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A general comparison is presented between random electrodynamics and quantum electrodynamics for
the two systems which can be solved exactly in both theories, free electromagnetic fields and point

dipole oscillators. The N-point correlation functions of the fields are computed in both theories and are
found to differ in general because of the dependence upon the order of the quantum operators within

products of operators. However, if all products of quantum operators are symmetrized by taking all

permutations of the operator order, then the two theories give identical results for the correlation
functions. Analogous results hold to all orders in the fine-structure constant for dipole oscillators in

quantum and random electrodynamics. The theories agree only if the quantum operator products are

symmetrized. In the limit that the oscillator couplings to the radiation fields vanish, the oscillators can

be regarded as mechanical oscillators in quantum mechanics and in random mechanics. The theory of
random mechanics is defined in terms of this limit which uncouples a mechanical oscillator from the

radiation field. The average values of oscillator variables in random mechanics agree with those of
symmetrized products in quantum mechanics. The question is then raised as to the physical significance

of the many quantum operators which differ only in the order of their factors. It is pointed out that
some operator products which are regarded as physically important, such as the square of the angular

momentum, indeed involve unsymmetrized products of operators. On this account the average values of
the angular momentum squared in the ground state of an isotropic three-dimensional harmonic
oscillator differ between the random-mechanical and quantum-mechanical descriptions. However, there

seems to be no case in which experiments have shown that the (unsymmetrized) quantum operator
value is to be preferred to that provided by random mechanics. The presence of thermal radiation is

next treated for free electromagnetic fields and for dipole-oscillator systems. Despite extraordinary
differences in the points of view toward thermal radiation taken by the two theories, the conclusion is

the same as that found for zero temperature; the two theories agree in their average values if all

products of quantum operators are symmetrized. Finally, as a further example of the power of random

electrodynamics to give an account of phenomena ~here Lorentz's classical electron theory failed, we

investigate the diamagnetism of a charged three-dimensional isotropic oscillator. The mathematical

descriptions at finite temperature are developed in full random electrodynamics and quantum

electrodynamics and in second-order perturbation theory in quantum mechanics.

I. INTRODUCTION

In the past few years, there have been a number
of classical electromagnetic calculations' "which
provide results in agreement with quantum elec-
trodynamics. The results obtained include the
blackbody radiation spectrum, ' the fluctuations in
thermal radiation, ' the third law of thermodynam-
ics, ' rotator and oscillator specific heats, ' ' the
Van der %aals forces between macroscopic ob-
jects' ' and between polarizable particles. ' " The
classical electromagnetic theory" involved in
these calculations changes the boundary condition
on Maxwell's equations to correspond to the pres-
ence of random classical electromagnetic zero-
point radiation. The new theory, termed random
electrodynamics, is Lorentz's classical electron
theory"' ' with this new boundary condition.

Clearly we would like to understand the general
connections and contrasts between this classical
theory and quantum electrodynamics. However,
the mathematical difficulties in treating random

radiation have limited the physical situations which
have been solved thus far. In this paper we pro-
vide a general comparison between random and
quantum electrodynamics for the two physical
systems which can be solved exactly in both theo-
ries —free electromagnetic fields and charged
point oscillator systems.

The work presented here seems of interest for
several reasons. In the first place, random elec-
trodynamics is a new, relatively unexplored theo-
ry, and hence the comparison with well-estab-
lished quantum electrodynamics indicates some-
thing of the viability of the new theory. The second
reason involves calculational facility. There are
instances where it is easier to perform classical
electromagnetic calculations in random electro-
dynamics rather than quantum perturbation theory
calculations. Some recent work' "on Van der
%aals forces illustrates this point. By understand-
ing the general connections between random and

quantum electrodynamics, we make available the
possibility of performing cl.assical calculations
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with assurance of agreement with the quantum
results. Thirdly, here for the first time we find
quantum electrodynamics confronted with a clas-
sical theory in which Planck's constant h does not
vanish. This confrontation raises questions as
to what are the crucial quantum aspects of quan-
tum electrodynamics. The confrontation reopens
questions on the meaning of quantum operator
order, on the sharpness of energy values, on the
assignment of angular momentum values, on the
significance of excited states, and on the connec-
tions between quantum mechanics and quantum
electrodynamic s.

Following this Introduction, the paper is broken
into four basic parts. The first compares the
vacuum free-field theories of random and quantum
electrodynamics. The second compares the the-
ories when charged harmonic oscillators are cou-
pled to radiation, and then explores the limit when
this coupling vanishes. Here we find some inter-
esting ideas on quantum operator order as related
to energy and angular momentum eigenstates. The
third part introduces thermal radiation, and then
again compares the free-field and harmonic-oscil-
lator descriptions of the random and quantum the-
ories. Finally in the fourth part we show again
that despite differences in the ideas of eigenstates
and even in values for the angular momentum, the
average energy values agree between the theories.
In this case, we present a calculation for har-
monic-oscillator systems in an external magnetic
field and discuss the diamagnetic behavior in ran-
dom and quantum electrodynamics.

II. FREE-FIELD CORRELATIONS IN RANDOM
ELECTRODYNAMICS AND QUANTUM

ELECTRODYNAMICS

tromagnetic fields.
The connection between the two-point correlation

functions in free-field quantum electrodynamics
and in random electrodynamics was first pre-
sented by Marshall' in 1965. We will first review
this work. Then we will break up the random
phase part of the mathematical expression for the
classical fields so as to introduce terms which
stand as analogs to the annihilation and creation
operators in quantum electrodynamics. Pursuing
the analogy, we will evaluate the N-point correla-
tion functions for the free fields in random elec-
trodynamics and in quantum electrodynamics.

B. Plane- wave expansions for the free fields

The free electromagnetic fields satisfy Max-
well's homogeneous equations and hence allow
expansions in terms of transverse plane waves.
In random electrodynamics" the fields in empty
space are

E(r, t) = g d'k e(k, X) (t(k, a)

xcos[k r —&st+8(k, X)],

xcos [k r —~t+8(k, X)] .

Here the polarization vectors satisfy

k e(k, ~) = 0, e(k, ~) ~ e(k, ~') =8», ,

(4)

A. Vacuum fluctuations in the free electromagnetic fields

The vacuum fluctuations in the quantum elec-
tromagnetic field are vaguely familiar to most
physicists. Various textbooks assure us that these
fluctuations are connected with the Heisenberg
uncertainty principle for particles. Welton" has
connected these fluctuations with the Lamb shift
and low-energy Compton scattering. On the other
hand, fluctuations in the classical electromagnetic
field are present in random electrodynamics. "
The fluctuations enter as one of the postulates on

the homogeneous boundary conditions on Maxwell's

equations. Here in part II we will explore the
character of the fluctuations in the two theories
by computing the correlation functions for the elec-

and the frequency co is

= c(k„'+k, '+k, ')'t' .

The quantity g(k, &) is a number giving the scale

w'fP(k, A.) = ~tfu

and 8(k, &) is a random phase distributed uniformly
on [0, 2v], independently distributed for each k
and A. .

The free quantum electromagnetic field also
satisfies Maxwell's homogeneous equations. Here
it is convenient to write the expansion in trans-
verse plane waves in the form"

E(r, t) =g d'kg(k, 1) [a(k, A) e p(-xi&et ik +r)+a (k, A)exp(i&at —ik r)],
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B(r, t) = P d'tt ' [a(k, X) exp(- i&ot+ik r) +a (k, X) exp(i&et —ik r)]kxe(k, Z) (S~)" ~,W f W ~

A=i

=0,
[a(k, X), a (k', t[.')] = 6 ~ ~ 6B(k —k') .

(8)

(~)

The polarization vectors here are just those listed
above in (3) and (4). The operators a(k, ][) and
a (k, X) are annihilation and creation operators on
the Hilbert space, satisfying the commutation
rules

[a(k, X), a(k', X')] =[a (k, ](.), a (k', X')]

C. Evaluation of the two-point correlation function

The fluctuations in the electromagnetic field
may be characterized in part by the field correla-
tion functions at two different points in space and
time. Thus in random electrodynamics, the cor-
relation is obtained by averaging over the random
phases

2 2

(E;(r„ t,}E&(r» t, )) = g g dBk, dBk2 e((k„X))e&(k„ l( ) f)(k„ l[.,) g(k t ][ )
k)-1 g=y

x (co s[k) r, —&u(t, + 8(k„](.))] cos[k, r, —(k), t, + 8(k2, l[,)]}
2

d'k e, (k, X) eq(k, X) l)'(k, &) B cos[k (r, —r, ) —(u(t, —t, )]
X=1

d'k 5" k2' 2 cos k r, -r, -N t, -t, . (10)

Here we have used the averages

(cos 8(k„](.() cos 8(k„][ )}= (sin 8(k„&,) sin 8(k„][,))
=-,'6), ~, 6'(k, -k2)

and

(cos 8(k„X,) sin 8(k„k,)) = 0,
and we have introduced Eqs. (3)-(5). By similar calculations we obtain

(B;(r„t,) B&(r„ t, )}=(E;(r„ t,) E&(r» t,)}

and

(13)

(B,( „t,)Bt( t,))=fd'k„e„,—', ees[k (,—,) — (t, —t,)].
The analogous expressions can be obtained in quantum electrodynamics from the expansions (6)-(9).

Thus we compute the vacuum expectation values

(0]B( „t )B ( t)[D)= d'k „e t- ', ),esp['k (,—,) —t (t, —t)], (15)

(0 )B((r„t ) B&(rB, t2) ( 0) = (0 ) E((r„ t ) E&(rB, tB) ( 0) (16}

(0(E((r„ t, ) B&(r„ tB) (0) = d'0 e;» —' —exp[ik (r, —r,}—iu(t, —t,)]

D. Problem of operator order in quantum electrodynamics

The quantum results in (15}-(17)do not agree with the analogous correlations (10), (13), and (14) in ran-
dom electrodynamics. However, the discrepancies can easily be seen to be related to a problem of quan-
tum operator order. In random electrodynamics, the order of the fields is of no significance since these
are classical fields,

(E((r„ t, ) E~(r» t, )) =(E~(rB, tB) E)(rke t,)) (18}
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On the other hand, in quantum electrodynamics, the operators do not commute so that

( 0(E (, ~ ')fr( 4& IO& =(OI +st" ( &@i(" ~ )I 0&+ ( )'
y )

'S'
( '( ) (~ ~ &f t(91

Physically, which is the correct operator order
for the comparison with the classical theory?
Quantum theory usually assigns Hermitian oper-
ators to physical observables. Thus if we take
the Hermitian combination ,'(E; E—,+E, E;) of .these
Hermitian fields, then there is exact agreement
between the correlations in quantum electrodynam-
ics and random electrodynamics:

(0 l
—,
' [E;(r„t, ) E&(r„ t ) +E&(r„ t, ) E;(r„ t, )] l 0)

=(E;(r„ t, ) E,(r„ t, )) . (20)

This agreement with the expectation value of the
Hermitian combination of the quantum operators
also holds for the other two-point functions (13)

and (14}. The problem encountered here of oper-
ator order in quantum electrodynamics will be a
recurring one throughout this comparison between
quantum electrodynamics and random electro-
dynamicss.

E. Rewriting the random phase terms in analogy with

quantum annihilation and creation operators

Although the form for the random electromagnetic
field given in Eq. (1) has been used repeatedly in

various calculations, ' " it will be convenient to
rewrite the expression in a manner reminiscent
of the annihilation and creation operators of quan-
tum electrodynamics. Thus the random field (1)
is exactly the same as

fl(k, A)
E(r, t) = g d'km(k, A}

' [a(k, X)exp(-i~t+ik r)+a*(k, X)exp(i((&t- ik r)], (21}

where we define (ola(k, ~) a(k' l). ') lo& =(ola'(k, l()a'(&', &')
I o&

and

a(k, A) -=exp[f8(k, y)]

a*(k,X) =exp[- it&(k, &()] .

(22)

(23)

=0

(ola(k, X)a (k', X') lo) =6&, q 6'(k —k'),

(0 I a (k', l). ') a(k, l() I o& = o .

(28)

(27)

(28)

(a(k, ()) a(k', A')& =(a*(k, X) a*(k', X')&

(a(k, A.) a*(k', X')& = (a*(k ', l(') a(k, A)&

=6 qq 6'(k —k').

(24}

(25)

These expressions are to be compared with the
vacuum expectation values for the quantum anni-
hilation and creation operators,

Then the random character of the radiation con-
tained in the random phase 8(k, X) appears only
in the expressions a(k, A) and a('(k, l).). On averag-
ing over the random phases, we see

We notice in Eqs. (27) and (28) the importance of
quantum operator order, something that does not

arise in the classical random variables.

F. General N —point function in free -field
random electrodynamics

Although it is interesting to find the agreement
between random electrodynamics Bnd quantum
electrodynamics for the two-field correlation func-
tions, we wish to investigate the general connec-
tion between the theories and so consider the cor-
relations between products of many fields. In

random electrodynamics this may be written in

the form

(E; (x,) E;,(x,) E; (x,„))

2 2

z dsk d3k d3k h, g
1 2 2n i 1 t2 i2n 2 2 2

&(.'([a) exp(-iK, ~ x, ) +a*, exp(iK, x,)][a, exp. (- iK, ~ x, ) +a*, exp(iK, x,)] ~ ~ ~

x [a,„exp(- iK,„x,„)+a*,„exp(iK,„~x,„)]) (28)

For compactness we have introduced four-vector notation, so that here E, (x,) stands for E; (r„ t,), and
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Ky x1 stands for co, t, —k, r, . In order to evaluate the correlation function, we must average over the ran-
dom phases as in (24) and (25). For higher products of random variables a, a*, we find, for example,

(a, a a*„)=(exp(i8, ) exp(i8 ) exp(- j8„))

=0

(a~a*, a a*„)=(exp(i8~) exp(-i8, ) exp(i8 ) exp(-i 8„))

(3o)

(31)

ln averaging over the random phases 8(k„&(,), . . . , 8(k,„,&(,„) in Eq. (29), the nonzero contributions involve

a complete pairing of all possible terms a, = exp(- i 8() with all possible terms a* = exp(f 8 ) Su. ch a com-
plete pairing is possible only if 2n is even. Thus the term in angular brackets in (29) becomes

( ) = Q —,(exp[-iK ~ (x, —x, )]5 &,(, ) g(, ) &'(k, —k, )

&(exp[-iK, ~ (x, —x, )]5&(, ) x(, &5'(k, —k, ) ~ ~ ~

4

xex p[- fK, (x. —x, )]5&.(, )g(. ) 5'(t(. -k~ )),

where the sum Q, is over all permutations of the
integers (1, 2, . . . , 2n). The factor of (1/n!) arises
because the interchange of the n pairs (o,o,)
((r,o,) ~ ~ (o,„,o,„) does not correspond to a new

way of pairing the random phases. Hence the ni
permutations on these pairs must be removed as
repetitive in the sum over all permutations. The
presence of permutations involving the interchange
of the pairs (op, ) into (o,o,), etc. comes from the
presence of both a and a* as equal contributors in
the expression (21) for E((x). What is involved
can be easily written out explicitly for the four-
point function. Here there are 24 permutations of

1, 2, 3, 4. However, the pairs such as (12) (34)
and (34) (12) do not give distinct contributions.
Hence only 12 pairings of the random phases ac-
tually contribute.

G. General X-point function in free - field
quantum electrodynamics

The result found by combining (29), (32), and (5)
seems a complicated expression. What interests
us, however, is not its value, but its connection
with an analogous expression in free-field quan-
tum electrodynamics. Thus we consider the vac-
uum expectation value of the quantum free fields

2 2 2=ZZ" Z
~~=1 Q= 1

($(u,}'"(5(d,}'~' (I&@,„)"'
1 2 2n '] '2

2n 2p 2

&&(0
~ [a, exp(- iK, x,) +a, exp(iK, x,)] [a~ exp(- iK, x,) +a, exp(iK, x,)]

x [a,„exp(- iK,„x,„)+~a„exp(iK,„x,„)] ~
0) . (33)

Here the operator a, acting to the left on the vac-
uum and a,„acting to the right each give zero.
Thus the end brackets involve only Qy and ~at„, re-
spectively. Now we may move a, through the other
bracket over toward the vacuum state on the right.
On moving a, through the mth bracket, we pick up
a contribution

exp[-iK, (x, —x )]5 53(k, -k } .

When a, acts on ~0}, then it gives zero. However,
the expressions obtained on moving a, to the right
are products of 2n- 2 field operators, and we may
repeat the same procedure with the left-hand-most
annihilation and creation operators. Clearly if 2n

is odd, the entire expression vanishes. If 2n is
even, the resulting expression between the vac-
uum states in (33}is

(0~ (0}= +exp[-~'Kr ~ (x„—xz )]5q(„)„(„&5'(k~ —kz ) exp[-iK& (xz —x„)]5&(~ )&(„)5'(k —k„)~ ~ ~

(34)



814 TIMOTHY H. BOYER

Here y is a permutation of the integers (1, 2, . . . ,
2n), but not all such permutations are included.
We must have that

y, y„y, (
and also that

y, &y, &y, &

because the order of the quantum operators was
such that E;(x,) stood furthest to the left, and
only the annihilation operator of E;(x,) contrib-
uted, etc.

Thus again we see that the corresponding values
between random and quantum electrodynamics
do not agree directly because of the appearance of
distinct values associated with different operator
orders in quantum theory. However, if we con-

sider the fully symmetrized vacuum expectation
value

1
, (0(E;(, )(x, )E,( )(x„) E;(, )(x, )(0),

where the sum is over all permutationso, thenthe
preferred ordering y, & y„etc., disappears. The
number of permutations y contributing in (34) is
(2n)! /(2"n!) where the 2" corresponds to removal
of all terms, involving the interchange of y,
and y, , and the nt corresponds to removal of all
interchanges of pairs of terms such as (y, y, ) (y, y, )

(y.. .y,.) into (y, y4) (y, y, ) (y,.—,y,.)
fully symmetrized expectation value contains rep-
etitions of all these permutations which appeared
in the initial unsymmetrized calculation (34).
Thus

&0( {E, (x,) E, (x,)" E,, (x,„)],„.(0)

1= Q (2 ), (OiE;( )(x, )E,( )(x, ) ~ ~ ~ E;(, )(x, )i0)

2 2 2=2 2 "Z d'k - (f'k e; e; ~ ~ e

1 (2n)!x g ( )) „exp[-iK, (x, —x, )]6),(, ) z(, ) 6'(k —k )

xexp[- iK, ~ (x, —x, )]6),(, ) z(, ) 6'(k —k ) ~ ~ ~

(37)

The factors of (2n)! cancel in the last form of (37)
and the factor 2" =(2'~')'" exactly compensates for
the difference in normalization constants appearing
in the random expression (21), (5), and the quan-
tum expression (6). It is clear from the analogy
between a and a, and between a* and a that the
arguments given here can be repeated for correla-
tion functions involving the magnetic fields.

Thus provided the quantum operator order is
fully symmetrized within quantum electrodynamics,
me find precise agreement with random electro-
dynamics for the free-field correlations.

III. HARMONIC-OSCILLATOR SYSTEMS IN RANDOM
AND QUANTUM ELECTRODYNAMICS

A. Quantum mechanics and random mechanics
as derived theories

Within current physical theory, quantum behavior
is regarded as fundamental, an inherent property
of all systems regardless of the forces involved
in their interactions. In particular, a harmonic

oscillator may be a quantum operator, although
it has no electromagnetic interactions. However,
if the oscillator does have electromagnetic inter-
actions, then the quantum behavior of the oscil-
lator is tied neatly with the quantum behavior of
the electromagnetic field.

This is not at all the view taken in random elec-
trodynamics. Within this classical theory, all
the random motion of particle systems at zero
temperature is associated with the random forces
due to the electromagnetic coupling of the system
to the random zero-point radiation. Particles
have no inherent random motion of their own.

In order to analyze the connections between
these two quite different points of view apparent
in the quantum and random theories, me mill start
with the case where the particle systems have
electromagnetic interactions, and only then pro-
ceed to the limit where the particles are uncou-
pled from the radiation field. In this uncoupled
limit, we find a description of mechanical har-
monic oscillators in accord with quantum mechan-
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ics in the quantum case, and we find a new theory
called random mechanics in the random case.

1 8A
E = —VC ———

c ~t (43)

B. Dipole - oscillator equations of motion

We consider a point electric dipole oscillator
of dipole moment exi located at the position R,
and oriented along the x axis. The Hamiltonian"
for this system is given by

2

H = P, ——A, (R,) +-,'m, (u,'x'
2mp c

Here the scalar potential is not regarded as a
dynamical variable but stands for exactly

C(R) =
}R-Rp}3

The vector potential is given by

A(R, t) =A (R, t) + — d'R' t
C }R-R'}

(44)

+ — (Ez+Bz) d'R,1
8m

(38)

where m, is the bare mass, cop is the natural fre-
quency of the oscillator, and the coordinates in

space are denoted by

R =iX+jY+kZ .

The connections between random and quantum
electrodynamics are seen most easily in the
Heisenberg picture. In this ease, the quantum
operator equations of motion are identical with
those of classical theory. In the Coulomb gauge,
these are

(4 5)

where A (R, t) corresponds to the free electro-
magnetic field in quantum and random electro-
dynamics.

It is now possible to substitute the expression
obtained for the electric field E in terms of x and
A into the differential equation (39) for x. More-
over, since Eqs. (39)-(45) are linear in the quan-
tum operators, it is possible to carry out the re-
normalization, which here involves only cnumbers,
exactly as in classical theory. Thus the resulting
equation of motion for x in both classicial theory
and in the Heisenberg picture of quantum electro-
dynamics" is

mo x = —mo (do x + 8E„(RO, t ),
V 4= —4gp,

(39)

(40)

2

m 1'=-ma x+ ——'x'+eE (R )P 3 c3 x p

~2A 4r- j
9t2 c (41)

and

sic 5'tR ' R-J (R, t) = —VxVx d R' ', o (42)
4m }R-R'}

with p the charge density associated with the point
dipole, J the transverse current density

where m is now the renormalized mass.
Because of the appearance of the damping term

—',(e'/c') 'i', the dependence upon the initial con-
ditions decays with time. The steady-state solu-
tions of the equations of motion may be obtained
by the Fourier transforms. Introducing the ex-
pansions for E and E from the free-field expres-
sions (21) and (6) which correspond here to the in-
fields, we have in random electrodynamics

x= — d'ke(k X)
' ' exp(-iet+ik R )+ ' exp(i&et —ik Ro)

e ', 5(k X} a(k X) . . - a(k X}

m ' 2 C C* (47)

and in quantum electrodynamics
z (k~}z/z a"(k, X) at(k, X)x=- d'ke(k, A} exp(-icot+zk R,)+ — exp(i&et ik R,)-

m 2m C C~
X= j.

(48)

where

C =- (d +(dp —zFcd (49)
p=m~ + —A, (R,),

2 eF=—
3 mC

(50)

We also note that from (42) and (45), A is given
in terms of A and x, so that A can also be ex-
pressed in terms of the free fields, as can the
momentum

which is canonically conjugate to x. The relations
hold in both the random and quantum theories.

Thus, in equilibrium, the behavior of the free
electromagnetic field in random and in quantum
electrodynamics completely determines the equi-
librium behavior of a point dipole oscillator or
indeed any collection of oscillators.
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C. Ground -state average values including
radiative corrections

Although Eqs. (38)-(51}take the same form in
the classical and quantum theories, the symbols
stand for somewhat different objects. In the clas-
sical case, x is the coordinate of the particle
position, whereas in the quantum case x is the
operator on Hilbert space corresponding to par-
ticle position. In order to compare the theories,
we must compute the average values in the vac-
uum situation.

Thus we compute the vacuum expectation values
(Olxl0), (OlPl0), &Olxpl0&, etc. , in quantum elec-
trodynamics, and the averages over the random

phases (x), (p&, (xp&, etc. , within random elec-
trodynamics. From Eqs. (47), (48), and the com-
ments connected with (51), we see that the agree-
ment between the quantum vacuum expectation val-
ues and the random average values will be traced
back essentially to averages over the free elec-
tromagnetic field expressions.

Clearly in quantum electrodynamics (0l xl 0) and
(olPlo) involve &Ola(k, &)l0), (Ola (k, &}l0&, and
so vanish. Analogously in random electrodynam-
ics (x) and (P) vanish in the vacuum situation
because they involve the averages over random
phases &a(k, A)) and (a*(k, X)). The mean-square
oscillator displacement in the two eases is given
by

Q~ a~
0 = exp(-iK, X,)+=, exp(iK, X,)

1 1

a, Q~
x = exp(-iK, X,)+=, exp(iK, X,) 0),

2 2
(52)

and by

(x') = —, d'k, d'k, e,„e„—' ~ —' exp(- iK ~ X,) + —' exp(iK X )
1 1

Q2 a~
x —' exp(- iK, X,) +a exp(iK, X,)

C, 2 /

(53

It is easy to show that

&olx'lo) =&x') . (54)

D. Oscillators in the uncharged limit of random and

quantum electrodynamics

In the limit that the charge e of the dipole oscil-
lator goes to zero, the oscillator becomes uncou-
pled from the electromagnetic field and so is a
pure mechanical system. In the quantum situation,
we expect to recover the quantum mechanics of
a harmonic oscillator in its ground state. And

Repeating the same procedures as in part II making
use of the analogy between a, Q and a, a*, we
conclude that there is exact agreement between
the vacuum expectation values in quantum elec-
trodynamics and the average values in random
electrodynamics when the quantum operator prod-
ucts have been completely symmetrized.

&OlxPI0& =&olxm ~-lo&+O(e) . (55)

indeed we do. In the limit e-0, all the vacuum
expectation values go over to the quantum-mechan-
ical results. However, in the classical theory of
random electrodynamics we note an analogous
result. In the limit e-0 which decouples the oscil-
lator from the fluctuating radiation, the fluctua-
tions depending upon 8 remain. We do not obtain
the traditional classical mechanical theory of an
oscillator, but rather a particle theory which we
will call random mechanics.

As examples of the transitions from full electro-
dynamic theories over to the mechanical theories,
we will evaluate several average values beginning
with (Ol xPl 0) in the quantum case and (x') in the
random case. We first note that in the required
limit e-0 the term eA, (R,) may be neglected in

the canonical momentum,
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Now

e2 2 2 (g~ }1/2 (k }1/2
(0~@m x~0& =, g g d'k, d'k e„e„' ' m

a~ a~x/ 0 = exp(-iK, X,)+= exp(iK, ~ X,)
C, 1

Cl2 a2
x —i e = exp(- iK, X,) + i &u =„exp(iK2 X,)

2 2

(56)

Using the expectation values (26)-(28}, inserting (4) and (49), and carrying out the angular integrations,

e' ",Bn k(d LA
(oixm xylo) —— dkk —. . .), (,),

0 0

This expression is exact within quantum electro-
dynamics. It involves an integrand which is sharply
peaked at the natural oscillator frequency (d0. As
the value of e appearing in the damping term

2 8r=— (58)
PPg C

becomes smaller, the resonance behavior be-
comes increasingly sharp, Thus for small values
of e, we may write u=(d —(d0 and approximate

e' 28 (d0(o~xm x~o&=i,-— du
( ), '(,), .

The last integral is of the form

=0 (68)

The mean-square oscillator displacement in ran-
dom electrodynamics is written out in (53). When
we average over the random phases

This is precisely the value one obtains for the
quantum harmonic oscillator.

In the case of random mechanics, the value (xp)
vanishes. This agrees with the symmetrized quan-
tum expression,

(xp& =(oi-,'(xp+px) io&

1
dz a'z'+ b' ab

(60)

2 2

(x') = (64)

Thus

(0 i x m x
i 0& = 2 - + O(e') .

In the limit e-0, this leaves exactly

(61)

Except for a factor of miso, the right-hand side of
this expression agrees with that of (56). Following
exactly the same arguments as presented above,
we arrive at the e -0 limit corresponding to ran-
dom mechanics

&OixPio&=i — . (62)
1 8

&x') =—
2 m(d0

(65)

The general expression x2 is obtained in analogous fashion,

2 2 2

( 2 111&

&i.1=1 X = l &~ m= 1

d k) d k2' ' ' d k2m E'~~ f2„' ' ' f2m„

~a a *, ~a ~a* a, (66)

Here, for convenience we have set X0 =0 rather than noting that the space-time dependence in the factors
exp(- iK X2), exp(iK X,) cancels out. The average over the random phases involves nonvanishing contribu-
tions from the sum of all pairings of the form

~ 2m -y 2m -I 2m 2m+ + ' ' + +
C, C3 C4 C4 C,m, C*,m, C,m C*,m

(67)
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(2m)! 1 g
m! 2 2 m(do

(68)

from the evaluation of the integral above. The
evaluation of (P'") involves analogous procedures.
When treating (x' p'"}, we note first that we have
contributions as in (67} from all separate pairings
between the k& parentheses for x, multiplying all
separate pairings between the k& for P. However,
if even one parenthesis (a/C+a*/C*) for x ispaired
with (- imura/C+imua~/C*) for P, the term van-
ishes since from the expressions (24) and (25) for
averages over random phases

a a*
imv —+-

C C*
a a*

——+- =0.
C C* (68)

It follows that

(x2m p2'n} (x2hl} (p2n)

(2m)! (2n)!
( 2)m( 2)5

mtn!2 '" (70}

The results in random mechanics (63), (65), (68),
and (70} correspond to the e-0 limit of random
electrodynamics when the dipole oscillator is un-
coupled from the radiation field. The fluctuations
depending upon 5 persist. We emphasize that the
particle fluctuations in random electrodynamics
and here in random mechanics are not intrinsic
to the particle but rather are derived from the
random zero-point radiation. The appearance of
Planck's constant I is derived from its role setting
the scale of zero-point radiation. However, it is
easy to show that the same result (70) is obtained
for any harmonic oscillator coupled to the electro-
magnetic field. One may imagine a point oscil-
lator as the limit of an arbitrary static charge
distribution at the end of a spring. Then the ran-
dom motion of the oscillator is due to the fluctua-
tions in the zero-point radiation involving a bal-
ance between the pickup and loss of energy. The
balance in the limit of no coupling to the radiation
field can be shown to be independent of the charge
distribution of the oscillator.

E. Questions involving quantum operator order

The theory of random electrodynamics gives
the same ground-state average values for the mo-
ments (x P") of harmonic-oscillator systems as
does quantum electrodynamics provided the quan-

including the pairing of the k, parenthesis with the
k, parenthesis, etc .There are (2m —1)!!=(2m)!/
(m. 2 ) such pairings, giving

(2 m)! e'
( ")=m!2~ ~' Z "' "2!C!'

F. Sharp energy values and quantum operator order

Proceeding along this same line of inquiry, one
may shift the question to ask where it is that ex-
perimental observations involve unsymmetrized

TABLE I. Average values for a mechanical oscillator
at zero temperature.

Random mechanics Quantum mechanic s

(x) =o

(p) =o

k(x)=—
2 mao

(p'& = -,'-@&~~,

(xp) =0

(O!x i O& = O

&o~g~o& =o

&ojx'I o) =-,
6

(ojp'I o& = 2~~~0

&olxLI o) =a —=-(ol pxlo)
h

(x4& =3&x'&2

(p') =3&p')'

( 'p') =&x'& &p'&

&o I
x'I o) =3(o I

'I o&'

«!u'I» =3«lg'I o&'

&o(x'g'I o& = &ol g'x'I o&

=-&o jx'I o& &ojp'I o)

&olx p xp Io& = (oj px pxl o)

= (o I
x'I o& (o I p'I o)

&o I
x p'x

I o) = &o I gx'p I o&

=3 «I x'I o& &o lL'I o&

turn operator products are completely symmetrized.
However, it is also of interest to note the distinc-
tion between the random and quantum theories
based upon the importance of quantum operator
order. The comparison seems easiest in the un-
coupled e-0 limit, giving random mechanics and
quantum mechanics.

In order to illustrate the importance of operator
order in quantum mechanics, we list in Table I
some average values connected with the harmonic
oscillator in random and quantum theories. The
list of values in quantum mechanics is of necessity
far longer than in the classical theory because
changing the operator order changes the expecta-
tion value. However, does the quantum theory
actually contain more physical information than
the classical theory? Just what is the physical
distinction between the Hermitian operators, and
hence observables, Op~2 = —,(x'P'+P'x'} and

O„~„~=~(xpxp+pxpx)? From Table 1 we see that
these quantum operators have different values in
the ground state, although in the classical theory
there is no distinction between the average values
of these expressions. How can this quantum dif-
ference be measured experimentally, at least in
principle?
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(H) =zopf~„&0IHIO& = zl~, .

However, the average value of the square of the
energy is different in the two theories. Thus

&H') =2&H&',

whereas

&OIH'I0) =(OIH I0)' (74)

At first this may seem surprising. However, it
follows directly from the importance of quantum
operator order. Thus

P ctpo(ols*lo)=(o
o
—. o' lP'** **P'l

+-'m'(u 4x4 04 p

where

operator s. From the random-quantum connections
obtained above, we will expect departures from the
classical theory in these cases.

Now the Hamiltonian is an expression which al-
ready involves symmetrized products of operators,
and there is no distinction between the average
values of oscillator energy in the classical and
quantum theories,

that the operator corresponding to the square of
the angular momentum is also an unsymmetrized
operator product. Since the angular momentum
squared is frequently discussed in atomic physics
experiments, it clearly should be investigated
here. However, in order to do this we must first
remark on three-dimensional harmonic-oscillator
systems.

In Sec III B, we introduced a one-dimensional
oscillator oriented along the x direction. The work
can easily be extended to an isotropic three-di-
mensional oscillator. In this case we will have three
independentequationsof motionfor x, y, ands, each
analogous to (46), and the results go through just
as before if we treat x, y, and z separately.

In this system it is possible to discuss the angu-
lar momentum in both quantum and random elec-
trodynamics, and in the limits giving quantum and
random mechanics. Specifically, we define

1.=i(yp, -zp, }+)(zp,-xp, }

+ f (xp, yP.), — (V8)

and the operator expression holds in quantum the-
ory. Since the equations of motions for the dif-
ferent coordinate directions are uncoupled, it is
easy to see that the average angular momentum
vanishes in both theories,

&0ILI0& =&r~ =0 .

&Olx'I 0& =(x'&

and (76)

However, the square of the angular momentum
operator is

&o IP'
I o& = &P'&,

but (0 I
P'x' + x'P'

I 0) is not equal to (x'P') because
the quantum operator products have not been fully
symmetr ized to include xP xP, etc. Thus phys-
ically there is a distinction in our thinking re-
garding the results of the classical and quantum
theories. In quantum mechanics, the energy is
sharp, an eigenstate of energy with

I =(y P +z Po —yP, P z —P&yzP)

+(z'p, '+x'p, ' —z p, p, x —p, z x p )

+(x'P, '+y'P. '- xP.P, y-P. x y P ) . (80)

We see that the operator product is not fully sym-
metrized; the term yP„P, z appears, but there is
no term p, y p, z. Corresponding to this lack of
symmetrization, we find for the quantum isotropic
oscillator ground state

(0IH" fo) =(0fH fo)" . &0li I0&=0, (81)
However, in the corresponding random mechanical
system, the energy of the oscillator involves fluc-
tuations. These fluctuations arise from the ex-
change of energy with the electromagnetic field,
and they persist in the expressions even in the
e -0 limit which decouples the classical oscillator
from the electromagnetic field.

G. Anguhr momentum squared as an unsymmetrized

quantum operator

Most experiments measure changes in the aver-
age energies of systems, and the discrepancy in
the distribution of energies we have just found
may not seem too serious. However, it turns out

while random mechanics gives

&L'& =(&y'&&P, '&+ &Q& p, '& —&yp„& & p, z) —&P„y&&zP, ) l

+(y-z, z -x)+$y-x, z -y}

( —,
' km(o, ) + — (-,')fm(u, ) +0+0~8, 1

= —82 (82)

There is a well-defined difference in the physical
descriptions of the systems which corresponds to
these different average values. In the quantum
theory, the system is pictured as associated with
a sharp value (an eigenvalue), of the angular mo-
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mentum L=O, and hence all higher moments of the
angular momentum also vanish. However, in the
classical picture of a particle being pushed about
by random radiation, the particle sometimes is
going around the force center rather than straight
through. Thus classically, although the average
angular momentum vanishes, the average of the
square of the angular momentum is nonzero.

However, it is not wise to stop at this point. It
is interesting to see what is the distinction between
the quantum L' and the symmetrized form L,„'
when we look at expectation values of quantum ex-
cited states. The symmetrized form of y p, P, z is

.(x P,P.» +P, yP, »+)iP, »P, +P, y»P )

Thus the difference in the angular momentum op-
erators is

L' L„„,'= '-(P, x -vP, )(P—, P,)—

2—+-mw g = —he@ .P 1 2 2 1

2 2 0 2 0' (87)

The average value of x"P' in this traditional clas-
sical view can be obtained as

] 2'' ! @ 1/2 k

( xP'&,. ;d;...=i- sin 6}
raditional

x [(Sm a, )
' cos e]' . (88)

&
2~ 2„) (2m)!(222)! 1 )2 (gg

mfnj 2 2 m (89)

Again (x'P') vanishes if k or f is an odd integer.
This behavior corresponds to a phase-space dis-
tribution

Clearly the average value vanishes if k or l is odd.
In random mechanics, defined as the limit from

random electrodynamics which uncouples the mech-
anical system from the radiation field, we found

'2(X-»)(»-x)+2(y-x)(»-P). (88)

However, the factors may be recognized as in-
volving the basic quantum commutator

m~ X2 p2
'('P'=ma'"~ k m n0

(90)

[x,P„]=ih, etc. ,

so that

3L —L,, = —2k

(84)

(85}

But then in analyzing transitions between quantum
eigenstates, the changes in the angular momentum
squared are the same whether we use L' or the
symmetrized form L„„,' which agrees more close-
ly with the classical theory of random mechanics.

At the present time, the author has not found an
experimentally tested physical distinction between
the symmetrized and unsymmetrized forms within
quantum theory.

H. Three views of the uncharged harmonic oscillator

i/2
x = sin(&u, t +@) .

m (g)0
(86)

If we consider a set of such oscillators which have
random phase relationships to each other, then we
can describe the set by a distribution on phase
space confined to the ellipse

When considering an uncharged harmonic oscilla-
tor of average energy 25&„ three different views
come to mind, corresponding to traditional classi-
cal mechanics, random mechanics, and quantum
mechanics. A comparison between the physical
descriptions takes on added interest in the light
of physicists' repeated efforts to provide semi-
classical models for quantum systems.

Within traditional classical mechanics the mo-
tion of a single harmonic oscillator of mass m,
frequency co„and average energy —,'~co0 is given by

Clearly this is not a sharp energy distribution on
phase space as was the ellipse above.

Finally we come to the quantum-mechanical
oscillator which seems related to both of the above
descriptions. The quantum ground state is speci-
fied as an eigenstate of energy, and so at first sug-
gests the sharp distribution on phase space of
traditional classical mechanics. On the other hand,
we have noted that if the operator order is com-
pletely symmetrized, then the quantum expectation
values agree with those of random mechanics.
Thus, for example, if we compare the expectation
value for x'" for the three systems, we have

(2n)! )t
( )tradidoaal

( ii2 aaa aam

(2n }! k
( )random

& f 2a
0

(0!" io&~quantum n f 2n
0

The expression (x'")„„„,.„„differs by a, factor of
n I from the other two expressions.

Thus this comparison for the average values for
x'" suggests that random mechanics and quantum
mechanics are closely related while the traditional
classical view is quite different. However, on
the other hand, both traditional classical mechan-
ics and quantum mechanics give a sharp energy
for the system, whereas random mechanics in-
volves a distribution of energies. Thus although
all three views have the same average energy
—,'Ace„nevertheless the averages of the higher
moments H" differ. Traditional classical theory
and quantum theory are in agreement that
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but random mechanics gives a different value.
This was illustrated in Sec. IIIE for H'. There
we saw that despite the agreement between random
and quantum theories for the values of (x') and

(P'}, the quantum energy squared is in agreement
with the traditional sharp-energy distribution on
phase space. This is achieved in quantum theory
by the value for the cross term

(0 )-,'e '(x'p'+P'x') j0) = ——'8'e '

which, surprisingly from a classical viewpoint,
is negative. If the operator order in x'P' were
completely symmetrized, then the average value
would agree with random mechanics and the ener-
gy would not be sharp.

radiation spectrum, however, is not Lorentz-in-
variant. It has a preferred frame of references,
and motion relative to this frame can be detected
as retarding forces' upon systems with electro-
magnetic interactions. The preferred frame of
reference of the thermal radiation corresponds
to that of the container enforcing thermal equili-
brium.

Nevertheless, within random electrodynamics
there is no essential difference in the mathemati-
cal treatment of thermal radiation and of zero-
point radiation. Both involve fluctuating classical
electromagnetic radiation whose complete ran-
domness is characterized by a Gaussian distribu-
tion of the amplitude for any Fourier coefficient.
A derivation' of the thermal radiation spectrum
entirely within random electrodynamics has been
given; it arrives at the Planck spectrum, giving
the average energy per normal mode:

IV. SYSTEMS AT FINITE TEMPERATURE IN

RANDOM AND QUANTUM THEORIES

A. Presence of thermal radiation

In this section we turn to a comparison of ran-
dom electrodynamics and quantum electrodynam-
ics in the presence of thermal radiation. At fi-
nite temperatures, two new elements are intro-
duced —the excitation of higher-energy levels of
quantum systems and the tendency for quantum
systems to approach the traditional classical
mechanical description. As in the vacuum situa-
tion at T =0 considered previously, we will first
consider the free electromagnetic fields, now in-
cluding the presence of thermal radiation, and then
will note the behavior of harmonic-oscillator sys-
tems which are coupled to the radiation.

8. Free-field correlations in thermal radiation

for random electrodynamics

The difference between classical zero-point
radiation and classical thermal radiation is im-
mediate from a physical point of view. Zero-
point radiation is universal, spreading through-
out the universe with a homogeneous, isotropic,
and Lorentz-invariant spectrum. The blackbody

S(d
x $ (k, A., T)= ff2(o +

( i )

1 Au= ~5+ coth (91)

As T- 0, this goes over to the zero-point radia-
tion.

Now the averages involved in random electro-
dynamics can be treated entirely with the random
phase 6(k, X} regarding gk, A. , T) as a constant
number. Hence the calculation at finite tempera-
ture T gives for (E;,(x,)E;,(x,) ' ' 'Ei„(x.))r
exactly the same result as before where )(k, x} is
replaced by )(k, X, T). Thus, for example, in the
two-point function, we have from (10) and (91)

(E;(x,)Eq(x, ))= d'k 5;, —k;k, h(u

S(dx coth 2„cos[K (x, —x, ) ] .

(92)

For convenience in comparing the correlation
function with the quantum expression, we will re-
write this result as

and

&E&(x,)E,(x,))r = d'0 5,, — +', coth
2&T 2(exp[-iK ~ (x, -x,)]+ exp[iK ~ (x, -x,)])

k] k~ Sco

(E;(x,)E, (x,))r = d'k ig k

x 2 g @+exp — ((n+ ~) exp[ —iK ~ (x, -x,))+(n+ 2) exp[iK (x, —x2)]] .1 K(u(n+ g)}

4m Z
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h(u(n+ 2)Z= ~ exp (96)

C. Free —field correlations in thermal radiation

for quantum electrodynamics

The treatment of thermal radiation within free-
field quantum electrodynamics takes quite a differ-

I

In Eq. (94) we have made use of the expansion

I(o ~",h&u(n+ g) exp[-h(u(n+ p)/k T]
2k T Q„",exp[-h(u(n+ 2)/k T]

(95)
where we have denoted

ent form from the simple procedure given above
in random electrodynamics. In the quantum case,
we retain the same operator forms as used pre-
viously at T =0. However, we now have a state
which is not the vacuum, but rather an incoherent
assemblage of photons. The number of photons at
a given wave vector k and polarization A. is deter-
mined by Boltzmann's factor exp[-$„(k, A)/kT],
where

h„(k, A. ) = h&o„- (n» + 2), (97)

and the discrete character of the photons is such
as to give Planck's spectrum.

Thus noting the incoherent nature of the radia-
tion, we have for the correlation of the electric
fields

1 1 2~2

h„(k„A,) 1 $„(k„k,)"
~ —exp — " " ' —exp

(98)

where the state In» „n» ~ ~ .) contains n~ „photons at wave vector k, and polarization A.„n» ~ at k,1 1 1 1
and A, etc. Now from (6} and (7), the expectation value in the last line takes the form

2 2

{(n)IE;(x,)E,(x,)l(nj) = Q 'k' d'k "~' ~"
s

&)1/2 h e)1/2
&& ((nj I [a' exp(- iK' ~ x, )+a't exp(iK' ~ x, )]

x [a"exp(- iK" ~ x2)+ a"~exp(iK" x2)]I(n])

ke;c&, ((n» +1)exp[-iK (x, —x,)]+n» exp[iK (x, —x,)]}. (99)

We now substitute (99) into (98), interchange the order of integration and photon summation, and sum over
all photons which are not of the type n&„. This cancels all but one of the factors of Z '. Since the number
of photons at the two polarizations A. =1, 2 are the same in thermal radiation, nT =nT, we may sum over
the polarizations as in (4), leaving

1
x 2 @43exp4m2Z ((n+ 1)exp[- iK ~ (x, —x,)]+ n exp[iK. (x, —x,)]] .

h(u(n+ z) (100)

Thus we find that there is a difference between
the random and quantum theories for the corre-
lation of the electric fields in thermal radiation.
The difference is the discrepancy between (n+ a)
in the bracket of (94) and the n+1 or n in (100).
We note once again that if we symmetrize the op-
erator order, then the correlation involving the
Hermitian operator

a[E((x,) E;(x,) +E,(x, ) E;(x,) J

will involve factors [(n ~I) ++n] = n+ ~ and hence
will agree exactly with the expression
(E,(x,}E,(x2})r in random . electrodynamics. We
also see that at high temperatures when the terms
with large n become important and we can neglect
the difference between n+ 1 and n+ 2, and between
n and n+ 2, then the operator order in quantum
electrodynamics becomes immaterial.

The comparison between the theories can be
carried through for correlations of the E and B
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fields in products of arbitrary length. The essen-
tial behavior follows what we have just found for
the two-point function. Provided the quantum op-
erator order is symmetrized, the quantum elec-
trodynamic expectation value agrees exactly with
the average in random electrodynamics. More-
over, at high temperatures the operator order
within the quantum expressions becomes of pro-
portionately less importance.

D. Charged harmonic oscillators in thermal

radiation

The treatment of oscillators coupled to the elec-
tromagnetic field follows exactly as in Sec. III B

for the behavior at zero temperature. Again we
have the steady-state solutions (4V) and (48) giv-
ing the position of the oscillator in terms of the
incoming electrodynamic radiation fields. In the
case of random electrodynamics the incoming
radiation is regarded as including the thermal
radiation, whereas in quantum electrodynamics
the in operator make no reference to thermal
radiation.

In both theories the average values for the
oscillator behavior can be evaluated by procedures
analogous to those used for the free-field corre-
lation functions. Thus, for example, in random
electrodynamics (x')r is given exactly as in (53),
with 5(k, A) replaced by g(k, A., T),

e

~X-~ ~2-j

$(k„Z„T) lj(k„g, T)
2~ 2 2

-a
x —' exp(- iK, X)+—', exp(iK, X} —exp(- iK, X)+ ~~ exp(iK, X)

1 1 2 2

(101)

where a and a" are exactly as in (22) and (23). In quantum electrodynamics, we must average over the
incoherent photon states

e2 2

1 g"=1
„,„, „neo')'i' s(u")'i'

2r 27r

1 g„(k„A,,) 1 ' 8(k A )X ~ ~ ~ —exp — " " ' —exp ~ ~ ~

Z~ kT Z2 L kT
~l~l 2 2

a' a'
x n n~ ~ ~ ~ =, exp(- iK'X)+ —, exp(iK"X)

K2k2 C C'*

a i'I II t
x =„exp(- iK" X}+—„exp(iK" X) n n ~ 0 ~

Tt~X~ R2X2
(102)

The comparison between the theories proceeds
along lines analogous to those of Secs. Dt 8 and
IV C. The behavior of the free fields determines
the average values for the oscillator behavior.
We find that if and only if the quantum operator
order x, P is symmetrized, the average values
are identical between random and quantum elec-
trodynamics. At high temperatures the operator
order becomes proportionately less important
within quantum electrodynamics.

(2m)! (2n)!
( (103)

where now

The derivation of all average values (x p') in
random mechanics follows directly from the work
in Secs. IIIB-IIID. We evaluate the integrals in
the e-0 limit just as in Sec. III D, but replace
the spectrum Ij'(k, a) by $'(k, A. , T) as in Sec. IV B.
Thus (x"p') vanishes if k or I is an odd integer
and

E. Mechanical oscillators as the uncharged limit of random

and quantum electrodynamics
n h(uo(x')r =

2
coth

2 mego
(104)

The limit e -0 again decouples the dipole oscilla-
tor from the electromagnetic field. However, as
in the vacuum situation, the effects of the radia-
tion fluctuations still persist in this limit and
completely determine the oscillator behavior.

(p') = ', o o, eoeo(e ') . (105)

The distribution on phase space associated with
these moments is
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m(dQ pp(x, P) = —exp
7TQ Q m (dpQ

where

(106)
which should allow the familiar interpretation of
excited states within quantum mechanics. Again
for the limit e-0, it is sufficient to take

z =h coth S&p (107) p =mx+Q(e) . (108)

The transition to the uncharged limit within
quantum theory involv~~ further complications

Then from (48) the quantum average value at
temperature T for an expression involving pro-
ducts of position and momentum operators is

(Ixx P
1 8„(k„ x, ) 1 g„(k , X }

~ ~ ~ —eXp — n 1' 1 eXp n 2

Z, kT — Z2 — kT
TC2 X2

2 2

x (h +])lj2 (h~ii)l/2
~ ~ ~ Q g ~ ~ ~ ~ ~ ~

2' 27r

a' a't a" a~

(109)
Here for convenience we have set X=0 in exp(- iK X) rather than showing that this space-time depen-
dence cancels. We may think of the k', A. ', k", A.", etc. in the integrand as being independent, and hence
can break up the expectation value in the last line into a sum of product terms of the form

a' a't a" a" ~

(") c 'c'* c" 'c"* (
a"' a"~ a '" a'"

( C'" C"'* C'" C'"*

Here all pairings of the annihilation and creation
operators are included in the sum with the order
of the operators within each pair being maintained.
Maintaining the order within each pair provides
the distinction between

a' a'f a" a"
c 'c* c-'c"*

In each case we have used the properties of anni-
hilation and creation operator s

a )n):( n+ 1)
n + 1

6z, z. 6~(k' —k"), (110) in)=in —1) . (114)

and

a' a'~ a" a"~

c' ' c'* c" c "~

6yg6(kk)(ill)

a' a'~ a" a"~

c' c'* c" ' c"*

, 6, ,„„6'(k'-k") . (112)~g)2

We find that half the integrations d'k and sums Q~
disappear from the 5 functions arising in terms
such as (110)-(112). The remaining integrals and
sums are removed exactly as in Sec. IIID where
we made use of the sharply peaked integrand aris-
ing from the terms ~C ~

'. The combinatorics
seem quite complicated except in symmetric
cases such as (~ x ~

~)r . Here it is not hard to see
that after all the integrations in the e-0 limit

2 f
?n

(~x'"~)r ——
!2 2 g ~ ~ ~ g (n, + ~)(n, +-,') ~ ~ ~ (n + a)

m)2 2mup tl =p n =p n =p

h&u, (n, + 2)x exp — expkT

(2 m)! h h(uo

m!2 2m~p 2k T

h(o, (n, + p)

kT
Sup(n + 2)

kT

(115)
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exactly as for (x' )r in random mechanics. The
interpretation of excited states within quantum
rneehanics requires that this also can be written
as

TABLE II. Average values for a mechanical oscillator
at finite temperature.

Random mechanics Quantum mechanics

(x) ~=0

(p) ~ =-0

h hp
(x ) T

——— coth
2 m~p 2

~p
(p') ~=-,'hm~

p coth
2kT

A Mp
(Ix I) ~= — coth

hap
&I p'I) ~=- —,'km~p coth

(xp) ~=0

x ) ~--3&x ) ~

(x'P ') r (x') r (P')=

OO

([x' [)r = —g (n)x' )n)e xpp-
n=o

(116)

where ~n) is the nth excited state of the oscillator.
The agreement between the quantum mechanics
and limit e-0 of quantum electrodynamics is
easily checked for small numbers of operators
x and P.

The first few values of (x"P')r and of ([x'P'~)r
are listed in Table II for a comparison between
random and quantum mechanics. The symrne-
trized quantum operator forms, such as (~x'"~)r,
(~ P '"~)r, agree exactly with the random values.
Also the nonvanishing averages in random mech-
anics increase as T increases. The discrepancy
in the average values between the symmetrized
forms (agreeing with random mechanics) and

the unsymmetrized operator forms involves
terms which do not increase with T as fast as
the symmetrized form values. Thus for large
values of T, the quantum operator order be-
comes immaterial in the sense that the fraction-
al discrepancy between the values of the sym-

metrized and unsymrnetrized forms becomes
ne gligible.

V. OSCILLATOR SYSTEMS IN EXTERNAL

MAGNETIC FIELDS FOR RANDOM

AND QUANTUM THEORIES:

DIAMAGNETIC BEHAVIOR

A. Diamagnetic Behavior

During the preliminary work involved in the
development of the theory of random electrody-
namics, it was shown that sometimes physical
behavior which was regarded as outside the
province of classical physics could actually be
described adequately by the introduction of class-
ical electromagnetic zero-point radiation. The
earlier calculations involved blackbody radiation,
questions in statistical thermodynamics, and then
van der Waals force calculations.

In the present paper summarizing the general
connection between random and quantum electro-
dynamic theories for harmonic-oscillator sys-
tems, it is of interest to turn to the question of
diamagnetism. This is a further example of physi-
cal behavior where classical theory seemed to
fail and quantum theory was successful. However,
the present paper gives us a different perspective.
Since diamagnetic behavior is found in quantum
harmonic-oscillator systems, we may be sure to
find it also in random-mechanical systems.

The situation for diamagnetism within the classi-
cal electron theory of Lorentz is outlined by
Rosenfeld. " Although the classical model of elec-
trons moving about a nucleus does indeed suggest
diamagnetic behavior, any attempt to apply Boltz-
mann statistical mechanics on phase space led to
disastrous results —to the complete absence of
diamagnetic behavior.

Within random electrodynamics, the situation
is changed sharply. The classical model of point
electrons in orbits around a nucleus is retained.
However, as has been shown earlier, ' the pres-
ence of classical zero-point radiation leads to a
failure of the Boltzrnann statistical mechanical
ideas except in the limits of massive particles
or high temperatures. The proper treatment with-
in random electrodynamics consists in solving the
classical electromagnetic equations of motion
and then in extracting the average values of en-
ergy, angular momentum, etc.

The system of interest is that first treated by
Marshall, ' consisting of an external magnetic
field present on an atom, taken as a three-dirnen-
sional isotropic dipole oscillator of mass m, natur-
al frequency ~„and charge e. The presence of
the magnetic field changes the ground state of the
atom giving it net angular momentum and a net
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magnetic moment. Again we will carry out par-
allel calculations within random and quantum the-
ories.

B. Equations of motion in the presence

of an external magnetic field

This vector differential equation represents three
equations for the coordinates x, y, z. It is linear
in the particle position with the incoming radiation
as an inhomogeneous term, and hence the equa-
tions are soluble. The three coupled equations
are

We assume that an external magnetic field B
=Bk is present along the z axis and that the three-
dimensional char ged harmonic oscillator is located
at the origin of coordinates. The equations of
motion are identical in form for the coordinate
position in random electrodynamics and for the
operator representing the particle position in the
Heisenberg picture of quantum electrodynamics.
After renormalization as in Sec. IIIB, the particle
equation of motion is

~+~, & —« —»l, y= —E. ,

y+uo y —I'j+2(dl i= —E,'",

where &i is the Larmor frequency

eB
(d

2mc
'

(118)

(120)

(121)

e 2 emr=-ma r+ —rxB+ ——r +eE . (117)c 3 G'
The equilibrium solutions in random electrody-

namics are

2

(122)

(123)

2

z = —Q d k — ' exp(- isn't)+ exp(i(ut), .
e ega . e++

X=&

(124)

For quantum electrodynamics x, y, z become op-
erators x, y, z. We also replace (l/2 by (h&v)'i'/

(2w) and the random variables a, a* by the annihila-
tion and creation operators a, al in order to con-
vert (122)-(124) over to the solutions in quantum
theory.

Once again the equilibrium solutions for the
oscillator displacements are linear in the ampli-
tudes of the incoming radiation. Hence the evalua-
tion of average values for the oscillator variables
is taken back to exactly the same procedures as
employed in Secs. III C and IV D. Again, provided
the quantum operator order is symmetrized in all
products, there is agreement between the average
values in quantum and random electrodynamics,
even for finite temperatures. Since the quantum
Hamiltonian is already a symmetrized form, there
is agreement for the average energy of the sys-
tem. Also, the magnetic moment operator

e
2 8'lc

(125)

involves products of commuting operators and
hence may be regarded as symmetrized. The
average magnetic moment (M, ) thus agrees be-
tween the two theories.

C. Evaluation of the magnetic moment in random mechanics

Although the general connection between quantum
and random electrodynamics ensures agreement
in the average magnetization, it is interesting to
take the e-0 limit into quantum and random mech-
anics so as to see the contrast in the mathemati-
cal description between the two theories at vari-
ous temperatures. From a physical. point of view,
the presence of the magnetic field induces a dia-
magnetic effect in the three-dimensional oscilla-
tor system. At high temperatures, the diamag-
netic effect tends to be eliminated by the thermal
fluctuations.

As yet there are no rules for working directly
in random mechanics; rather, we must work in
random electrodynamics where we have a valid
classical theory, and then proceed to the e-0
limit. In this limit, we will evaluate the average
angular momentum
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«.) = m(xy —yx),

and so obtain the average magnetic moment

(M)= (L,).

(126)

(127)

Now the denominator involves

i A, [' = (- (u'+ (o,'+ 2(u(ui)'+ (I'&u')',

I A I
' = (- (u' + (u,' —2(u(u~ )2 + (I'(u')' .

(132)

(133)

When we introduce the expressions (122) and
(123), differentiate y, and then average over the
random phrases as in (24) and (25), the term
(xy) in (126) becomes

In the limit of small e, the damping term (I' ')'
which is of order e4 vanishes, leaving poles at
the positive frequencies

(d~ = (dg+ ((do +(dI )
'

where

(128)

(dl1= Cdp+ (dL, +
(do

ld = —I'd& + ((do + &al& )

(134)

A~ =C + 2(d(d~,

A =& —2(d(dl, ~

(129)

(130)

&xy) = 8 e' ~' coth(I &u/2k T}(uP —u&,')
Sm n'e' ' jA, [2IA )'

(131}

When we sum over the polarizations as in (4), this
becomes

(dl1= (do —(dl +
2 (do

(135)

Here we have assumed that (d~ is small compared
to (do. Thus the integral along the positive values
of &u in (131) involves a sharply peaked integrand
at (d =(d, and (d =(d . With the e-0 limit in mind,
we follow the familiar procedure and replace all
factors of (d by (d, or (d unless the combination
(&u —re+) or (&o —u ) already appears:

8 e' w+' coth(6&v+/2kT)(u+' —u&o')
I

"„1
3v m'c' (- u, '+su —2u, tu )' J „([&u,-(~ -(~,'+ ~,')'~')]'(~ —~, )'+ (I'~, ')')

(u
' coth(h(o /2kT)((u —(uo'}

(—(d + (do + 2K Kg)

The integrals are of the form (60).
Now in our later work, we will be interested

in comparing our results here with those of famil-
iar quantum-mechanical perturbation theory car-

ried to the lowest nonvanishing order. Hence we
will need the value for (xy} only through first or-
der in &u~/&u, . Thus retaining only the necessary
low ord-er terms, Eq. (136}becomes

3v m c3 16&v m
' 2kT 2&v I'u, ' 16 ' 2kT 2m, i'&u '

(137)

We now expand all expressions involving (d+ and (d and retain terms contributing through first order to
(xy'). This gives

e2 (d~k 5~o S(do(xy')=———,s ~ coth o + u), coth (138)

The contribution from (-yx) is equal to that from
(xy), giving average angular momentum

(I,)= — k coth ' +&a, coth S(do

(139)
or

where

1+ e 8(uo 2e

(u, 1 —e kT (1 —&)
(140)

(141)
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In the limit of zero temperature, T-0, we have
e -0 in (140). Thus at absolute zero

field B =Bk changes the mechanical oscillator
Hamiltonian over to

(L,) = ——Fi,
0

(142)
2P ep e2B= — ~ A+ zA'+&mao r, (149)2m mc — 2mc—

and the diamagnetic effect gives an average mag-
netic moment

(M, ) =—
2 mc (dp

(143)

At high temperatures kT»S&, we can use the ex-
pansion of cothz for small z

where the vector potential can be chosen as
A

A=-, (x j —y i)B. (150}

The diamagnetic energy change appears in second
order in e. The energy change of the state
~ n, n, n, ) is in lowest order

z z'
cothz = —+ ———+ ~ ~ ~ .

z 3 45
(144) (151)

From (139) this gives

(L.}—=-
3kT

and

(145)

where the perturbation is
2

p A+ 2Amc — — 2mc

Thus

(152}

h2

2mc (146) (~)
e2

4g« „—— n, n„n, 2, A, n„n, n,2
X P g 2mc

d(45) = —M dB. (147)

Thus the energy change here associated with the
diamagnetism is

hb = —2(Mz)B

The differential change in energy associated
with an external magnetic field is simply the mag-
netic moment dotted into the magnetic field

o (n„n, n, ((x + yo)(n, n, n, }

(2n, +1+2n, +1) . (153)8mc2 2m ~p

Second-order perturbation theory also contributes
to order e' as

1
(L,)B2mc

n„n, ng H' I

where (L,} is as in (139). Introducing the value of
the Larmor frequency ~~ from (121), the energy
change can be written as

C B 5 S(dp d k(dp
8m 2k T d&p

(148)

D. Evaluation of the magnetic moment in quantum-

mechanical perturbation theory

Since the quantum electrodynamic and random
electrodynamic expressions for the energy agree
exactly for all values of et 0, we can be assured
that the quantum and random theories agree in the
limit e -0. Nevertheless, the exact quantum elec-
trodynamic solution presented here is so different
in appearance from its e-0 limit quantum mech-
anics, that it is of interest to present the quantum-
mechanical point of view explicitly.

In quantum mechanics the external magnetic

l(n„n, n, [~ A[I)['
+ O(e'} . (154)

I 0 I

The matrix element involved is

(n, n, n, )x p, —y p, (n„'n,'n,') .

However, the symmetry of the unperturbed sys-
tem between x and y ensures that this vanishes
in the sum (154). Thus 4h~"„„,is the full energy
change through order e'.

The average energy at temperature T is found

by summing over all the excited states of the
atom where the probability of occupation of the
state is given by the Boltzmann factor

([ g ~ } — Enz=o~"z =oZnz =o "z "z "z '™z'( zz "z "zI
Z.", =.Z", =.Z.".=.ex@(-@...,.,l»)

(155)

where, from (153),
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8„„„=Rmo 1+ 2 z 2 (n, + 2)+ h&uo 1+ ~ 2 2 (n, + 2)+hmo(n, + &)+0(e ) .
nz n&ng 0 8~2+2 2 x 802 C

(156)

The sums are easily evaluated as the traditional series involving simple harmonic oscillators. The sums

over n„and n, involve K u, (1+e2 B'/8m2c'ur, ') while that over n, involves k&uo. Thus

(18I)r = 2xz h~o 1+», coth ' 1+», +25m, coth
8 SPY 2kT 8 m'c'(d, ' (157)

Expanding and retaining terms through order e',
this gives exactly the diamagnetic change of en-
ergy &8 computed in (148) as the e-0 limit of
random electrodynamics. The values for (~M, ~)r

and (~L,~)r are also in agreement.

Vl. CLOSING SUMMARY

Quantum electrodynamics is the theory par
excellence of contempor y physics. Its calcula-
tions seem unambiguous and its predictions have

been verified experimentally with extraordinary
accuracy. Now it is clear that quantum electro-
dynamics has close connections with nineteenth

century classical electromagnetism. These con-
nections are frequently referred to, but rarely
are they exhaustively explored because of the ex-
treme shift in physical concepts involved —from
continuity to quanta —and because traditional
classical electrodynamics makes no pretense of

treating physical systems where Planck's con-
stant 6 seems to play a role.

However, a new classical electromagnetic the-

ory, random electrodynamics, has been proposed,
based upon Lorentz's classical electron theory
with a new homogeneous boundary condition on

Maxwell's equations. The new theory involves

purely classical concepts for particles, forces,
and fields.

In this paper we confront quantum electrody-
namics with this new classical theory for a limited
class of physical systems, those for which exact
calculations can be carried out in both theories,
namely free electromagnetic fields and point di-
pole-oscillator systems. And in this comparison,
random electrodynamics seems to provide pre-
dictions which are presently as acceptable ex-
perimentally as those of quantum electrodynamics.
However, the predictions of the theories are not

the same. The comparison reflects interest back
on quantum theory in raising questions regarding
the meanings of operator order in quantum sys-
tems.

In general we find that the average values for
physical quantities which are calculated in ran-
dom electrodynamics agree with those calculated
in quantum mechanics provided the order of the

operators is symmetrized in all products of quan-

tum operators. Thus, for example, the classical
expression x'p' for the position and momentum of

a point dipole operator corresponds exactly in its
average value at all temperatures and to all or-
orders in the fine-structure constant with the
symmetrized quantum operator

~( 'xp' +~ p xp+~p'x+ p'x'+p xp &+p x'p).
If an arbitrary unsymmetrized form involving two
x's and two P 's were involved, its average values
would not agree with those of random electrody-
namics. This connection between random electro-
dynamics and symmetrized quantum electrody-
namics persists in the limit as the dipole oscilla-
tor is uncoupled from the electromagnetic radia-
tion field so as to give a mechanical oscillator
in random mechanics and in quantum mechanics.

It is pointed out that some quantum operators
which are regarded as physically meaningful are
presently used in their unsymmetrized forms.
This is true, for example, of the angular momen-
tum squared L'. Accordingly, the ground state
of an atom has zero angular momentum, including
(0~L'j0)=0. In a semiclassical description of this

quantum result, we must picture the electron as
moving straight through the force center and
never around it. However, in the classical pic-
ture within random electrodynamics, the average
of the angular momentum squared is not zero,
precisely because sometimes the electron is mov-

ing around the nucleus ~ And the average value in

random electrodynamics agrees with the averaged
value of the symmetrized operator form L ' in

quantum theory. We find, however, that

—sym 2

so that this same discrepancy holds for all the
excited states and so does not seem to be physi-
cally measurable in atomic spectra.

The theories of random electrodynamics and

quantum electrodynamics are also compared at
finite temperature, where the mathematical de-
scriptions are widely divergent, and, lastly, in

the presence of a magnetic field yielding diamag-
netic behavior. In all cases the average values
of the theories agree exactly provided the quantum
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operator products are symmetrized. Clearly it
will be of interest to compare the two theories
for more general physical systems.
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