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Extending previous work we discuss the sum rules that follow from causality, scaling, and equal-time

algebra for the nonforward (spinless) single-particle matrix element of the commutator of fwo conserved

vector currents, using the recently introduced refined infinite-momentum technique. The complete set of
sum rules is found to include those obtained from light-cone commutators. It also contains some

additional ones.

l. INTRODUCTION

From a quark model with vector-gluon interac-
tion, Cornwall and Jackiw' derived light-cone
commutators of vector currents and introduced
them with the hope that their dynamical content
was "far beyond that contained in conventional
equal-time commutators. "' As tests of these
commutators, fixed-mass sum rules were ob-
tained ' that corrected the sum rules of current
algebra derived by use of the conventional in-
finite-momentum procedure. ' Reference 3 extends
to the nonforward case the work of Ref. 2.

In the belief that these "corrections" to the sum
rules of current algebra amounted to criticism of
the conventional infinite-momentum procedure,
rather than criticism of equal-time current alge-
bra, a refinement' of this procedure was intro-
duced and was shown' to give, in the forward case,
from equal-time current algebra the same fixed-
mass sum rules as obtained in Ref. 2 from light-
cone commutators. The present paper is a natural
extension of the work of Ref. 6 to the nonforward
case and therefore directly compares to the work
of Ref. 3 on light-cone commutators.

Making use of recent work' on the causal struc-
ture of the commutator of two conserved vector
currents between spinless single-particle states
of unequal momenta, we consider —to begin with—
those sum rules that are purely consequences of
causality and scaling. Our assumptions on scaling
behavior are the same as those of Refs. 8 and 3.
The fixed-mass sum rules are obtained from the
general form of the sum rules through a general-
ization of a theorem in Ref. 6, on the refined in-
finite-momentum limit for the nonforward case.
Our analysis is given in terms of the causal struc-
ture functions &~", which are related to the usual
structure functions &'„" in Appendix A. The fixed-
mass sum rules so obtained are given in Appendix
H. This work is detailed in Sec. II.

Ii. Sec. III we make use of equal-time current
algebra

for the time components to obtain the sum rules
that follow from causality, scaling, and this alge-
bra. The fixed-mass sum rules in this class are
also summarized in Appendix B. In addition we
find that the algebra (1.1), scaling, and causality
impose severe restrictions on the structure of the
equal-time commutator

IJ „'(x),J'„(0)]5(x,) . (1.2)

Section IV deals with the comparison of our re-
sults to those obtained by the authors of Ref. 3
from light-cone commutators. We find that we ob-
tain all of their sum rules for the case under dis-
cussion. We also obtain additional sum rules —in
particular some that involve the structure function
W,"—that cannot be obtained from the (+, v) light-
cone commutators, as noted in Ref. 3. Further,
we observe that most of the sum rules of Ref. 3

follow purely from causality and scaling. In
clarifying the role played by causality in the de-
rivation of these sum rules, we have shown that
most of them test scaling rather than light-cone
or equal-time algebra. None of these sum rules
can, in any case, distinguish between light-cone
and equal-time commutators.

We finally remark that a treatment of the equal-
time commutator, in which the difficulties of the
conventional infinite -momentum limit are circum-
vented, has been given by Keppel-Jones' and,
independently, by Ward. ' The considerations of
these authors, which pertain to forward inelastic
neutrino-nucleon scattering, also show that cor-
rections to fixed-mass sum rules are already con-
tained in equal-time algebra. Further work by
Ward" investigates the assumptions under which
the refined infinite-momentum limit is valid. It
is shown that while the refined limit satisfactorily
handles the Z graphs that are neglected in the con-
ventional limit, it misses the class-II states, as
does the light-cone approach. It is, however,
noted" that in principle the refined procedure al-
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lows the inclusion of all classes of intermediate
states and the formalism is extended to explicitly
demonstrate this.

II. THE CAUSALITY SUM RULES

A. General formulation

c,".( )=(i.l[J', (l ), &!(-l )Jlp, & . (2.1)

The Fourier transform C„"„ofC„"„defined by

C'„', (Q) =—1 e'o' t.""(x)d'x, (2.2}

may be written in the form

Consider the matrix element C&', of the com-
mutator of two conserved vector currents between
spinless single-particle states of momenta P, and

p, (P, '=P, '=1),

These sum rules hold for kt 2. The brackets
[ij J and (ji) denote antisymmetric and symmetric
parts, respectively. The sum rules (2.5)-(2.7)
are general causality sum rules which do not de-
pend on any specific assumption about current
commutators. In particular they are not, in any
sense, model-dependent.

These sum rules, however, hold if and only if
the spectral functions g,"(u, s) in the Jost-Lehmann-
Dyson representation for A„" satisfy certain as-
ymptotic conditions. ' In particular it is necessary
and sufficient for the validity of Eqs. (2.5) that
lim, „g„"(u,s)=0, ke2. A model in which Eqs.
(2.5) hold is the original quark model of Gell-
Mann, as is verified by considering the explicit
equal-time commutators of this model. It thus
follows that in such a model the asymptotic condi-
tions on g,"(u, s) are satisfied.

CPV ~tv

where A„"are invariant functions of

v =Q'P, t=b, , Q, p = 0'Q,
with

P= '(p, +p, }, t-=p, p, , -
and the covariants I „", are given by

LIJ u (Qp 2Ag )(Qu + 24@) (Q 4t)gp u

L„~ = (Q —, t)P q P, + v g—q„
—v[Pq(Q + —'6„)+(Q~——'Aq)P, J

I ~„= (Q —~t)Pv 6„+v(p —2t)g~ „

(p 2t)P~(Qq + 2hq) v(Q~ qtIv)D~,

Lv, = (Q' —4t )DqP „+v(p + 2t}gq,

(2.3)

(2.4)

B. Scaling limits

~p v 2 k 4)t)1' 2
=1 q2

where the A"„, are given by

AJ1 v — gp v

Apv =PpP,

AJ1 v Ppdv PVAJf

AQ v —P )1 + v +P v AI1 )

A[1 v ~g +v

qxv qiv
v v 2

(2.9)

(2.10)

and

Scaling behavior is usually assumed for the gen-
erally noncausal structure functions W," defined
by"

—(p+-,'t)(Q„—,'n„)P„—va„—(Q,+-,'a„), l
q, =Q —2h, q2=Q+2b . (2.Si)

L~v". =(Q' —4t)&f t.+(p' —lt')gp.
—(p+ —,'t)(Q„—,'a„)a, -(—p—,'t)a„(Q, + —,'—n„).

The behavior of the functions W," in the scaling
limit v- ~, Q'- ~ at fixed t and p and fixed a
= -Q'/2v is assumed to be"

The invariant functions Ak'~, k+2, are causal
and, provided the integrals converge, satisfy the
following causality sum rules':

W" - ——g"(a, t, p),2'
vW„" F„"(ur, t, p }, k-= 2, . . . , 5

(2.12)

(2.13)

Ak"dQO = 0,

QAl'dQo = &l'(t»

(2.5)

(2.8)

where

v2
W" =W,"+,W,"

Q --, t (2.14)

where

(2. ()
The relation of the functions Ak" to W„" is given in
Appendix A. One obtains from these relations the
following scaling behavior for A„":

5 " (t)=0, c~" (t)=d '~'(t)=0 (2.8) 8vu' (2.15)
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v'A,"-—G„"(~,t, p), 4=2, . . . , 5r
where

G =- —F2 ~ 2

tJ FIJ FIJ FIJ
(d 2(d

(2.16)

(2.1'I )

and when n = (1 — t) V', then $ = 0 and q ~ 0.
Effecting a change of variable from Q0 to v, the

general causality sum rules (2.5)-(2.7) may be
written in the form

A,"(v, n'y' —Z', n'v' —2t'v —t),

y(~2v —() -4 Q)dv =0, (2.20)

G = —— —F -F +F4 R 2K 2 3 4 VAp V, . . . )CfV=6t, Q y —6 ) ) (2.21)

G'~ = — —F"—2F"—2~F" ——F"1 1;, ;. 1
5 2~2 ~ 2 3 5 2~ L n' v'A„"(v, . . . )dv =2th,"(n'y' —Z')

It is our aim, in the following, to make use of
this scaling behavior in the causality sum rules
(2.5)-(2. t). Towards this purpose we redefine
some of the free variables in these sum rules.
Introduce the variables n, (, g, and y defined by

n=P (j

+ cfj(n2 2 g2)

+Hydra

(Qy —6 )

for k12.
Consider an integral of the form'

(2.22)

( =-P0 'P Q,
(2.18) A.(v n y' —2 ' n v' —2(v -p

y=a b0.-1

These parameters vary such that

0~ n ~ (1 —,'t) 't', —

—oOQ( y(oa

(1 ——,'t) ' —n'

(2.19)

y(n'v —$)-Z Q)dv . (2.23)

Dividing the integration region into the intervals
(-~, -R), [-R, R]), and (R, ~), we assume that it
is possible to interchange the limit a-+0 and the
integration in the range [-R, RJ. In the other in-
tervals we introduce the change of variable v- ('
where v = -2n '(( ' —(). We then have

lim I= A(v, —Z, 2)v-q, -y$ —Z Q)dv
@2~0 -R

( -f)(2R/2

+ lim + [2n 'A(-2n '(&'-t'), n'y' —~', 4n 'h'((' —&) n, (yt—2-&')-&'Q)14'
O2~0 oo E+CX2R/2

lim I=
n2~0

A(v, —Z', —2$ v —g, -y$ —Z Q)dv

F (', —a', y ( -2(') —A Qj

(2.24)

where vA-F in the scaling limit.
It has been shown' that causality requires the

scaling functions in (2.15) and (2.16) to be inde-
pendent of p. It is therefore safe to take the limit

In the second term the integral is evaluated in the

scaling region. We may therefore use scaling be-
havior in this integral. Since the lowest value of

~v~ in this term is ~v~ =R, we must choose R~ R,
where R, is the value of v at which scaling behavior
occurs. Thus, letting n'-0 and then proceeding to
R-~, we obtain

y-0 in Eq. {2.24) obtaining

lim lim I=
j'~0 c( ~ 0

A(v, —a2, —2(v -q, —a Q)dv

(t', —,— Q) „(, ( )

We now apply this theorem to the sum rules
(2.20)-(2.22) taking scaling behavior into account.
For k=3, 4, 5 the sum rule (2.20) yields

A,"(v, —Z', —2t'v —q, —a Q)dv =0

4=3, 4, 5 (2.26)

since VA„" -o in the scaling limit. Condition (2.19)
implies that in all integrals of the form in (2.26)
n.- t'(I —,'-~').
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From the scaling behavior (2.16) and the result (2.25) one gets (k =3, 4, 5)

lim lim vA,"(v, . . . )dv =
y~o n2~0

vA„"(v, —6', —2)v —q, —~ Q)dv ——P ~ ', ' dg'1 G'~($ ', —Z', —Z Q)
4n

= lim lim n b~"(n'y' —Z'},
y~o 02~0

where the last equality follows from (2.21). The
assumption that this limit exists implies that

b„"( 4)-=0, k=3, 4, 5 .

Thus (2.21) becomes, for n y2& ZQ,

(2.2'f }

Thus

-c,"(-Z')n '+n 'yd,"(-Z') .

+ —~ 'P G„" ~', -~' yg-2(' -~ Q)~$'

(2.28)

Taking the limit y-0, o. -0 in this equation and

using (2.25) again we finally obtain
and

c,"(-Z') = 0, (2.33}

vA,"(v, —Z', —2) v -t}, —Z Q)dv

G„"(~', —Z', y(( —2(') —Z Q}dt'=2}tyd,"(-Z');

(2.34)

P k (t I i Q) d( I (2 29)
4m

so that

(2.35)

for k=3, 4, 5.
For k =1, the scaling behavior (2.15) and Eq.

(2.20) lead, in the limit, to the sum rule

The consideration of Eq. (2.22) for k=1, in the

limit, would require the existence of the integral

v'A,"(v, —Z', —2t v -q, -y$ —Z Q)dv .

(2.30)
a~ $ "(('-h)

Under this assumption one obtains Eq. (2.31) for
b," as well as the results

If now, one assumes that the integral

vA,"(v, —Z', —2Ev —}},—Z Q)dv

exists, then Eq. (2.21) gives, in the limit, the

result

0,"} Z'} P f „F }},——6, —6 Q}di

and

1c"(-d ') = ——P
27r

d,"(-Z') = 0

F}j(]} Z2 Z Q)

(2.33')

(2.31)

Turning now to the consideration of Eq. (2.22)
for k=3, 4, 5, we observe that as n'-0

C. Fixed-mass sum rules

The main sum rules obtained in the previous sec-
tion are

k=3, 4, 5

(2.32)
(2.26)

Under the assumption that the integrals

v'A,"(v, —Z', —2t v —q, -yt' —Z'Q)dv

exist (k=3, 4, 5), Eq. (2.32) gives

1 G,"(j', —Z', —Z Q)„,
4m

k =3, 4, 5 (2.29)



928 A-M. M. ABDEL-HAHMAN AND M. O. TAHA

A,"(v, —Z', —2) v -q, —Z Q}dv vA„"(v, t, Q', p)dv = —P —G»" ((u, t, p)d~,
~ ~

= —' P "(~'.. . '~ dg', (2.30)
t. "(&' —h)

in addition to the sum rules (2.27), (2.31}, (2.33),
(2.33'), and (2.35).

To obtain the fixed-mass sum rules one pro-
ceeds to the limit ( —0. If one simply sets ( = 0,
one gets the following set of fixed mass sum rules:

k = 3, 4, 5 (2.38)

where t, Q'«.
In terms of the structure functions lV„" and the

scaling functions F»" [see Appendix A and Eqs.
(2.17}]these sum rules may be written in the fol-
lowing form:

A,"(v, t, Q2, p)dv = —P 1—,Fi ((u, t, p)d(u,
W,"(v, t, Q', p)dv =0, (2.39)

A,"(v, t, Q', p}dv =0, k=3, 4, 5

(2.36)

(2.37)

+W,"(v, t, Q, p} dv = 0,
(2.40)

l + W,"(v, t, Q', p) dv =
~ (Q'+ —,'t)P F2t3(vJ. t, p) —,+ —,p P F,"(~, t, p) —,

4 J CO C0
(2.41)

vW,"(v, t, Q', p }dv = —,
' (Q' + —,

' t)P F,' (&u, t, p ) —,+ -,'p P J F,",(&u, t, p) —, (2.42)

Wi'(v, t, Q', p)+(Q' —,'t)W', ~(v, t, Q', p—)jdv=(Q'+ ,'t)P F,",(~—,t, p) —,+p P
d(dF,"(u), t, p) —, (2.43)

(Q'+ ,'t)Wi (v, t, Q', p—)+(p'——,'t'}W,"(v, t, Q', p) dv

=-,'[(Q' —,'t)' -p'] P Fi'((u, t, p) —,+ ,'t(Q'+ ,'t}P——Ct
F23((u, t, p) —,+ ,'pt P F,"(u)-, t, p) —, , (2.44)

Wi'(v, t, Q', p) — ', ', ' ' —2vW,'t(v, t, Q', p)+(Q' — t)W,"(v, t, Q', p) dv
4

=-,'[(Q'+-,'t)' —p']P —,F,",—2&uF', " ——Fi' des . (2.45)
Eu

where

Fl j( t p) F~ft F~tz

In terms of I," the sum rules (2.35) read

d~F,",((u, t, p) —= 0,

F"((u, t, p) —=0,

(2.46)

(2.48)

ment under consideration. In the next section we
consider extra sum rules that follow from the ad-
ditional hypothesis of equal-time current algebra.

A full discussion of all these sum rules and
their relation to those previously obtained from
light-cone commutators is then given in Sec. IV.

III. EQUAL-TIME ALGEBRA

A. General

Z,",(cu, I, p)
1

1 I

—(uF", (co, t, p) ——Fi' ((u, t, p )) d&u = 0 .

(2.49)

When the equal-time commutator

&p, I [&.'(l x), & '.(- l~)] I p,«( .} (3.1)

is nonzero, the invariant amplitude &," cannot be
causal. ' Assuming that the Fourier transform
Z,", of (3.1),

Under our assumptions on scaling behavior the
above constitute a complete set of sum rules that
are obtainable from causality for the matrix ele- Coo Q dQo (3.2)
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is given by the equal-time algebra

Eij if 1jkF (t}P

one can identify' the noncausal part, A,'~ "', of
A,"as

2
l)k t)

(3.3)

pA('») p dp —y&») (y2 2

n v A ') (v . . . )dv= 2)b ') (u y Z )

AI)](, )d, =
-4'f '"F'"y'-"

4q —g'+ n'y'

(3.12)

(3.13)

(3.14)

+e(Po —(I)o)5((k)' —,'t —2v—)j .

(3.4)

VA2("](v, . . . )dv=0 (3.15)

Since this noncausal part is completely antisym-
metric in the internal indices, the symmetric
component, A,", of A,' is causal and satisfies
the following causality sum rules

n' v2Al "](v, . . . ) dv

= -i u'f "'F,(n'y' —Z2)

+ c((J](nky2 tk2) + ukyd [ f(] (n2y2 g 2)

A&"~dq, =0,

qg(())dq b((1') (t)

(3.5}

(3.6}

(3.7}

(3.16)

To these sum rules we apply the method of Sec.
(II B) noting the scaling behavior (2.16) for A,".
We obtain

A(')')(v, —Z2, —2(v —)], —Z Q)dv=0, (3.17)

corresponding to the general causality sum rules
(2.5}-(2.8).

Using the explicit expression (3.4) for A," "' and

the above causality sum rules one then obtains the
following sum rules for the antisymmetric compo-
nent A,"~ (see Ref. '7):

A("]d (3.8)
2 QO (P, Q)2 (1 t iQ 2)P 2

if" Fk(t)P'Q
3 (])QA2 QO (p, Q)2 (It+ Q2)P 2

from Eq. (3.11};

from Eq. (3.13);

b(")(-Z2) =0

and

vA,"(v, —6 ', —2$ v —)], —t) Q)dv

(3.18)

(3.19a)

and

i(Q'+ 't)f'"F.(t}-

+ c('"(t)po+d2('"(t)tko . {3.10)

G2'(&', —tk', —~'Q) ~
4~

(3.18b)

from (3.12) and (3.15);

One notes that all the sum rules (3.5)-(3.10) are
consequences of causality and current algebra. In

particular the causality sum rules (3.5)-(3.7) fol-
low only on imposing the equal-time algebra (3.3).
The presence of a symmetric Schwinger contribu-
tion on the right-hand side of (3.3), for example,
would introduce a symmetric noncausal part and

consequently invalidate the sum rules (3.5)-(3.7),
albeit in a definite manner.

B. Scaling

Transforming to the variables of Sec. (II8) we

write the above sum rules in the following form:

A," (v, —6, —2(v —)], —t1 Q}dv =E~i]
'f 1)kF ( g 2)

4A —'0

(3.20)

from Eq. (3.14);

cf"](-Z')=0 (3.21)

G~'j((', —Z', —Z Q)d~'=-~f' "g,( ~ ),
(3.22)

from Eq. (3.16).

A(i))( v, n y —t), u v —2$ v —)]

y{n'v —() —b, Q)dv =0, (3.11)

C. Fixed-mass sum rules

From the sum rules of the previous subsection
one obtains the following fixed-mass sum rules:
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A'"'(v t q' p)dv=0, (3.23)

1
vA»~'(v, t, Q', p)dv = —P Gz'(&u, t, p) —,

Eoe„=if"F„(t)P„, (3.31)

clearly exhibiting the Schwinger-term sum rule. "
If one now requires that the equal-time commutator
E,"„be of the form

i f "~F (]f)
A»f" ~(v, t, Q', p)dv=

4

(3.24)

(3.25)

then one obtains

P F~ (ur, t, p) —,= 0 . (3.32)

W~ "~(v, t, Q', p)dv =0, (3.27)

vW»'(v, t, Q', p)dv =-,' P
Q2

4(d
,"(~, t, p) —2,

W, "~ v, t, Q', p)dv =i '~"F, t) . (3.29)

where t, Q'&0. In addition one has the results
(3.18), (3.19a), (3.21), and (3.22).

We thus stress that of all the fixed-mass sum
rules that one may derive for the structure func-
tions A„" using scaling behavior, it is only the sum
rules of the present section that require cu~xenl
algebra as well as causality. In particular of the
ten fixed-mass sum rules (2.36)-(2.38) and (3.23)-
(3.25) directly involving integrals over the struc-
ture functions A»", only three [namely (3.23)-
(3.25)] require the additional assumption of current
algebra.

Finally we rewrite the sum rules (3.22)-(3.25)
in terms of the structure function W", and the scal-
ing function E2':

F»t" j(~, t, p) —=if "'F,(t),1

Assuming that this requires F~ =0, it follows that
v'A. ," may then sca e, v'A,"—G,", so that our anal-
ysis on A," (k=3, 4, 5) is also applicable to A', ~.

This leads to the sum rules

c,"(t)= d,"(t)= 0
(3.33)

If in addition one takes the scaling functions to be
independent of p, so that d»" = 0 from (2.34) and

(3.16), one can determine the structure of the
space-space equal-time commutator E„'~ com-
pletely. ' One finds

El' =if '"F»(t)Po~r» (3.34)

which flatly rejects the space-space equal-time
commutators of field algebra. " However, for
r=s, this expression coincides with the result
obtained from the quark model. " It thus appears
that, when combined with scaling, the hypothesis
of field algebra is inconsistent with experiment,
since the right-hand side of (3.34) cannot identical-
ly vanish. Such conflict of field algebra and scaling
with experiment has previously been suspected in
other contexts. "

We next include a short subsection on the restric-
tions placed by causality, scaling, and the form
of the equal-time commutator E~ on the structure
of equal-time algebra of other current compo-
nents.

D. Equal-time commutators E„'&,

So far we have restricted our considerations to
the time-time algebra EQQ for which the struc-
ture (3.3) is assumed. This structure, together
with causality and scaling, imposes considerable
contraints on the form of the equal-time algebra
E,"„ involving a time and a space component. For,
the results (2.27), (2.31), and (3.19a)-conse-
quences of causality, scaling, and the algebra
E,'~ of (3.3)—reduce E,'„' to the form'

IV. COMPARISON WITH LIGHT-CONE ANALYSIS

(4.1)

vs', " dv =~ P F2"
4 p Q

(4.2)

As tests of light-cone commutators, Dicus and
Teplitz' have extended previous work on the for-
ward case' to derive a complete set of fixed-mass
sum rules for the nonforward matrix element C'„',

using the same assumptions on scaling behavior
as in this paper. This analysis is based on the

(+, v) light-cone commutators of a vector-gluon
fermion-quark model. ' The sum rules they ob-
tain may be rearranged to read as follows:

E,'„= C,"„Q)dQ,

=if "'F( )&»„t—+ P F'I."'(~, t, p) —,[Q„+ t» ],
(3.30)

1
oo oo

1] Q24 p

vR'& "&dv — P & "~dv = 02 3 7

Q

co

m', "]d =0,
Q

{4.3)

(4.4)
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F, (ur, t, p) —=-, F,i"'((u, t, p) —,.
0

(4.is)

This sum rule follows from our causality sum
rule (88). On setting Fi' =0, we also obtain [see
Eq. (810)] a similar sum rule involving Fsi,

cept (4.1), (4.2), and their counterparts, are con-
sequences of causality and scaling.

In addition to the sum rules (4.1)-(4.6), Dicus
and Teplitz' also obtain the following sum rule,
involving only the scaling functions,

n the scaling limit whe

G,"((u, t, p) =, tF,",(ur, t, p) ——Gi (ur, t, p)

The sum rule (3.33) for G," then gives

{4.20)

Gi'((u, t, p) —,=2t F,",((u, t, p) —, , (4.21)

which also follows from the analysis of Ref. 3 ~

Using our sum rule (4.18) one may also write from
(4.21) the result

(F[i i ) + ~F[ i j] )
& F ii ]

0
(4.18)

1 d(d
G~i"](u)t, p) —, , = 2t F',"](cu, t, p) —.

0

which is not obtained in the work of Ref. 3. In

fact, as noted by the authors of that work, their
analysis, which is based on the light-cone com-
mutators (+, v), does not give rise to sum rules
involving the structure function W',~. Thus none
of our causality sum rules (85), (86), (87), and

(810) containing W", or F,"appears in their paper.
With

~i J 0L 4

(4.19)

one finds [using Eq. (Al) of Appendix A] that

(4.22)

In conclusion we state that we have demonstrated
that all of the fixed-mass light-cone sum rules so
far obtained for the spinless single-particle ma-
trix element of the commutator of conserved vec-
tor currents can be obtained either from causality
and scaling alone or from causality, scaling, and
equal-time algebra (for time-components) on using
the refined infinite-momentum procedure.

One finally remarks that, for p = 0, all the fixed-
mass sum rules we derived, including the new
ones (85), (86), (BV), and (810), are trivially sat-
isfied in the free-quark-model Born approximation
of the amplitudes' where

E 7l' t
W2" = f" ] ~ 6 1 —(u ——+6 I+(u+ —+, d" y~ 6 1 —id —— Ei I+(u-+-2�(1——,

' t) 8v 8v, 2v(1 —~ t) ~ 8v 8v

(4.23)

ijAW,"= f""g„5 1 —(d ——-6 1+co+ —+, d""g~ 5 1 —co ——+ 5 1+(a) +-
4i (I ——,'t) 8v 8v 4v(1 —4 t) 8v 8v

(4.24)

W" =W" = W" =0 .L

It might also be interesting to test our new fixed-
mass sum rules in realistic perturbation-theoretic
models as well as in, for example, thenonperturba-
tive parton model of Landshoff, Polkinghorne, and
Short. ' We hope to repor t on this in a future paper.

As a last remark we mention that the spin-de-
pendent fixed-mass sum rules of Ref. 2 were re-
cently considered by one of us" and it was shown,

on using the refined infinite-momentum technique,
that these follow from causality and scaling alone.
Consequently, in this case, our methods yield,
from causality, the modified form of the Beg sum
rule" obtained in Ref. 2 from light-cone commuta-
tors.

APPENDIX A: THE RELATIONS BETWEEN THE
AMPLITUDES AI,' AND WI,

'

The amplitudes &„"of Eq. {2.3) are related to
the conventional amplitudes W„" of Eq. (2.9) by

(Al )
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2 2w(q2 ) t) 2 (A2)

3

4

SJ

+W3 +W4'j
2w(q'+ ,'t -p-) q' - ,'t-

W"
+ W" —W"

2w(q'+ ,'t+ p-), q' —,'t—
(A3)

(A4)

2v
5 2w(q2 )t+ )(q2 &t )

1 q2 lt 2 5 + (Q 4 & 5 (A5)

W'1 = 2w(Q' —' t)A"— (A't)

W51 = w(Q'+ ,'t —p)A,"-—w(Q'+ ,'t+p)A—~" —2wvA21,

For the sake of completeness we also give the
expressions for the W„' in terms of the 4,' . These
are

Wi =2w(Q —,'t)A,"——2wv(p —,'t)A,"—
—2wv(p+-,'t)A,"—2w(p —,'t')A,",—(A6)

t

from Eq. (2.43);

(Q'+ 5t) W'1'dv+(p' —,'t ) W,"d—v

=-.[(Q +-.t)'-p ]P

it(i)* ~ ,()PJ2,'( —'-, ~ —,'ptP 2;

W', 1 = w(Q'+ 5 t —p)A,"+ w(Q'+ ,'t+ p)A5"—

(A8)

(A9)
from Eq. (2.44);

(B6)

W" =-2wA,'1+2wvA,"—2wvA,' +2w(Q + 5t)A'5'

(A10)

ij 2
vW~ dv—

Q —~t
v'W' dv2

APPENDIX 8: SUMMARY OF FIXED-MASS SUM RULES

1. Sum rules following from causality and scaling

W' dv=0,

from Eq. (2.39);

vW,"dv+ W', dv =0,

from Eq. (2.40);

v2W2ddv+ vW3ldv

(B1)

(B2)

from Eq. (2.45);

F"—=0

from Eq. (2.4 "t);

l(dF" —=0
4 )

from Eq. (2.48);

(B8)

from Eq. (2.41);

(B3)

=-(Q + —,t)P F1 —,+-pP1 2 1 da c4)

F' j —cuF" ——F" —= 0r
1 t ' 4(d

23 5 4 g 2

from Eq. (2.49); where

(B10)

VW4jdv = ~(q + —,'t')P

from Eq. (2.42);

du

(B4)

Ft j Ff j
23 2R 2 3

2. Sum rules following from causality,

scaling, and time-time algebra

=(Q'+-,'t)P I',", —,+p P F,"—, , (85)
d d4)

W'jdv =if"F (t)2.
from (3.27) and (3.29}.

(air}
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from Eq. (3.28);

(B12)

(B13)

3. Schwinger-term sum rule

From the assumed structure for E,", one also
obtains, using causality and scaling, the Schwinger
term sum rule

(B14)
from Eq. (3.26). In all the equations (Bl)-(B13),
W,"=W„"(v, t, Q', p), F'„' =F„"(&u, t, p) and t, Q'&0. The form (3.31) for E~ then implies (3.32).
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