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W'e derive a static solution of the equations of motion following from a Higgs-type Lagrangian

containing, in addition, static magnetic monopoles representing quarks. For this purpose, we use

Zwanziger's approach to magnetic monopoles, and thus we are dealing with a local field theory for

charged particles. We show that the solution has the form of a string of finite length for large

coupling. We exhibit the dependence of the energy of the system (E) on interquark distance (2a),
E(2a) =-(g /8m'a)exp(-el40 l2a)+C@0 I a, which is the form found by Nambu in his discussion of this

type of model as a scheme which offers a mechanism for quark confinement. We therefore confirm

that Nambu's results can be reached in a field-theoretic formulation.

I. INTRODUCTION

Recently, several authors'~ have suggested
that Higgs -type Lagrangians containing couplings
to "magnetic" monopoles may provide a scheme
for quark confinement.

Nambu' treated the static problem in this scheme
by introducing a static phenomenological Hamil-
tonian in which the Higgs mechanism is repre-
sented by a mass term for the vector field. He

obtained a static stringlike solution and an ex-
pression for the energy of the system, which ex-
hibits a Yukawa interaction for small interquark
separations and a characteristic string potential
r esponsible for quark confinement. In another
paper' Nambu gave the full description of this
scheme, using Dirac's formulation of magnetic-
monopole theory and treating the Higgs effect by
making an ansatz for the electric current known

in the London theory of superconductivity. He

derived the string Lagrangian density and dis-
cussed the quantization of the theory. In this ap-
proach, the unphysical Dirac string becomes
physical due to the Higgs effect.

In this paper, we present the formulation of
this model in terms of a. local Lagrangian field
theory. This is achieved by using Zwanziger's'
Lagrangian approach to magnetic monopoles (in-
stead of Dirac's approach) which can accommodate
matter fields such as the Higgs scalar field. The

magnetic" monopoles (quarks) are treated as
classical particles. The static solution of this
model then reproduces the results of Nambu. ' In

this formulation one recovers at large distances
the a nsatz for the electric" current used by
Nambu, a,nd one is also able to investigate the be-
havior of the Higgs field in the region of the string
in a manner similar to that of Nielsen and Olesen.

We do not consider the nonstatic solutions and
the quantization of this model, but since we are

dealing with a local Lagrangian field theory, gen-
eral a,rguments given by Nielsen and Olesen lead
us to believe that one can deduce the Nambu-Goto
Lagrangian for the string. This, together with
quantization, can most probably be done by using
the methods of Forster' and of Gervais a, nd

Sakita. ' We intend to investigate this problem in
the future.

II. REVIEW OF LAGRANGIAN FORMULATION
OF MAGNETIC-MONOPOLE THEORY

The field theory of magnetic monopoles was
formulated by Schwinger' and the Lagrangian
formulation was given by Zwanziger. We shall
now give a short review of Zwanziger's formalism.
Maxwell's equation for the electric current

is satisfied by

F = -(BAB)'+(n B) '(nAj, },
F =(BAB)+(n B) '(nn, j,)

(2)

(6)

~ttPV ~ V

2 g (4)

where j, is the magnetic current, is satisfied by

z"=(BAR) +(n 8) '(n~j ),
F =(BAA) —(n B) '(nnj ) (6)

Now one may express I " locally in terms of the
potentials

F = —,j(nn[n (BAA)]) —(nn[n (BAB)]) ], (7}

where B is a vector potential. The notation means
that for arbitrary two-vectors C" and D" (Cn D)"'
= C"D —C D" and our metric is g "

=diag(1, -1, -1, -1). The dual of an antisymmetric
tensor G" is defined as G " =--,'e" »G

The other Maxwell's equation
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so that after substitution into (1) and (4) we have
Maxwell's equations in terms of the potentials.
As Zwanziger has shown, these equations can be
derived from the Lagrangian

Zz= [n—(—s&A)] [n (snB)" J
1

2'
+ — (n (s n B)J [n (8&A)" ]

1

2'

, [n (sr A)]', [n (enB}]'2n2 2n2

(8)

plies g= p, 8, where 0 is the azimuthal angle and
p, is the flux quantum number. We choose p, =0 in
what follows. This choice is different from Nielsen
and Olesen s choice p. &0, and we wish to stress
that we are looking for a static solution due solely
to the presence of the monopo)es and with no
superimposed vertex line of the Nielsen-Olesen
type. The choice p. =0 does not imply that the flux
is zero everywhere. Indeed (9) with the choice
n=a, implies for the magnetic flux

4H= H'e, ds

In the static case with the choice n" =(0, n) Eqs.
(5) a.nd (2) imply

A dl+-,'g e z —a -e a+a (18)

H, =- F4of =. V—xA+n(n V) 'j',
E, =— F". =--VxB+n(n'V) 'j,',

while (1) and (4} yield the equations of motion

VxH=j, ,

VxE=

{9)

(10)

(11)

(12)

Our choice p. =0 only means that

A dl =0,

so that

(19)

(20)

III. THE MODEL AND ITS STATIC SOLUTION

2 =Zz(A, B)+2'(Q, A) -j'B', (13)

where Z& is the free part of Zwanziger's Lagran-
gian (8) and

(14)

In our model we couple the potential A" to a com-
plex scalar field 4, which carries only "electric"
charge, in order to produce the Higgs effect. The
quarks are represented by static point monopoles.
The total Lagrangian of the system is therefore

Thus

a.nd Eq. (17}becomes

(21)

v(v A) —v'A+e'I/I'A =(e, x v)e, 'j,' . (22)

Let us discuss the behavior of the solution for
large p. We shall be interested in solutions for
which I@l —I4', I

=const40 as p —~. Thus, in this
asymptotic region the vector field has a mass and

V(V A) —V'A+M'A = (e, x V}S, 'j,', (23}

where M = el4', I. Taking the divergence of (23) we
find

with m'&0 to allow for constant asymptotic be-
havior 4, =(-m'/h)'~'. This yields the electric
current

M & 'A=0,

so that (23) becomes

(24)

(15}

where y is the phase of the complex scalar field
4. The magnetic charge distribution is

j,'=g[5(z a) 5(z+a)]5(x)5(y),

(-V'+M')A= (e, xv)e, 'j' .

This equation agrees with Eq. (4) in Nambu's

paper. ' This is seen by identifying Nambu's
source 4 with e,e, 'j,' and using

(25)

corresponding to two static magnetic monopoles
(or, more precisely a monopole and an anti-
monopole) located at points x =+ac, . We shall be
looking for a cylindrically symmetric solution
and, with this in mind, we set n=F, .

Combining (9) and (11)we find

v x(V x A) + (v xe, )e, -'j,o = l, .

The standard discussion of flux quantization im-

(28)

The solution for A 1.s now

A(x) = G(x -x')(e, x v')(e,') 'j,'(x')dx', (2 I)

where the Green's function for the massive vector
field is
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-&I x-x 'I

G(x -x')

In order to find the magnetic field, we use the

(28)
equation

H = VXA+e3B3 j
which appears also in Nambu's paper. Now

(29)

H]xl= j G( — 1]-v']v', ]~v ](,a']*j;,( -]dx '~, ,a, -'~,'

= -V G(x -x')j'(x')dx'+M'e, G(x -x')(S,' ) 'j'(x')dx' (30)

If M is large, the first term is seen to contribute
only in the immediate vicinity of the points
x =+ae3. The second term can be written as

-~ 'X' ~ *
I s I* (X' - - ~x = o,

e
(36)

a

H, —-gM &3 G( — "}f]'" (x" — 'e, )d

(31)

2ie A' ——V ye

2

+ e A' ——Vg +yg +Rifi i]1]i =0, (37)
e

A(x) =A'(x}+ a-, (x —x')j,'(x')dx''3 (33)

Here, the vector function a-, will be written down
in the next section and we shall need only its
p rope rties

—V a; (x) =e, &:VB, '6(x), (34)

and thus is an integral sum of terms, each of
which is non-negligible (for large M) only in the
vicinity of the point x=z'Z3. One therefore ob-
tains a stringlike entity extending only from
x = ae, to x-=aZ, (that is, from one quark to
another). The magnetic field is essentially zero
outside the string, with a characteristic expon-
ential cutoff of the order of 1/M.

We shall also be interested in the behavior of
the solution for iC i for small p [ p = (x'+y')' '].
For this purpose one uses Eq. (22) together with
the equation for the scalar field

2feA VIV I
—V'I@ I+ (e'A'+~'+ &i4]i')i4]i = 0,

(32)

which is derivable from the Lagrangian density of
Eq. (13). We first note that we can look for the
solution such that &, =A, =0 so that V.A
= (1/p)SA]]/88 =0 because of the cylindrical sym-
metry of the problem. Let us define a potential
A' by the relation

where y is given by

y(x) =-e dl' a. -, (x'-x")j'(x")dx" . (38)

These equations can be understood as sourceless
equations for the potential A' coupled to a scalar
field with a phase given by X. Now, for an infin-
itesimal closed curve about the ~ axis, the change
of the phase of the scalar field after going around
the curve once is

VX(&) = -eg d a-, x —ae3) -a-, (x+ae, )

= -,'eg[e (z a) e (z + a)],
where we have used Eq. (36). Therefore,

(39)

vg = -4zn for izi & a,
vy = 0 for izi & a, (41)

with the use of Schwinger's charge quantization
condition" eg/4w =n The first. equation, together
with the continuity of the field 4 = e'~ i@i, implies
that i@i -0 a,s p-0 when izi «. Thus iC'i-0 in
the string region and it therefore carries energy,
since its value in this region is different from its
vacuum value. Also, in this region there is no
Higgs effect. We still have to find the small-p be-
havior for izi &a. We use Eqs. (22) and (32) re-
written in cylindrical coordinates

lim d a-, x) =--,'e z), (35)
1——(pA8) —,A]]+e'ipi'Ae =0,

Bp p Bp 98 (42}

where the limit sign indicates that the curve is
infinitesimal. The curve is drawn positively about
the ~ axis. These relations are given in Ref. 9.
One then finds that Eqs. (22) and (32) can be writ-
ten in an equivalent form

1 8

P ~P ~P

c}2
I@i+(e A8 +~ +&III

=0. (43)

Since the magnetic flux is zero for iz i
& a and H,

is essentially zero for reasonably large p in this
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woo j
=2v ' — —(pAe) pdp

p Bp

=2n(pA(])p „—2'(pA(])p,
= -2n(pAe) p, , (44}

where we have used the fact that A~ falls off ex-
ponentially for large p.

One can then solve Eq. (43) by the ansatz

I4'I p-OC(z)

which implies

82
——

—, C(z)+[m'+hC'(z)JC(z) =0,

(45)

(46)

with the following approximate solution for large
z (Izl &a):

/
C(z) = +constxexp[- (-2m'}'~'(z —a)] .

h

(47)

region, it must also be negligibly small for small
p. The resulting allowed behavior for A6 implies
that A() -0 for small p. The behavior A() -const/p
is ruled out by noting that in the region lzl & a

IV. INDEPENDENCE OF THE SOLUTION

OF THE ARBITRARY VECTOR 6

[a-„(x'-x")-a-, (x' -x")]

xj,'(x")dx" .

Here the function a-„ is defined' as

(49)

In the field-theoretic approach to magnetic-
monopole theory, which we use, there appears an
arbitrary vector n, as seen in Sec. II.

In the preceding section we chose n =c„and
one may ask the question whether the solution de-
pends on the choice of n. We will show that it does
not, in the sense that one can obtain the same so-
lution for the magnetic field, and the absolute
value of the scalar field for arbitrary n, by making
a judicious choice of the phase of the scala, r field.

Schwinger' has discussed the problem of n de-
pendence in his pioneering work on the quantum
field theory of magnetic monopoles. He showed
that the theory is independent of this vector n

(and the corresponding singularity line), if the
change quantization condition" eg/4v =n is sat-
isfied. We shall use his method adapted to our
problem and for arbitrary n choose the phase of
the scalar field as follows:

X

X(x}= e dl '

Thus, if m is la, rge n&x 1 1(")= 8, (50)

(48)

essentially everywhere for lzl & a. The scalar field
therefore carries no energy in the region lz I

& a,
since it is equal to its vacuum value practically
everywhere in this region.

We have already seen that H, must be negligibly
small for small p. Since also A.8- 0 for small
p, H, = -sA()/sz also tends to zero. Thus, the
magnetic field also carries a negligible energy
in the region lzl & a.

To summarize the results of this section: First,
H~ is appreciable in the immediate vicinity of the
points x = +~„so essentially only the ~ compo-
nent of the magnetic field is nonzero. As seen
from Eq. (31), H, is appreciable only for lzl& a
a, nd falls off exponentially in the p direction with
a characteristic length of the order of the inverse
mass of the vector field (1/M). Therefore, the
solution for the magnetic field has a string struc-
ture. The scalar field @ is zero in the string re-
gion, and equal to its vacuum value 4, = (-m'/h)'~'
essentially everywhere else.

We have thus confirmed that the static solution
of our problem is a stringlike entity with a very
small width (1/M) and finite length (2a). It ex-
tends only from one quark to another, as ex-
pected.

It can be shown with the use of Schwinger's charge
quantization condition that the change of the phase
of the scalar field

ex=e ef' J[ (x'- "x)-x, (
' —x")]i(x )e', "

C

(51)

where m is an integer, for an arbitrary closed
curve C. For arbitrary n, we have the equation
for A, which follows from (9) and (11):

v x (ix A) + e'
I p I

A —e
I g I'(]t = (n x i)(n i) 'j,',

(52)

where we denoted

(()(x}= —Vg(x)e

[a, -„(x —x') -a-, (x —x')]j o(x')dx' .~

~

(53)

This is actually the choice for the gradient and it
is important to note that one always has to take the
gradient first, and then act with subsequent dif-
ferential operators. One also has the equation for
the Higgs field
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2ieA VP —V Q+(m +h~Q~ +e A )/=0. (54)

Substituting 4 = e'" ~4 ~
with the choice of phase (49)

and using

form for the free Zwanziger's Lagrangian given by
Eq. (8) one finds after some calculation

X= (E'+H2)

V'}t(x}=0, (55) + 'l(V —ieA)g I'+ ~am'I4 I'+-,'hi@ I' (64)

which follows from a property of a. -„(x),

V a-„(x)=0, (56)

one obtains

2ie(A-4) Vlgl- V'lyl +(m'+&lyl'+e'(A -0)'ll4
I

=0 . (57)

With the use of another property of a. -„(x)

V~a-„(x)=(Vxn)(n V) '6 ' (x), (58)

the equation for the vector field becomes

v x [v x (A -g)]+ e'( y )'(A - y) = (Z, & v)s, 'j' . (59)

We see now that the solution of the set of equa-
tions (57}and (59) is given by

Afx)=r; (x) ~ J Ix:(x-x')-i; Ix —x')]j,'tx')d ',

(60)

where A; and ~g~; are the solutions for the choice
n=e, . One may note that the transformation made
is actually a gauge transformation almost every-
where, as explained in Schwinger's paper. '

Finally, to calculate the magnetic field, we use

There is no contribution to the energy from the
term -j,B„aswitnessed by the fact that the ad-
ditional term in the Lagrangian for nonstatic
monopoles should actually be written as

+gx, B(x,) l (65)

E= ,' ) dx(H-'+e'~4 ~'A')

+ dx -' V Q )'+-'m' g +-'h PI . 66)

We now calculate the first part of the energy:

E, = —.j (H'+ e'~ P ~'A ')d x

H' ~&A+&,~, 'jg)+e' p A dx

where x,"(v }and x,"(T) are the positions of the
monopoles in Minkowski space. With the choice
of the phase of the scalar field y =0 (correspond-
ing to the choice n = a, ) one gets the energy of the
system

Vxa-„(x)=-V, -n(n V) '5(x)
4x(x

and find

H = V x A+ n(n V) 'j,'

(6l) & e
' A +H, ~, 'j,'+ e' Q 'A ')d x

(H, s, 'j,')dx . (67)

= vxA; +~,e, -'j,'
=H, (62)

We have thus shown that for arbitrary n one can
obtain the same solution for the magnetic field and
for the absolute value of the scalar field as for
the choice n=e, . Only the phase of the scalar field
is different.

We can estimate this part by extrapolating the
solution for large p into the small-p region. Using
Eq. (30) we find

E, =-,' j,'(x)G(x -x')j,'(x')dx dx'

+2M' ~, 'jg(x)G(x —x')(S,') 'j,'(x')dxdx', (68)

V. ENERGY OF THE SYSTEM

In order to calculate the energy of the system
one has to derive first the Hamiltonian density
corresponding to the Lagrangian dens ity:

2 =Zx(A, 8)
(63 )

Using the definition for the electric and the mag-
netic fields E, =-I'" and H, =-I ""as well as the

which is the form written down by Nambu if we
remember the identification for his source 4

3 3
'j' . The firs t te rm contribute s the Yukawa

potential while the second term is proportional to
2a for 2a»l/M. The second part of the energy
which is due to the scalar field receives the con-
tribution only from the string region, since 4 is
essentially equal to its vacuum value everywhere
else. It can be estimated by the argument similar
to that of Nielsen and Olesen and it is found to be
proportional to 2a~4, ~'. The total energy is



STRINGLIKE SOLUTION OF THE HIGGS MODEL WITH. . . 865

(69)

Since the energy grows linearly with quark sep-
aration for large a, one has a mechanism for
quark confinement. For implications of such a
scheme to hadron physics, the reader is referred
to Nambu's paper. '

As a final comment, we note that since Eq. (64)
for the energy density contains a term explicitly
dependent on the vector field A, the question of
n dependence of the energy is relevant. It is re-
solved by noting that this term is gauge-invariant
and that the passage from one n to another is
actually a gauge transformation. Thus the energy
is n -independent.

Note added in proof. When this paper was
finished, we received a report by A. P.
Balachandran, H. Rupertsberger, and J.

Schechter, "where Nambu's static phenomeno-
logical Hamiltonian was also derived. These
authors use the formulation of magnetic mono-
pole theory with an explicit mass term for the
vector field, "while we generate the mass term
by the Higgs mechanism. We would like to point
out that an explicit mass term breaks the Lorentz
invariance of the theory, because gauge invariance
is crucial for Lorentz invariance in magnetic
monopole theories.
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