion in general relativity*
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It is shown that the equation of motion for a Nambu string in curved space can be derived from the

gravitational field equation following the method of Einstein, Infeld, and Hoffmann.

INTRODUCTION

A great conceptual simplification was achieved
in general relativity when Einstein, Infeld, and
Hoffmann succeeded in deriving the geodesic equa-
tion of motion for a world-line singularity of the
field from Einstein's gravitational equations for
the metric. ' To this end the energy-momentum
tensor T"" in the right-hand side of the field
equations
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by Nambu' as a generalization of Eq. (6). The
equation defining the world sheet is taken to be

is the line element.
When a string moves it traces a two-dimensional

world sheet instead of a world line generated by
the motion of a point mass. The equation of mo-
tion for the string was postulated to be

is taken as
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and
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where where

= ed(x' - z'(s))5(x' —z'(s))
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is the mass density which is infinite on the world
line z =z (s) of the singularity and zero else-
where. Because of the scalar density character
of the 6 function the left-hand side of Eq. (2} is a
tensor density. From Eq. (1) follows the conser-
vation law

The string equation of motion was further studied
by many authors' ' in connection with duality.
The purpose of this note is to show that the world-
sheet equation (8) can be derived in general rela-
tivity following Einstein's method for the geodesic
world line.

MOTION OF A STRING IN A GRAVITATIONAL FIELD

or

(4)

Integration of (4) over a tubular space-time region
gives, in the test-particle approximation,

d'zi'
q

dz dz

To find the general-relativistic equation of mo-
tion of a string we start with the conservation law
in its form of Eq. (4). We now take the energy-
momentum tensor of the string, which is only
nonzero on the world sheet of the string. The
metric g„„represents the external gravitational
field in which the test string is moving. Follow-
ing Kalb and Hamond' we define the energy-mo-
mentum tensor of the string as

which is nothing but the geodesic equation,

dz" dz" i/2

ds —5 tv ds =0
ds ds
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where

where

dS =g)ivy dX is the mass density of the string, which is only
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nonzero on the world sheet of the string. a is
defined by Eq. {10), with w and $ chosen in such a
way' 4 that

u" u„+ vuvs =0, v" uu=0

In accordance with the test-string approximation,
we have made two assumptions. Firstly, we as-
sumed that the string is very far away from the
matter which creates the gratitational field g„„.
Secondly, we have not included the gravitational
field of the string itself into g„„.

In order to make the derivation simpler, we con-
sider the coordinate transformation

x" = f"(5'),

where

g =(&, ru', x', E) =+ (x"). (15)

We assume that the inverse function I' (x"}exists.
The additional coordinates cu' and ~' are defined in
such a way that they are zero on the world sheet.
Then we can write

Eq. (16). The surface S in Eq. (18), which covers
V„can be chosen in such a way that S=S, +S, + S3
+S4+S, +S, and T"' vanishes on the surfaces S,
and S,. Then we define the remaining surfaces as
follows:

~gT ""= H"" d"—(~) .
1
J (20)

This can be obtained easily by using the identity

d4x= Jd4],

where J is the determinant of the transformation
matrix Sx "/St' A"„. Then after some simple
manipulations we find

7
y

i s the equation of S„with dS„= -u&dE dkL) 'du';
7 =&2 is the equation of S„with dS„=u„d$ de'd~';
$ = (, is the equation of S„with dS„=v„dT de'de',
E = $, is the equation of S„with dS„= -v„dT ~'d~'.

The energy-momentum tensor in Eq. (16) can
also be written as

z"(7, E) = "(~, $, (u) 0~' (o) )d'cu = "(7, (, 0, 0), I v B
dT — ' —u d$

B7 f J
where

The energy-momentum tensor in Eq. (12) can be
written as' where

B
dE — —v "d7,B(, J {21)

4-gT"" = FP" (r, ])Ei"(x"—f"(T, $, 0, 0))d&df

Q' =u u„= -v"v,

Combining Eqs. (19) and (21) we get

(22)

~'(~, ()&"(x" —f"(7, h, ~))~"(~)d'h,

where

ma
rrpv ~ + n p v p v
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d ( = dw d$ dc@ 'd(u' .

Now let us go back to Eq. (4) and write it as

I +J =0,

where

B„(v'-gT"")d4x = —gT""dS„,

(16)

(18)

Now we complete the determination of the functions
f"($ ) in Eq. (14) by choosing J = P' to obtain the
equation of motion of a string in curved space-
time

B2z~
+ p a8

B,2
—B(. 'F 8&

The form {23}in a general coordinate system is
due to Ramond. 7

Another way of obtaining the same result is
through the use of the variational principle. To
this end we take Eq. (8) and vary with respect to
7' and g, that is, 6 = 5, + 6&. It remains to show
that this action is the one for the string singulari-
ties in curved space-time. In general relativity,
to obtain the field equations (1) we use the action

'2
I1 (X

gj

For the last equality we used the form of I'"" in

v'-gR d'x, 8 =+g„„R""=-~T"„

and take the variation with respect to the metric.
This same action should also be used to obtain the
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equation of motion of the string singularities. Us-
ing the field equations, we can also write the action
I as

I =-~ ~gT"„d'x.
Equation (16) gives

II "q(T, E)d7 dg .
orld sheet

(24)

"„(y',.~, y" ")II dy', {25}

where H"'(y', . . . , y"") is s symmetric tensor
which is defined on the (n+ 1)-dimensional volume,
and

n+1
a II dy'

4=E

represents the (n+ 1)-dimensional invariant vol-
ume element. For the values of n =0, 1, 2, 3, we

obtain the actions for a world line, a world sheet,
a world 3-volume, and the world 4-volume, re-
spectively,

Finally, we would like to add a remark on the
decomposition of the energy-momentum tensor T"'

From the invariance of I under general coordinate
transformations in 7 and ( the integrand in Eq.
(24) can only be the differential area element on

the world sheet. In general, for an n-dimensional
body which traces an (n+1)-dimensional world
volume in space-time, Eq. (24) becomes

n + ].

which includes contributions from electrically
neutral matter and neutral fields other than the
gravitational field. In general, T"", which has
ten independent components, can be written as
the sum of the energy-momentum tensor of a per-
fect fluid (which has five independent components)
and the energy-momentum (Maxwell) tensor as-
sociated with an antisymmetrical tensor field,
which depends on five independent components'
since the antisymmetrical tensor is only defined
up to a duality rotation. Hence the energy-mo-
mentum tensor of neutral matter, confined in a
space-time region, can be written as

T""= T"' + T,"' +ag"',

where T &" is the energy-momentum tensor due to
point mass particles of the type given in Eq. (2),
T,"" is the energy-momentum tensor of a test
string, given by Eq. {12), and 8 is like a "bag"
term. ' In the most general expression for
charged matter we would also need an electro-
magnetic contribution in the form of a traceless
Maxwell tensor of electric type in contrast to the
string tensor which is of magnetic type. The two

types of Maxwell tensors add up to the most gen-
eral energy-momentum tensor associated with an
antisymmetrical tensor field.
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