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We present new Faddeev-type equations for the three-body problem. Although obtained from the

rigorous Faddeev theory, they only require two-body bound-state wave functions and half-off-shell

transition amplitudes as input. In addition, their "effective potentials" are independent of the three-body

energy, and can easily be made real after an angular momentum decomposition. The equations are
formulated in terms of physical transition amplitudes for three-body processes, except that in the

breakup case the partial-wave amplitudes differ from the corresponding full amplitudes by a Watson
final-state interaction factor.

I. INTRODUCTION

The formal simplicity and transparency of the
abstract formulation of scattering theory is well
appreciated, and on this level the theory has been
developed in considerable detail not only in the
two body case but also for systems with three or
more par tic le s.

However, a more detailed study of scattering
theory requires the introduction of a basis in the
Hilbert space, in terms of which the abstract op-
erators and state vectors are to be represented.

In two-body scattering theory, the only natural
basis is the eigenstates of the free Hamiltonian

k„ i.e., the plane-wave basis gp)j. When ex-
pressing the outgoing-wave scattering state vector
] y&) in such a basis, y&(p) =(pjg&), one is natur-
ally led to a representation in terms of a less
singular amplitude,

where P =k'/2g, and where t(p, k, k'+ i0} is just
the plane-wave matrix element of the transition
operator t(z) [its on-shell value, i.e. , the residue
at the scattering pole P' =k' in (1.1), yields the

physical transition amplitude].
In three-body scattering theory the situation is

more complicated. Also in this case, a plane-
wave representation (corresponding to the eigen-
states [p q) of H, } is natural. A detailed analysis
of the singularity structure of such a representa-
tion for the three-body wave function (p qj4") has
been carried out by Faddeev, ' and leads to an ex-
pression similar to (1.1), but now in terms of a
pair of amplitudes Xz„and Qa„(described in Ap-
pendix A). Just as in the two-body case, these
amplitudes are closely related to the physical
transition amplitudes. Qne can then, of course,
consider the Faddeev equations these amplitudes
satisfy, i.e., a three-body counterpart of the Lipp-
mann-Schwinger equation for the two-body transi-

tion amplitude; these equations have recently been
advocated by Osborn and Kowalski. '

However, in the three-body case other natural
bases are also available, namely the complete
sets of channel eigenstates ] ~ pal 8);

~ p &g= )}of
tl qg

the channel Hamiltonians Il~ = II, ~ VB; IS=1, 2, 3.'
In this paper we consider the expansion of the

three-body Faddeev wave-function components in
such a basis. We show that this representation is
actually more natural than the plane-wave repre-
sentation mentioned before, and leads to a con-
siderably simplified formulation of the three-body
theory.

This approach leads to a new pair of amplitudes
X~ and 58, which represent the nonsingular
parts of the three-body wave function in a simpler
way than the pair X8 and 98 do. The main ad-
vantage of this formulation, however, lies in the
fact that the integral equations for the new set of
amplitudes X and 5 are significantly simpler in
structure: Their effective potentials are indepen-
dent of the three-body energy, and they only re-
quire two-body half -on-shell transition amplitudes
and bound-state wave functions as input. Addition-
al convenient features become apparent after an
angular momentum decomposition: By a simple
redefinition of the partial-wave components of the
amplitude g, the effective potentials can be made
real, and the breakup scattering amplitude is seen
to exhibit explicitly a Watson final-state interac-
tion factor in each channel.

The reasons for these simplifications can be
physically understood as follows: Much of the
complicated structure of the plane-wave projec-
tions of the three-body wave function is not due to
true three-body dynamics, but is simply a reflec-
tion of the "spectator" two-body channel dynamics.
By considering these plane-wave projections, the
channel dynamics are mixed with the true three-
body dynamics in a complicated way. If, however,
we expand each Faddeev component of the full
wave function into the complete set of eigenfunc-
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tions of the spectator Hamiltonian in its ozon chan-
nel, the two-body channel dynamics are automati-
cally treated in a natural way by these spectator
complete sets; as a consequence, the three-body
entities one is left to consider when solving the
three-body problem get appreciably simplified.

In Sec. II we obtain the half-off-shell amplitudes
X and 8 from the projections of the Faddeev com-
ponents into the channel eigenstates. We also de-
fine the corresponding fully-off -shell amplitudes,
and derive the equations they satisfy in Sec. III.
In Sec. IV we consider the angular momentum de-
composition of these equations in the S-wave case,
and show how the g amplitude can be redefined so
as to produce equations with real effective poten-
tials. The amplitudes for processes starting from
three free particles are briefly considered in Sec.
V. Finally, in Sec. VI we give an example of the
kind of unitarity relations our new amplitudes sat-
isfy; the general operator unitarity relation is giv-
en in Appendix B.

II. THE AMPLITUDES Kp, AND Kp

In this section we restrict ourselves to scatter-
ing processes starting from an initial state of one
free particle and a two-body bound state. For this
case we consider the Faddeev equation for the p
component of the three-body wave function:

[ 0s& &)=5~[p~'~p„) —G (E+ i0) ts(E+ i0) g le,'& )),

sss, (Sss' Ss'";&' 'SSI =(Sssl' rs 2 rs(~s)y~B

&s ~rssrss'rss";~ "ssI=(sssr= "s 2 'rss.
&)qB 7~8

In (2.3),

ps =ps'/2ns,

(2.3)

and

&s =&s /2&s

with

ms(m„+ m„)
Pl8 fl'l~+ m 8+Pl

and

E =p~'"/2p, —K '. Here and below we consider
only one bound state per channel. Defining the
complete set of channel eigenstates in channel P
by opsPKs), )ps/~ )), where (gq ) is the incoming
two-body scattering state with momentum q 8, we
obtain for the projection of (2.1) onto these states
(recall that Go is =Gs Vs)

~(p ) ~

8 8

(2.2)
&s.(ps, is, p"''; E+ i0)

'PB~q B~ ~'
p '+q ' -E —i0'8

8 8

where

(2.1)

where ~p~" Q„) describes the initial state, i.e.,
a bound state in channel a. and a third free par-
ticle, and E is the total energy in the initial state,

ps—-m„rn„/(m + m„) .

Using (2.2}, the expansion of the plane-wave
projections of the Faddeev components of the
three-body wave function is obtained as

8
&Psis)+s& &)=&s ~'(P -P."')0".(q ) —- 2 2 E '0 &s.(Ps, P."';E+»)

PB —aB -E —SO

d qs $, (is) - s „E .0 $ s(sssP si'sP„';E +i0) .~ ~

PB +qB -E —i0 (2.4)

Equation (2.4) constitutes a three-body general-
ization of Eq. (1.1) since the amplitudes X and 8
of (2.3) are shown in Appendix A to be free from
elastic, rearrangement, and breakup poles; i.e.,
they are the amplitudes in terms of which we will
now formulate the three-body theory.

We first note how these amplitudes are related
to the physical transition amplitudes: Recalling
that the residues of the wave function at the elas-
tic or rearrangement and breakup poles are essen-
tially the corresponding transition amplitudes, we
directly see from (2.4} that the elastic or rear-

rangement amplitude is simply given by the on-
shell value of XB„. In addition, it can be shown
that the residue at the breakup pole pB'+q8'=E
in {2.4) is the on-shell value of &~, so that the
breakup amplitude is given by gshs„.

Having established the on-shell connection be-
tween the amplitudes X and 5 and the physical
transition amplitudes, we look into the relation-
ship between our amplitudes and the matrix ele-
ments of the more familiar three-body transition
operators. For this purpose we recall that in the
wave function formalism, the three-body operators



NEW FADDEEV - TYPE EQUATIONS FOR THE THREE -BODY. . . 941

K& generate the Faddeev components out of the
initial -state wave function, i.e.,

I+s( )) [=5s„G,-(E+i0)Ks (E+i0)jipt")t)', ),
(2.5)

ies (poles} in the off-shell variable qs.
The off-shell extensions of the amplitudes (2.6)

are defined as

30s (ps'pn

where F =p~'" —~„'. If we take projections of
(2.5) onto channel eigenstates and use the relation
G+@„=-GsVsG, Us, where Us„ is the Alt-Grass-
berger-Sandhas (AGS) transition operator, ' we
find upon comparison with (2.4) that

~pc ( pg q 8~ pn

= (ps','IvsG, (z) Us.(z) G,(z)V. i p„"'y, ),
(2.8)

= (ps)I =, I VsG, (z) Us, (z) G.{z)V I p"'tt), ) .

Kg ( pspsss; E+ 0i)

= —(ps Ps I VsG, (E + i 0) Us„(E + i 0}ipic) tt)", ),
(2.6)

gs„(psqs, pic~;E+ i0)

= —(ps)i) I VsGo(E+i0)Us„(E+ i0)ipt )t), ) .
8

In the on-shell limit {ps{{)sI VsG, (E+ i0) = (ps/—Ksi,

so we see that the expression for Xs in (2.6) re-
duces to the familiar expression for the elastic
and rearrangement transition amplitude in terms
of Up

In addition, the half-on-shell singularity-free
amplitude XB~ that in Faddeev's treatment"
yields the breakup-amplitude component can be
written in operator form as

3Cs„(Ps q s, P t'); E + i0)

=(psqsits(E+ i0)G, (E+ i0) Us„{E+i0)ip 'tot))).
(2 7}

The breakup-amplitude component is obtained
by taking the function Xs„ fully on-shell, i.e. , for
p 8'+q ' =p„' ' —z ' =E. Since in that case
(psqs I t s(E+ i0) = (ps)a, I Vs, we again obtain here
that, on-shell, g~ yields the P component of the
breakup amplitude.

The factors VBG, on the left in the amplitudes
(2.6) are present to ensure that the half-off-shell
amplitudes R8 and ba do not contain singularit-

In Appendix A it is shown that the amplitudes
(2.8) are free from elastic, rearrangement, and
breakup poles. In fact, 36s„ in (2.8) coincides
with Faddeev's fully-off-shell amplitude Xs . On
the other hand, the amplitude b~ in (2.8) and the
Faddeev fully-off-shell amplitude X 8 are differ-
ent; it is this different choice of off-shell exten-
sions that enables us to write remarkably simple
Faddeev equations for K and 8, a.s we show in the
next section.

III. EQUATIONS FOR gift AND Po P tt

Inserting the expansion (2.4} into Faddeev's
equations (2.1), a system of coupled integral
equations for the half-on-shell amplitudes K and
5 can be immediately obtained. However, as it
will be more convenient for the discussion of
their properties, we present here the correspond-
ing equations for the fully-off-shell amplitudes.

Such equations can be obtained from the Faddeev
equations for the operators U+„,'

Us (z) = —5s„G,-'(z) -Q 5s t (z}G,(z) U „{z),
(3.1}

where 5s&=1 —5s„. Multiplying (3.1) with the ap-
propriate operators and taking the matrix ele-
ments indicated by the definitions (2.8), (again,
recall that G, tz =G&V8 and that the channel eigen-
states form a complete set} we get

sssstis;is'";*)=sss."(is, is.'";*) -Q fS lsss stisSip'-,.*,
~ sss)i,':i'";*)

l

pga~
&y UBy 08' pye} =I2 -t2 &y (pyqy' pp' +q' —z

t)siisis i.":*)=C'toss)s i."';*)—g fS ts Sts" (issi, ;ipi', .
y&8 y 'y

'
&

'
St ttSs~ ssssiti tp s's: ss~siitstpis""*)

y „tPI P +gy —Z
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where the "effective potentials" '0 are given by (3.2) is carried out. This is discussed in detail
in the next section.

y y

~~»'(ps;p;qy} =cs(q&,")&=, (q( },
C[y

(3.3)
83C ~yr -(»i(q
8, (psqs py} ts(qs qs 4 + o),-(2} 2 2j +&y

'08, (psqs. pyqy) =ts(qs, qp';48'+ f0) y=, (qy(2'}.
qy

The driving term XS(0~ ($(82 ) vanishes if a = p, and
is otherwise obtained from the expression for

(gssy ) in (3.3), taking y = c2 and replacing ((„2

by P(o&' —s. In (3.3),

q'8" = [m /(m„+ m, }]p, + p,',
q(" = —ps-[y((8/(m + ms)Jp',

and 48 is the two-body bound-state vertex func-
tion, defined as

@.'(qs) =-((Is'+('8') 48(qs)

As wa. s mentioned before, we can see in (3.2)
and (3.3) how the formulation of the three-body
theory gets simplified when it is expressed in
terms of the new pair of amplitudes K and g. In

fact, Eqs. (3.2} have the following features:
(i) The effective potentials are all independent

of the energy parameter z. This fact simplifies
the structure of the equations and has obvious
computational advantages.

(ii) The input consists solely of two-body bound-
state wave functions and half-off-shell transition
amplitudes. The completely off -shell amplitudes-
in particular for arbitrarily large negative ener-
gies —occurring in the usual treatments of the
Faddeev equations are therefore completely elim-
inated.

Additional convenient features become evident
after an angular momentum decomposition of Eqs.

( )
&8428(r)&a&=
& (Vs)

(4.1)

where (P, (r) is the S-wave regular solution to the
partial-wave Schrodinger equation [satisfying
boundary conditions at the origin (P, (0) =0,
((r, '(0) =1J, and 2 (rI8) is the two-body Jost func-
tion. A similar relation holds, of course, in
every partial wave.

In this way, we see from (4.1) that a Jost func-
tion factor I/28+ can naturally be extracted from
each partial-wave component of g8 . Redefining
these amplitudes accordingly,

1
~80'. ~ 80'. r (4.2)

8+

the new amplitudes h8 are obtained in each partial
tial wave by projecting onto the regular solutions
rather than onto the scattering solutions. The re-
sulting equations for the amplitudes X8 and 5z
in the S-wave case are

IV. ANGULAR MOMENTUM DECOMPOSITION

In this section we consider the angular momen-
tum decomposition of Eqs. (3.2). Since the pro-
perties we want to discuss are present in al.l
terms of such a decomposition, we only consider
the simplest situation, i.e. , the S-wave case:
We assume that the total angular momentum J
is zero, and that only S-wave two-body interac-
tions are present ~

It will be remembered from Eqs. (2.8) that the
breakup-amplitude component $~ is obtained by
projecting to the left onto scattering channel eigen-
states ((C sl. As is well known from two-body scat-
tering theory, ' the coordinate-space representa-
tion of this solution can be expressed in the S-
wave case as

30 (P;P"'; )=30"(P;P."'; ) -g
yw8

1
P,"dP„'~;„(P„P„')-,. .. , 30 (P„';P.'";8)

y 'y

, -288, , I/I&, ((fy')I' -, , (.&

Py Py ~y +y U 8y (P8y Pyy ~y~ g2 f2 yfx(Pyy ~yi Pa
y~8 ~~ 0 p +q' —z

(4.3)

&(22(P8 qs;P ";&) =&8"(Ps, Qs,'P ";&)-Q P""P' 08 (Ps qs'P') -, 30) (P„"P

y~8 0 0

I/4, ((ly)l' -, , (o).
Py dPy qy d@y 08y (Psr @ sr Pyr @y) pr2 r2 ~pa(Pyqy Pn

P'y +Q'
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The partial-wave components of the effective potentials of the original equations are redefined accord-
ingly, and the resulting potentials in (4.3) are

1
'Uer (pe' pr'} = —e d(COS~By) (2)2 + Ky

ger (ps, pz, qz) = e
~ d(costless) C', (qeo) g, .(qz~") 2 (qz),

(4.4}

&ssr (ps, qs, p,') = —s&, (qe) d(cosfler) t s(q s, q s,' q s + e 0) (s)s
(,).-, . c'.(qy" ')

+ Ky

f

1le,'(Ps, qs;Pzqz) =-'Z, (q )sd( csoS
zs) t (qssq eq e+ t0) g, ,(q„") 2 (qz),

where

~P, +P"+2"' p p cos~

2

e"&= P'+ "' P' +2"-~ p p eosS
rn„ m By By

(4.5)

This redefinition of the 8 amplitudes has the
following advantages: First, the phase of the
Jost function is precisely the two-body phase
shift, i.e.,

1
ce(xx P g ~en

B B+

We see in (4.7) that ge, differs from the corre-
sponding breakup-amplitude component by a Wat-
son final-state interaction factor.

(4.7)

bound-state and resonance singularities are pre-
dominantly carried by the factor 1/)2}' in Eq.
(4.3}.

We conclude by writing the expression for the
breakup amplitude in terms of the new amplitudes
gB in the S-wave ease:

&,(q e) =I&, (q s)l e""'s'. (4.6}
V. THE 3-3 AND 3-2 AMPLITUDES

Since the same phase is carried by the two-body
half-on-shell t matrix and two-body scattered
wave function, we see that all these phases cancel
out in the expression for the potentials. That is
to say, the potentials (4.4) in the equations for e
and 3C are not only z-independent, but are also
real. In addition to the computational simplifica-
tions entailed by such a situation, problems re-
lated to unitarity (such as the construction of uni-
tary approximation schemes) become easier to
handle.

Obviously, to obtain real potentials it is only
necessary to factor out the phase of the Jost func-
tion from the original 5 amplitude. However, we
believe it is useful to factor out also the modulus
of the Jost function, as we have done above. The
reason is that the regular solution Q, (r) of (4.1)

CB

is analytic everywhere in the complex qB plane,
i.e., it has no bound-state or resonance poles,
nor any branch points. Instead, this structure of
the two-body scattering wave function is carried
by the Jost function denominator, Thus, the am-
plitudes $B are more smoothly varying functions
of q B than the corresponding gB~ amplitudes.

The same two-body structure is also absent
from the potentials in (4.4), since they carry fac-
tors Z, t and g Z . In this manner, the two-body

For the sake of completeness, we consider in

this section the amplitudes for processes starting
from three free particles. For this purpose we
recall expression (2.8) for the amplitudes corre-
sponding to processes starting from a bound state
and a third free particle, i.e. ,

2- 2:36sa =
& psl~ I 1'sGof'sacer'al p'u '4:&,

(5.1)

The remaining amplitudes are now defined as

3- 2: &eu=&psAK l
1's~.Us.G.1'~l p'~"'&~' ),

3-3:y s = &Pskqe I
v eGoftea~eV nl PPa g'j&»&

(5.2)

T= Q &Peqsl 'lfs (E+t0)lp'"q'"),
Ba

where P e' +q e' -- P'„' ' + q'~' ' .
Since IB~ = 6»t B+WB, where H B, is the con-

That the 3-3 amplitude of (5.2) directly yields the
connected part of the 3-3 transition amplitude can
be seen as follows: In Faddeev's treatment, this
3-3 amplitude is obtained by taking the fully-on-
shell plane-wave matrix elements of the operator
MB, i.e.,
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nected three-body Faddeev operator, related to

U8 through R'8 =t8GpU8+pt, we see that

T t () ( )

so that the 3-3 amplitude is simply given by

~8a+ ~ 8 ~

8a 8

(5.6)

+ Q (psqs 1 tsG. fis&ot-l p'"q'") (5.4)

However, since (5.4) is fully-on-shell, we can
write the second term as

Off-shell, of course, again V'8 and the plane-wave
matrix elements of 5'8 differ.

The Faddeev equations for 88 and 18 can be
obtained from (3.2) by replacing Ks by Ss„and
88 by W8 . In addition, the driving terms must
also be replaced: For example, the driving term
in the 1 8 equations is given byg & ps'=„l 1'sG.Us G,&.l

p".0 &~~) (5.5)

q's(psqsp q„;z) = 5e t-s(qs qs', qs'+ iO) z i
t (q„,q; q '+iO)

+q(z z s
8

(5.7)

(note that Ps'+qs' '=P„' '+q'„'").
Similarly, it can be shown that the amplitude

hs of (5.2), when taken on-shell, is a component
of the 3-2 transition amplitude.

Returning to Eqs. (5.1) and (5.2), we observe
that the amplitudes for all possible three-body
processes are obtained by taking matrix elements
of 'the operator V 8GpU 8aGp V betw een channel
eigenstates appropriate to the initial and final
states. Since we have at our disposal both in-
coming and outgoing scattering states, it should
be noted that it is also possible to define ampli-
tudes with a. choice of g and g' states that is dif-
ferent from the choice used in (5.1) and (5.2).
However, such amplitudes are not as simply re-
lated to the physical transition amplitudes. The
physical reason for this is that the three-body
S matrix involves inner products of incoming and

outgoing three-body sca, ttering states in the same
order as they are expanded in (5.1) and (5.2).

VI. UNITARITY RELATIONS

As we have seen in the previous section, the
amplitudes that describe all physical three-body
processes can be obtained by taking appropriate
matrix elements of the operator V8GpU8+pV . It
is thus possible to obtain general unitarity rela-
tions in operator form; they are given in Appendix
B. From these operator relations one can, of
course, obtain fully-off-shell unitarity relations
for all the amplitudes K, 8, 8, and K.

As an example, we give in this section the form
the unitarity relations for $8 take when going
fully on-shell:

8 (p8, q 8,
'
p "; + i0) —5 g (p8, q8, p ";F- —'0)

d'p»8s (ps, qs, p»;E+iO)5( p
' —~ ' —E)3C*„(p'";p';E+iO)1

+ d p'd'q' 78&(p8, q8, p&q&, E+i0 +58&6' p&-p& t&(q&, q&, q '+i0

x5(p" +q" E) Q g~», (p„;p», q», , E+ii))

As the on-shell amplitudes $8 directly yield
the breakup scattering amplitudes, Eq. (6.1),
when summed over P, has the form one would

physically expect for the breakup ease. '

VII. CONCLUSIONS

We have seen in the preceding sections how the
usf. of the complete sets of eigenstates of the
channel Hamiltonians significantly simplifies the

formulation of three-body scattering theory. By
using this representation we have obtained a new

set of amplitudes for all three-body processes
that coincide on-shell with the physical transition
amplitudes. We have further shown how these
amplitudes satisfy integral equations that are
simpler than the usual Faddeev equations:

(i} The effective potentials are all independent
of the three-body energy;
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(ii) the input consists solely of two-body bound-

state wave functions and half-off-shell transition
amplitudes; and

(iii) our choice of partial-wave components of
the three-body amplitudes satisfies equations with

~eal effective potentials. In addition, the breakup
a,mplitudes explicitly exhibit a Watson final-state
interaction factor.

Fina, lly, we expect that by the nature of the input

to these equations, they will be particularly useful
in understanding the dependence of three-body
observables on the off-shell two-body input. In

addition, the simplified structure of our equations
suggests that the problem of constructing approxi-
mation schemes should now be reconsidered.
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APPENDIX A

Here we give an outline of the proof of the fact
that the new amplitudes S~ are free from primary
singularities. ' Similar proofs can be obtained for
the remaining new amplitudes S~ and f'8„.

We start by noting that the amplitudes X and 9
in terms of which Faddeev carries out the singu-
larity analysis of the three-body wave function are
defined by the first of Eq. (2.8) and

9 tk((pHqsy pf)( i 2)

= -(ps qs I
f s(z}G.(z)U sa(z)G, (z)Vnl p'"y."),

(A 1}

where t& is obtained by splitting the two-body
transition operator t~ into a term t 8 containing the
bound-state pole and a remainder t&. The repre-
sentation of the three-body wave-function compo-
nent in terms of X and 9 can be obtained from
(2.5) and the relations GP's„= -G,tsG, Us„
t 8

= t 8 + t8, with the result

(PSqSI S )= Sa {Pn—Pa )4(4{qa) —
p s - s E {) p

s s @
. X(k„(Ps', P„;E+i0)g( ) 6 6 (o) 1 ((f s'+ Ks')())„' qs) ( )

p8 +qg -E-i0 p8' —z8'-E —i0

+ x s — 2 E 0 8sa(psqss Pa s E+ i0)
+gg — —tv

(A2)

By comparing (A2) with (2.4), it can be seen how the choice of the new set K and (P instead of the set
X and 9 simplifies the singularity structure of the expansion.

Now, recalling Eqs. (2.8), {3.1), and (Al}, we find that

~Sa(PSpqSPPn s Z)

~ -(2)-(i).
snts(qs qs 4 $s + f0) ((s)s -(s)s

.E f fd 4 ltd 4 ttll(illlil ll
'P'tt 'l 0(,

"'', "' ~ -S„t(P (i„l (P„";* ~( „' ', Kt (Pt, P'„'; ) . (AS}
ye 8

Consider the first term in (A3). Since neither
the vertex function 4 „nor the half-off-shell ts
have any real singularities as functions of the

momenta, only secondary singularities occur in

this term. Turning to the second term in {A3),
we note that it is identical to the expression (6.26)
of Ref. 1, with the half-off-shell t8 instead of the
off-shell tz, and the functions F ", 5"', and 9 '
replaced by the functions 8, 9, and X, respec-
tively. These changes do not affect the character
of the estimates used in the subsequent discussion
of (6.26); therefore, arguments similar to those
of Faddeev enable us to conclude that the singular-
ity structure of 8 is similar to that of the Faddeev

APPENDIX B

Here we give the general unitarity relations for
our amplitudes in operator form. In order to do
so we define an operator

Ts„(z) = VsGn(z)Us (z)G, (z) V„. (B1)

It can be shown after some algebra that Tz sat-
isfies the relation'

amplitudes X and 9. In particular, 8 is free from
primary singularities.
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T8 (s +'i0) —TB (E —i0)

= —2rri QT6„(E+i0)4~"'(E)T~ (E, -i0)

++T])„(E+i0)[1—Go(E+i0)iy(E+i0)Q(E) Q [1 —&), (E-i0)GO(E i-0)] T (E i0-)
Y

p

y5~ V8b, (E)V +VBb (E)Q 5])„.[1-t~,(E-i0)GO(E-i0)]Ty „(E—i0)

(82)
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