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In this paper the techniques of renormalization of a spontaneously broken non-Abelian gauge theory
are applied to higher-order calculations in the unified model of strong, weak, and electromagnetic
interactions due to Pati and Salam. A brief resumé of these techniques and of the model is presented.
In the rest of the paper higher-order strong- and weak-interaction processes are calculated to show that
the processes which are suppressed in the tree-diagram approximation remain small in higher order and
that the differences between hadronic and leptonic masses and weak interactions, which are absent in
lowest order, arise from higher-order strong interactions.

I. INTRODUCTION

In a recent paper by Pati and Salam,' a model
has been proposed in which the strong, weak, and
electromagnetic interactions were all treated as a
spontaneously broken gauge theory. This differed
from a previous model of the same type by Bars,
Halpern, and Yoshimura, or de Wit? in that the
quarks and leptons belong to the same representa-
tion of the gauge group. It was pointed out in this
paper that this has the consequence that there is
no difference in general between the interactions
of leptons and quarks, i.e., the leptons interact
strongly with each other and with quarks. This
would appear to be in direct conflict with the fact
that there is no experimental evidence for such
interactions. However, the conflict can be re-
solved by assuming that this lack of evidence is a
consequence of low-energy phenomenology and
that at sufficiently high energies the strong inter-
actions of leptons would come to light. This is
achieved by demanding that the gauge mesons
which mediate these interactions are extremely
massive.®

The suppression at low energies of undesirable
processes by requiring that the vector meson which
mediates that process be massive is only valid in
the tree-diagram approximation. Higher-order
corrections do not generally depend on the masses
of the gauge particles inside a loop but only on
the coupling constant. It is possible, therefore,
that a process which is suppressed in the tree-
diagram approximation may arise in higher order
with too large an amplitude.

In this paper we investigate this problem. Be-
fore considering higher-order effects, however,
it is necessary to discuss the program for the
removal of the infinities by absorbing them into
the renormalization of the parameters in the La-
grangian and the fields. As has been pointed out by
previous authors,* this is not as straightforward
as it is in theories whose renormalizability is not
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a direct result of gauge invariance. Conventionally
“renormalized” values of parameters are defined
by performing subtractions on the mass shell. In
spontaneously broken non-Abelian gauge theories
this is impossible since there are more fields,
masses, and couplings than there are parameters
in the Lagrangian, but since both the bare and re-
normalized Lagrangians must be gauge-invariant,
the only permitted subtraction constants must be
renormalizations of the parameters in the Lagran-
gian. It is not possible, therefore, to define the
renormalized parameters in terms of on-shell
subtractions, but only in terms of gauge-invariant
counterterms which free the theory from unwanted
infinities. This technique, known as “intermed-
iate renormalization,” is used in all theories with
spontaneous symmetry breaking. In Sec. II of

this paper we present a resumé of the Ward iden-
tities and techniques used to define the subtraction
constants in a spontaneously broken gauge theory
and we also discuss certain properties of a gauge
theory whose gauge group is a direct product of
two or more other groups, which will be useful
for the discussion of the renormalization of a
unified model of strong, weak, and electromagne-
tic interactions. In Sec. III we present a brief
resumé of the model and list the independent re-
normalization constants. In Sec. IV we use the
techniques of renormalization to calculate various
higher-order corrections and induced processes.
The higher-order corrections give rise to mass
differences between the leptons and the quarks.
These arise from higher-order strong interactions
so that it is only possible to give some indication
that these mass differences do indeed arise in
higher order. They also produce weak corrections
to strong interactions and we show that such cor-
rections only contribute terms of order Gp (the
Fermi coupling constant) which violate parity.
Induced processes are of two kinds. One is the
induced coupling of leptons to the “light” strongly
interacting gauge bosons and the other is the in-
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912 DOUGLAS A. ROSS 11

duced coupling of the baryon-number-violating
currents to the light strongly interacting gauge
bosons. It is shown that in both cases the coupling
is extremely small so that there is no induced
strong interaction of leptons. In Sec. V a summary
and some conclusions are presented.

II. RENORMALIZATION OF A SPONTANEOUSLY
BROKEN NON-ABELIAN GAUGE THEORY

It has been pointed out by several authors® that
for a non-Abelian gauge theory the simple Ward
identity Z,=Z,, relating the vertex subtraction
constant to the wave-function renormalization
constant, does not hold. Z,/Z, is related to the
interactions of the Faddeev-Popov ghosts (there
may be particular gauges where these ghosts are
absent and Z,=Z,).

Further complications occur when one considers
a theory in which the gauge symmetry is spontane-
ously broken. Although such a theory is still re-
normalizable and gauge-invariant so that formal
Ward identities can be derived, these identities
are less useful in defining the exact subtraction
constants. There are two reasons for this:

(1) The Ward identities relate Feynman dia-
grams involving Goldstone bosons so that there
is one more unknown quantity in the identities.

(2) The subtraction constants cannot be chosen
in the conventional manner (by putting all the ex-
ternal momenta on their mass shells) since in
order to preserve the gauge invariance of the re-
normalized Lagrangian there is only one subtvac-
tion constant for each multiplet of particles or
coupling constant, whereas the spontaneous-
symmetry-breaking mechanism may be such as
to give different particles within a multiplet dif-
ferent masses. The renormalized quantities ave
therefore not, in geneval, the physical quantities
and one must consider carefully the relationship
between these renormalized quantities and the
physical quantities. There is, therefore, a cer-
tain amount of arbitrariness in the choice of the
renormalized quantities (one has the choice of
which process, if any, is to be subtracted on the
mass shell) and different choices, although they
will not affect the on-mass-shell vertices (pro-
vided that these are expressed in terms of the
physical coupling constants), will have a finite
effect on the off-shell vertices in higher order
(since one is performing an expansion in powers
of the renormalized coupling constant).

Further details of this will be given in examples
later. It is worth noting at this stage, however,
that one expects a finite violation of universality
of the physical coupling constants for different
processes from higher-order corrections, even

though the gauge invariance implies universality
in lowest ovder.

A. Product groups

There is one simple identity which can be de-
rived between part of Z, and part of Z, when the
gauge group consists of the product of two or more
commuting groups, all of which are non-Abelian,

G=G,XG,. (2.1)

Let Z{* be the renormalization of a vertex of V¢,
a gauge boson of the group G, from higher-order
corrections due to the interactions with gauge
bosons, V', from G, only. Z is the wave-function
renormalization constant due to the interactions
with V% only. Now Z{'*/Z} is related to the inter-
action of V' with the Faddeev-Popov ghosts as-
sociated with V’,". But since the groups G, and

G, commute, there is no such interaction and so

VAREVAS (2.2)
Similarly,
zba=78, (2.3)

This can be expressed qualitatively by observing
that since the groups G, and G, commute, the
gauge bosons V’L are singlets in the space spanned
by the generators of G, so that in that space the
gauge bosons V'L behave like a set of U(1) gauge
bosons and the Ward identity of quantum electro-
dynamics may be applied to them.

If the gauge group G is broken spontaneously
but the mass matrix does not lead to any large
mixing of V¢ and V’, then the identities (2.2) and
(2.3) still hold exactly if Z3*® is defined at zero
momentum transfer and Z, is the wave-function
renormalization of a massless particle (if Ve
and V'L are pure vectors, the last condition may
be relaxed provided V¢, couples to a conserved
current). Therefore, higher-order corrections to
a vertex of V' and a particle of mass m from
interactions with gauge bosons V{,, whose mass
is M and which couple to the particles with cou-
pling constant g, are of order g2Q*/M? or g3m?/M?
provided m?, Q% <<M?. If this last condition is not
obeyed, then the corrections are simply of order
g? (m is the mass of the particles in the external
legs, Q® is the momentum transfer).

In many cases where the gauge group is a prod-
uct of two or more groups [e.g., the SU(2) X U(1)
theories of weak and electromagnetic interactions]
the spontaneous-breaking mechanism introduces
large mixing between the groups, and the diagonal-
ized gauge bosons cannot be approximated by
singlets in either of the spaces spanned by the
generators of the two groups. In such a case,
(2.2) and (2.3) are not even approximately valid.
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However, in the model in which we are interested
in this paper, only the photon spans the space of
both groups. For all other gauge bosons the mix-
ing is of order g?/f? or less (g and f are the
weak- and strong-coupling constants, respective-
ly). In such a model Egs. (2.2) and (2.3) are useful
for a discussion of weak corrections to strong
interactions or alternatively strong corrections
to weak interactions, both of which will be con-
sidered in greater detail below, and will be veri-
fied by direct calculation.

III. THE MODEL

In this section we present a resumé of the uni-
fied gauge model of strong, weak, and electromag-
netic interactions of Ref. 1. This will consist of
listing the fermions, scalar particles, and vector
mesons and writing down the bare Lagrangian.
Further details are found in Ref. 1.

The fermions form a (4,1,4) +(1,4,4) represen-
tation of SU(4), XSU(4)rxSU(4’) as well as two

1 1 +
(-V3+—\/—§-VB+\/—;§V15 p
- 1 1
p Vo= Vot 7 Vo
= -2
K*- K*O —_
V3
L X° X*

K** X°
K*° S

1 -

75 Vs X
XI+ _(%)I/ZVls_‘

left-handed _singlets &, and &;.
The (4,1,4) multiplet is

G’a (?b (Pc Vehl
RN, X N, e

wL= ‘ ’
>‘a Ab )‘c K

(3.1a)

Xa Xb XC v u | L

J

whereas the (1,4, 4) multiplet is
. @ @, &)

N
b= |Te Wb Te € (3.1b)

Ab Acu

Xa Xo Xe E’_JR

The gauge group is the subgroup SU(2), X SU(2)x
X SU(4’). The gauge bosons of SU(4’) may be
written as

These particles are responsible for the strong interactions between quarks of the same “valency” but of
different “color” (e.g., transitions between @, and ®,) and the particles X* X’*, X° X° are responsible for

quark-lepton transitions.

The groups SU(2), and SU(2)g are not simply the SU(2) groups of transitions between ® and N or A and
X, but are Cabibbo rotations of them, so that in 4 X4 matrix notation their gauge bosons may be written

Wi r Wi rCOSE, g Wi rsinéy g
Wy rcosfy g -Wi & 0
WL-’RSinBL'R 0 —W%,R
0 -Wi rsinf, r  W; gcosb, g

We note that 6; and 6; need not necessarily be
equal, but 6, is the Cabibbo angle.

The symmetry is broken by three multiplets of
scalar fields with nonzero vacuum expectation
values:

(i) The first is A, which transforms as (2 +2,
2+2,1) and whose vacuum expectation value is

a,

a

<A> = ) Qa4 >>a1, Qg, A3 - (32)

0

-Wr rsinfp g

W;_RcoseL_R

3
Wi r

—

This gives masses to Wz, Wk, and Wi-W3.
(ii) Next is B, which transforms as (1,2 +2,4)
and whose vacuum expectation value is

0

(B) = (8.3)

b

This gives masses to X*, X'*, X° X° V,,, and
Wx. In order to suppress lowest-order quark-
lepton transitions and V +A weak interactions,
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b is very large.
(iii) Last is C, which transforms as (2+2,1,4)
and whose vacuum expectation value is

(3.4)

This gives masses to all the W, ’s and V’s except
for the linear combination

B p3n u
A“=e[—————wi + Wy +—Vﬂ], (3.5)
f
where
VE=G)VR[VE+(3)V2VE - B)2VE]

and the electric charge e is given by 1/¢®=1/f?
+2/g2, which is the photon. This also introduces
a mixing between Wi, p*, K** X* and X'

The fermion masses arise from three terms
$0F, TrB g +3a'ZF, TrB ™My +38 Tri A Yz +H.c.,

J

where M is the matrix

sin26;, cos26g

cos26p —sin26g

1

which violates SU(4)y but preserves the subgroup
SU(2), XSU(2)z. The masses of the @, 3, and )
quarks are proportional to @,, a,, and a,, respec-
tively (the charmed quarks, x, whose masses are
proportional to a,, are much heavier). We see that
there is no difference between the quark and lepton
masses. It is shown in the next section that it is
reasonable to suppose that such a mass difference
arises from higher-order strong-interaction cor-
rections to the self-energies of the leptons and
quarks. The physical neutrinos are the linear
combinations abv, +Ba,.&;, and a'by, +Ba, £y, which
are approximately the neutrinos in the left-handed
multiplet provided ab >Ba,, a'b> Ba,.

We close this section by writing down the bare
Lagrangian for all these fields:

£=—%Zv(auVZ - 8“le +ifoﬂxbcvl:lvl‘;)2 _%ZWL(apW‘}.u - auW;u +igL0£achiuW2u)2

- isz(ayW%v -9, ngu +igRo€achzI,iu CRV)Z +%ZA TI" apA - igLQ’r : WLpA +igRoAT. I'VRIZ

+3Z5Tr|8,B+igpoBT Wg, — if)+ V,B|*+3ZoTr|8,C +ig T Wy, = ifA  V,C|?
+Zp Trypiv (0,4 — igroT * Wir ydr +ifodpX = V) + Z R Tripi vy *(8 yhr = i8RoT * Wry Yr +ifo¥rA* Vy)

+Z iy O E+Z By 0P E + 50, Tr(EB Y + 9BE) + 50, Tr(E'B" Mg + prBM E')

+38, Tr(dy A Yr+PrAYL) +V,o(A, B,C),

where f,,. and €,,. are the structure constants of
SU(4) and SU(2), respectively, A; are the 4-di-
mensional representation of the generators of
SU(4), and 7; are the special 4-dimensional reduc-
ible, Cabibbo-rotated representation of the gene-
rators of SU(2). V,(A, B, C) is the potential formed
from the invariants of the gauge group which has

a minimum at the required vacuum expectation
values.

IV. RENORMALIZATION AND HIGHER -ORDER
CORRECTIONS

Before calculating higher-order corrections to
physical processes it is necessary to choose a
gauge and to add to the Lagrangian the Faddeev-
Popov terms.® This is achieved by adding to the
Lagrangian

(3.6)

1
—L (3pW1,u +§LMWL¢WL)2+F¢L5(3,,WL“ +§LMWL¢WL)

1
+ a(auwny +§RMWR¢WR)2
+F§85(apwlzu +€RMWR¢WR)

+ Z]';(S“V“ +Hy My oy +F§6(3,V, + Ly My ¢y) ,
where (owL, bw g and ¢y are the Goldstone bosons
associated with W, Wg, and V, respectively, F*
are the Faddeev-Popov ghosts, and 6(X) is the
change in X under an infinitesimal gauge transfor-
mation F. This gives a Lagrangian for the propa-
gation of F* into F and the interactions of F and
F* with the vector and scalar mesons. In the
bare Lagrangian the Faddeev-Popov ghosts also
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have a renormalization constant Z..

The renormalized Lagrangian is obtained by re-
placing the wave-function renormalization con-
stants Z by 1 and the bare coupling constants f,,
g9, €etc. by their renormalized values f, g, etc. A
wave-function renormalization constant is obtained
from the second subtraction on mass shell of any
one member of the multiplet. Different choices of
the particular member of the multiplet will give
the same infinite value of the wave-function re-
normalization constant but a different finite value.
Since there is only one Z for each multiplet, not
all the particles will be subtracted on their mass
shells. Z; and Zy will differ by a finite amount
due to the V — A nature of the weak interactions
[similarly, if g;,=gr,, SO that SU(2),XSU(2); is a
natural symmetry of the theory, the physical
coupling constants will differ by a finite quantity].
The coupling-constant renormalizations are cal-
culated from higher-order corrections to one par-
ticular vertex (for each coupling constant). They
will therefore differ by a finite amount from the
physical coupling constants (defined to be the
coupling constant for a vertex with all particles
on their mass shells), which will in general be
different for every vertex. The parameters of
Vo(A, B,C) will also be renormalized and this
renormalization will determine the renormaliza-
tions of the vacuum expectation values of the sca-
lar multiplets (and hence the renormalized masses
of the gauge bosons), as well as the masses and
self-interactions of the real Higgs scalar particles
(the scalars which are not Goldstone bosons).

N N —_ N

4 7 4 r4

N N N N
a a a a

D*
ﬁﬂ\:%‘?
€
b
Vg

L,fN:LLS) \fj/\n:‘%‘,

N N N N N N

a a a a a a
w+ w+

>

N 4
v
~
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These renormalizations are directly related to
the mass renormalizations of the Higgs particles
and the gauge bosons, as well as the tadpole cor-
rections (which give the relationship between the
vacuum expectation value of the quantized scalar
fields and the minimum of the bare potential).
Once all these subtraction constants have been
defined, then the renormalization of all the fields,
masses, and vertices are defined in terms of them.
For example, since the photon is a mixture of
W., Wg, and V given by Eq. (3.5), the bare photon
is given by

Agzeo<\/Z'W§u+J_z_RW§¢#+\/z—vvg>, 1)
8Lo &Ro Jo
where

1 1 1 1

-e?zf_oz TgLo2 +A702'

We now apply the techniques of renormalization
outlined above to the discussion of the following”:

(1) the mass differences between leptons and
quarks,

(2) the relationship between the physical and
renormalized fields and weak coupling constants
for leptons and quarks and a comparison of the
corrected weak interactions of leptons and quarks,

(3) the effect of weak-interaction corrections to
strong-interaction processes,

(4) induced interactions of leptons with light
strongly interacting gauge bosons, and

(5) induced transitions due to the mixing of the

v
e
-7 7 7
N N N

>
N
X a € a a a a
+ +
WL WL

7 7 7 7 7 7
ma G)a ma ma Xa ma
VA A
STy 5.5
> v e 74 7 > 7
N N N N N N
a a a a a a

FIG. 1. Self-energy diagrams for 9N ,.
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gauge bosons V¥ and W} from their interactions
with the scalar multiplet C.

In the first four cases the small mixing between
the W} and V* mesons is neglected. This is be-
cause such mixings give rise to finite corrections
which are proportional to the mixing and therefore
negligible.

(1) Quark-lepton mass difference. The self-
energy diagrams for N, and e are shown in Figs.
1 .nd 2. From these diagrams the physical mass
renormalizations are for the 3, quark (to second
order in f?)

2 M 13 (M) 105
%“mm{fﬁ[‘“( 7)) &)

lnls) -1 e

where A is the cutoff, My is the mass of the gauge
mesons V,,...V,, My is the mass of the gauge
mesons V,,...,V,;, and M, is the mass of the
weakly interacting neutral gauge boson. The n-
dimensional regularization method of ’t Hooft and
Veltman® has been used and the limit as n -4 has
been taken with A defined as

A =limexp {ﬁ] (4.3)

n—4

For the electron we have

- ﬁ[ﬁ (ﬁ’f_x_2>_ﬂ}
ome '”'-’%4112 32%\ A7) ~ &

~falm(E) -3l e

J

For the Lagrangian to be gauge-invariant both the
bare masses and both the renormalized masses
must be equal. We therefore make the same sub-
traction for both (4.2) and (4.3), and we get for
the quark-electron mass difference

ma-me _ 2. (M
LA Te o o7 1n<M:> (4.5)

Mo

where m& is some suitably chosen renormalized
mass. The expression (4.4) is not an accurate
estimate of the mass difference since it relies on
a second-order perturbation exapnsion in the
strong-coupling constant. Inspired by renormal-
ization-group ideas we might guess that a more
accurate value may be

<&>f2/2n2_1
My

It does, however, indicate that the origin of the
quark-lepton mass differences may lie in higher-
order strong interactions and be related to the
fact that the strongly interacting gauge bosons
which couple to leptons are much more massive
than the ones that couple only to quarks.

(2) Quavk-lepton universalily of the weak intev-
actions. We shall now give a further example of
the problem of choosing subtraction constants by
considering higher-order corrections to a leptonic
weak process and comparing with higher-order
corrections to a hadronic weak process. We begin
by considering the fermion wave-function renor-
malization constants. Once again we assume that
a one-loop calculation for the strong interactions
provides a reasonable approximation. Again from
Figs. 1 and 2 we find that the coefficient of # for
N, is

8 i) - 1] 2 a1 o (0 om) et

L2102

x° x*

5 ﬁ\ kN M N
7 7 7 7 7 7
e xn, e e N b e
+ +
WL WR

N
\E
Y

Y
Y

)-

a1, <Af\g>_%}}+o(c,~mf), (4.6)

+
X V5
£ ,é:ff‘g_
7
e e e

Y

VA
S
7 7

Y

FIG. 2. Self-energy diagrams for the electron.
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where m, is a renormalized quark mass, Mw, and
My are the masses of W; and W5, respectively,
and Gr is the Fermi weak-coupling constant. It
can be seen that since Mw, #Myg, Z; #Zg. It has

J

s () ]+ o] [n(3)- 2457
gar M\ a2 )~ 2 ) e M\ AT )T 2 2

We notice that (4.5) and (4.6) differ by an amount
of order (f2/6m%) In(Mx/My), and that only one of
these expressions may be taken to define Z; and
Z k. Suppose we choose (4.6); then the renormal-
ized quark wave function creates (1 +8)Y? physical
quarks, where 8 is the difference between the
expressions (4.6) and (4.7). Therefore, in a dia-
gram with external quarks we must divide each
external quark line by (1+8)”%. For one-loop
corrections to diagrams with external quarks this
brings us back to defining the effective wave-func-

been assumed that the quark masses are much
smaller than My, so that Gpm 2 may be neglected.
For the lepton we find that the coefficient of # is

531052 S ()31 votermen

r

tion renormalization constant as the second sub-
traction on the mass shell for both leptons and
quarks, but care must be taken over the definition
of these subtraction constants if one wishes to
perform two or more loop calculations.

We now come to the one-loop corrections to the
Wi-®,-R, (Fig. 3) and Wi-e-v, (Fig. 4) vertices.
For simplicity the dependence on momentum trans-
fer Q2 will not be written out explicitly. For the
W@ ,-X, vertex we find

FIG. 3. Corrections to the W[-®,-0, vertex.
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5%&%}2[ (55)- 2o 3 L e - o (om0

4x°m 2 L (1+y°)
sz 3 f dvaz(l —%) +mqax Y 3

ol o8 w11 )- D22
+321:241\4%2-1”2 My, ‘“( AF ) ML “’TT PRI AT il [

+Q2Fq(qL)f7 Q2)+O(Gquz)y (4-8)

while for Wi -e-v vertex we find

15_f2gL <M__x2 1] u 1-yY  &° ’ 3 r 2 (MWL2> 2 <M_zz>] _12 l <Mz )( u (1-v%
Bdn? [1“ AT)T 2] T e\t a0 ) M I - e AT )Y e
+Q2Fe(gL vf1 Qz) +O(Gqu2) . (49)

After accounting for the wave-function renormalization [and the (1 +B)''? factor for the external quarks] we

are left with the following for quarks:
3 My z 2 2 _ .5
?‘fgLf dr—i Y 81 s—————?’ ; [MW 1n< ) M 1n< )]-m(M'g)—s{y“———(l r)
Mz A 5 2
+Q2Fq(g)f)Q)+O(Gqu2), (410)

0 Myz(l—'x) +mq 32”2)Mw -

and for leptons

3 My, 2 2
521‘1121{1\—/?23——1&7?{}‘4‘”21“< i) in (2 ﬂ - (%r)- 35( o) 0o, (g, ,08) +0(Gem ). (8.11)
r
Examination of (4.10) and (4.11) shows that where- over, since the expressions (4.10) and (4.11) are
as the infinite parts of the strong-interaction con- not identical and since there is only one subtrac-
tributions to Z, and Z, are equal, the same is not tion term (g, - g)y"*2(1 —y°) for both of them,
true for the weak-interaction corrections. More- there is a violation of weak-interaction universal-

FIG. 4. Corrections to the W;-e-v, vertex.



ity between quarks and leptons which at zero mo-
mentum transfer is

zfsz fldx xﬁqu,)/S
3r* Jy MRl = x)+m,

E +O(Gpm QZ) .

(4.12)

Since m, and My are of the same order of magni-
tude this would appear to be large if fis large.
However, this is a problem of making a perturba-
tion expansion in the strong-interaction coupling
constant which would be there in any strong-inter-
action field theory. We can, however, draw the
qualitative conclusion that since the weak inter-
action is a gauge theory which limits the number
of permitted counterterms and since the strong
interactions of leptons and quarks are different,
then the strong interactions will contribute to a
violation of the universality of leptonic and hadron-
ic weak interactions which is too large to be ex-
plained by higher-order weak and electromagnetic
interactions.

A different choice of subtraction constant would
correspond to a different relationship between the
renormalized coupling constant and the magnitude
of the weak interaction at zero momentum trans-
fer. The dependence on the momentum transfer
is a function of the renormalized coupling constant
so that a different choice of these will affect high-
er-order corrections only. To a one-loop approxi-
mation the dependence on momentum transfer is
independent of the choice of the subtraction con-
stant.

For small momentum transfers a diagram in
which the heaviest internal particle has mass M
has a momentum-transfer dependence f2Q*/M? or
22Q%/M? for strong- or weak-interaction correc-
tions, respectively. From this we can see that
the strong interactions of leptons introduce con-
tributions to their electromagnetic form factors
which are of order f2/M,* (since only X, X', X°,
X° and V,, interact strongly with leptons). These
contributions are much smaller than G (since My
is very large) and so they introduce no new mea-
surable quantity. The electromagnetic form fac-

I,...,8
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tors of the quarks will be of order f2/My? for
small momentum transfers, but this cannot be
computed exactly for realistic values of f.

(3) Weak corrections to strong intevactions. A
further example of the use of Eqs. (2.2) and (2.3)
is the calculation of weak-interaction corrections
to a strong vertex. The diagrams for this are
shown in Fig. 5. The contribution from these dia-
grams is given by

&’f MWL2> 1] a-7°)
32#&“( A )2 T

My 1 (1+9%)
— =y
+ [ln< Az > Z:Iy )

1 <M22

+51ln Az

: )w %+O(Gpqu) (4.13)

at zero momentum transfer. After taking into
account the wave-function renormalization con-
stants, we are left with terms which are of order
fGrm g, so that provided m,’, @® <My, ® the parity
violation from higher-order weak corrections to a
strong-interaction vertex is of order Gr and not
2% as may have been expected.® This is consistent
with Egs. (2.2) and (2.3) and the fact that the gauge
group of the strong interaction commutes with

the weak-interaction gauge group with very little
mixing induced by the spontaneous breaking mech-
anism.

(4) Induced leptonic stvong intevactions. The
diagrams which lead to leptonic coupling to the
light strongly interacting gauge bosons V,,...,V
are shown in Fig. 6. Actually only V, and V, can
couple to leptons in this way. The contribution
from each diagram is

ia VAN
32,"2 1n< AXZ >A;!.8‘

where A, ; is some linear combination of A; and
Ag. The total contribution from all these diagrams
is therefore Tr(A, ;)=0. In practice the cancella-
tion is not exact since the masses of X*, X'*, X°,
and X° differ slightly due to the mixing with W}
by an amount proportional to the mixing (g/f)c,c,,

8

(4.14)

...,8 I,...,8

FIG. 5. Weak corrections to a strong vertex.
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FIG. 6. Induced strong interactions of leptons.

so we are left with a nonvanishing contribution
from the diagrams which is of order
(f2g/321%)(c,c,/M®) which is very small (<1079
and does not therefore give rise to any new lepton
interactions (this is no larger than the interaction
of leptons with V,;). This result is expected from
the fact that the lepton currents are singlets of
color SU(3)’ and would only be expected to couple
to members of an SU(3)’ octet of vector bosons
with a strength proportional to the breaking of
SU(3)’.

(5) Higher-ovder intevactions thvough the mix-
ing. There are three mixings which give rise to
interesting processes from higher-order graphs,
namely W;-p~ or W;-K*~ mixings, X*-p~, X"*-p~,
X*-K*~, or X'*-K*~ mixings, and W;-X" or
W;-X'" mixings. In all cases the processes in-
duced by these mixings are finite because the
diagonalized gauge bosons couple with equal and
opposite strength to the mixing current so that
the infinite parts cancel each other.

Typical W;-p~ or W;-K*~ mixing diagrams are
shown in Fig. 7. They give rise to violations of
charm, strangeness, parity, and color conserva-
tion. All these diagrams are proportional to the
mixing, which is so small that the amplitude for
this process is much smaller than G, so that it
is only the violation of color (the conversion of an
a-type quark to a b-type quark) which gives rise
to a new physical process which is absent in tree
diagrams. The amplitude for such a process is

2,2
g° c,C
cosb, 1612 MWL2

(1-99 (1—75)] <MV2>
X| =-3p—— +4dm,———— |In| — ) . 4.15
[ Py timey— |In My, ? (4.15)

By attaching strongly interacting particles to
these diagrams we get an amplitude for quark-
quark scattering which violates color conserva-
tion:

[g? cicy
3271'2 JMWLZ

cosb,

2
><<rzaly“lq,,><zialy“%(1-y5)lqb>1n<1‘fjvz> . (4.16)
WL

Typical X *-p~, X'*-p~, X*-K*~, X'*-K*~ mixing
diagrams are shown in Fig. 8. These can give
rise to violations of lepton number and baryon
number as well as to the violations caused by
Wi-p~ mixing. However, since these mixings are
much smaller than W;-X~, W;-X'" mixing, we
can neglect this mixing and confine ourselves to
a discussion of W;-X~ and Wi-X'~ mixing only.

Self-energy-type diagrams which give rise to
transitions between quarks and leptons are shown
in Fig. 9. The contribution from these diagrams
is

fzgz [P
cosf,—-2
16772 Csz
5 5 My 2
x[—SﬁQfl+4mqngw}ln<MWLz>. 4.17)
X

Since this is finite there is no need to renormalize
it. If, however, one chooses to do so by rediago-
nalizing the fermions, then the coupling of these
rediagonalized fermions to V,,..., V, or to

Wi, W%, Z will have a direct quark-lepton transi-
tion identical to that obtained by attaching

Viseo., Vg, Wi, Wk, Z lines to the diagrams in
Fig. 9. By attaching a strongly interacting gauge
boson V,, ..., V, to the diagrams in Fig. 9 one
ut ;\l\"\z\% +
L
— va van
®a ma mb

FIG. 7. Wji-p~ mixing in higher order.
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FIG. 8. X *-p~ mixing in higher order.

can get an amplitude for the process g+q—-¢q +1
which is approximately

figtcie, 1
3212 My® t-My?

cosbc

Mw?\ 1 5 =

Xln<M 2>(q|y“z(1—7 ) iXgly*lg) (4.18)
X

(t is the momentum transfer squared), which is of

the order of <107!°, This has to be cubed if it is

to be applied to the process B+m—7m+31, giving

an amplitude <107 and a cross section <107°° ub.

Although this is very small, it is considerably

larger than the amplitude for such a process ob-

tained from the tree-diagram approximation which

gives 107" for g +g~ g +1 (a cross section of

107% pub for B+m—m+31). We now see why higher-

order corrections are important since they can

give rise to processes with a larger amplitude

than that obtained from tree diagrams (even

though they are still far too small to be detected

experimentally at the present time).

Another example of this arises when we note that
one of the strongly interacting particles
5(Vo+V3V,) has a small mixing g2/f? with Z.
Attaching this particle to the diagrams in Fig. 9
gives a contribution to quark decay into leptons
which is

2 .4 . M 2
costetaie i et ()

X{qly* s =y DTy s =D 1. (4.19)

This is of order 1072, which although very small
is larger than the tree-diagram contribution,
which is of order 1073, This makes a difference
of a factor of 107° in the lifetime of the proton.°
One notices that only the b- and c-type quarks
can decay directly into leptons. The a-type quark
can only decay in two stages into leptons. Since
the amplitude for an a-type quark to transform

into a b- or c-type quark is of order Gy [see Eq.
(4.14)], the amplitude for the decay of an a-type
quark is 1077, although this is zero in the tree-
diagram approximation. This is important since
we believe that the known hadrons are color sing-
lets so that their wave function is of the form
€.5:"°q°q° and that such a state cannot decay com-
pletely into leptons from tree diagrams only, but
it can do so from higher-order processes which
arise from the mixing.

V. SUMMARY AND CONCLUSIONS

We begin this section by listing the theorems
which have been used to renormalize the model
of Ref. 1 and to investigate the effects of higher-
order corrections, and to construct the scalar
potential.

(1) For a massless Yang-Mills theory

FAN
Zz Yang-Mills Z2 matter

- [&}
ZZ Faddeev-Popov v

(although [Z,/Z,] is not equal to 1).

(2) For a massless Yang-Mills theory in which
the gauge group is a product of two commuting
groups G,XG,, and if Z2 and Z} are defined to be
wave-function renormalizations due to the inter-
actions of the Yang-Mills fields of the groups G,
and G,, respectively, and if Z%** is defined to be
the correction to a vertex of a Yang-Mills field
from G, due to interactions of the Yang-Mills
fields from the group G, (with Z5** similarly de-
fined), then

a,b b,
4 4" =1 in all gauges.

VA VA

(3) For a spontaneously broken symmetry where
Z, and Z, cannot generally be defined at the phy-
sical point (on-mass-shell), the theorems (1)
and (2) hold for the infinite parts. If Z, is defined
at zero momentum transfer with the other external
legs on their mass shells, and Z, is defined at the
physical point, then the finite corrections to the-
orems (1) and (2) are of order g%m?/M? provided
m <M, where m is the mass of the external leg,
M is the mass of the Yang-Mills field inside the
loop, and g is the coupling constant associated

FIG. 9. X*-W,” mixing in higher order.
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with the gauge theory. If, furthermore, the gauge
theory has only vector interactions then these
finite corrections are of order g20m % —m,?)/M?,
provided m,* —m,* <<M?, where m, and m, are the
masses of the two external legs in the vertex.

(4) In a spontaneously broken gauge symmetry
the particular choice of subtraction point only af-
fects the momentum-transfer behavior of a vertex
in higher orders than the one-loop approximation.

(5) In a spontaneously broken gauge symmetry
any mixing terms, couplings, or mass differences
which are absent in lowest order will be finite
and calculable in higher order provided that such
mixings, couplings, or mass differences arise
only from interactions with gauge bosons and not
through interactions with the scalar particles. If,
however, these mixings, couplings, or mass dif-
ferences are absent in lowest order because of
a special choice of the parameters in the scalar
potential (leading to a particular choice of vacuum
expectation values), then they will acquire infinite
contributions in higher order. These infinite con-
tributions can always be absorbed into the renor-
malization of the parameters in the scalar poten-
tial.

These theorems were applied in Sec. IV to var-
ious higher-order processes and corrections,
and were verified by direct calculation. The first
two calculations involved higher-order strong
interactions. Since perturbation results are in-
valid for theories with a strong-coupling constant,
the results of these calculations are qualitative
rather than quantitative in nature. They suggested
that the quark-lepton mass difference and the vio-
lations of quark-lepton weak-interaction universal-
ity are a consequence of the higher-order strong
interactions of leptons and quarks. The differences
arise from the differences of the masses of the
strongly interacting particles which contribute to
the higher-order corrections and the fact that
gauge invariance demands that the same subtrac-
tion constant be used for the leptonic and the had-
ronic process. In the case of the mass difference

we obtained a result of the order of
(£2/2n®)1n(My/M+y), whereas for the violation of
universality the result was of the order of f2/6r2
[the In(M x/My) term canceled by virtue of theorem
(2)]. Measurement of nuclear beta decay and hy-
peron decay’' suggests that the violation of uni-
versality is about 5%, so that f2/61® may be of
order 0.05.!* This calculation may be quantitative-
ly accurate, whereas the lepton-quark mass dif-
ference is large because of the factor In(My/My).

The other calculations in Sec. IV involved either
higher-order weak interactions or interactions
involving the mass mixing between gauge bosons.
It was shown that parity violation in strong-inter-
action processes from higher-order weak correc-
tions was of the order Gr, and that the violation
of SU(4), XSU(4)r quantum numbers or the coupling
of leptons to the light gauge bosons of SU(4)’ from
higher-order processes which were absent in
lowest order was proportional to the mixing pa-
rameter and therefore harmless. It was also
shown that in processes in which baryon number
is violated, although the matrix element for such
a process is still extremely small, the contribu-
tion from higher-order corrections involving the
mixing was larger than the contribution from the
lowest-order tree diagrams.

From these calculations it is concluded that
higher-order corrections do not give rise to un-
acceptably large matrix elements for processes
which were suppressed in lowest order and that
the relatively large desirable difference between
leptonic and hadronic physics, which was absent
in lowest order, arises from higher-order strong
interactions.
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