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Bethe-Salpeter equation for nucleon-nucleon scattering: Matrix Pale apyroximants. IP
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The matrix Pade approximants introduced in a previous paper are extended to include "off-shell"

effects. The [1/1] Fade approximant becomes very accurate with the addition of only a few "off-shell"

states.

I. INTRODUCTION

What we develop in this paper is a method ap-
plicable to the summation of the series resulting
from quantum field theory and powerful enough to
sum the series resulting from iterating the Bethe-
Salpeter equation in the ladder approximation at
the first level of approximation. Earlier versions'
of the method, which have already been applied
to quantum field theory, ' 4 were not powerful
enough to sum the ladder graphs at the first level
of approximation. The required extension is so
slight, however, that the field-theory calculations
will not require much more computational effort
to take it into account.

Bessis, who originally proposed the idea which
we pursue in this paper, calls the sort of Pads
approximants to which we refer here "operator
Pade approximants. " Since Bessis' has reviewed
these approximants, since we have published a
paper' about the Bethe-Salpeter equation, since
we have published a paper' about the application
of matrix Pade approximants to the Bethe-Salpeter
equation, and since this paper constitutes an ad-
dendum to the last paper, introductory material
need not be repeated.

We extend Eq. (8) of Ref. 1 to read

(tan5);, = —p( p;, p„, a;; p„p„,o.;) .E

n; has the range 1-4, and the p;, p„are picked
out of the continuum of values lying between 0 and
~ or Oi to ~i, respectively. For p & p, p„
=E —E(p, ), which is real rather than imaginary,
is a possible choice, and one must use the Q's
appropriate to this choice (see Ref. 6 for full de-
tails about the Bethe-Salpeter amplitude Q). In

Ref. 1 we took

values and only the spin and energy-spin variables
allowed to take different values in such a way as
to define a tangent matrix or operator. With this
choice, we always had P, =0= E —E(P), so that
only one part of the Bethe-Salpeter amplitude was
used. Now we propose to allow the momenta to
take different values as well. By taking into ac-
count "off-shell" effects in this way, we hope to
find that the sequence of Pade approximants con-
verges much faster. But we find more than we
hope: By enlarging the size of the matrices only

a. little the [1/I] Pads approximant becomes very
accurate.

i=2

i=3
i=4

p=p, po=0,

p =p, p0=0

p=p, p =0,

t) = 2382.2049, p, = i1518, n = 1, (3)

II. MINIMAL ENLARGEMENT OF THE MATRICES

The choice of the off-shell states is completely
arbitrary. In all probability, no matter what one
chooses the sequence of [N/N] Pade approximants
will converge. The best choice is the one with
fewest off-shell states, so that the [1/1] Pads
approximant is accurate for, say, g'/4m &20. One
expects that, because of the singular nature of the
Bethe-Salpeter equation, a few states of high mo-
menta will have to be chosen. We start with such
a choice in this section, but we find the [1/1] ac-
curate only for g'/4v &9. In Sec. III we try adding
some intermediate states, and find accuracy for
g'/4m &20; and in Sec. IV we try reducing the num-
ber of intermediate states while retaining accu»-
cy. In this way we arrive at what we believe to be
a near-optimal choice of states.

We choose

i =1, p=p,
i=2, p=p,

pa=0, e =1,
po=0 y

e =2
i = 6, p = 2382.2049,

i = 7, p = 2382.2049,

Po=il518, n =3,

po= i1518, n =4,

i = 5, p = 2382.2049, p = i1518, n = 2,

i=4, p=p, p =0, a=4,

that is, all momenta were assigned their physical
where, since E„b= 100 MeV, P =216.56408, and

all momenta are in MeV.
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The tangent of the phase shift,

tan5 = (tan5)„,

calculated from the [1/1] Padd approximant, is
plotted in Fig. 1, and the result may be compared
with the exact result as read from the curve
marked 8 in Fig. 1 of Ref. 1. The agreement is
good for ~g'/4v~ &9 and very much better than the
[1/1] results reported in Ref. 1. The first and
second Born approximations from which the [1/1]
approximant is calculated are tabulated in Table I.

III. ENLARGEMENT OF THE MATRICES

We choose

i = 1-3, p= p, p, =0, n =1-3,
4 7 tI 433 128 16 po i36 911 285 0 1 4

i = 8-11, p = 433.128 16, po = i181.878 96, n = 1-4,
i = 12-15, p = 2382.2049, po=i12. 545 455, a = 1-4,
i = 16-19, p= 2382.2049, p, =i138, a = 1-4,
i = 20-23, p= 2382.2049, p, =i1518, 0. = 1-4 .

the field-theory calculations require so much time,
we seek an intermediate number of states result-
ing in good accuracy.

IV. INTERMEDIATE ENLARGEMENTS

i =1-3,
i =4-7,
i =8-11,

p=p, p0=0, a =1-3,
p=433 128 16 $0=0 A: 1 4

p = 2382.2049, po = i1518, o. = 1-4 .

We choose

i =1-3, p=p, po=0, a=1

i = 4-7, p = 433.128 16, po = i 1518 2
a = 1-4,

i = 8-11, p =2382.2049, pa= i1518, a = 1-4.
This choice gives a result almost identical to the
result given by the choice Eq. (3), so that nothing
has been gained by putting in the four additional
states.

Therefore, we choose

The [1/1) Padd approximant is exact, as might
be expected with such a large set of states. Since

TABLE I. First and second Born approximations to
{tan6)o for the minimal enlargement of the set of basis
states. E„.p -—100 MeV. Compare to a similar table in
Ref. 1. These matrices are enlargements of those in
Ref. 1.

2
I

asIb
oSb g

T «,) =-O.O426S,

T ii~4 = -0.090 87,

T i,') =O.O,

Z' 2'1 = -0.1958,

T") =O.O

T ~gi) = 0.008 815,

T 44
= -0.7164,

T 47 =0.0,(t)

T )7 =0.0,(g)

T",,' = 2.69S.

T (2
——-2.607,(i)

T () = -0.1958,

T 22
= -0.042 63,

T 25
——-0.090 87,(f)

T",,) =1.O5O,

T (',) =O.O6439,

T ~4~) = -3.909,

T gg)
——-0.7164,

T 6i) =4.404,

T (',) =-O.2611,

T (6
——-0.1830,

T 1' ——0.2611,

T 26
——().1830,

T Ii) = -0.008815,
T(i) 0 0

T 46)
——-0.3989,

T (,~~& =o.3989,

T 67 =Os(t)

-2 1 I
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FIG. 1. Tan6( So} at E],& —-100 MeV calculated from
the [1/lj Pade approximant. Curve a results from the
choice of states shown in Eq. (3} and the first and second
Born elements given in Table I. Curve b results from
the choice of states shown in Eq. (5}. Either result
should be compared with the curve marked 8 in Fig. 1 of
Ref. 1, or the curve marked 19 in Fig. 2 of Ref. 1, either
of these being the exact result.

T(2) 0 01038,

T") =0 046 39

T (", =O.O2O56,

T 'g =O.1839,

T 27
——-0.020 56,~ (2)

T N = 0.015 36,

T I = 0.5048,

T(41 =0.042 85,

T g = -0.042 85,

T pp
——0.1213.

T",2) =O.O7866,

T"' =O O7392,

T (p =0.6027,

T I =O.4O24,

T g~ = —0.033 57,

T (g26) ——-0.002 137,

T",) = O.4336,

T $g
——]..46].,

T 66
——-0.342 7,

T") =O.OO84OS,

Tip =0.046 80,

T 23 0 094 34,

T",,' =O.2S5S,

T ) =0 007504

T gp
——-0.007 359,

T I =0.080 83,

T "t' =0.1g5g,

T (',) = -O.4645,
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Now the improvement is substantial, and the re-
sult, also plotted in Fig. 1, is very similar to
the exact result for ~g'/4w~ &20, and we conclude
that such a choice gives the best results with a
minimum number of additional states.

V. SOME DETAILS OF THE CALCULATION

Most details are exactly as in Ref. 5 and 6. The
details to be coped with arise from the Wick rota-
tion, the symmetry in P, which exists for two iden-
tical particles, and the desire to have real sym-

metric matrices. The Bethe-Salpeter is extended
to read

1
p = +K+ —2KSQ,

where the minus sign in +K is used for
K( P, P„&,q, iq4, 4) and K(P, P„4,q, iq4, 4), where
P, is either real [E —E(P)] or imaginary (iP, ). A
real symmetric tangent matrix results with these
real, symmetric K's (again, q, may be real
[E —E(q)] or imaginary (iq„)):

K(p, fp~, a, q, q„b) = —,'[G( p, ip„a, q, q„b)+G( p, ip„a, q, —q„b)],
K( p, E —E( p), a, q, fq~, b) = ReG( p, E —E ( p), a, q, iq„b),
K(p, p„a, q, iq„4) = Re[-iG(p, p„a, q, fq„4)+iG{p, p„a,q, —iq„4)),
K(q, iq„4,p, p„a) = —,'[iG(q, iq„4, p, p„a)+iG(q, iq„4, p, p„a)],
K( p, E —E( p), a, q, E —E(q), b) = —,'[G{p, E E( p), a, q, E —E(q), b) + G( p, E —E(p), a, q —[E —E(q) J, b)],
K(p, E E(p), 4, q, q„a) = [G( p, E E(p), 4, q, q„)aG+(p, E E(p), 4, q, q„a)],
K(p, &p4 4, q, &q4, 4)=k[G(p &b4, 4 q &q4, 4) —G(p, &&4 4 q, —&q4 4)J,

K( P, E —E( P), 4, q, i q„4)=;lm [G( P, E E(P), 4, q,—iq„4) —G( P, E E( P), 4, q, —iq„4) J,

K( p, E E(p), 4, q,-E-E(q), 4) =-'[G{p, E-E(p), 4, q, E E(q), 4) -G-(p, E-E(l ), 4, q, —[E-E(q)],4)1,
K( p, p„a,q, E —E(q), 4) = —,[G( p, p„a,q, E E(q), 4) —G—( p, p„a, q, [E —E(q) J, 4)],
K( P, iP„4,q, E E(q ), 4) = —,'i[G—( P, iP„4,q, E —E(q), 4) —G( P, i P„4,q, —[E —E{q) J, 4)] .

Also,

q~$ 1 1

VI. CONCLUSIONS

What we have given are sets of states [in Eqs.
(3), (4), and (5)) chosen so that the [1/1] matrix
Pads approximant solves the Bethe-Salpeter equa-
tion accurately. The field-theory calculations
(Refs. 2, 3, and 4) may be extended without any
modification to take account of these states. Vfe

have also given the rules for calculating a real,
symmetric tangent matrix from a Feynman graph
in Eqs. (6) and (f). Thus we hope that we have
made the idea of Bessis which he reviews in Ref.
5 more concrete and more readily applicable to the
field theory of nucleon-nucleon scattering.

It is important to note that the two-rung ladder
graph from which the [1/1] Pade approximant is
calculated is gotten" by iterating the Bethe-Sal-
peter equation using certain finite meshes. When
we refer to an "exact" solution of the Bethe-Sal-
peter equation, we refer to these same finite
meshes. The use of finite meshes reduces the
high-momentum singularity of the Bethe-Salpeter
equation, but it is hoped that actual field theory is
not so singular, not even so singular as the Bethe-
Salpeter equation with the finite but very fine
meshes which we use.

*Work performed under the auspices of the U. S. Atomic
Energy Commission.
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