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Conserved vectors in scalar-tensor gravitational theories
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Two recently derived expressions for the Brans-Dicke scalar-tensor analog of Komar's conserved vector
density are compared, and it is shown that they give different results for the total energy of the
scalar-tensor Schwarzschild universe.

In a recent paper, ' Pavelle derived a conserved
Komar-type' vector for the Brans-Dicke' (BD)
scalar-tensor (ST) theory H.e applied variational
techniques to the term v-g PR in the BD Lagrangian
to arrive at the expression'

v//) =
s 444. s —24 o4)~'"' '~;/

The term —s'-genug"Q. ,p., /Q in the BD Lagrangian
was not included in his considerations since its
associated conserved vector is identically zero.

Using an approach which parallels that used by
Komar in general relativity (GH), the author de-
rived' a Komar-type conserved vector for a gen-
eral ST theory which reduced, in the BD case, to

In terms of descriptors the above become Killing's
equations

(4;J + (Jii 0 (6)

and the solutions of these equations are symmetry-
transformation descriptors.

When considering ST gravitational fields, it
would seem appropriate to define symmetry trans-
formations as those transformations under which
both the metric tensor and the scalar field, (IF),

are form-invariant. The symmetry conditions
would then be'

The above expressions can be shown to be re-
lated as follows:

1 (~} = 1'(td) + 3~5'dt/" & 0'~;d

In the QR limit, fIt)- const, both V(~) and
duce to Komar's conserved vector.

Since both vectors satisfy V.'; = 0, they
used to form integral conservation laws.
lated gravitating systems, application of
theorem shows that the integrals

P(d)= PdS;= f V'dS,

V(H) re-j

can be
For iso-

Qauss's

(4)

are independent of the open timelike hypersurface
over which they are evaluated and are thus con-
served quantities. The identity of these conserved
quantities is determined by the (' used to form
V'. The (' are taken to be descriptors of symmetry
transformations for the gravitational field being
considered, and a given $' can be said to generate
the conserved quantity corresponding to the trans-
formation it describes.

In QR, the symmetry transformations of a
given gravitational field are determined by consid-
ering the action of a general infinitesimal coordin-
ate transformation x' = x' + E,

' on the metric tensor
g;, . A symmetry transformation is defined as
one in which the transformed metric, g;&, has the
same functional form as the original metric,

In terms of descriptors, these conditions become

Q. ;(' = 0.
We now consider the BD gravitational field out-

side of a spherically symmetric distribution of
matter' expressed in isotropic coordinates:

g =, k = 1(C+ 1)' —C(1 ——.tdC)ji/
1+ B/r

B/r (2/& I('X -c - 1)

g„= -(1+B/r)d

2
g2 =&g

g„= r sin 6)g»,2 ' 2

Eg'„= e5,' (e«1), (1.0)

the timelike translation des criptor. By analogy
with symmetry-conservation laws in flat space-
time, we would expect that 5', , when used in Eq.

B/r c/ss' '1+B/r
where B, C, P„and (d are constants. It is readily
found, by application of (8), that one of the sym-
metry descriptors for this field is

960



CONSERVED VECTORS IN SCALAR-TENSOR GRAVITATIONAL. . .

(4) with a suitable V', would generate the total
energy or inertial mass of the system.

Using V&'„& and V(&,) in (4), we find that 50 gen-
erates the following conserved quantities (see the
Appendix for details and the significance of the
prime notation):

P(„'&(5O) = 2B &(&c 4(l+ —,'C)/k =M~(„)c',

P('p) (5O ) = 2B&t&oc'(I —C)/&& = M&(r) c'.
(11)

(12)

g„= —1+—
2

2 2g33rsin&g»

The gravitational mass of the system is determined
by comparing the above expression for gpp with the
form taken in the Newtonian approximation

go, = 1+ 24 N,„„,.= 1 —2G,Mc/rc'.

Thus, Mc = 2Bc'/&&G, . Using this fact and the de-
finition of G„

3+ 2A

we find

Equation (11) is the total energy expression ob-
tained by Ohanian' and the author' using other
techniques.

The expressions (11) and (12) can be related to
the gravitational mass of the system by noting that
in the asymptotic region (r -~) the gravitational
field becomes

g«= 1 —4B/ar,

and the WEP does not hold, as has been pointed
out elsewhere. "

APPENDIX

= t-'. (e(., , —20, (.)g "'"1,,

t'ai]

V(H) = U(H);g

(Al)

(A2)

the volume integral (4) can be transformed, by
Gauss's law, into a surface integral,

P= V'dS; = U ".,dS; = ~ U "dS), . (A3

If V is a timelike hypersurface, then

P= V'dS;= 7 dSp= U' dSp, ,
Y V S

(A4)

where S is a surface at spatial infinity, and we
have used dS, , = -dS».

As pointed out previously, ' expression (A4) does
not have dimensions appropriate to total energy,
and the proper expression should be

CP' = —P.
8m

(A5)

If we take S to be a sphere of radius R- ~,

dSpy = R sinH d&dQ

= R'dA,

dSp2 —dSp, —0 )

and

Since both V(~) and V('„) are derivable from two-
index superpotentials,

V(p) = U(»
I:i il

4+ 2&
P&'„)(50) = Moc' (1+-,'C) (14)

4+ 2(u
P(p)(5,') =Mcc' (1-C) (15)

In the weak field case, C —-1/(2+ &d), and

P&'&() (5o)™cc
P&p& (5,') -Mcc'[I + 2/(2 + 2&a&)] .

(16) -g"(y('), —r'„0 ] g' Q'dA

(A6)

If expression (11) is used for the total energy of
the system, the weak principle of equivalence
(WEP) is satisfied in the limit of weak gravitation-
al fields, while if expression (12) is used the WEP
is violated. Thus, P&~&(5'o) cannot be considered a
satisfactory total energy expression.

It should be noted that, in the general case,

Letting E,
' = 5p' and using (13) for the fields in the

asymptotic region, we find

4
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A similar analysis yields

C4
PI (gs ) U [io]R2dA

S

(
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S

lgOb Oglb g2dA
S

,g"
,

24-, h'g" 0(-',&g" + 24 ~&'g")R'dA
S
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(A8)
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