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Gauge invariance in spontaneously broken symmetry
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A gauge-invariant approach to an effective potential in the presence of spontaneously broken symmetry

is formulated.

Recently it has been pointed out by Jackiw' that
the conventional rules of construction for the ef-
fective potential used in field theories of spon-
taneous breakdown lead to a gauge-dependent
quantity, and hence a theoretical entity of dubious
physical significance. The issue raised is there-
fore quite serious.

In this note we study the question of sPontaneous
breakdown of gauge invariance of the second kind

where the word spontaneous is to be taken quite
literally. Namely, we work in the presence of no

sources and hence by definition with a gauge-in-
variant theory at the outset. Such a theory is
characterized by an order parameter y, , and we
find that the rules for its calculation are the con-
ventional ones for the evaluation of the effective
potential, but with the proviso that no photon lines
are singly connected to tadpoles. Thus one effec-
tively works out the graphs in the Landau gauge
(though the vacuum-to-vacuum S matrix is ex-

pressed in any gauge). We are at present in-
vestigating the relationship between Jackiw's
formulation in the presence of sources and our
own gauge-invariant consideration.

A convenient and natural formalism in which to
express QED is that of Faddeev and Popov. ' The
vacuum-to-vacuum S matrix in a gauge in which
the photon propagator is'

Dpv = (gpv —g pgvlg )lg + 9g pQvl9

is shown by them to take the form

S= + p X) p+ S Au e exp

where L has gauge invariance of the second kind.
To show the gauge invariance, multiply this quan-
tity by a constant in the form

X)E x) ~~uAu 0

to give

S= S( exp —— $ x)'d x y S p* SA& e 58„A& —~}.
In the second factor change the variable of integration to pexp[tgg(x}], @*exp[-i'(x)],A„+8„$. This

leaves I. the same and has Jacobian unity. The result is

S = E exp —— d4x U( x) S„,„„,„

where

SLandau 9 + u u u ~ &

we see that S/S„„„„=unity up to a numerical factor (which in fact may be normed to unity}.
The same steps can be repeated to show how Green s functions transform. In an arbitrary gauge we have

G, . . .,„=-(q (x,). p(x„)p*(x„„) (p*(x,„))

S A„e exp —— d4+ ~uAu)
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Multiply numerator and denominator by

to give

ee{p{e p(- —f e'e{&p{)f ee{p{ee{p'{pe{~,{ 'e(e, &, — p{e{*,{"e{*Jp'{*...~ "e*t**.)

5&{p{eep (- — e'e{c3p{') {ee{e{ee{e{eAe{e „e{e,A, —~{
2rl

Once more, change the variables as above to give

G,. . .,„=&exp{ig[](x,) + ~ ~ ~ + ( (x„} t (x„„) ~ ~ ~ g (x,„)]])„G,' ".".",„.
G,"."."'."~„means the Green's function calculated in the l,andau gauge and the symbol ()„means the Gaussian
average over the $ field with weight exp{- (1/2q)[ $(x)]'J for each space-time point. '

The Gaussian average can be performed by completing squares, most conveniently in momentum space.
The result is

&exp{igu(x, )+ ' +4 (x.)- t (x„„)— -4(x,„)])),

The first of these factors is a wave-function re-
normalization factor; the second cor responds
graphically to gauge photons which are exchanged
between each pair of external lines. (This factor
even converts Green's functions which are dis-
connected in the Landau gauge to connected ones
in other gauges. )

Equations (4), (8), and (9) give the totality of
the effect of a change in gauge and these proper-
ties must be respected when the symmetry is
spontaneously broken as well. Namely, in trans-
forming from the Landau t:o an arbitrary gauge
one multiplies p(x) by exp[-ig$(x)] and averages
point by point with weight

exp{ —(1/2{I)[ g (x)]') .

lim (p(x)vp*(x')) = 9p, ',
I x-x'i

(10)

In view of the above considerations we notice a
complication which arises when one transforms
Green's functions by gauge transformations in the
presence of spontaneous broken symmetry (sbs).
Suppose that in a certain gauge one has the usual
asymptotic decomposition in the presence of sbs
and translational symmetry

where

y, =(q(x)) .

In some other gauge Eq. (10) becomes

lim ( y(x) yp (x'))
I
x-x'I-"

lim (exp{ig[g (x) —& (x')]]),
~x-x

~

2 d''gg i q(x-x')=(Zy, ) lim
( ), , e

2

But if the longitudinal photon has vanishing mass
(and it is intrinsic to the Faddeev-Popov formalism
as well as all conventional formalism that it does)
the above limit is undefined. We expect that this
difficulty is purely fictitious and corresponds to a
poor formulation of the physics. We show below
that there is always a good order parameter;
namely (y(x)exp[-ig$(x)]) (= p,) (see Ref. 5) and

that sbs is naturally expressed in terms of this
quantity in any gauge. Only in the Landau gauge
is it true that (p(x)) = Cp, .

In Eq. (3), first perform all the integrations of

p, {{p*,A„at fixed ( (x). The result is

8 = $ exp ——2()' exp -I y x &, $j & ( exp ——0()'
2'l

(12)
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where we have supposed that for each set of effec-
tive external fields 8„$, the integral is possessed
of spontaneously broken symmetry; the field aver-
age is designated by (y(x)), for each set $.'

Gauge and Lorentz invariance tell us that F
is of the form

F B~ —zgAp (Px g +I Qx ) ) dx,

(13)

where P is a polynomial in ((y)&~' having a mini-
mum at l(y)g ~&0 (our assumption of sbs). Higher-
order powers in ~(&„—igA'„"')(rp), ~' may also
arise, but the only property we appeal to is that
the existence of field gradients in the absence of
A."„"' necessarily increases the "free energy" F.
The form of (13) is of course the Ginzburg-Lan-
dau' expression for the free energy of a super-
conductor in the presence of an external field.
F is proportional to the "volume of space-time. "
Hence one needs to consider F only at the values
of the field y(x) which minimize it, whence the
appearance of (y(x))& in Eq. (12).

In our case, A"„"= ~„$ and we see that F is mini-
mized by the conditions

(~(x)) ~ sigh(x)

(14)

At the minimum we see that + =P(~ y,(') is inde-
pendent of $. The integrand on g is independent of
$, as it should be since in the original formula (3)
the coefficient of

exp — d~x OE, x
1

is indeed independent of $.
The result is that

where &P/&&p, =0. By construction, P(~ y,[') is the
value of —lnS calculated in the Landau gauge.
Namely, P(~ y,~') is calculated as if $ =0, and this
is the only admitted $ when q =0. Equation (14)
also tells us that the true order parameter y, is
(y(x)e ' ""') as asserted. Indeed, Eq. (14) may
be rewritten p, =(y(x)e ' "')q since E is a fixed
external field. Averaging over $ then gives back
the constant y, .

The final rules for the construction of the effec-
tive potential to be minimized are then summarized
by the gauge-invariant statement: Calculate V

according to the Feynman graph rules of the theory
as formulated with sources' but connect no pho-
tons singly to tadpoles. The value of the tadpole is
y„but in an arbitrary gauge this qr, is not (y(x));
rather

The ideas which are being expressed here lead
to the concept of a vacuum degeneracy which is
far richer than in broken invariance of the first
kind. There is a phase degeneracy at each point

x which must be averaged over. We expect that a
deeper appreciation of this point will lead to more
profound insights of the phenomena in question.

*Boursier auprbs de l'IRSIA (lnstitut pour l'Encourage-
ment de la Recherche Scientifique dans 1'Industrie
et 1'Agriculture).
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~Some of our colleagues in particle physics seem to
find it difficult to understand the reduction of Eq. (3)
to Eq. (12), though this procedure follows a method
well known in the statistical mechanics of sbs. The
problem posed is how to express lnS{() in terms of
(p (x)) &

in spite of the fact that strictly speaking the
latter vanishes (owing to the gauge symmetry). Here
(y {x))&

is used to designate the average of y {x) in the
external (longitudinal) field, B&$. One proceeds as
follows: First fix the phase g(x0} of y(xa) where x0 is
some arbitrary point. Then sbs fixes the phase of
(q (x)) at all other points x & xo with respect to this

initially chosen phase. This gives rise to an expression
for lnS($) which is a function of (y (x)) &

and & but in-
dependent of the initial choice of phase ${x0) (by gauge
invariance). Integration over the latter simply adds
an irrelevant constant, ln2r to lnS. In our present case
the form of the function E{(q)&, $} is dictated by
gauge and Lorentz invariance as stipulated by Eq. {13}.
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