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The canonical quantization of scalar-field Lagrangians involving at most first derivatives of the fields
("first-order" Lagrangian) or second derivatives ("second-order" ) is discussed. A direct, but necessarily

perturbative, quantization procedure for a general first-order Lagrangian is used to show that such

theories yield a Lorentz-invariant S matrix to low orders of perturbation theory provided a covariant

regularization scheme (e.g, , dimensional or Pauli-Villars —but not a high-momentum cutoff) is employed.
Matthews's theorem is verified in this context —the naive Feynman rules are valid. Second-order

Lagrangians, quadratic in second but arbitrary in first derivatives, are shown to satisfy Matthews's

theorem to all orders of perturbation theory and to be equivalent to first-order theories with

Pauli-Villars regularization, thereby yielding a proof of Matthews's theorem for an arbitrary

Pauli-Villars-regulated first-order theory. It is shown that for spectral reasons second- (and presumably,

higher-) order theories are unacceptable physically. Finally, the canonical quantization of a second-order

gauge theory is performed explicitly; the results show that (a) the naive Faddeev-Popov prescription

remains valid in the presence of higher derivatives, and (b) the spectral pathology of second-order

theories persists in gauge theories.

I. INTRODUCTION

The question of the Lorentz invariance of the
scattering matrix in field theories with arbitrarily
many derivatives has always been somewhat ob-
scure. Cnaddition, the form of the correct Feyn-
man rules and their relation to the naive rules
which come directly from the Lagrangian remains
unclear in such theories. The confusion stems
from the fact that when the Lagrangian contains
arbitrary powers of field derivatives, the Hamil-
tonian is a complicated, nonpolynomial function
of conjugate momenta and can rarely be written
in closed form. Further, when a term in the
Lagrangian contains more derivatives than fields,
there is the additional problem that the Hamil-
tonian does not even exist until auxiliary fields
are introduced. The difficulty in proving Lorentz
invariance and deriving covariant Feynman rules
by canonical quantization of such Hamiltonians is
obvious. Further, the Feynman functional integral
formulation' seems not to help since one cannot
perform the momentum integration explicitly when
the integrand is not a quadratic function of mo-
m enta.

The need to understand the properties of theories
with many derivatives has acquired an added
sense of urgency because of recent attempts' to
devise a quantum theory of gravitation which has
some hope of being renormalizable. The proposed
Lagrangians for general relativity, which have
added terms of the form R"'R» and ~, contain
both terms quartic in first derivatives of fields

and terms quadratic in second derivatives of
fields.

There is, of course, a strictly formal proof of
the invariance of the S matrix which is dependent
merely on the existence of the generators of the
Poincare algebra with the proper commutation
relations. ' However, the existence of the gen-
erators is a highly nontrivial question for theories
with gauge freedom. ' Even for purely scalar the-
ories, the formal proof might fail in perturbation
theory; moreover, the proof gives no hint as to
the actual form of the covariant Feynman rules.

In this paper, we provide some solutions to the
difficulties encountered with derivative-coupled
field theories. We deal first with theories with
arbitrary derivative interactions, subject only to
the restriction that the Lagrangian can, by suf-
ficient partial integrations, be put in a form where
no more than one derivative operator acts on each
field. We call such Lagrangians 'first-order. "
In Sec. II we show to low orders in perturbation
theory that with a suitable regularization scheme
the S matrix is invariant for any first-order scalar
Lagrangian. In fact, the use of dimensional
regularization makes the naive version of
"Matthews's theorem"' correct: The Feynman
rules are just those obtained by using the inter-
action Lagrangian to determine the vertices and
the covariant T* product to determine the propa-
gators. We prove this by starting with the "stage
one" functional formalism with integrations over
both fields and conjugate momenta and then car-
rying out the momentum integration perturbative-
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II. FIRST-ORDER SCALAR THEORIES

In this section we deal with scalar Lagrangians
of the form

&(1 sap) =&o(v sgp)+~&r(p spp), (2.1}

where Zo is at most quadratic in the field or its
derivative, but 2, is an arbitrary polynomial.
Since such theories will in general be highly di-
vergent and nonrenormalizable, we are in fact
only able to verify Matthews's theorem in a suit-

ly. We conjecture that Matthews's theorem is, in
fact, true to all orders with this regularization
scheme, but we have not completed the general
proof. At the end of Sec. II we work out a specific
example where we perform the canonical quantiza-
tion explicitly and show how Matthews's theorem
conspires to work out for a simple process in
low order.

In Sec. III, we consider what we call "second-
order" scalar Lagrangians where we allow two
derivatives to act on each field in the quadratic
part of the action. Such theories are interesting
because they have a greater resemblance than
first-order theories to the Lagrangians proposed
for general relativity. In this case we are able
to give a nonperturbative proof of Matthews's
theorem, again by starting with the "stage one"
functional formalism. Theories of this type also
have the interesting property that they are equiva-
lent to those discussed in Sec. II, with the addi-
tions of negative metric regulator fields of the
Pauli-Villars variety. ' Thus, we recover the
results of Sec. II, but now to all orders of per-
turbation theory, and in the context of a Pauli-
Villars regularization. However, these theories
are inherently "sick" for a reason that has noth-
ing to do with Lorentz invariance: With finite
regulator mass, they are plagued by either nega-
tive-metric states, a Hamiltonian unbounded from
below, or a lack of unitarity.

In Sec. IV we discuss second-order Abelian
gauge field theories, and prove the logical ex-
tension of Matthews's theorem to theories with
spurious (gauge) degrees of freedom, that is, the
Faddeev-Popov orbit volume prescription. ' These
theories have the same undesirable properties as
the second-order scalar theories: The extra
gauge freedom does not allow for the elimination
of (in fact, has nothing to do with) the negative-
metric ghosts. This is somewhat disappointing
for the new theories of general relativity, and
leads us to guess that they, too, will have similar
irreparable defects. ' Section V contains some
further comments and conclusions.

ably regularized version of them. Clearly, if we
wish to investigate the problem of Lorentz in-
variance, we should choose a regularization
scheme which manifestly preserves Lorentz in-
variance at all stages of our proof. In this sec-
tion we adopt dimensional regularization as the
most convenient cutoff. In Secs. III and IV we
proceed by adding an additional term to the La-
grangian, which turns out to be equivalent to the
use of Pauli-Villars regulator fields. Another
possible choice would seem to be a symmetrical
high momentum (k' =A') cutoff in Euclidean space.
However, if a Minkowski-space integral is diver-
gent by power counting, its Wick-rotated replace-
ment in Euclidean space does not have the same
value when a ~ = A' cutoff is used. The difference
is simply due to the nonvanishing (and sometimes
noncovariant) contributions from the part of the
Wick contour at infinity. At the end of this sec-
tion we will show in a specific example how the
naive use of a k' =A' cutoff leads to a noninvariant
result.

The chief feature of the 't Hooft-Veltman di-
mensional regularization scheme that we will
make use of is the prescription that 6'(0} is set to
zero. This follows from the identity'

P o ~ =0) gK&Q1

(~')

d'p =0 . (2.2)

&0(9 sv9') =-~sos's 9' —I(9') (2.3 }

where Qy) is a quadratic polynomial containing
no derivatives. The conjugate momentum is

In addition, the ordering problems which have
been worrisome in previous discussions of de-
rivative-coupling theories can be neatly avoided
in this scheme. For example, the relative order
of the canonical momenta and fields is irrelevant
since [w(x), p(x)]-i6'(0) and 6'(0) must be set to
zero in a mass-independent regularization scheme.

We are now ready to begin our proof that
Matthews's theorem is satisfied (at least to low
orders in perturbation theory} for theories like
(2.1). The first step is to calculate the Hamil-
tonian. It will not be possible, in general, to
write X in closed form, but the first few terms in
a perturbation expansion in A, will suffice for our
purposes. For simplicity, we assume that the
field has been redefined so that
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64) aj f)]p 6)p aj'
6g 6g

6(a,Ip) 6(a,Ip)
+

" o z +O(hz)
2 6y 6(p

(2.10)

= a o]p+]]. (2.4)

]p=—ao)p =f(y, V]p, w;Z), (2.5)

where f, in general, will be some complicated,
nonpolynomial function of the expansion param-
eter A, . It is useful to define

f(zp, V]p, w; X) =- g a"f["](]p,V]p, w) .
ti =p

(2.6)

=- g ]]."X["]()p, V]p, w) .
n=O

Using (2.4), a short calculation yields

(2 7)

f = — (]p, vq f ), (2.8)

6 gf[z] ~ {]p V]p f[o]} I
(ip V{p f[o]) (2 g)

Similarly, expanding So((p, V p, f) in powers of ][.,

we find, correct to O(X },

f[" is of course just w. Similarly, the Hamiltonian
density will be written

X=wf —Z(]p, Vzp, f(p, Vip, w))

where all the functions on the right-hand side are
evaluated at (]p, Vzp, f ). A similar result holds
for the expansion of Zi(]p, V p,f). Substituting
(2.8), (2.9), and (2.10) into (2.7) and using f '= w,

we obtain the desired results

X["()p, V]p, w) =-,'(w'+
i Vip'')+ 1(p),

X["(]p, V]p, w) = -2, (]p, V]p, w),
2

X["(]p, V9), w) =— .'(ip, V]p, w)
2 6y

(2.11)

(2.12)

(2.13)

It is clear that the procedure outlined above can
be extended in principle to an arbitrarily high
order of perturbation theory; of course, the com-
putations involved become progressively more
tedious.

It is now possible to demonstrate the invariance
of the S matrix to low orders of perturbation the-
ory. We have verified the validity of Matthews's
theorem through fourth order for these theories,
dimensionally regulated; for the sake of brevity,
the proof is given below through second order,
We take as our starting point the Feynman path
integral fprmula' for the generating functional
Z[J], na, mely,

z[z]=j [de] f[ze]eepIi f e «[ee [)'ve,ee) eze] (2.14)

Equation (2.14) can be shown to be equivalent to the generating functional obtained by a direct canonical
quantization of the theory (after due attention has been paid to ordering ambiguities). Defining X=X"'+Xi.),
X;„i=AX ' +]].'X "+O(X'), using (2.11), and introducing a source K coupled to w, we can rewrite (2.14) as

zfz]=J[IZe]eee]i Jz'*]-z]e) ,'lee['+ze) eee i z'eee... e—,ve, 6iK

x dg exp j d'x —,'p' —p K+ y . (2.15)
] «=o

(2.15) is to be evaluated at K=0. The integration over w can now be done by completing the square Using.
(2.3), we have

Z[J] = [d]p]exp i d'x(So+J]p} exp id'xX-;„, ]p, V]p, . exp i d'x(zK'+KV)) . (2.16)
E=O

We now employ the functional identity"

C[K]=G . Z[p]exp i d'xg&6 6

6sp P=0
(2.17)
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to put (2.16) in the form

Z[Z]= [dy]exp i d'x(Z, +Z]p} exp
2

d'x]p(x)
( )

exp ,'i -d-'x
a ( )

t

x exp id-'xX„,(]p, V[p, p)
P=0

(2.18)

Using (2.12) and (2.13), expanding the exponential through O(X'), we have

exp id'x-R, „)([p,V]pe p) =1+iX d xgr(]p, Vy, p) —i zX' d~x ~ —z A. d xgl +O(]]3) .

(2.19)

We must now apply the operator
exp[ ,'i f-d-'x[5/ap(x) p} to (2.19). Note that with
the prescription 6'(0)-0 [cf. (2.2)], the linear
term in the expansion of the exponential in this
operator gives a nonvanishing result only when
acting on the term ,'t'(fd~x—C—i)' in (2.19). Sim-
ilarly terms quadratic or higher in the expansion
of the operator always give zero when acting on
(2.19). The result is

2

exp ,'i d'x--, exp id-'xac, „,(y, v]p, p)ap(x

Qg 2

=1+iX, d XgI —2iA. d X
6p

21k.
2 d4XgI +21SA2 d4X I +Oh. 3

We now present a simple example which il-
lustrates some of the subtle points underlying
our proof of Lorentz invariance. In particular,
we wish to point out (a) the necessity for includ-
ing external-line corrections in obtaining in-
variant S-matrix elements, and (b} the failure of
Lorentz invariance with a k'=A' cutoff in
Euclidean space-as mentioned previously, this
cutoff is simply not an invariant one when applied
to Minkowski space integrals.

Consider 2-2 scattering of scalar particles in
a theory described by the Lagrangian

—,'a „)I])a")'p —r'm'9P ——,
' ][(a„ya"y p . (2.22)

Equations (2.11)-(2.13) here yield

X[ ] = ,'(a'+ )V p)'—+]m'q'),

=exp i d xA. gI y, v'(p, p +Ok, (2.20)
K['] --'z(]['

~
vy~')',

3[:[2]= -'~'v'(v' —ivy P)'

(2.23)

Looking back at (2.18) we see that we must now

operate on (2.20) with exp[ fd'x]p(x)[5/ap(x)]}
and then set p =0. But this procedure merely re-
places p everywhere by y. So we have

z[z]=f[ee]exp i je x[z(eee, 'e)), ,

+O(X ) .

+]].gl(]p, v]p, ]b)+J]p]

(2.21)

But this is just Matthews's theorem, here veri-
fied to second order. It says that the correct
Feynman rules are the covariant ones obtained by
using the quadratic part of Z to determine the
covariant (T*) propagators and the rest of Z to
determine the vertices. The procedure for
checking the theorem in higher orders is exactly
parallel; however, we have been unable to com-
plete the proof to all orders with the above
methods.

(0lT(a„y(x)a ]P(y))[0) =
a a

.(0)T(V(x)P(y))l0)

—ig„,g„, ( axy) (2.24)

or, in momentum space, by
V

k-'+ m' —z6
(2.25)

Going to the interaction picture defined by 3C~',

we see that 2-2 scattering is described to O(][') by
three types of graphs (see Figs. 1-3).

The graph in Fig. 2.arises from a single X '
vertex. The graphs in Fig. 3, though involving ex-
ternal-line corrections, must be included as they
give rise to noncovariant contributions which are
not canceled by additional graphs involving inser-
tions of mass and wave-function counterterms on

the external lines —in fact, these noncovariant
contributions are essential in canceling similar
terms in Figs. 1 and 2.

We can now proceed to calculate the graphs. The
propagator of two field derivatives is given by
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kl kl

+ CROSSED GRAPHS

k4

FIG. l. One-particle-irreducible graphs for 2-2 scat-
tering arising from bvo & vertices.

FIG, 2. Contribution from a single K vertex.

We must keep in mind that (2.25) does not apply
to a line which begins and ends at the same vertex.
Each interaction term in the Lagrangian must be
regarded as a simple product of fields at the same
space-time point (not time ordered), so that con-
tractions within field products are just the covar-
iant vacuum expectation values of field products,

which are easily seen to coincide with the covar-
iant part of (2.25). That is,

sI "a'
nrame vertex (k) =-

+ ppg -K' (2.26)

We can now write down the values of each of the
diagrams, regularized in dimension ~.

Fig. 1:
24X25" (0}k~3k3k,'k3 —&25'(0)(k3k3k, k, + perms)

z
2

+ 4v~'(m'}""~'I'(- &2)( ,'k'k2k' 3k+4perm )s+inv raia tncombinations of k„k„k„k„.
(2v ' (2.2'I )

Fig. 2:

A'v" '(m2} '" I (-3K)(k k—k k +perms) (2.28)

Fig. 3:

(2v)4 2 1 2 3 4
v'r'2(m2}2 " 2I'(--214)(k'k'k k +perms) +invariant combinations. (2.29)

5'(0) is defined to be Jd "p/(2v)', which is of
course equal to zero in this scheme; we leave it
in merely for comparison with other regularization
methods. The first iwo terms in (2.27} come from
taking the noncovariant, momentum-independent
parts of both internal propagators; the third term
comes from one covariant part and one noncovar-
iant part The fir. st term in (2.29} comes from
the noncovariant part of the nonloop propagator.

Adding (2.2'l}-(2.29) one finds that the total 2-2
S-matrix element is invariant after letting 5"(0)
= 0. In addition, Matthews's theorem is satisfied
to this order: Contributions of the noninvariant
X ' completely cancel contributions due to the
noncovariant piece of the propagator, leaving the
Feynman rules one would get naively from S. The
same results hold with a Pauli-Villars cutoff. In
that case, the noncovariant piece of the propagator,
which produces the noncovariant terms in Figs. 1
and 3, is canceled by the corresponding piece of
the regulator particle proagator, while Fig. 2 is
entirely absent, since the contributions to X '
from the positive and negative metric particles

exactly cancel. On the other hand, with a naive
A' cutoff, the noncovariant tt4(0) terms which are
left over after summing the diagrams cannot be
discarded. In particular, the tensor structure of
the first term in (2.2V) cannot arise in any of the
other diagrams; we are left with a net contribution
from all graphs proportional to A'k', k2'k', k,'. This
is not surprising, however, since this cutoff does
not regulate in Minkowski space but only in
Euclidean space, where it confines the integration
to a bounded region. By a Wick rotation, the
Minkowski integral can be set equal to the
Euclidean integral plus the contribution from the

kl

+ ~ ~ ~

k4

FIG. 3. External-leg corrections arising from two
X vertices.
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contour at infinity, but this contribution does not
vanish for a divergent integral. In fact, the con-
tribution is noncovariant in this case, which we
have discovered by explicitly evaluating the inte-
gral over the contour for fd p[p "p"/(9' —ie)],
with the cutoff Po'+P, '+P2'+P, « . [)'s [9]' —z P9 + &I (vd s ]t V) .1 1 (3.4)

same equations of motion. The standard method
for effecting this, due originally to Ostrogradski, "
requires the introduction of an auxiliary field g
as follows:

III. SECOND-ORDER SCALAR THEORIES:
PROOF OF MATTHEWS'S THEOREM

In this section we will discuss the quantization
of scalar field theories in which the Lagrangian
is quadratic in second derivatives of the field. For
simplicity, we consider theories involving a single
scalar field y. We will eventually show that the
quantization of the second-order theory leads di-
rectly to (a}a proof of Matthews's theorem for an
arbitrary first-order theory regularized by the
Pauli-Villars technique. Our treatment includes
(b) a discussion of the spectral problems of these
theories (which were first pointed out some time
ago by Pais and Uhlenbeck").

(a} We begin with a Lagrangian of the form
12 = --,'o (s„s„q))(s"s"p) —,'s„ys"p g pq'

One easily sees that the Euler-Lagrange equa-
tions for Z are e[luivalent to (3.3), after eliminat-
ing the field g, which is found by the field equation
to be just -opdp. Thus (3.4) amounts to a restate-
ment of the dynamical content of the original La-
grangian in a framework amenable to canonical
methods. It is now possible to compute the Hamil-
tonian and the generating functional in the standard
fa, shion. At the end of the calculation, we will see
that Z defines a Lorentz-covariant theory and that,
in fact, Matthews's theorem holds to all orders
of perturbation theory. We will then turn to a
study of the spectral pathology of the theory based
on (3.4).

From (3.4), we find for the canonical moments,

7~ =g +(P+ 5y
(3 5)

+~a(w s]t p) . (3.1)

It is assumed in (3.1) that the interaction density
is an arbitrary scalar density built from at most
first derivatives of the field. The Lagrangian
(3.1) defines an action in the usual fashion. Ex-
tremization of this action leads to the generalized
Euler -Lagrange equation

In contrast to the situation in Sec. II, one can now

solve explicitly for the time derivatives y, P, in
terms of canonical fields and momenta. Namely,

+=kg
(3.6)6gf =w~ —vg — . (V), VV), 1T(, ) .

5p
5S 5Z 5Z
6y " 6s„V) " " 6(e„s„y)

1.e.,

(3.3)

For the Hamiltonian, one thus obtains [note that
there are no ordering ambiguities in Zz(y, VV), v&),

since w& and dp commute]

3C = 3'@p + 7Tg $ —g

The canonical procedure is not directly applicable
to the Lagrangian (3.1) as it stands, however, as a
result of the second derivatives 8„B,y. The canon-
ical methods must therefore be implemented in-
directly by finding an equivalent Lagrangian Z
which contains only first derivatives but yields the

—&I(A VP~ ~t[ } . (3 &)

The generating functional for the Green's functions
(0~ T(4)(x,) (I[)(x„))~0)is given by the "stage one"
Feynman formula, '

gd]=df [ y dddd]exdd 'f [,dt*)d(*)+,t*)t)(*)+,t*l(](*)-ddtd, d, „,vt, vd)]d*

2

dydee exp i Jcp+ ——V'g V'y ——, Vp' ——,Py' dx S V'p,
2Q

(3 &)

where
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s]vrpi ]'I= f Id, d, , ]exp]i f],i ~, ]'+-,', * —„,~ z tq, vy w l]d*

d1Tg 5 cP —1l'g exP i Kg/ + 2Fg +Zg P, VP, Kg) dx

=exp i cpf+2p +kg p, ~~cp) dx (3.9)

A divergent multiplicative factor has been discarded in the usual way. Substituting (3.9) into (3.8), and
performing the Gaussian integration over the g field, one finds

Zr[J']= [dy]exp i [J'cp ——,n(a„a„V])(a"a'y) —,'a„ya"]t] —,'p]tr+g, (@,a„V])]dx

[d]t]]exp)i [dcp+|l(y, a„p,a„a„(t])]dx (3.10)

This completes the proof of Matthews's theorem
for the second-order theory. The Feynman rules
are obtained by deriving vertices and propagators
from the equivalent, explicitly covariant, second-
order Lagrangian Z.

(b) Although the naive canonical procedure for
Z seems to apply, a careful study of the spectral
properties of this theory" leads unfortunately to
the conclusion that no sensible, unitary interpreta-
tion of the theory defined by the generating func
tional (3. 10) is Possible. In particular, we now
show that the theory defined by the Lagrangian
(3.4) is exactly equivalent to a Pauli-Villars regu-
larization of the theory based on 2(n =0), where
the regulator particles actually appear in the
physical spectrum for n finite and nonzero.

To study the spectrum of the theory, we must
look at the Fourier components of the fields ]t](x),
]t](x) in the interaction picture defined by the free
Hamiltonian density

2

at;, =v, v, --,'v, '- —+v]t vv+-,'~vq~'+-,'pq'.
2Q

(3.11)

In this picture, the fields satisfy the free equa-
tions of motion

(n ' — +p)@=0,
(3.12)

I

where m (M) is the lower (upper} real positive
root of

ajLt. —P. +/=0 .

To exclude tachyons, we insist that

0, P&0, QP&4l

(3.14)

(3.15)

Using (3.12), the dependent field ]t (x) has the de-
composition

y(x) = „,(1 —4nP) -'t'

elk X(9 po +~2g g2+ ~2 ~ k)

a(k)=,q2 (1 —4nP) 't'
(2v)'~'

y ]—(y~ y+ y) 3.fp)
Bt

A(k)= ',~, (1 4np)-'t'
(2v)'~'

dxe '"'" "] ' —(nm'y+])), (3.18)kix -0 t

—nM'6(k' M'+) A(k)]

+H.c.j . (3.16)

After some algebra, the inversion formulas for the
destruction operators a(k), A(k) are found to be

Consequently, p has the Fourier decomposition

y(x) =,~, (1 —4np} 't'
(2v}"'

x dkje" *
(t]k)[6( ' k+m)a(k)

where &o, =—(~kg+ m')'t', Q, =(~kj2+M')'t'. To de-
rive the algebra satisfiedby a(k), ot(k},A(k), At(k),
we must refer to the equal-time canonical com-
mutation relations:

+ 6(k'+ttf')A(k)J

+H.c.j, (3.13)

[]t](x, t), p(y, t)]= [g(x, t), ]]]](y, t)]

= [p(x, t), ]t'(y, t))

=0 (3.19}
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[jo(x, t), j'(y, t)]= [/(x, t), g(y, t)]

= [j (x, t), t'ai (y, t)]

[p(x, t), i(y, t)] = o,

[!!'(»t) 4(y t)]= -t& (x —y}

[~(-, t), ~(y, t)]=i~'(x-y),

[g(x, t), j(y, t)]=i5'(x-y) .

(3.20)

=0
7 (3.21)

From the formulas (3.1'l)-(3.20} one now obtains
the momentum-sapce algebra by completely
straightforward computations:

[a(k), a(k')] = [a(k), A(k')]

= [A(k), A(k')]

inclusion of regulator fields (and, say, dimen-
sional regularization to control any remaining in-
finities) can be rewritten in a completely equiva-
lent form as a (dimensionally regularized) second-
order theory. Our proof of Matthews's theorem
in the latter context, therefore, automatically
establishes it for an arbitrary Pauli-Villars regu-
larized first-order theory.

We suspect that a dimensional regularization of
an arbitrary first-order theory is sufficient (i.e. ,
without the inclusion of regulators) to ensure the
validity of Matthews's theorem. As we have seen
in the preceding section, this conjecture is cer-
tainly verified in low orders of perturbation the-
ory. We have, however, been unable to find a
direct proof of the theorem to all orders of per-
turbation theory in the context of a purely dimen-
sional regularization.

[a(%),At (k')] = 0,
[a(k), a (k')] = 2~~5'(k —k'), (3.22)

IV. CANONICAL QUANTIZATION AND SPECTRUM OF

A SECOND-ORDER GAUGE THEORY

[A(k), A" (k')] = -20„5'(k—k') .
The interpretation of at(k), A~(k) as creation op-
erators is fixed by the requirement of energy
positivity: One easily finds that

Hat(k}~0) =~~at(k)~0),

HA'(k)~0) =n, A'(k)lf}} .
(3.23)

Thus the negative sign in the commutation relation
of A(k) with At(k') implies a negative metric for
the particle saith the larger mass. This result
follows inexorably whenever the quadratic part of
the Lagrangian has the form assumed in (3.1).
Furthermore, exclusion of the nonphysical states
from unitarity sums destroys unitarity, as can
easily be verified by explicit calculation in some
simple models [say, in 2-2 scattering with Zz(p)
= (A./4! )y ]. We conclude that theories based on
Lagrangians of the form (3.1) cannot simultaneously
yield (a) a consistent probability interpretation, (b)
a positive (semi-) definite energy, and (c) physical
unitarity.

These results may alternatively be summarized
by stating that the theory obtained by canonical
quantization of a second-order Lagrangian is com-
pletely equivalent to the Pauli-Villars regulariza-
tion of the corresponding first-order theory (ob-
tained by setting o. = 0). However, the regulator
mass M is not here taken to infinity, hence the

spectral problem.
We are finally in a position to state Matthews's

theorem for an arbitrary first-order theory of a
single scalar field (the generalization to N inde-
pendent scalar fields is trivial}. We have shown

that an arbitrary such first-order theory, after

2=
2QI

—~+pv+ +~p& (4.2}

(4.3}

The Euler-Lagrange equations for Z are

{y& 0 + /P)+gP 0 {4 4)

The canonical procedure will be carried out in

Coulomb gauge for the A„field:

For theories with local gauge symmetries,
Matthews' s theorem (i.e. , the instruction to form
propagators from Z~„,d and vertices from Pint)

cannot apply, since the quadratic part of the La-
grangian is singular, and the propagator, prior
to the imposition of a gauge condition, ill defined.
We may, however, regard the Faddeev-Popov (FP)
orbit volume prescription' as the natural extension
of Matthews's theorem to such cases. In this sec-
tion we shall consider a simple second-order
Abelian gauge theory ("@EDwith higher deriva. -
tives") and study (a) the validity of the naive FP
prescription, and (b} the spectral properties of
the theory.

(a) We start from the Lagrangian (second order)

~aF pvF — &2„uF"~&uF" p+ J„A". (4.1}

Here 8„is a conserved current (possibly involving
spinor fields, although these will not appear ex-
plicitly in our discussion), a.nd the higher-deriva-
tive term is the most general gauge-invariant
quantity quadratic in the gauge field. In the usual
fashion, we reduce (4.1) to the equivalent first-
order Lagrangian S:
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B,A, =0 (a=1, 2, 3)

~ A, = s, -'s,. A, (i =1, 2) . (4 5)

One now finds for the canonical momenta

A, =(n~ —1)-'n, -'(Z, —s. s,y.),
gp = -QMp

o(n-n, —1) '(j', —s,s,g, ) .

Thus, the Lagrangian may be written

1 l

(4.6)

(4 "t).

At the outset, we eliminate the dependent fields
A3 Ap gp from the Lagrangian. The equations of
motion imply 5Z

a gg q
pa

(4.10)

(4.11)

&p; =sf —a 's, s, v~, (4.12)

n~ —6,~
—n8, 9~)g~+ —' J

which may be inverted to solve for the time de-
rivatives of the independent fields

&+cb ~ah &+ah+a& +Ja Aa (4.8) (4.1s)

where A„A„g,are given by (4.5), (4.6), (4. 'l) and
The dependent fields Ap $p may also be expressed
more simply in terms of canonical momenta:

F„=—sp, —(a.n —1) 'h 'a,.(z, s, s,p, ),
+ps = ~p~3

-s, (o,a —1) 'n '(J, —s, s,g,),
G~ =-s,y, +u(na —1) 's.(J, —s,s,g, ) .

(4.9)
(4.14)

The calculation of the Hamiltonian is straight-
forward; the result is

+ ,'F, ,F„+F,.2-/„-J,A, . (4.15)

One can now check that the Heisenberg equations generated by this Hamiltonian (together with canonical
commutation relations) are equivalent to the Euler-Lagrange equations (4.4), thereby establishing the cor-
rectness of our canonical procedure.

The calculation of the generating functional presents no special difficulties. We begin with

zfJI ffm lfdy=lcm a f(aA+J. A —,'I" ,,F, , — p. G ~—2. '—'.
).

d.,'*., 8[a+, , a,p. , z,l, (4.16)

where

a p a p~a+~s 5 + ~ a ~ah + a 5 ~0 ~a ~aj ~j + p

In calculating 8, we perform the n; integrations using 6 functions arising from the m, integrals; the re-
maining m, integral is Gaussian and can be readily evaluated by completing the square. Thus, we obtain

p =exp i —'8
) 5;)+ '2' 8 ~+8 Q 8 + —'8

Q, -J )6 1 —(y4) q Q~-J d x (4.18)

Substituting (4.18) into (4.16) and performing the f, integrations (again Gaussian), we obtain finally

Z= dA, exp i g,.A;+ A+-,'A, CI1 —0. }A,++,a '(1 —a.CI) 'J, d'x (4.19)

where A, —= s, SP, -This result can be written in the more familiar form
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Z = dA& p 88A8 exp p $8A +J&A" -'4F pItF zo'. &]IF &pF p d x

dA„6~,A, exp i g, A.,+g}d4x (4.20)

To restore rotational symmetry we have intro-
duced a source J, for A, . This result corresponds
exactly to the FP prescription and establishes the
Lorentz and gauge invariance of our theory. We
strongly suspect that the validity of the naive FP
prescription extends also to second-order non-
Abelian gauge theories. For example, in gravita-
tion, the addition of terms involving R„„R"and
R' to the Lagrangian presumably does not alter
the Faddeev-Popov ghost structure of the theory
with a given gauge-fixing term. This is reasonable
since the Faddeev-Popov ghosts arise in the func-
tional formalism from a purely kinematical condi-
tion which is independent of the precise form of
the generally covariant action. "

(b) We turn now to the study of the spectral char-
acteristics of the second-order gauge theory de-
fined by (4.1). It will be seen that the presence of

Ci( —nCl+ 1)A, = 0,
(-nCl+ 1)A, = 0,
[tt, = -n (CIA, + s, sp, ) .

(4.21}

(4.22)

a gauge symmetry does not prevent (and basically
has nothing to do with) the development of a spec-
tral pathology completely analogous to that ex-
hibited in the previous section for second-order
scalar field theories. One should note that in
more complicated second-order gauge theories
such as gravity not all the fields need appear with
second derivatives. One might then hope to con-
fine the pathology to the unphysical degrees of
freedom. "

To study the spectrum, we go to the interaction
picture in which the field equations are deter-
mined by the quadratic part of the Hamiltonian.
Specifically,

(4.21) and (4.22) imply the spectral decompositions

A,(*)=,t, dk e"'e(k'), (k)[C(k ) tk) ~ C(k ~ ')6 (k)] H.c.
I2v)"' =1

where e, (k) are the usual polarization vectors satisfying e, (k)k, =0,

A,(tt)= „,) dk[e""e(k'le(k'+ ')H, (k) H.c.],

(4.23}

(4.24)

[t),(x)=—,&, dk e' '*8(k ) e, (k)6(k +n ')8&(k)+nk, k 6(k +n ')8H(k) +H. c.
2n "'

=1

The inversion formulas are here

, ()()=
(

')„,f d e ' '" 'Vt

x —[A,(x, t)+ t(x]t, t)]e, (E},

(4.26)

(4.29)

The commutation algebra of the (s)„8)„8] is now

fully determined by the CCR's (canonical com-
mutation relations)

[y.(x, t), [),(y, t)] = [y, (x, t), A, (y, t)]

= [A,(x, t), Ak(y, t)]

x —[t,(x, t)e, (k), (4.2'7) =0 (4.30)

(k)
&

d -i(T( ~ x -()k(]
(2v)H)" (k~'

x —s, v~(x, t) .

Here, we have defined ~„=[R(e f)k=(lk( +n )
In (4.28), the time derivative acting on s, v~ is
found from the Heisenberg equations of motion to
be

[A,(x, t), aQ, (y, t)]=0,

[A (x, t), e(tf), t)]= c„,— ' ') c'( -y),

[k.(, t), tet, (e, t)] = (c..— ' ') c'(, - e),

[$,(x, t), s [t) (y, t)] = -t(6, —n s,s )6'(x -y ) .

(4.31)
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Use of the inversion formulas in conjunction with

these commutation relations yields the following
momentum -space algebra:

[a~(k), av(k')] = [a~(k), 8u(k')]

=[u (k), 8.(&')]

=0

[8~(k) 8~ (k')] = [80(k), 80(k')l

= [8,(k), 8,(k')]

=0

(k), 8' (k') J = [8 (k), 8.'(&')]

= [8.(k), &~(k')]

=0

(4.32)

[s~(k) u~v(k')] =2~~&~a&'(k —k'),

[8g(k), 8~~, (k')] = -20~6~~,6'(k —%'),

[8,(k), 8,"(k') J
= -20„„5'(k—k') .

& kl

(4.33)

(4.34)

The appearance of the negative sign in (4.34) sig-
nals, as before, the loss of at least one of the

three crucial requirements, (a) a positive-energy
spectrum, (b) a consistent probability interpreta-
tion, and (c) unitarity. Apparently, the gauge
freedom is of no use in transforming away the
troublesome degrees of freedom, in contrast to
the situation in certain covariant quantization
procedures (e.g. , Gupta-Bleuler quantization of
@ED) for gauge theories

V. SUMMARY AND CONCLUSIONS

Our study of derivative-coupled field theories
has led us to some fairly definite conclusions
concerning the restrictions imposed on local La-
grangian field theories by the physical constraints
of Lorentz covariance and unitarity.

In the first place, scalar field theories based
on first-order Lagrangians (i.e. , in which at most
first derivatives of fields necessarily appear)
will in general generate noncovariant contributions
proportional to the divergent quantity 6~(0). How-

ever, in explicitly covariant regula, rization
schemes, such as Pauli-Villars or dimensional
regularization, these contributions (at least to
low order in perturbation theory) are seen to
vanish, yielding a result in consonance with
Matthews's theorem (namely, the statement that
vertices and propagators may be read off directly
from the Lagrangian).

A study of second-order scalar Lagrangians,
quadratic in second derivatives of the fields, en-

ables us to establish Matthews's theorem (and

ipso facto, Lorentz covariance) for arbitrary
first -order, Pauli - Vi liars-regulated theories.
This is done (a) by proving Matthews s'theorem
for a Lagrangian quadratic in second derivatives
of the field(s), and (b) by noting the equivalence
of this theory to a Pauli-Villars regularization of
the corresponding first-order theory obtained by
omitting the term quadratic in second derivatives.

On the basis of our work it seems at least
plausible that Matthews's theorem actually holds
for an arbitrary local, Lorentz scalar Lagrangian
built from canonically independent fields (exclud-
ing, for example, gauge-symmetric theories),
subject only to the restriction on regularization
discussed above.

We have also presented a detailed canonical
analysis of a second-order Abelian gauge theory—
basically, @ED with higher derivatives. Here,
the appropriate question is clearly the validity of
the naive Faddeev-Popov orbit volume prescription
for constructing the generating functional, in the
presence of higher derivatives. We have shown
that this prescription does hold. This suggests
that, in more complicated cases (such as quantum
gravity) where the canonical procedure is dif-
ficult to implement, the Feynman rules for a
gauge-invariant theory with higher field deriva-
tives are obtained by modifying the action in the
obvious fashion (thereby including additional ver-
tices); the ghost structure persists unaltered.

In the course of our study of second-order the-
ories (both with and without gauge symmetries)
quadratic in second derivatives of the fields, we
have shown that such theories possess an un-
fortunate spectral pathology. Specifically, it ap-
pears to be impossible to simultaneously main-
tain (a) unitarity, (b) a positive-energy spectrum,
and (c) a consistent probability interpretation.
This fundamental spectral restriction on the de-
rivative structure of local Lagrangian field theory
appears to have nothing to do with the possible
presence of gauge symmetries. It strongly sug-
gests that the recently proposed renormalizable
modification of the Einstein Lagrangian for quan-
tum gravity' lacks, by virtue of its second-order
structure, a sensible physical interpretation.
There is still the hope, however, that the ap-
parent violation of unitarity is an artifact of per-
turbation theory, and that renormalization-group
methods might be used to prove the unitarity of
the theory nonperturbatively. "
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