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Transition radiation from ultrarelativistic particles*
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In the present paper, we give a simple derivation of the spectrum and angular distribution
of the transition radiation emitted by ultrarelativistic particles which pass through dielectric
foils. The approximations appropriate for high-frequency radiation in the ultrarelativistic
limit are made at the beginning. The calculations are consequently much simpler than standard
calculations, and our results, some of which are apparently new, are relatively simple and
easy to interpret. The primary emphasis in the development is on conditions likely to be en-
countered in the application of transition radiation detectors in high-energy physics.

I. INTRODUCTION

Transition radiation is omitted whenever a
charged particle crosses an interface between
two media with different dielectric functions. '
The radiation is associated with the abrupt change
in the electromagnetic field of the particle in the
transition, and in the case of highly relativistic
particles, is emitted primarily at x-ray frequen-
cies. In particular, a particle with y=Z/mc'»1
which passes through a slab of material with a
dielectric function

and a thickness a» yc j~~ will lose a total amount
of energy

2 e2
g ~

3 c

in transition radiation. Here + is the angular fre-
quency of the radiation, and. +~ is the bulk plasma
frequency of the material in question, given in
terms of the total number density of electrons in
the material n, and the charge and mass of the
electron by

(3)

For typical materials, the plasma energy k&~ is
about 30 eV.

It has been recognized for some time that the
linear dependence of g on y would make efficient
x-ray transition radiation detectors quite useful
in high-energy physics for the measurement of
the energies of ultrarelativistic particles, for ex-
ample, TeV cosmic-ray protons, or for discrim-
ination among particles of known momentum and
different masses. The practicality of such detec-
tors has been demonstrated in recent experiments

of Wang et al.3 and Alikhanian et al.4 It has also
been suggested recently that the transition radia-
tion associated with the passage of cosmic-ray
electrons through interstellar dust grains could
be important as a source of the observed diffuse
galactic x-ray radiation. ' Although detailed cal-
culations' show that this suggestion is not correct,
transition radiation from dust clouds may never-
theless be of interest in special situations.

The theory of transition radiation has been stud-
ied by many authors since the existence of this
radiation was pointed out in 1946 by Ginzburg and

Frank. ' Thorough reviews of the subject have
been given by Bass and Yakovenko' and Garibian. '
Although the physical principles involved are very
simple, the calculations necessary to derive exact
results in the problems which have been studied
can be rather complicated, as are the results
themselves. In the present paper, we will give
a new derivation of the spectrum and angular dis-
tribution of the radiation emitted by ultrarelativ-
istic particles which pass through dielectric slabs.
The approximations appropriate to the ultrarela-
tivistic limit are made at the beginning. The cal-
culations are consequently much simpler than the
standard calculations, and our results, some of
which do not appear in the literature, are relative-
ly simple and easy to interpret. The case of nor-
mal incidence of a particle on a single slab is
treated in Sec. II. The modifications of these re-
sults which appear in the case of oblique incidence
on a single slab, and with the multiple-slab ar-
rangements (foil stacks) used in practical transi-
tion radiation detectors, are considered in Sec.
III. Qur methods can also be used quite easily to
treat the emission of transition radiation at rough
surfaces or from irregularly shaped objects, for
example, interstellar dust grains' or cavities in
a porous dielectric. The standard boundary-value
methods are not readily adaptable to these pro-
blems.
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II. NORMAL INCIDENCE ON A SINGLE SLAB

A. Derivation of the basic equations

E(b, z, )) = (Rw)
'~*f d~ e ' 'z(b, z, w),

where the components of E(b, z, (u) perpendicular
and parallel to v are given by'

A e 2 g Q)5E, (b, z, (u) =/ — — —A, —e'& /")'
yv ' yv

(5a)

Consider a single ultrarelativistic particle with
charge e and velocity v which passes through a
plane dielectric slab of thickness a. The passage
of the particle results in a transient polarization
of the slab, hence, in the flow of a transient polar-
ization current and the emission of radiation. We
will assume that the slab is perpendicular to v,
and will take the z axis of our cylindrical coordi-
nate system along v, with the origin at the point
at which the particle emerges from the slab. The
electric field of the particle at a point r = (b, z)
and time t (measured relative to the time of im-
pact) is given in vacuum by the Fourier integral

With this approximation, the polarization density
in the slab is given by

P ( r, (u) = El ( r, (u),
4m

(8)

and the polarization current density by

J ( r, (u) = —i (u P( r, (u) .

The vector potential set up at a point r' by this
source is given formally in terms of the exact
Green's function for the problem,

A( r', (u) = G( r ', r, iu) J( r, (u) d 'r, (10)

where the integration is over the volume of the
slab. At the frequencies of interest, (ua/c»1 for
any reasonable slab thickness. We can therefore
approximate the asymptotic Green's function using
a combination of ray optics with a Huygens con-
struction. We assume, in particular, rectilinear
propagation of the radiation from the source point
to the surface of the slab with a real wave vector
Tc, Snell's law refraction at the surface, and recti-
linear propagation to the point of observation with
a wave vector k. Here

q' + ((u/yv)'
CO (dk= —4, 0, = —cos6), k~= —sin6)4~, (1la)

i q ~ b + i((d/v)z (5b)

e 2 (d (d~E„(b,z, (u)= —iv —— —Q —e' "' (6a)
yv TI yv yv

R/yv
g q' + ((u/yv)'

&& ei q 4+ i((d/v)z

Here q and b are transverse with respect to v,
q v =b v =0. For ultrare1. ativistic particles, the
field is nearly transverse except in a very limited
region close to the particle, IE((l/IE~I-1/y«1,
and is strong at the angular frequency & out to
distances b -yv/(u-ye/(u =yX from the line of
flight. We will anticipate the result that the con-
tribution of the longitudinal field EII to the transi-
tion radiation is of order 1/y' relative to the con-
tribution of the transverse field, and will approxi-
mate E by E~ in the following calculations.

At frequencies ~» co~, the dielectric function of
the slab is close to unity, le((u) —1I-(~z/(u)'« l.
We may therefore neglect both dielectric shield-
ing in the slab and the small radiation field which
is present, and approximate the electric field in-
side the slab by the vacuum field

E„„(r,(u) =E„„.(r, (u) =El(r, ~u),

y» 1, . (7)

sAr'

A(r', (u) ~
c

"' ' J(r, (u) d'r, (12)

where the integration is again over the volume of
the slab. Using (8), (9), and (5b), we find that

(d& —1 e ikr'
A(r', (u) ~ —i-

c 4m

0

x dg 'b e ' " ' ' E~(b, z, (u)

z e E 1 Ij'~

(211)'/' v c ((u/v)-K, Kl'+((u/yv)'

iver'

y[1 i( -/) ] y

(13a)

(13b)

K = e —K K = —[e —sill 8] K = —sln6/i
C C C

(11b)

where 6) is the angle between the asymptotic wave
vector k and the velocity of the particle v." We
will neglect multiple reflections of the wave in
the slab and changes in its amplitude at the sur-
face, effects which are negligible for Ie —ll «1.
Furthermore, e((u)(1 for (u &(u~, and it is not

'V

necessary to consider the emission of Cerenkov
radiation by the particle in the slab." The as-
ymptotic form of the vector potential is given in
this approximation by
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———= —
~
i k x A~'r'~

d(d~Q 277
(14a)

c e u) e-I ' (kxK~~'
2F V e ((d/V)- K~ [K~ +((d/yV) ]

1 —cos ——~, a
'U

(14b)

We can simplify this experssion considerably for
y»1, cu/v~»1, and 8 small. In this limit,

The calculation of the asymptotic magnetic and
electric fields and the Poynting flux is straight-
forward, and leads to the following result for the
energy radiated per unit solid angle per unit angu-
lar frequency in a single traversal of the slab:

changes in either 0 or &, and can be neglected if
one considers the average intensity of the radia-
tion in a small interval in either of these quanti-
ties. We will therefore drop this term in the fol-
lowing discussion. As we will show in Sec. IIE,
this approximation is legitimate if the slab is
thick enough that (&a~a/yc)»1. For a typical di-
electric with a plasma energy 5+~ -30 eV, this
requires that a»y(0. 66x10 6 cm). Thus,

d4)dQ 77 c

6}

[8'+ (1/y')+ (~&'/~')]'[8'+ (1jy')1' '

a» ycj(o~ . (17)

K,'+ ((u/yV )' - —8'+—
~2 y2

This result is just twice the high-energy, high-
frequency limit of the exact result for a single
vacuum-dielectric interface. ' The extra factor
of 2 is associated with the second vacuum-dielec-
tric interface in the case of slab geometry.

d2g 2e' I92

d(udQ 7T'c (u [8'+ (1/y') + ((u,'/uP)]'[8'+ (1/y')]' B. Angular distribution of radiation from a thick slab

(d
x 1 —cos ——KZ

y»1, ~/&u, »1, 8«1 (16}

where we have dropped terms of order 0' relative
to those retained. It is clear from this expression
that most of the radiation will be emitted at small
angles if y and &o/&a~ are large, hence, that the
use of the small-angle approximation is justified.
It is also easily checked that the error in Eq. (16)
which results from our neglect of E~~ in Eqs. (8)
and (12) is of order 1/y'. While the radiation
emitted at any fixed angle is plane-polarized,
with the electric vector in the plane which con-
tains v and k, the average angle of emission is
extremely small under the conditions of interest,
and polarization is washed out in practical detec-
tors which accept all or most of the radiation.
We will not consider the polarization further (see,
however, Ref. 8).

Equation (16) is our basic result for the distri-
bution of high-frequency transition radiation from
a single dielectric slab. This expression may be
obtained from the much more complicated exact
results given by Pafomov'2 and by Garibian and
Chalikian" by taking the limits appropriate for
y»1, e/m~»1, and 8«1 and dropping the terms
which describe multiple internal reflections.
Under the conditions of primary interest for tran-
sition radiation detectors, the cosine in the last
factor in Eq. (16) oscillates rapidly with small

It is clear from Eq. (17) that the transition ra-
diation from an ultrarelativistic particle normal-
ly incident on a thick dielectric slab is azimuthally
symmetric about the line of flight of the particle,
and is confined to a narrow forward cone. The
distribution of the radiation as a function of 8 is
given by

d2$ d2g
dg

27/ 8
d yg $ 6 1 0 (18)

This function vanishes as 6' for 0-0, and has a
sharp maximum for 8-1/y. At frequencies high
enough that &u~ /+ «y ', the angular distribution
of the radiation (but not its intensity) is essential-
ly independent of + [see Eq. (17)], daf/d&d8 falls
as 6} ' for angles large relative to y ', and the
radiation is confined to angles 8& y '. However,
the spectral intensity of the radiation dh/d&o is
quite small in this limit because of the overall
factor (v~/&u)4 in Eq. (17). A more interesting
case for practical purposes is that in which 1
»(m~/&u)»y '. In this case, d'$/d&od8 decreases
as 8 ' for y 's 8s &u~/e and is cut off as 8 5 only
for 8»~~/~. The angular distribution of the ra-
diation is consequently much broader than in the
previous case, but the radiation is still confined
to a narrow cone if e~/&u « l.

The width of the radiation cone can be charac-
terized in terms of the mean square angle of emis-
sion (8'), defined as
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where

Q(gp 0 QCO+0

(19)

(20)

5

y -Iy
Calp

+2 2
OJ

Note that we have taken advantage of the sharp
cutoff in dag/dude to extend the integrations in
E (19) and (20) over the entire interval 0~8&~qs.

hichrather than the limited interval 0 ~ 6}S1 for whic
(17) was derived. The errors introduced by this
approximation are negligible. The integrations
in Eqs. (19) and (20) are elementary, and we find
that

( '8') —= —[2+x '-2(1+x') ln(1+x ')] (21)

X = (ujy(up

[(2x'+1) ln(1+x ')-2],
ZC

where x is the dimensionless parameter

(22)

(23)

FIG. 1. Variation of the mean square gare an le of emis-
sion of the transition radiation from a t icick slab as a
function of the parameter x = ( y~&. Note pNote the rapid ap-

alue v'2 for xproach of curves a and b to the limiting va ue
large.

(y'8')- 2, x» 1 (24}

and grows rapidly for x small (u&~ /u»y ',
(y'6')- [x' lnx-']-', x«1.

It will be advantageous for our purposes to take
the frequency dependence of (8') into account ap-
prox&maroximately, and consider instead of (y'8' a
quantity (y'8'), with y' defined as

(25)

As would be expected from our earlier remarks,
the quan i y qyt t ' '8') approaches a constant limiting
value for x»1 (&u~/&u«y '),

The sharp forward peaking of the radiation is

p(8& eo), the fraction of the radiation emitted at
angles 0 less than a specified value O„as a func-
tion of 8,/8 for a number of values of x. The re-
sults for values of x greater than 10 are indistin-

= —
2 1+— (26}

The variation of (y'8')'~' and (y'8'g'~' with x is

proach of both quantities to their common limi ing
1 W2 is clearly evident. Note that (y'8')'~'

approaches this limit from below, yy
for all x, a fact which we can use to obtain a use-
i l b und on the root-mean-square angleiul upper oun
of emission of the radiation at frequency cu,

'o
I

e, /e

This ang e zs qui1
'

quite small under the conditions of
practical interest (for example, with y = 1000, k&u

=3 keV, and jg&u~=30 eV, 8=0 014 rad=0. 8. ).

FIG. 2. The fraction of the transition radiation emitted
at an les 0 smaller than a given angle 6}0 as a function ofat ang es sma

= c ~ . The curves for val-0/0 for various values of x = c

ues of x larger anth 10 are indistinguishable on the scale
of the figure from that for x = 10.
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guishable on the scale of the figure from the curve
labeled x = 10. Even for this asymptotic curve,
74% of the radiation is emitted at angles smaller
than 8, and 96% is emitted at angles less than 2 8.
These fractions are considerably higher for the
values of x of principal interest, x«1. The frac-

tion V(6& 6,) can be calculated analytically:

6-(8&6,) „—= (6&6,),dg dg

where

—(6&6 )=dg
d~

d2g

d~dg

2e' ~ (1+x')(1+y)' x'y' y'
mc 1+x +x y' 1+x'+x'y' 1+y (28)

and

y2 y26 2

d&P/d+ is given by Eq. (22).
It is clear from Figs. 1(a) and 2 and Eq. (27)

that the effective width of the radiation cone in
an actual experiment will be determined by the
minimum frequency +, accepted by the apparatus.
This frequency must be large relative to the plas-
ma frequency &~ if our approximations are to be
valid. We assume that this is the case. If, in
addition, r»&u, /e~, the radiation of all frequen-
cies ~ & cu, is confined to the interior of a cone
with an opening angle 8-2'~'(~~ /&u, ), with the
higher-frequency radiation concentrated at small-
er angles. The angular distribution of the radia-
tion integrated over the frequency spectrum can
be calculated using the spectrum in Eq. (17)
weighted by the experimental frequency accept-
ance function. For purposes of illustration, we
will consider the result obtained using a sharp
lower cutoff ~„
dj e Q)p 6
d8 ' c [8'+ (1/ ')]'~'

2 ~ (do 2 ((d~/(oq )x 1 ——tan-' —' ——
]7 (d~ 1T 1 + ((Uo/CO~)

(29)

Here u, is a characteristic frequency given by

(u, =(u, [6'+ (1/r')]-'i'.
The function dh (~ & &u,)/d6 is sharply peaked at
small angles with a maximum at 6'- —,'y ', de-
creases as 8 ' out to 6- &u~ /~, (&u,

-~,), and is
cut off as 8 ' at larger angles (that is, for v, &~,).
The mean square angle of emission is easily esti-
mated by using only the first term in Eq. (29) to
calculate (8') and the total energy radiated, with
6 restricted to the range 0 & 6 & co~/go. The re-
sult (8'), , (~~ /r&u, ) agrees quite well with the
result of an exact but lengthy calculation,

r3 (dp

m yvo'

The angular distribution is consequently much
broader than is often quoted,

(31)

(8')'" r'(r-~~/~. )"» r f» r~&/~0»1

but most of the energy is still radiated at quite
small angles.

C. Frequency distribution of the radiation from a thick slab

The frequency spectrum of the transition radia-
tion from a thick slab is quite simple when con-
sidered at a fixed angle 6«1. We find from Eq.
(17) that

d g
I

~~(0, 8) = (1+,]
(32)

(o„(u, » (u~. (33)

This function is plotted in Fig. 3, curve b. Al-
though 96% of the total energy is radiated at fre-
quencies co&2~„a significant fraction of the ra-
diation may be at high frequencies if co, is suffici-
ently lar ge.

The fixed-angle frequency spectrum is of less

where the cutoff frequency ~, was defined in Eq.
(30). The frequency distribution function in Eq.
(32) decreases rapidly with increasing ~,"and
the spectral intensity of the radiation becomes
quite small for angular frequencies much above
~, (see Fig. 3, curve a). Note, however, that
~, »+~ if 6 and y

' are sufficiently small. The
fraction of the radiation emitted at frequencies
~ less than a specified frequency &,» &~ is easily
calculated from Eq. (29),"

dg dg 2
&

(d &do/(dz((o«u, ) —= — tan '~+
d6 o d6 n (u, 1+ ((uo/(u, )'
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(34)

interest in applications of transition radiation in
high-energy physics than the spectrum obtained
after integration of d'8/dad& over all angles of
emission. The result obtained for the latter was
noted in Eq. (22),

E(x),dg 2e'
6(d PIC

where

E(x) = (2x' + 1) ln(1+ x ') —2, (35)
.5

x=+/ye~, x&y '. [The lower limit on x arises
from the condition» ~p necessary for the validity
of the high-frequency approximation for the dielec-
tric function, Eq (1),. used throughout our discus-
sion. ] The function E(x) is plotted in Fig. 4. Its
behavior for small x is determined primarily by
the logarithm in Eq (35)., E(x)-(21nx ' —2), y

'
&x«1. E(x) decreases rapidly with increasing x
and varies asymptotically as x (or &u ) for x
» 1 as would be expected from Eq, . (17),

1 1 3 1

The total energy radiated at angular frequencies
co greater than some &, &cop is easily calculated
from Eq. (34),

0
0 .5 I.5

FIG. 3. (a) The frequency spectrum of the transition
radiation at a fixed angle 0, Id2$(~, 0)/d~d Ql/[d2$(0, 0)/
ChdQl, as a function of ~/(, . The cutoff frequency ~,
is given by co~ = ~p[0 + (1/y )] ~ . (b) The fraction of the
energy emitted at a fixed angle at frequencies less than
a given frequency ~ as a function of ( /c, .

g((u&(u, ) = ——y(u~ —, tan ——x,(—,x, +1) ln 1+, + —,x,2 1
I 0

(37)

x, = &u,/ye~. For fixed ~„x,decreases with in-
creasing y, and S(&u & ~,) approaches an asymptot-
ic form obtained by taking the small-x, limit of
Eq. (37),

2 e' 6g,h(~&~ )- ——y(u 1 — ' ln —+O(x') x «10 3 ~ P 0 & Q

(38)

2 e 6(do y(dp 1
ye~ — ' ln ~ + 0 —, . (39)3 C 7T {'do

The leading term in Eq. (38) is generally quoted
as giving the total energy radiated by an ultrare-
lativistic particle in traversing a thick dielectric
slab, '

g = ——ycop = 1.46 x 10-4 y keV, kvp = 30 eV.
2 e
3 c

(40)

IO

IO

I I I I
I I I I ] I 1 i I

How'ever, it should be noted that the absolute error
in h(&u & v, ) which results from the omission of
the second term in Eq. (39) increases logarithmi-
cally with y, even though the fractional error de-
creases with increasing y [decreasing x„Eq.(38)].
This effect is evident in Fig. 5 which shows the
dependence of g(v & &u, ) on y for several values of

IO& i « t ) I t » l

0 I

X QJ

/+Quip

FIG. 4. Variation of the spectral distribution function
F'(N), Eq. (35), with the parameter x= c /you&. The fre-
quency spectrum of the transition radiation from a thick
slab is given by dS/d ~ = (2e /zc)E'(x).
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cop. The curve labeled S~p =0 gives the result cal-
culated from Eq. (40). This result is unphysical,
since our calculations are only valid if &p ~ 4)p.

The possibility of using transition radiation to
measure the ener gy of, or discriminate among,
ultrarelativistic charged particles depends on
the rapid increase in g(&u & w, ) with y, and the fact
that the spectrum extends into the x-ray region to
frequencies high enough that background problems
can be reduced or eliminated (see, e.g. , Ref. 3).
The fraction of the total energy radiated at fre-
quencies co»p» ~p is given to sufficient accuracy
for our purposes by the ratio $(&u & e,)/$, Eqs.
(37) and (40). This quantity is plotted in Fig. 6

as a function of x, = v, /y~~. The ratio decreases
rapidly with increasing x, and falls asymptotically
as x, ' for xp+&1,

8((u&(o, ) 1 1 3 1 1
1 ———+0 x»1.

8 6mx, '- 5 x,' x,'
(41)

Despite this rapid decrease, a substantial fraction
of the radiation will be in the x-ray region if y is
sufficiently large. For example 56% of the ener-
gy is radiated at frequencies with h»3 keV for
Sup=30 eV and y& 1000. The mean angular fre-
quency of the radiation is also easily calculated
from Eq. (34),

For y) 420, 5& is greater than 3 keV. These re-
sults will be altered in detail for real devices.
However, the analog of Eq. (37) can be calculated
by weighting the spectral intensity function d$/de,
Eq. (34), by the frequency acceptance function for
the device and integrating over ~. The result will
determine the relation between the ener gy detected
and y for the device in question. The examples
given above correspond to an ideal detector which
accepts all radiation with ~ & ~p and no radiation
of lower frequency.

D. Photon number distributions

The number of photons per unit frequency emit-
ted in transition radiation from a single slab is
given by

dN 1 dg 2~ 1 1—E(x), x =re/y&u, (43)Se de m yap x

where z = ~37 is the fine-structure constant. The
function F(x) is defined in Eq. (35) and is graphed
in Fig. 4. The number of photons emitted at fre-
quencies above some minimum frequency ~p is
easily obtained by integrating Eq. (43) from &u, to

N(e & v, ) =(n/n)[2 —2(x,'+ 1) ln(1+x, ')

—f(1+x, ')].
3

(u - —y(op[1+0(y ')], y»1. (42) Here f(z) is the Spence function (Euler dilogarithm)"
defined by the integral

O. l5 ) ) I I f(z) = — dt.lnt
t —1

(45)

0. O. I

Ol

Ol

3
A
3

hg

~05
O
3
3

lO

0
0 500 IOOO

FIG. 5. The energy h(u &~p), Eq. (37), radiated at
frequencies u. &~p as a function of y for a plasma energy
k('p= 30 eV and various values of ~p. The curve for
h~p ——0 gives the total energy radiated by a thick slab,
neglecting the corrections necessary for cup &cLip

= (2e2/3c)yu, p.

lo I I I I I I I I I I I

0 I 2
g = a) /yu)p

FIG. 6. The fraction of the total energy radiated at
frequencies ( &~p as a function of xp = p/&p.
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of the thickness of the slab to the separa, tion A

between points in the slab which radiate in phase,
d2g e2 2 a ' 03

p

d&ud6 2wc &u c [6 +(1/y')]' '

Kz 0 (47)
2ma/A & 1 . (49)

where

40
A(6, y, &u) =2m

4TIC 2 1 (dp
6 + —2+

CO
(48)

The appearance of this finite coherence length is
a reflection of the difference between the phase
velocities of the radiation field and the electric
field of the particle, Eq. (5). Because of this dif-
ference, radiation fields which originate at differ-
ent depths in the slab, with phases determined by
the local phase of the electric field of the particle,
will differ in pha. se at the point of observation and
may interfere either constructively or destructive-
ly. The last factor in Eq. (46) describes this in-
terference.

The quantity Ao/2m = A(0, y, u)/2n is generally
described in the literature as the depth of the
"formation zone" in which the radiation field
builds up to a reasonable fraction of its maximum
possible value. This interpretation follows from
consideration of the radiation emitted by a thin
foil. In particular, if a is small enough for given
values of e, y, and 6 that 2@a/A & 1, we may ap-
proximate the cosine in Eq. (46) by the first two
terms in its Taylor series, and find that d'6/d&ud6
increases as a',

dg 2e'—= —[Z(x)+G(~, x)],
~CO 7TC

(50)

where x=&u/y&u~, v=(&u~a/2yc), and

This quadratic increase in the energy radiated
corresponds to a linear increase in the strength
of the electric field with the thickness of the foil,
precisely the result which would be expected for
a coherent radiator.

The importance of the interference terms in
Eq. (46) for practical transition radiation detec-
tors depends on thickness (and separation) of the
foils used and on the ranges of angles and frequen-
cy accepted by the device. In the following dis-
cussion, we will assume that y»1, e/&u~»1, and
(e&a/c) »1 (c/e& ——0.66X 10 6 cm for hv& ——30 eV).
Under these conditions, our earlier conclusion
that the radiation is confined to a narrow cone
around the direction of motion of the particle is
unchanged, though the details of the angular dis-
tribution are modified. These modifications are
not of importance for practical devices, and we
will consider only the specirum of the radiation
obtained when all angles of emission are accepted.
The angular integration necessary to obtain d8/dId
from Eq. (46) can be performed exactly in terms
of the sine- and cosine-integral functions"

G(T, x) = —(2x'+1)[Ci(v(x+x '))—cos(v/x) Ci(7x)+ sin(~/x) si(Tx)]+2 cos(T(x+x '))

+ T(x + x ') si(7 (x+ x ')) + Tx cos(T/x) si(Tx) + vx sin(T/x) Ci(~x) . (51)

The function E(x) is defined in Eq. (35).
Simple limiting expressions for dg/d+ can be

obtained for the cases of very thin or very thick
foils directly from Eq. (50), or by making the
relevant approximations in Eq. (46) before per-
forming the angular integration. We will call a
foil "thin" if its thickness a is small compared
to the length of the formation zone, 2ma/A, « l.
This condition requires that ~~(su~a/2c) & &u

&, 2y'c/a. The argument of the cosine in Eq. (46)
is then small for angles in the range 0 &6
& (2c/&oa)'~', and the radiation in this angular
region is strongly suppressed. The angular dis-
tribution of the radiation is given by Eq. (49) for
6&(2c/va)'~', and is sharply cut off at larger an-
gles. While .his distribution is broader than that

considered in Sec. IIB, but is still quite narrow
at high frequencies, 1» (2c/ea)'~2» 6 [see Eq.
(2"|)]. We can obtain an approximate expression
for the frequency spectrum of the radiation from
a thin foil by integrating Eq. (49) over the angular
interval 0 & 6 & (2c/&ua)'~',

~8 8 ~4) (dpQ 2p c

2y'c/a» &u» up~(+~a/2c) . (52)

Here C is a constant on the order of 1. The spec-
trum falls to a reasonable approximation as co ~

in the region to which Eq. (51) is applicable. The
total energy radiated at frequencies + & u, is giv-
en approximately by
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2y'c/a» e» &u~(&@~a/2c) . (53)

This quantity increases much less rapidly with
increasing y than the result for an infinitely thick
slab given in Eq. (39), and the intensity of the ra-
diation is strongly suppressed.

The limiting case of "very thick" foils is also
easily discussed. This limit is defined by the con-
dition that the cosine in Eq. (46) undergo many
oscillations in the smallest angular interval in

which the remaining factors in Eq. (46) vary sig-
nificantly. We would then expect the contribution
of the cosine term to dS/du& to be quite small be-
cause of large caneellations in the angular inte-
gration. Since the leading factors in Eq. (46) vary
rapidly for 0 & 8% y and less rapidly for larger
6P, the foregoing condition on the oscillations of
the cosine requires that (~a/2y'c)» 1 at the fre-
quencies of interest. It is straightforward in this
case using repeated partial integrations to obtain
an asymptotic expansion for the contributions to
d8/dv associated with the cosine term in Eq. (46),
hence, to obtain an asymptotic expansion for the
frequency spectrum of the radiation,

dg 2e
7l'C

IE(x) +(~x) '(1+x') '[cos~(x+x ') —2((~x) '+ 7-'(x+x ')-') sin7(x+x ') + ~ ]}, (54)

where E(x) is defined in Eq. (35), v=(&a~a/2yc),
and x=~/y~~. This result approaches that for
the infinitely thick slab, Eq. (34), for v-~.

Neither of the foregoing limits is applicable to
practical transition counters of the types which
have been constructed. '4 In particular, the very
weak dependence of the energy radiated by a "thin"
foil on y, in conjuction with strong suppression of
the intensity of the radiation, makes thin-foil
counters impractical. The foil thicknesses used
in present counters [a-1-2.5x10 ' cm (see Refs.
3 and 4)] are consequently well above the "thin"
limit. (Note that a foil will not be "thin" at any
frequency if a&yc/co~ 0.66yx10 8 cm, a con-
dition which follows from the use of the maximum
value of A, in the thin-foil condition 2'/A, & 1.)
On the other hand, the amount of material in the
way of a particle beam, hence the probability of
unwanted interactions in the counter, becomes
unacceptably large if the foils are to be "very
thick" for large y. The foil thicknesses noted
above are acceptable in this respect, but fail
to satisfy the "very thick" foil constraint a
» (2y'c/&u) for reasonable values of h&u and y
larger than a few hundred. We are therefore
forced in the case of practical counters to deal
with the rather complicated result for dg/d~ giv-
en in Eq. (50).

The first term in Eq. (50) describes the transi-
tion radiation from an infinitely thick slab. The
effect of finite slab thickness on dg/d&u is de-
scribed by the function G(v., x). It is simple to
obtain a bound on

~
G (T, x)( by replacing the cosine

in Eq. (46) by its extreme values, + 1, before per-

40
61 3g +

m8X

Since (~a/2c)8, „' = 7(x+x '), the cosine in Eq.
(46) will undergo many oscillations in the region
of integration if T&1 and x «1. The resulting
cancellations reduce the magnitude of G(v, x) well
below the absolute bound in Eq. (55).

G (7', x) also oscillates rapidly as a function of x or ~.
This property of G(7, x) can be displayed by reex-
pressing the sin- and cosine-integral functions in

Eq. (51) in terms of auxiliary functions f (z) and

g(z) defined by"

f (z) =-Ci(z) sinz —si(z) cosz

-st:
dg

t +1

g(z) = —Cl(z) cosz —si(z) slnz

(56)

(57)

These functions clearly decrease monotonically
with increasing z, with f(z) -z ' and g(z) - z ' for
z-~. For z-0, f(z)-m/2, whileg(z) diverges
logarithmically, g(z) -lnz-'. G(T, x) can be ex-
pressed in terms of these functions as

forming the angular integration. One finds that

(55)

However, this bound is substantially too weak
under the conditions of primary interest. Most
of the radiation is emitted at frequencies ~ «yu~
(x«1) and at angles 84 8, where

G(T, x) =cos(~(x+x-'))[(2x'+1)[g(~(x+x-'))-g(~x)]- r(x+x-')f (T(x+x-'))- vxf(~x)+2}

+sin(7(x+x '))02x'+1)[f(~x) -f(T(x+x '))]-r(x+x ')g(7(x+x '))-~xg(~x)}. (58)
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The factors in curly brackets vary smoothly as
functions of x or ~, while the sine and cosine func-
tions oscillate rapidly with co for 7 &1 and x «1."
As a result, there will be large cancellations when
G(v; x) is integrated or averaged over a range of
frequencies broad enough to include many oscilla-
tions. This requires that the change in v(x+x ')
over the frequency band be large, b(T(x+x '))/2}{
»1. The net contribution of the thickness-depen-
dent terms to the total energy radiated is then
small compared to the contribution of the thickness-
independent term &(x). We conclude that the ap-
proximation of using the simple result for dS/du
given in Eq. (34) to describe the radiation from a
broad-band transition counter at frequencies
v «y~, should be adequate for most practical pur-
poses provided that ({d~a/2yc) &1.

For foils composed primarily of light elements,
A/(2 cos6) is small compared to [(u&/v)- {{,] at all
frequencies w» ~~ for 6 small,

——{{,& ~ ~ » ~ A.({d), {a}»{v~
CO (d 40

V 2C 4g
(61)

dCOdQ 7l' C

& 1+e-"—2e-('/'&'cos ——~ aZ

and can be dropped in the denominator in Eq. (60).
The quantities d'8/dedQ and d8/d{d are then giv-
en in the usual high-energy, high-frequency,
small-angle limit by

F. Absorption of radiation in the slab

e -& K ' 1' + ~z/(2 cos 6) (59)

in Eq. (13a), where A({d) is the x-ray energy ab-
sorption coefficient for the material in question.
The extra fa,ctor describes the attenuation of the
transition radiation emitted inside the foil (- a
&a&0) during its propagation to the surface The.
result for the asymptotic vector potential in Eq.
(13b) is modified accordingly:

i ego E —1A(r', {v) ~
r -- (2}{)'/' v c ({u/v) —{{,—i}}/(2cos{})

K~

{{,'+ ({v/yv)'

f,ur'
&{[1 {{a -at/a}a-xa/{2 cos8}]e

(60)~!

We have so far neglected any absorption of the
transition radiation in the dielectric slab. This
absorption can be quite important for soft x-rays
even for the thin plastic foils used in current ex-
periments (typically Mylar foils 1 —2.5x 10 ' cm
thick'4). Thus, the x-ray absorption length in
polypropylene is 0.64&&10-' cm at 1 keV, 1.1&& 10-'
cm at 1.25 keV, 4.2& 10 ' cm at 2 keV, 1.5&& 10 '
cm at 3 keV, 1.2& 10-' cm at 6 keV, and 0.5 cm
at 10 keV." The absorption lengths in Mylar are
smaller by factors of 0.65 to 0.57 over this ener-
gy range. It is clear from these numbers that
transition radiation in the 1-2 keV range will be
strongly absorbed in the foil in which it is emit-
ted, and that radiation of higher energy may also
undergo significant absorption in traversing later
foils in a multifoil stack."

The effects of absorption in a single foil are de-
scribed to sufficient accuracy for our purposes
by making the replacement

y» 1, {v»{v, {}«1 (62)

—- —[(1+e )E( )x2+e' "G(T,x)].
~(d lTC

The functions E(x) and G(v, x) are defined in Eqs.
(35) and (51). For optically thick foils, Aa» 1,
these results for d'8/d{vdQ and dg/d~ reduce to
one half of the corresponding "thick-slab" results
given in Eqs. (1'I) and (34).

III. GENERALIZATIONS FOR DIFFERENT GEOMETRIES

A. Oblique incidence on a single slab

The results of the preceding section were de-
rived for the case of normal incidence of an ultra-
relativistic charged particle on a dielectric slab.
The discussion will be generalized in the present
section to the case of oblique incidence. We will
show, in particular, that the results derived for
normal incidence can be used with minor modifica-
tions to describe an appropriate azimuthal aver-
age of the transition radiation emitted in the case
of oblique incidence. "

It will be convenient in the ensuing calculations
to use the two different coordinate systems shown
in Fig. 9. The common origin of the two systems
is at the point where the particle emerges from
the slab. Ths system denoted by x, y, z has its z
axis oriented perpendicular to the slab a.nd its x
axis in the plane determined by z and the velocity
of the particle, v. The x', y', z' system has the
~' axis along v and the x' axis in the plane deter-
mined by v and z, as indicated. We will specify
the direction of the wave vector k for the radiation
outside the slab by angles 8, Q referred to the
x', y', z' system. The direction of k with respect
to the x, y, z system will be specified by the an-
gles 8, 4, and the direction of v in this system,
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by the angles 3, 0.
The basic calculation for the case of oblique in-

cidence is quite similar to that for normal inci-
dence given in Sec. IIA. We will again assume
that the electric field in the slab is given by the

vacuum field of the incident particle, and will ne-
glect multiple reflections of the radiation field in
the slab. The asymptotic form of the vector po-
tential which describes the radiation field is given
in this approximation by

A(r', (u) ~ —i —,— d'r e "'' E„„(r,(u)c 4m

1 e ~ e-1 e'"r'
(2n)'~' m c 4m

d2 q+ ~/'y Viv
d d d -i K r +i q ~ r +i(u)/v)v ~ r

q'+ ((u/yv)' (64)

where Tc is the wave vector of the radiation inside the slab. The relation of 7 to k is given in Eqs. (11),
with 8 replaced by 8. The vector q in Eq. (64) is transverse relative to v, q ~ v =q, =0 [see Eqs. (6)].

The integral over the volume of the slab in Eq. (64) can be evaluated using the rectangular coordinates
x, y, z, as indicated. The remaining integral over q can then be performed using the primed coordinate
system. The result is rather complicated:

iver' t

2 e (d e (d ~)A(r', cu) ~,z, ——(e —1), ~„.— ——~,. tan3 x'+K, g + 2
8'

„,„„(2m)'~' v c

2 2 t -1 -1
Kgr + Ky) + 2K&~ —Kz~ tan + —Kz) tan — t)t) [1 —8

(d GO 2 i (K «Qtv )a /cos0 1

yV V V v

(65)

Note that the exponential involves the slant thick-
ness of the slab a/cos3, as would be expected.
The expression for A vanishes for 3- m/2, cor-
responding to motion of the particle parallel to
the surface of the slab. Our approximations are
not appropriate in this case, and we will there-
fore restrict our attention to angles 3& m/2.

Calculation of the energy radiated per unit solid

angle per unit angular frequency is straightfor-
ward. For y»1 and u&/u&~»1, the radiation is
sharply peaked at small angles 0 relative to the
direction of motion of the charged particle. It is
therefore convenient to introduce a small-angle
approximation as in our earlier calculations. Us-
ing the relations given in Eqs. (11) with 8 replaced
by 8, and the geometry of Fig. 9, we find that

= —[sin8 cos3 cosc —(e- sin 8) ~ sin3] - — sin8 cosp+ —, + ~ ~
(d ~ 2 X2 1 ~p sing
c C 2 +2 cos9 e~/~ «cos8

CO COp8cosp+ — ~ tan3+ ~

c (d
0«j. ;

(d . . CO

g, t = —sin8 sing — —8 sing, 0«1;

K = —[sln8 sln3 cosct+ (e —sin 8) cos3] — cos8 ——2 1 2 4P 1 (dp cos3
+ ~ ~ ~, (dp u «cose

C c 2 w cos8

0 Gap1 —28' —— —— tan3 cosp+ ~

C 2 (d 2

We have used the fact that cose- cos3 for 0«1 in the final forms of these expressions. W'ith these approx
imations, we find that

0' —0 0'+ —, tan3 cos

I

x 8 + —,—8 8'+ —,tan3cosgy' y'
1 cop (dp

~2
8'+ —+ ~ + 8 ~ tan3 cosp

y
2 2 Q)2

&& 1 —cos (dO 2 1 COp CO
tt + —,+, + H~tnnnennt), Htnn&e 1.2c cos3 y co (d

(67)
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We have consistently dropped terms of fourth
order in the small quantities 8, y ', and idb/a
in various factors in Eq. (67), and have retained
third-order terms only to indicate the weak de-
pendence of the radiation on the azimuthal angle

V, Z

The restriction 9 tan3 «1 necessary for our ap-
proximations to be valid is essentially the condi-
tion that the radiation cone not intersect the plane
of the slab." We will assume that 3, ~, and y
are such that this condition is satisfied with 6 re-
plar. ed by 20, where 0 is the upper bound on the
root-mean-square angle of emission defined in
Eq. (27),

A Ag

1/2
2 8 tan6 «1, 8 = v 2 —,+

CO
(68)

With this constraint, our approximations are valid
at all angles at which there is significant radiation
(see Fig. 2), and the right-hand side of Eq. (67)
can be expanded in powers of the small quantity
8 tan3 cosP. The leading term is independent of
cosQ and gives the same angular distribution for
the transition radiation about the line of flight of
the particle as was obtained for normal incidence
on the slab. The first correction term introduces
a cos Q dependence, but its contribution to d2g/
d~dP is only of order 8 tan3«1 relative to the
leading term. (The radiation has a net linear po-
larization of the same order. ) This correction
drops out if the angular distribution is integrated
over Q, and, as a consequence, the corrections
to d8/d&u and d28/d&d8 associated with oblique
incidence are at most of order 0'tan'3. '4 These
corrections are negligible under the conditions of
interest. We conclude that the results of Sec. II
can be used to describe the radiation emitted in
the case of oblique incidence provided that the
slab thickness a is replaced by a/cos3, and the
restrictions noted above are satisfied. Somewh3t
more detailed arguments show, in fact, that the
azimuthally averaged distribution d28/d+d8 is
also unmodified in the high-energy, high-frequency
limit by small departures from the plane parallel
geometry assumed above, for example, surface
roughness. "

B. Multiple foil arrangements

X

FIG. 9. The geometry used to describe the emission
of transition radiation in the case of oblique incidence of
a particle on a dielectric slab.

should approach that from a single foil of thickness
na for 5 -0, and is plausible also that the intensity
of the radiation should be n times that from a sin-
gle radiator for 5 very large. Unfortunately, the
situation of most interest for high-energy physics
lies between these extreme limits and cannot be
handled simply. The rather complicated varia-
tions of the radiation with frequency and angle of
emission have been studied in detail for this case
by Garibian. ' We will therefore confine our at-
tention primarily to the derivation of the basic
equations and expressions for the frequency-aver-
aged spectrum using our large-y, high- frequency
approximations.

The radiation from a foil stack is easily cal-
culated by summing the fields radiated by the
individual foils with the proper phase differences
and the absorption in succeeding foils taken into
account. We will initially neglect multiple reflec-
tions of the radiation in the foil stack and calculate
only the direct radiation. We will take the origin
of coordinates at the point at which the particle
emerges from the foil stack, and will number the
foils from 1 to n along the direction of the beam.
The asymptotic vector potential is then given by
the sum

In this section we will consider the modifications
of the results of Sec. D which arise when a single
foil is replaced by a foil stack." We will consider
n parallel foils of thickness a separated by vacu-
um gaps of width 5, and will restrict our argu-
ments to the case of normal incidence of the par-
ticle beam. It is clear that the radiation field where

farl in(42+ Qb) - -nba/2
j

x~1 —e -i/ -i g -Xa/2)-1

(69a)

(69b)
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(7Oa)

(05 1
b - —8'+-

b g z 2 2 (vob)

z/z »1 y»1 P«1

and A, (r', v) is the potential set up by an ultra-
relativistic particle on passing through a single
foil, Eq. (13),

2 e E —1 Kg
(2~)'" v c ((u/v) —~, ~,'+ ((u/yv)'

ghee'

x (1 e-i 4&»-xa/2) r' (71)

The corresponding result for the energy radiated
per unit solid angle per unit frequency by a stack
of n foils is given by"

2
n 1 ~ 8-~(n- m)(pa+ gb) -(n - m)Xa/2

drub d~dQ m~

(72a)

=(d'h o/d&ud Q)(1+e ~' —2e ~'~'cosP, )

1+e "~' —2e "~' ' cosn(y + y )
Xa -Xa/2

a b

1+e "-2e ""cos(y,+y»)
(v2b)

where

d'g, e'
d(dd 77 C (d

9'

[ ~'+(I/y') +(~o'/~')]'[~+ (1/y')]' '

This result for d'S„/dudQ simplifies consider-
ably in several limits. If b is sufficiently small
that nQ» «1, the b-dependent terms in Eq. (72b)
can be dropped. The remaining expression is
identical to that for a single foil of thickness na,
Eq. (62). This simplification is associated physi-
cally with the fact that the radiation field in vacu-
um and the field of the incident charged particle

remain in phase over distances greater than the
total vacuum gap in the stack (np» «1), and the
radiation fields from successive foils add as if
those foils were adjacent. If both a and b are
small enough that P, & 1, Aa& 1, and P» & 1 (thin
foils and narrow gaps), the foil stack acts as a
single foil with a thickness n(a+b) and an average
high- frequency dielectric susceptibility reduced
by the ratio a/(a+b) of the thickness of material
to the total thickness,

a2 2

(d 0+6 (d

The resulting expression for d'b„/durdQ can be ob-
tained by making these replacements in Eq. (62).
We will not consider these limits further, as they
are not of interest for applications of transition
radiation to high-energy physics. We will there-
fore assume in the remaining discussion that P,
&1 and Q»&l.

It is clear from Eqs. (62) and (72b) that the
transition radiation from a foil stack is effectively
confined to a cone 8 ~ 8 with the same opening
angle 8 as the radiation from a single foil, Eq.
(27). However, the distribution of the radiation
inside this cone is modulated by the extra factor
which appears in Eq. (72b). If the absorption in a
single foil is small, this factor is sharply peaked
at angles such that P, + $» =2m', m =1,2, . . . ,
and is small elsewhere. As a result, the radia-
tion is actually emitted in a set of coaxial cones
with individual opening angles 8y & 82 & 8 This
redistribution of the radiation in angle has, as we
shall see, rather little effect on the total energy
emitted. The angular distribution has been con-
sidered in detail by Garibian. ' We will consider
only the spectrum integrated over all angles of
emission, dS„/d&u.

It will be useful for our purposes to rewrite Eqs.
(72b) in an alternative form which can be obtained
by straightforward manipulation of Eq. (72a),

d2g 1 -nba + n -I -(n -&)Xa

1 + 2 ~ e-&xa/2
dNdn d&dn 1-e-X '

A~1
e-n~a cos~(4a+ 4'») (v5)

Here d'g, /d&udQ is the spectrum for a single foil,
Eq. (62). The peaking in the angular distribution
noted above results in this form from the coherent
addition of all terms in the cosine series when

(P, + p») =2m'. The angular integrals involved in
the calculation of dS„/de, the frequency spectrum
of the radiation, can all be evaluated in terms of
sine- and cosine-integral functions. The results
are similar to those in Sec. IIE, but are even less
illuminating and will not be presented. However,

dg„dS, 1- e ""
&ub/2y c»1 .

d4) 1 —e (v6)

The expression for dh, /du& is given in Eq. (63).

they simplify considerably if (ub/2y'c)»1 at the
frequencies of interest (the limit of very wide
gape). The cosine functions in Eq. (75) then under-
go a number of oscillations in the angular interval
in which d'8, /dedQ is large, and tend to average
to zero in the angular integration. As a result,
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( „")= ii(ra)z(x), (77)

where E(x) is defined in Eq. (35), and the effective
number of foils in the stack at frequency u is
given by

] e fly. Q

n((d) = (7s)

If the entire stack is optically thick to the radiation
(nba» 1), but the individual foils are thin (ha «1),
n- (A.a) '=L/a, where L((d) is the mean absorption
length for radiation of angular frequency ~. That
is, the effective number of foils is just the number
necessary to give one absorption length of materi-
al. If the entire stack is optically thin, n(&u) - n as
expected. Since the absorption increases strongly
with decreasing ~ (A/p - 2070E '

g cm' for poly-
propylene in the 2-10 keV range, E in keV), the
ratio n((d)/n drops rapidly at low frequencies [fre-
quencies such that na»L(&u)]. The low-frequency
radiation from stacks with a large number of foils
is therefore strongly suppressed. The details de-
pend on the number of foils and the material used.
The total energy radiated for different values of y
can be calculated approximately by integrating Eq.

If the gaps in the foil stack are wide, but not very
wide, (eb/2c)8m, ~'»1 and (wb/2y'c) & I, the cosine
terms in Eq. (75) do not average to zero in the
angular integration for small values of the summa-
tion index I2, but lead to terms in dh„/d(d which
oscillate rapidly with (d for frequencies ~ «y~~."
While there is then no simple expression for dh„/
dw, an investigation similar to that at the end of
Sec. II E indicates that Eq. (76) may still be used
to calculate either h„(&u & (u, ) or the frequency av-
eraged spectrum (dh„/der). ,„provided the range of
integration or averaging includes many periods of
oscillation. (This restriction will not be satisfied,
for example, if a lower cutoff frequence ar, im-
posed by absorption of the radiation in the foils
restricts the effective range of integration to the
region (d» y(d2. ) In this limit, the effects of the
cosine series in Eq. (75) are confined to the de-
tails of the angular and frequency distributions of
the transition radiation. Both are modified, but
the average properties of the radiation are essen-
tially unchanged. The effects of the vacuum gaps
can be minimized in practice by making b as large
as possible, with'the minimum gap size determined
by the condition that b & (2y'c/(d) for the lowest
frequency to be detected, e.g. , b )1.3 x 10 'y' cm
for @+~3 keV.

If both the thick-foil condition a & (2yc/(d2) and the
wide-gap condition b& (2y c/&u) are satisfied, the
average frequency spectrum may be approximated
as

(77), with the frequency dependence of n((d) taken
into account.

C. Internal reflections in foil stacks

We have so far ignored multiple reflections of
the transition radiation inside the foil stack. Some
radiation will be reflected at each surface, and
the resulting changes in the intensity of the trans-
mitted radiation can be important at optical fre-
quencies. However, these effects are quite small
at the frequencies of interest even for a rather
large number of foils.

The simplest effect involves the losses caused
by incoherent reflection of the radiation emitted
in the mth foil back into the stack at the surfaces
of the succeeding (n —m) foils. This results in a
reduction of the amplitude of the radiation field by
a factor

T
2(e —sin'8)' '

0 el/2 cos8+ le/2( esin28)1/2

2e e —1
1 — tan'8+ ~,

i » —1 i, 8 «1.1/2+ 1 4~
(80b)

The product T, T, is particularly simple for high
frequencies and small angles, and is given through
fourth order in the small quantities (((1~/((1), 8 by

T. T -1——,— + ~ ~ ~ (&u /a) «1, 8«1.1 cop

16 P (81)

The effect of the single incoherent reflections
under these conditions is simply to replace the x-
ray absorption coefficient A. in Eqs. (69) through
(77) by an effective absorption coefficient A. ',

(dp 1

This correction and those associated with higher-
order incoherent multiple reflections can be ne-
glected if

«].. (83)

where T,. and To are the transmission amplitudes
(ratios of transmitted to incident amplitudes) for
electromagnetic waves polarized in the plane of
incidence for passage into and out of the foils,

2cos0
e' ' cos8+ e '/'(e- sin'8)'/'

2 E —1
1/2 1+ tan 0+'' ' e 1 (9 1

4g
(Soa)
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A potentially more important effect arises from
coherent multiple reflections in the stack. We will
assume that P, and P~ are sufficiently large that
waves which differ in phase by multiples of these
quantities may be considered as incoherent in the
sense discussed in the preceding section, and will
consider only double reflections. The reflection
amplitudes R,. and Ro for waves passing into and
out of the foils are

4

1+—R.R (n —nz) =1-—— (n-m)1 2 1 (dp 2
i 0 32 (86)

direct radiation from the mth foil will be coherent
with radiation from the (m+ 2k)th foil which is re
flected twice in either the (j, , 0) or the (0, i ) com-
bination by foils 0 intervals apart in its passage
out of the stack. When all possibilities are con-
sidered, the mth term in Eq. (69a) is modified for
reasonably large n by a factor

e' 'cos8-e ' '(e —sin'9)' '
e"'cos8+ e ' '(e —Sin'9)"'

g«1, ~ /~ &&1 .COp
(84)

The energy radiated is decreased accordingly,

(86)

There are four possibilities for the amplitude
R, R, of a doubly-reflected wave corresponding to
the four choices of l, l' = i, 0 for reflection on pas-
sage into or out of a foil. The waves reflected
twice from foils k intervals apart also acquired
extra phases P, , = 2k /„P, , = g„.= 2k(g, + p„), and

g»=2k(2$, +P, ) relative to the original waves. It
is evident from the phases which appear in Eq.
(69) that waves reflected twice in the (i, i) and

(0, 0) combinations cannot be coherent with any of
the direct waves under the conditions noted above,
and, consequently, cannot alter the intensity of
the transition radiation to order R'. However, the

where n' = —,n' in the limit of little absorption, and
n'=2(L/a)' for strong absorption. It is easy to
check that this loss in the energy radiated in the
forward direction is accounted for by the coherent
single reflection of energy backwards out of the
stack.

The coherent double-scattering correction in Eq.
(87) will be unimportant if n «4uP/~~' (n «4400
for k &u ) I keV, Se& = 30 eV). The remaining co-
herent higher-order multiple-scattering correc-
tions are negligible under the same condition. "
We conclude, as would be expected, that multiple
internal reflections of high-frequency transition
radiation are unimportant and can be neglected.
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