
PH YSICA L RE VI EW D VOLUME 11, NUMBER 4 15 FEBRUARY 1975

Relativistic second-order energy functional for finite fermion systems*
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A second-order energy functional is calculated for a finite system of fermions interacting via meson

fields. The positive-type projection operator is utilized to relegate most corrections due to holes to

higher than second order. The second-order functional is the basis for the relativistic analog of the

Hartree-Fock procedure.

I. INTRODUCTION

In the last few years, there have been several
papers on the quantum field-theoretic treatment
of a system of fermions that interact via virtual-
meson exchange. The semirelativistic problem
is relatively simple'; the relativistic problem has
been attacked in several ways. ' '

One of the difficulties in dealing with the rela-
tivistic problem is the treatment of effects due

to the filled infinite "sea" of negative-energy
states. In particular, in a finite system one ex-
pects that there is a static meson field that acts
like a potential for individual fermions. The dif-
ficulty arises in calculating effects of this poten-
tial on the infinite negative-energy sea. Clearly,
the potential must shift the energies of the nega-
tive-energy states, and the integral of these shifts
over the infinite sea can be large. On the other
hand, physical intuition would suggest that the ef-
fects of the negative-energy sea are not large;
since the sea is undisturbed in the absence of in-
teraction, effects of the sea are of order g' and
higher. In Ref. 5 it turned out that there were no

zeroth-order effects of the sea. However, the
technique used there cannot be applied to finite
systems, where some single-particle potential
is required to produce a suitable unperturbed
ground state. Then the problem of the sea again
arises.

In this paper, the usual positive-energy projec-
tion operator

equation in configuration space.
As a check, the second-order energy of infinite

fermion matter is recalculated with the projection
operator; this forms the subject of Sec. III. The
result for infinite matter using the projection
operator is identical with the second-order energy
given previously. ' Then Sec. IV gives the analo-
gous calculation for a finite system. As in the
nonrelativistic case, the energy is a functional of
the occupied single-particle spinor states f;(x),

E = E ' f f; (x)) +g' E' (f;(x)) + (1.3)

(for simplicity, the calculations are done with

only a scalar mediating field; hence, only one

coupling constant), where the f, (x) must satisfy
the extra condition

&,(p)f;(p) =f;(p),

f;mi (2 )
"f=""'f;( Id; (1.4)

that is, the f; are orthogonal to the states in the
unperturbed negative-energy sea.

Qf course, once the functionals E~'~(f; Iand
E~'~( f,.) are known, variation with respect to the
orthonormal set of spinor functions f, gives a
self -consistent procedure for determining the set
of spinor functions f; that minimizes d '+g'E ' .
This procedure is the same as the Hartree-Fock
procedure that is applied in the case of nonrela-
tivistic fermions interacting via a two-body po-
tential V(x, y); in that case

P, (p) = [e(p)+ a p+ pm J/2e(p),

e(p) =(p'+m')'~' (l.l)

2

E"„'= Q f, (x) ——f, (x)dx,
i =1 (l.5)

will be used to push effects of the negative-energy
sea to higher orders of perturbation theory. The
mechanism is the requirement that the effective
single-particle potential not act on the states in
the sea; in momentum space it is required to be
of the form

~, (p, i) =&.(p)~(p, i)P. (q), (1-2)

and Fourier transformation gives a corresponding

g'E„'„' = —,
'

Q f,"(x)f,"(y) V(x, y)
&, J =1

x [f, (y)f; (x) f; (y)f, (x)J d x d y . -

In Ref. 1 it was shown that E'"+g'I;" takes a
similar form in the semirelativistic case, and it
will be seen that the relativistic form of E '
+g'E '~ also resembles (1.5). In the nonrelativistic
case, the functional E'"+g'E ' has the advantage
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of being "variational, " in that it gives an upper
bound on the energy of the system. This feature
is lost in the semirelativistic and relativistic
cases.

It might appear at first that the extra condition
(1.4) on the spinors would complicate the Hartree-
Fock procedure; however, in Sec. V it will be
noted that the extra condition actually simplifies
the relativistic Hartree-Fock procedure, in that
it reduces the number of radial functions from two
to one for each relativistic single-particle function
in a spherically symmetric potential.

Throughout, the notation, units, metric, and

other conventions are as in Ref. 5.

II. THE PROJECTION OPERATOR P+

Before proceeding to the calculation, it is nec-
essary to make a few remarks about the operator
P, of Eq. (1.1). In this paper P, will be called
the positive-type projection operator, for the rea-
son that positive-type spinors will sometimes be-
long to negative eigenvalues of single-particle
Hamiltonians. The positive-type part A, $, q) of

an operator A(p, q) in momentum space is defined
a.s in Eq. (1.2),

(3.3)

will now be included in the unperturbed Hamil-
tonian H„namely, the positive-type part

0 (P4 p).k,

while the remaining part

t}' (P4'p }s4

(3 4)

(3 5)

will be put into the interaction Hamiltonian HI .
Explicitly,

H=Hc+Ho p+Hz, p ~

&o.p= 0 [&'P+ & k'(Pep-). ]0

+a X++X +9 X

I P IO, P Il, P+ 12,p+ 13,p+H14 p

4 =4p+X

is made, with Qp a static c-number field (uniform
in infinite matter). However, in contrast to Ref.
5, part of the term

A. (p, q) =P.(p}A(p, q}P.(q),

and it is convenient to define

A~=-A. -A, .

(2.1)

{2.2)

Hgp p=p Qp(-V +P, )Qp

HI, p= -g X 0 —6» po ~

(3.6)

P $)=1-P,(p) . (2.3)

A spinor f is said to be of positive or negative
type if P,f =f or P f=f, respectively.

The positive-type parts of the operators P and
n p are

m
P+ = (-) P+,

(2.4)

III. INFINITE FERMION MATTER

There is also a negative-type projection operator
P HI, , p= -g O' P0 p)R4 — 0'{P4p)~4 po

H„p= X[(-V +g )yp-g(($y) pp
—(yy}M)]

h, = n p+ Pm g(Py p}, - (3.7)

are the same as the negative-energy eigenvalues
and eigenvectors of h, . The positive-type eigen-
values are [see (2.4)]

Hs, p=-g tI' P4 pz4 po
—4 Pkpk oo

The negative-type eigenvalues and eigenvectors
of the single-particle operator h~

The Hamiltonian that will be considered is

H =H, + g {Q.' p+ Ppn )g

e p(p)=~. (p)-ZmAp/e. (p),

e,$}=c$}=(p'+m')'~' .
(3.&)

+ '[4 '+(&0}'+-u'0']

(3.1)

[Note that the positive-type eigenvalue e p$) can
be negative; hence the use of the word "type. "]
The ground state of H, ~ has all negative-type
states filled and positive-type states filled up to
momentum P ~ with'

where H, contains the counterterms necessary
for renormalization. As in Ref. 5, the substitution

p =vP p'/3s' {3.9)

It follows immediately that for any single-particle
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operator A

and therefore

(3.10)

E (0) —E( 0)/Q
p p

2y
(2w)'

e 0$)(fFP, (3.13)

HI4~ p

The unperturbed energy is

(H, ,)„-(H, ,)„= "), 0J', $)d,p

(3.11)

G (P)=G.(P)+G .(P), (3.14)

as in Ref. 5.
The calculation of the second-order energy pro-

ceeds as in Ref. 5. With H0 0 of (3.6) the fermion
Green's function Gp at density p can be written

~ (P)dFP —f)g4)FP&

(3.12)

with G0(P) the zero-density Green's function:

' *
(2w) p' —m'+ i0

p,'") = ()) y) „(T)y)-

2y d~p
(2w)' e,$)

P (p) P, (p)
(2w)' p, +e$) —i0 P, —e(p)+i0

(3.1S)

In zeroth order Qp =0 and the energy per unit vol-
ume is

The negative-type parts of Gp and G, are equal,
and

0., ill)p
(2w}' jp0 —e $0)+il)$) p, —e0(p)+ i' '" ' 0, IPI-PF .

The function Gp, can be split into zeroth-order and second-order parts, with

(3.16)

(2w)' P0-e0$)+iq$} P0-e0(p)+i0

e 0(p) —e.(p)
(2w)' [P, -e, (p)+in(p)i[P. -e.$)+in$)]

(3.1'f )

Since G))~0)(P) is of second order in g, it does not
contribute to the second-order energy, and since
G p 0 is identical with G p, of Ref . 5, the second-
order exchange energy follows exactly as in Ref.
5*

'Y g dFp dye (Pli) +m
2 (2w)0 e$}e(q) ~0 (P ~}0

'

(3.18)

and the separation of positive -type parts give,
just as in (3.6),

H =He+HO N+HI, N ~

HO, N= 0 O-''P+Pm -4 PIN +

+-: X'+~VX +~'X'

The direct second-order energy comes from H, p

and H» p. It is just

+ p, D, s —-2 4()|)p P s
(~) 1 (j-) (0)

Thus, use of the type projection operator leads
to the same second-order energy for infinite
matter as was obtained in Ref. 5.

HI, N Iy N + HI2, N +HI 3,N +HI 4, N

IO N
—2 QN —V +P. )fN

X 0 -&00 NO~ ~

+12, N g [9' (P9 N)RS (4' (P4 N)R4') N0j

(4 2)

IV. FINITE SYSTEMS

Again the starting point is the Hamiitonian (3.1).
Now the substitution

(4.1)

+l3.N= X[(-+ +0 )(PN-g((T('&~N0 (A')00}J

H14 N + 0 A N~RN~NO 0 ~ON4~00
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The negative-type eigenvalues and eigenvectors
of the single-particle operator

~N + P+ P~ g(&N)+ (4.3)

are the same as the negative-energy eigenvalues
and eigenvectors of

h, = n p+Pm . (4.4)

As for the positive-type spectrum, it will be as-
sumed that h„has at least N discrete eigenvalues
(each less than m). Then the ground state of H, „,
denoted ~0, N), is obtained by filling (in addition
to all states of negative type) the N lowest eigen-
states of h„. (It is also possible for h„ to have
negative eigenvalues for positive-type states. )
The positive-type eigenspinors of h„will be de-
noted f, ,

&~f =& f
I'.f =f

(4.5)

The discrete part of the spectrum of h„ is all that
will be needed here; there is also a continuum for
c; ~ m if (t)~ has proper asymptotic properties.

It follows directly from the definition of ~N, 0)
that for any single-particle operator A.

(-V +p )(&6&P»&)+ =g(ppo )+ . (4.10)

~(1) ~2 + ~ 2 }y(1) ~ y( 1)p(0)
N (4.12)

Thus the total contribution from these two terms
ls

+ND$2 4N I $
(2) g (» (0)

-ul x-y(
p~~" (x), p'P(y)dxdy .

(4.13)

The calculation of the exchange term requires
the Green's function

G (P, 0 ) = G (P., P, q)~ (P. —Q.)

= G.(P, ~)+ G,.(P, ~),
Gn. (»~}=GNo(Po p q}6(Po eo), —

The direct second-order energy from H» is
N

-&.'Q &f;, &&&& & f & -lg&=&f &&& f &, &4.&1&
f =1 $ =1

where the equality follows from (4.5). From
HI, ~ there is a contribution

(g A g)„,=(4 "A&)&) (4.6) (4.14)

and therefore

HI4, , S (4. 'I)

In zeroth order in g, the contribution to the en-
ergy from HO, N

G.(P, ~) =G.(P)5(P —4),

Go(PoPq (2) ~P
~(p —q}P.(p)

Po —e(p, q}+KO

E'" = P (f, , (8 p+ Pm)f, ),
f =1

(4.8) where e(p, q} is a function that satisfies

where sums are to be understood as including the
positive-type states only.

For the second-order terms, Q„must be found

to first order. From H„„it follows that

( &'+ u') 0',"(x-) =gp'&" (x),
p',"(x)=(A& .-&A»~

&$ P)=&O(P) . (4.15)

gf,$)f,'(q}=6(p-q}P.$), (4.16)

so that

The completeness relation for the positive-type
states is

= Qf;(x)Pf;(x} (4 8)

The operators P, and V2 commute, so that

G»&o(Po P q)= G 0(P0 P q)+GNQ (Po P 'q}

with

(4.1 t )

G;'.'(P., p, q) = —
( }, gf, (p)J,'(q)6(P. -e$, q))&.(p)P

(4.18)

Here G„'o is of second order in g, so that only G„o will contribute to the second-order exchange energy.
The second-order exchange energy comes from the graph of Fig. 1 and the 6m, ' term in H„just as in

Ref. 5:
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-2vid'](0)~o' = ,'—[—(—2v) igJ'Tr [G„(p,p')G„(q', q) —Go(p)f)(p -p')Go(q)d(q —q')J

x D(p q)d'pd'qd'p'd'q'5(p'-q'-p+q)

=-]—]2m) fg] 'd&]'0)v J [G„,])'„~,~ )G],)gt)-t) ).lG.,])'„~~ )G.,]~„t) ~')]

x D(p q)d4—p d'q dp'dq'f)(p' —q' -p+q) . (4.19)

The first term involves the integral that appears in the second-order vacuum self-energy Z,"; the sec-
ond-order part of the first term can be written'

(2v)'i5 '](0)Tr G„', (p„p, p')Z', "(p)5(p' -p)d"p dp'

2wif)]" (0)-Tr p f,(p)f, (p)5(p, -e,(p)) [f)m~~" + (p'- m)Z]o", (p')J d'p

2vif) ' (-0)Tr g f,.(p)f, $)Pf)))]',"

= -2vit]'" (0}()m' " p',"(x)dx, (4.20)

and, as in Ref. 5, this cancels the second-order energy from the ~m, ' term in H, . The remaining ex-
change energy comes from the second term in (4.19); it is easily seen to be

E(,)
g' f,'( q)P j(p) jg(p')Pf;(q') ~(- - -, , , )d„- d--d-, d-,

2(2v)' ]
'

(p —q)'- (4.21)

E&"' =- lim g "E'"'
N~~ n=o

(4.22)

is independent of the choice of e. $, q). Therefore,

In the denominator of (4.21), p, and q, are to be
set equal to e (p, p') and e (q, q'), respectively, ac-
cording to the t) functions in G„'0](po, p, p') and

Gw()(Par &4 q }
The expression (4.21}for E..is sensitive to the

choice of the function e(p, q). Of course, the act-
ual value of E

it seems logical to choose e(p, q) so that E'" is
stationary with respect to variations of e (p, q).
For example, in the parametrizations o.e(p}
+ Pe (q) and e (np+ Pcj) with n + i}= 1, the value that
makes E., stationary n =P =-,' by symmetry. The
extent to which E,„depends on e $, q) is a rough
measure of the accuracy of the second-order cal-
culation. After all, the term in [e(p, p') —e(q, q')J'
is of order g' and represents a g' correction to
E,„, so that it is not inconsistent to omit it entire-
ly from (4.21). The "pure" second-order exchange
energy is

g' ~ f,'(x)pf, (x)e' '" "fi'(y)Pf (y} d„-d-dk
16m' . — p +ki,j =1

(4.23)

which, except for the condition that the f; be of
positive type, is just what would have been ex-
pected from the form of the nonrelativistic Fock
exchange term.

V. P+ AGAIN

The condition P+f =f on a Dirac spinor simpli-
fies the calculation of f in a spherically symmetric
potential V, . In momentum space, with the stan-
dard forms FIG. 1. Second-order energy graph.
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(5.1)

the usual form for a Dirac spinor eigenfunction in
a spherically symmetric potential is

(5.2)

determined by solving coupled integral equations
(in configuration space, coupled differential equa-
tions}. The condition P,f =f gives

+ rp))"'g "(P)S."(P)/p

( -p[~+e(p)l "'g "(P)'u". (P)/pf
(5.3)

with a single normalized radial function g "(p),

where 'JJ "(P} is the vector coupled space-spin har-
monic and L is the opposite orbital angular mo-
mentum"; that is, f.=I+I for j =I+-, . In (5.2}g,
and g, are independent "radial" functions that are

lg "(P)l'dP =1.
0

(5.4)

This is a considerable simplification for numeri-
cal computation.

*Work performed under the auspices of the U. S. Atomic
Energy Commission.
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