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A field-theoretic model is constructed which is asymptotically free for all temperatures
and which possesses a phase transition in which masses are dynamically generated. The
critical temperature above which the particle masses vanish is calculated in terms of the
zero-temperature fermion mass. Our results may be of interest not only in theories of
the early universe but also in the study of the formative stages of neutron stars.

I. INTRODUCTION

Within the context of a general renormalizable
field theory, Weinberg' has shown that a spon-
taneously broken symmetry can be restored by
finite-temperature effects. Critical temperatures
were determined from the vanishing of an effective
(temperature-dependent) scalar-boson mass. The
presence of canonical scalar fields in the original
Lagrangian was thus essential, both to break and
to restore the symmetry. However, such scalar
fields have not been experimentally observed, nor
are they theoretically desirable from the viewpoint
of asymptotic freedom.? These shortcomings have
recently spurred much interest® in an alternative
mass-generating mechanism: dynamical symmetry
breaking. In particular, Gross and Neveu®* have
constructed a nontrivial asymptotically free model
in which dynamical symmetry breaking occurs for
any value of the coupling constant. If we wish to
adopt the attitude that the presently observable
broken symmetries are the relics of a pristine
epoch, then the following question is of paramount
importance: Can a symmetry which is dynamically
broken at zero temperature be restored by raising
the temperature ?

To answer this question, we consider in Sec. II
a model* which contains N-component fermion
fields with a quartic self-interaction in two space-
time dimensions. This model reflects many of
the desirable features of a realistic field theory,
such as nontrivial scattering, renormalizability,
asymptotic freedom, and dynamical mass genera-
tion. In Sec. III we calculate to all orders in the
coupling constant and to leading order in 1/N the
temperature-dependent equilibrium value of the
dynamically generated fermion mass. A critical
temperature is determined at which the full chiral
symmetry of the Lagrangian is restored. The re-
normalization group is utilized in Sec. IV to dem-
onstrate that the critical temperature is “physical”
in the sense that it is independent of our choice
of renormalization point. It is also found that

finite-temperature effects do not alter the under-
lying asymptotic freedom. A limitation of our re-
sult due to the peculiarities of the 1/N expansion
in two dimensions is considered in Sec. V. We
conclude in Sec. VI with a short discussion of the
possible cosmological relevance of our work.

I1. THE MODEL

The only field-theoretic models which are pres-
ently known* to possess dynamical symmetry
breakdown, and to be nontrivial in the sense of
having an S matrix not equal to 1, are variants
of the two-dimensional N-component Thirring
model. We consider the simple prototype de-
scribed by the Lagrangian density

L=THY+E 2 GO 8y

where ¢ is the massless fermion field with N com-
ponents. Note that this Lagrangian is chirally
invariant, so that the discrete y, invariance would
forbid the generation of a fermion mass to any
order in perturbation theory. The 1/N expansion
will allow us to go beyond a perturbative result.

The Green’s functions appropriate to the La-
grangian of (1) are generated by functional deriv-
atives of

Z[n, 7] = c[[dzp] [dy] exp [i fdzx(£+ﬁzp +$n):| , (2)
where ¢ is a normalizing constant. By introducing

a constraint field o(x), we may write the generat-
ing functional of (2) equivalently as

Zln, 7= ¢’  [dy] [d7) [do] exp [ifdzx(,eo o +$n)} ,
(3)

where

1/2
2,1 v-10"- (2 )", @

and ¢’ is another constant. The constraint field
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reduces the counting of powers of N to the topo-
logically trivial result’ that each fermion loop
produces a factor of N while each y o vertex
produces a factor of N"'/2. In addition, the con-
straint field produces a criterion for determining
the existence of a fermion mass. If, in equilib-
rium, the vacuum expectation value of o, denoted
by 04, is nonvanishing, then a fermion mass My
will be generated with

ye=(3) o (%)

To determine the equilibrium value of o, we
define first the generator W[J] of the connected
Green’s functions for the o field®

e"01= [ay) (7] [ao] exp[z‘ Jarxe, +JO)} (6)
and then the Legendre transform of W [J]
I“[crc(x)]=fd2xoc(x)J(x)—W[J] , (7

where the classical field o (x) is defined by

o0 =l ®)
When the current vanishes, the classical field
becomes the vacuum expectation value o,. The
stability of the theory defined by Eqs. (4)—(8) can
be studied by considering diagrams where all the
external 0,(x) lines carry zero two-momentum.
Using translational invariance, we can then ex-
tract the effective potential V from the effective
action I'":

Vo)== % E™(,...,0(0,~0,)" , (9)

n=2

where I'™ is the proper momentum-space Green’s
function with » zero—-two-momentum external

dk

V(oc,9)=%002—2N92 f ——[1n<k2+wn2+‘}\‘
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FIG. 1. Leading-order (in 1/N) graphs which contri-
bute to V(o,). Dashed lines refer to ¢ while solid lines
refer to .

0.(x) lines and o, is independent of space-time.
The position of the absolute minimum of V(o)
determines o,. The assumption that the equilib-
rium value of o(x) is independent of coordinates
will be further considered in Sec. V.

III. EFFECTIVE POTENTIAL

The effective potential is calculated in the large-
N limit where the leading terms (exact when N~ )
are given by the tree graph and all one-fermion-
loop graphs? (see Fig. 1):

ad A q2p 1( A O 2>"
-1 2 _ ; — | L Zc
V(o) =20, NZ; ,/ 27?2 n\N k2 ’

(10)

where A is an ultraviolet cutoff. This potential
can be translated away from zero temperature
by the usual substitutions," ® namely

ko"i“-’n ’
11)
dk . + oo (
JoE-ie
where
w,=(2n+1) 76, (12)

and @ is the temperature (multiplied by the Boltz-
mann constant k). The effective potential at finite
temperature V(o,, 6) becomes

ccz>—ln(k2+w,,2)] , (13)

where we have summed over the external o, lines. The summation over the energy modes can be per-

formed by using the identity®

6 Z In(w,?+a?)=a+26In(l +e™/®) +c,
n

(14)

where c¢ is an infinite constant independent of a. We find that the temperature-independent part of the ef-

fective potential can be isolated, i.e.,
V(OC ’ 8) = Vl(oc) + VZ(GC! 9) ’

where

’\d R 1/2
Vo) =102 -2N [ £[<k2+§-oc‘> —k}
0

(15)

(16)
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and

V,(o., 9)=—4N0fwg-%(ln{l+exp[-%<k2+ I%oczy/z}} -1n(1+e"‘/9)) . (17)

This explicit form for the effective potential pos-
sesses a number of interesting features:
(i) Since A #0, the effective potential contains
an interaction-induced gap parameter (A/N) ocz.
It will be shown [see (25)] that, in equilibrium,
for temperatures 6< 6.; the gap persists, while
for 6> 6., the gap disappears. From the super-
conducting analogy,'® we expect this gap in the
energy spectrum to generate a mass which depends
on the coupling strength in a nonanalytic way. This
will also be demonstrated [see (22) and Ref. 24].
(ii) Since limg.,, V,(0,, 6) =0 and V, is finite,
all zero-temperature renormalizations of the ef-
fective potential will not be affected by the tem-
perature. In particular, we find by imposing the
Coleman-Weinberg renormalization condition®!
at zero temperature

flﬁ(‘;_c) =1 (18)
aoc OC=00
that
by o, \?
VI(UC,OO)=%UCZ+EUC2[1H<E£> _3:\3 (19)
0

8V(0,,0,, 6) _3V(0,,0,,0) 2x3, [ AL\
£ = <€ +——-—ﬂ °j de| k2 + —o0, )exp

a0, a0, N

0

where the zero-temperature contribution is given
by

aVv(a,, 0, 0) X [ <o )2 ]
—_—c 0 7 — £ -
50, Oc+5-0c In o 2_} (21)

The minimum at zero temperature is determined
from (21) to be

1/2
0”=<NA> coexp<1—;> s (22)

Viog)

FIG. 2. Form of V(g,) for 6 <. Dashed lines are
postulated extrapolations.

r

where 0, is an arbitrary renormalization point.
Equation (19) is the result found in Ref. 4.

(iii) Since lim,_.. V,(0,, 6) is finite, the tem-
perature effects will not alter the stability of the
zero-temperature theory, i.e., for all 6 we know
that the effective potential monotonically increases
for sufficiently large values of o, .

The last observation implies that in order to
determine whether the finite-temperature effects
can alter the symmetry, we need only study the
effective potential for o, in the neighborhood of the
origin. When 6<6.,, the effective potential will
decrease as we go away from the origin so that
the minimum must occur away from zero and a
fermion mass is necessarily generated (Fig. 2).
When. 6> 6., the effective potential will increase
as we go away from the origin so that o,=0 be-
comes a minimum (though possibly not an absolute
minimum) point in a stable theory and the fermions
probably remain massless (Fig. 3).

Thus we must study the extremum of the renor-
malized V(o,, 6) in the neighborhood of the origin
in classical field space, i.e., for (A/N)o.% < 62,
From (17) and (19) we have for any size o,

<k2+iocz>l/2j+l}-l, (20)

1
9 N

r

so that, from (5), a fermion mass is dynamically
generated. Note that this result is essentially non-
perturbative in the coupling constant since the
mass depends on A in a nonanalytic way. The
evaluation of the finite-temperature correction
requires an approximate evaluation of the integral
in (20) for (A\/N) (0,/6)? <<1. Following Dolan and
Jackiw,® we find

V (o¢)

%

FIG. 3. Form of V(g,) for 6 > 6. Dashed lines are
postulated extrapolations.
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fmd 1 1
X (x2+a?)'? gP+d)1/2

(]
1 aV . 2
=—zln o -3yp+0(a®), (23)

where y5=0.577. ..
(23) in (20), we find

is Euler’s constant. Using

aV(o,,0,, 6) [ X X N<7r0>2
—17cy "0 7 -—— —_ —_— —
50, o1 7T(1+)/E)+27rln x \o,

of2))

The origin is then always an extremum whose
nature is determined by the sign of the sum of the
terms in the square brackets of (24). When 6< 6,
the terms in the brackets will sum to a negative
number and the extremum at the origin will be a
maximum, while for 6> 6, the sum will be posi-
tive and the extremum becomes a minimum. The
critical temperature at which the symmetry is
altered is given by

1/ x\'/2 m
0cri! =;<ﬁ> ooexP <1— X +7E> (25)

or, if we use (22) and (5),
ch :aMF(Uo, A) ’ (26)

where a =7""exp(yg) ~0.567. Thus, the critical
temperature is of the order of the mass dynam-
ically generated at zero temperature.

IV. RENORMALIZATION GROUP

In imposing the Coleman-Weinberg renormal-
ization condition (18), we have introduced an ar-
bitrary renormalization parameter o,. We will
now show that our result for the critical tempera-
ture is actually independent of 0,, as any physical
quantity should be.

Since all renormalizations are done at =0,
Vi(o.,0,) =V(o,, 0, 0) obeys the renormalization-
group equation

[%%‘+B(K)%-V(A)0c %:} V(o.,0,0)=0, (27)

so that, using (19), we have

B(N) =2xv(X) (28)
and
B )/2m
Y(A) =-~ Tir2r (29)

Note that at zero temperature the theory is asym-
ptotically free. The finite-temperature contribu-
tion to the effective potential V,(o., 6) is indepen-
dent of ¢, and only depends on A and 0, in the com-

bination Ao,* [see (17)]. Thus V, also satisfies
(27) provided (28) holds, and we have

|:0'0 8%0 +B(V) % - No, ETH V(o,,0,, 6)=0, (30)
with B(X) and (1) unaltered. In particular, the
asymptotic freedom is not affected by the tem-
perature.

To see that My is independent of 0,, we use (5),
(22), (28), and (29) to find that

{0053—0 +B(Y) %}M,(oo, N =0, (31)

i.e., My satisfies the homogeneous renormaliza-
tion-group equation and is thus independent ?f Oy
But the critical temperature is given in terms of
Mg (26), so 6 is also independent of o,.

V. THE 1/N EXPANSION

We now consider the possibility that, in equilib-
rium, o(x) depends on coordinates. Within the
context of the perturbative 1/N expansion utilized
in the previous sections this difficulty does not
arise. However, the leading terms in the 1/N
expansion do not include o loops, so that this par-
ticular perturbative approach ignores fluctuations
of the o “particle.” It is possible that due to these
fluctuations the minimum value of o will be +0,,
for some values of the coordinates and - o, for
others, so that, on the average over an arbitrarily
long system, o will vanish. Such nonperturbative
effects in N would be difficult to evaluate within
a purely field-theoretic scheme.

However, there are arguments'? in the frame-
work of statistical mechanics that call the 1/N
expansion into question in one space dimension.

In particular, though it takes energy E to break
up a linear chain or ordered one-dimensional sys-
tem, entropy is gained so that the minimum of

E - TS for T #0 may occur for the position-de-
pendent 0,. Results similar to ours have been
found® in the mean-field-theory approximation

to the one-dimensional Ginzburg-Landau equa-
tions, though the exact numerical evaluations do
not confirm the mean-field solutions near the
critical temperature.’*

V1. DISCUSSION

Using the 1/N expansion, we have found to all
orders in the coupling that the fermion mass dy-
namically generated at zero temperature will van-
ish as the temperature is raised. The critical
temperature at which chiral symmetry is restored
is explicitly calculated (26) in terms of the zero-
temperature mass.
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It should be noted that the critical temperatures
found here are much more accessible than those
arising fromtheories in which scalar fields are
used to break the symmetry.' Rather than having
6.i ~10"° °K, we have for electrons 6.y ~3x10° K,
while for protons 6.;,~6x10" K. Thus, in addition
to the study of the early universe, our results may
be of some interest in the study of the formative
stages of neutron stars and pulsars, where tem-
peratures greater than 10'° °K can invariably be
found.’®

Subsequent to the completion of our work, we
became aware of the papers'® of Dashen, Ma,

and Rajaraman, Jacobs, and Hiro-O-Wada, who
find the critical temperature of Eq. (26).
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