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The problem of quantizing a Robertson-Walker metric
the framework of a true canonical theory. A discussion
of time.

with a scalar field as source is discussed within

is given of the role played by different choices

I. INTRODUCTION

A number of approaches to the problem of quan-
tizing the gravitational field have appeared in the
last 40 years. " That this should be so is hardly
surprising, bearing in mind the great complexity
of the subject —from both the technical and con-
ceptual points of view —and the very different back-
grounds of various workers in this field. One of
the most interesting approaches is surely that of
so-called quantum models or quantum cosmology.
This approach was inaugurated by DeWitt' and then
followed up by Misner4 and his collaborators and
by many other people in the last few years. ' The
basic idea is to freeze out all but a finite number
of degrees of freedom of the system and then quan-
tize the remaining ones. The significance of this
approach lies in two different directions. On the
one hand, by restricting the system to one of a
finite number of degrees of freedom attention can
be focused on the problems of quantum gravity
which are peculiar to the gravitational field rather
than on those which are common to any quantum
field theory. In particular the phenomenon of gra-
vitational collapse and the influence upon it of
quantum effects can be sensibly discussed in this
framework, as indeed can a whole range of con-
ceptual and technical problems concerning the
choice of time, the interpretation of state vectors
and probability, the choice of canonical variables,
etc. On the other hand, one can regard this ap-
proach as an actual perturbation scheme in which
the perturbation is not in terms of any coupling
constants (as it usually is in the Feynman-diagram-
oriented "covariant" quantization schemes), but
rather in terms of the number of modes quantized.
From this point of view one would naturally ask
if the models with finite numbers of degrees of
freedom can ever realistically describe true physi-
cai systems (so that the answers can be believed
as genuine approximations), and, more theoreti-
cally, if the limit as this number is taken to in-
finity actually exists. This latter question will
inevitably reintroduce the usual problems of quan-
tum field theories such as, for example, the exis-

tence of unitarily inequivalent representations of
the canonical commutation relations and ultra-
violet divergences.

Most of the work which has been done in the past
has been concerned either with empty universes
or with ones where matter is made up of the usual
standby of general relativity —dust and perfect
fluids. However, it seems to us that from a physi-
cal point of view this is unrealistic. Actual matter
is itself quantized and the characteristic lengths
of such matter, for example, 10 "cm for had-
rons, are many orders of magnitude higher than
the characteristic Planck length (10 "cm) of pure
quantum gravity. In particular if one is interested
in the problem of the gravitational collapse of
matter then it seems very reasonable to attempt to
describe the matter quantum mechanically, and
the easiest way of doing this is to use a quantum
field for it. Thus we discuss in this paper the
problem of a scalar matter field coupled to a Ro-
bertson-Walker metric in which both are quantized
in the quantum-model sense. Initially a massive
scalar field was considered as we were partly
motivated by the remarkable results of Parker
and Fulling' who showed that if such a system was
quantized in the semiclassical sense of choosing
the expectation value of the energy-momentum
tensor of the quantized matter as the source of the
classical gravitational field, then the system did
not collapse, but rather had a minimum radius of
of the brompton wavelength of the particles de-
scribed by the scalar fields. There are a number
of problems which arise in their work, some of
which are related to the use of an infinite number
of degrees of freedom, and we hoped to circum-
scribe these by using the quantum-model approach.
However, we found that a number of interesting
problems arise even in the (technically) simpler
massless case, and so most of the work reported
in this paper is concerned with that situation. The
massive case will be discussed elsewhere. In
particular the difficulties which arise from the
occurrence in these types of models of a square-
root, time-dependent Hamiltonian are frequently
treated in a way which seems to us a little dubious.
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II. THE CLASSICAL THEORY

The geometries of interest are those provided
by the usual homogeneous and isotropic Robertson-
Walker metrics

ds' =N(t)'dt' -R(t)'8 dx'dx', (2 I)
where 8,&

is the metric for a three-space of con-
stant curvature K. The case K =2 is that of a
three-sphere, while K = 0 and K = -2 correspond
to the flat and hyperbolic cases, respectively.
Such a space-time leads to a nonvanishing Ein-
stein tensor G» and therefore requires a source
of matter. In our case we use a massive scalar
field described by the Lagrangian

g = '(-detg)' -'(g""s„ps,p —m'Q'), (2 2)

in which P is the scalar field and g„„ is the metric
in Eq. (2.1) and the corresponding energy-momen-
tum tensor is

The usual resolution of the square-root problem
is to use a Klein-Gordon equation instead of a
Schrodinger equation. However, these are n0t
equivalent at all in the case where the Hamiltonian
is time-dependent, and we prefer to use the origi-
nal SchrMinger equation and define the square root
via the spectral theorem. This means of course
that we must first show that the quantity H' really
is a positive self-adjoint aperator, but this is fairly
easy in the present model. Our approach has the
advantage that the state vectors belong to a genuine
Hilbert space, whereas in the Klein-Gordon-ori-
ented approach a nonpositive inner product tends to
occur bringing with it a number of difficulties. The
only previous work' (to our knowledge) on the com-
bined Robertson-Walker scalar-field system uses
the Klein-Gordon superspace approach, so our
work can be regarded as complementary to that.
Perhaps one should also observe that the present
two-mode system can, by a series of canonical
transformations, be made to look like almost any
other two-mode system and in particular (in the
massless case) to some purely gravitational ones. '
However, quantum mechanics frequently does not
respect canonical transformations and so the sig-
nificance of such relations should not be overstat-
ed.

The model we discuss is clearly related to that
in the original work by DeWitt on the Friedmann
universe. In his case he was forced to introduce
a cloud of "clocks" in order to support a Robert-
son-Walker metric. His discussion of the corre-
lation between various choices of time is mirrored
in our work by the passibility of choosing the mat-
ter field itself, or some function of it, as the time
for the system.

T„„=s„ys„y -,'g-„„(g"'s ys, y m'4') . (2.3)

As might be expected the homogeneous Fried-
mann models can only be filled by a homogeneous
scalar field. That is, we must take P = P(t} (with
no dependence on the spatial coordinates} in order
to maintain the Robertson-Walker form of the
metric. Thus in effect all but one mode of the
scalar field drop out leaving us with just the three
coupled variables Ã(t), R(t), and P(t). The re-
sulting equations of motion (in units in which the
velocity of light c and the Newtonian constant G
are related by 8vG/c4=2) are as follows: The
"G«equation" is

R' 3KN'
3—+ =-'(j'+m'N'y') (2.4)

and the "G„equation" is (after dropping an over-
all factor 8,&)

2R R2 A N KN2
+ R2

—2R N+ R' ~(-p +mN p'),

+m'(NR'P) =0d (R' j)
dt N (2.6)

which can also, by virtue of the Bianchi identities,
be derived from Eqs. (2.4) and (2.5) by differen-
tiation.

The equations above are of course underdeter-
mined, and before they can be solved classically
a choice of time must be made. This can be done
in any of the usual ways within the context of these
second-order equations.

As an example consider the case when the time
variable is provided implicitly by the choice N =R.
In order to simplify the calculations we will also
consider the case m =0. This has the big advan-
tage that the Klein-Gordon equation immediately
leads to R'p/N as a constant of the motion. Then
Eqs. (2.4) and (2.5) can be solved readily to give
(in the case K&0)

R2(t) =R 'sin(2WKt+5),

p(t) = p, + v 3 in[tan(MKt+-, '5)],
(2. I)

(2.8)

where 6, R, and P, are constants. This shows
clearly that in the positive-curvature case (K&0)
the system has a maximum radius of expansion
R and also experiences gravitational collapse.
The solution for K~0 can similarly be obtained
from Eqs. (2.4} and (2.5} and exhibits the same
gravitational -collapse phenomenon, although of
course there is no longer a maximum value for the
radius parameter. The parameter & is merely an

(2.5)

in which R= dR/dt, P—=dQ/dt, and R=d'R/dt'.
The "Klein-Gordon" equation for the scalar field is
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additive constant in the definition of time and can
for convenience be set equal to zero. The values
of P —P, range from -~ to +~, for example,

t =0 corresponds to Q —Q, =—

t= ~ corresponds to (I} —$, =0,

g
corresponds to P —Po =+~,

and in particular one notices that Q
—P, changes

sign at the point of maximum expansion.
The parameter t can be eliminated from these

equations to give

R ' (R '-R')'~'
&j)(R) —Po =+a 3 ln 2, 4,),~2

.yn. R m

or equivalently

(2.9)

(cosh[(p —Po)/2v3 ]}' ' ' (2.10)

For future reference we note that the correspond-
ing flat-space (K =0) equations are

R(Q}=R e'&o oo'/'&' (2.11}

These equations [in which the expansion or con-
traction phases are described by the minus and

plus signs respectively in Eq. (2.9)] describe the
intrinsic dynamics of the system expressed as a
correlation between P and R and are of course in-
dependent of the choice of time.

As we are interested ultimately in canonical
quantization, it is worthwhile pursuing any further
discussion of the choice of time within the frame-
work of a first-order canonical scheme. The aim
is to construct a set of genuine canonical variables
whose first-order equations of motion (derived
from the appropriate Hamiltonian) are equivalent
to Eqs. (2.4)-(2.6). However, the latter equations
are not all genuine dynamical equations since they
contain variables which will at some stage be
eliminated by making a choice of time. One pos-
sible solution to this problem is, implicitly or
explicitly to fix the parameter representing time,
to eliminate the redundant variables from Eqs.
(2.4)-(2.6) and then convert the remaining true
dynamical equations to canonical form. Alter-
natively it is possible to write Eqs. (2.4)-(2.6)
directly in first-order form by introducing "ca-
nonical" moments w&, m~, and n„which are con-
jugates to ~II}, R, and ¹ However, the covariance
of the equations of motion manifests itself by the

G~ equation (2.4) appearing purely as a constraint
amongst these variables and by the necessity of
imposing as an additional constraint m~ =0. It is
the existence of these constraint equations. which
provides the main obstacle to quantization. Anoth-

er approach is the one which was developed from
the work of Dirac by Arnowitt, Deser, and Mis-
ner."" In this scheme the G~ constraint is still
present, but the n'~ =0 constraint is, in effect,
replaced by the statement that the N variable is
simply a Lagrange multiplier. Their technique
can readily be used here (adapted to include the
matter field), and we simply state the result that
the system of equations above can be derived from
the first-order Lagrangian

7r
2 m2 71

2

g(t) = vsR+ &sQ N+2 "R +6KR -R'Q

(2.12)

in which w„, R, n&, f, and N are all to be varied
independently. This Lagrangian is in fact just the
usual one for general relativity with the matter
Lagrangian equation (2.2) added on and the form of
the metric given by Eq. (2.1) substituted. We have
checked explicitly that the resulting equations are
indeed precisely Eqs. (2.4), (2.5), and (2.6}—a
step that is necessary as one cannot always guar-
antee that a reduced action principle of this type
will reproduce the original equations of motion.
Note that we have removed an overall factor of
the spatial integral of (detS)'~' in Eq. (2.12).

This Lagrangian demonstrates clearly the role
played by N as a Lagrange multiplier. Further-
more the constraint equation obtained by varying
N is precisely the G„equation (2.4). The main
virtue of introducing this Lagrangian is that it
enables us quickly to reduce the system to a true
canonical form after any concrete choice of time
has been made.

If we were interested in superspace quantiza-
tion techniques then the expression. in the large
parentheses in Eq. (2.12}would be regarded as
the super-Hamiltonian H, and we would probably
quantize by making the substitution vs- -ihs/sR,
v@- ihs/8$ -and then imposing the classical Goo

equation H =0 (which follows from varying N) in
the form Hg =0 of an operator constraint on the
allowed state vectors.

However, in this paper we are concerned with

genuine canonical quantization in which the sys-
tem is reduced to true canonical form befoxe quan-
tizing. Thus we must solve the constraint equa-
tion H =0 classically, make a choice of time and

substitute the results in Z. These two steps are
not independent. In fact in order to guarantee that
the final Lagrangian is in a canonical form the
correct variable for which to solve the constraint
equation is the momentum that is conjugate to the
time chosen in the second step. For example, if
we chose t =R which is the simplest "intrinsic"
time (i.e., time expressed in terms of the intrinsic
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g 2 m2 7r
2

+ 6+R (2.13)

for n~ to get for the final Lagrangian

m2 &
2 i/2

g = )t (j) y (24 t) ( —6' t + t (j)
2 2t'

(2.14)

which shows that the (positive) Hamiltonian is

geometry) we must solve the constraint equation tempting to use a Klein-Gordon equation instead,
namely (dropping the x,P in H for convenience)

82
H'(t)(t(x, t) = -5' (3.2)

This indeed is frequently done in work on quantum-
cosmology models, but we wish to emphasize that,
in the case when H depends explicitly on time, Eq.
(3.2) does not follow from Eq. (3.1). In fact opera-
ting with H on both sides of Eq. (3.1) leads to

m2 & 2 i/2
((=(24t} ~

(
6K't ~ t'('-~

2 2t3 (2.15)
82

H'(t)q( xt)=-tf', , in „-q( xt), (3.3)

III. QUANTIZATION OF THE MODEL

As mentioned already we are concerned in this
paper with the approach to quantization which is
based on a reduction of the equations of motion to
true canonical form. Thus our Hilbert space of
states will be square-integrable functions defined
on the classical configuration space with the usual
L' inner product. Canonical commutation rela-
tions will be imposed on the canonical variables
and an irreducible representation of these by self-
adjoint operators defined on the L2 space must be
constructed. The quantum Hamiltonian operator
is then to be built up from these canonical opera-
tors and the time-dependent Schrodinger equation
solved for states of interest.

There are, however, a number of subtleties
which may arise in the implementation of this
program for a given choice of time (and hence
Hamiltonian). A major problem is that the Hamil-
tonian which arises is typically of a square-root
form and is in addition time-dependent. This is
well illustrated by the example in Eq. (2.15). This
problem is sometimes dubiously treated in the
existing literature and so we wish to discuss it
a little further here. The time-dependent Schro-
dinger equation, with configuration variable and

conjugate momentum written as x and p, is

H(t, x, P) q(x, t) = itt „(x,t),Bg
(3 I)

in which the time t is merely a label (not an opera-
tor) in both the Hamiltonian and the state function.
Because of the square-root form of H, it is very

Clearly t =R is only appropriate for an expanding
(with respect to local proper time) system. The
negative square root would correspond to the con-
tracting phase. In practice one needs to redefine
the time at the point of maximum R (if there is
one) in order to keep a positive Hamiltonian. There
are various other possible times of interest, but
discussion of them will be deferred until the next
section on quantization.

which of course by virtue of the extra term on the
right-hand side still contains the awkward square
root. [Note that Eq. (3.1) does not say that H acting
on any function of the two variables (x, t) is
itt(S/St) Th.is would of course lead to Eq. (3.2) but
in fact is incorrect. It is only really an operator
on functions of the single variable x, and Eq. (3.1)
just gives the time evolution of an actual allowed
state vector. ] To be fair, since the axioms of
quantum mechanics applied to cosmological sys-
tems of this type may well be different from the
conventional ones, one cannot really object if Eq.
(3.2) is postulated from the outset. This equation
is in fact the same as one would get from a super-
space quantization approach, although whether
this is to be regarded as a point for or against it
is unclear. In any event we prefer in this paper
to deal with the true time-dependent Schrodinger
equation (3.1) complete with its square-root Hamil-
tonian. This has the big advantage that we are not
plagued by the difficulties which arise from the
nonpositive definiteness of the scalar product which
is usually associated with a Klein-Gordon type of
equation.

The square root itself can be correctly defined
using the spectral theorem, provided that the
operator whose square root is being constructed
is a genuine positive, self-adjoint operator on the
Hilbert space.

However, the integration of Eq. (3.1) needs to be
discussed properly. The equation

is not correct for a time-dependent Hamiltonian.
The correct form is

t

(()(x, t) =T exp —
&

H(s)ds g(x, t,), (3.4)
tp

where T is the Dyson time-ordering symbol.
If the Hamiltonians at different times commute

so that

(3 5)
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then the time-ordering operation can be dropped
and we have simply

Z
t

g(x, t) = exp —— H(s) ds g(x, t,). (3.6)

H(t)q, (x) =E(t)q, (x). (3.8)

Thus the time evolution of such a state is given
simply via Eq. (3.6) as

P t

gs(x, t) = exp —— E(s)ds gs(x, t,), (3.9)
I t 0

which, combined with the expansion of any state
vector in terms of such eigenstates at t =t„
gives a complete solution of the time-evolution
problem.

On the other hand, if the Hamiltonians do not
commute at different times then in general there
will be no E(t) such that Eq. (3.8) holds and the
problem becomes much more complicated.

Let us now see how all this works for various
choices of time. Let us take first the example
considered in Sec. lI with t =R. Then classically

m2
H=~24 ( 6Kt ~ t p' -~''

2 2t2 (3.10)

There is another important consequence of Eq.
(3.5), namely that it is possible to find a complete
set of basis states which are simultaneous eigen-
states of the energy at all times. Thus if, say,
gs(x) is such an eigenstate of H(t, ) at some refer-
ence time t, so that

H(t, )g (x) =Eg (x), (3.7)

there will exist numbers E(t) [with E(t,) =E ] such
that

We can eliminate the square root in this equation
by using the form

or

H'(t, )q, ( 4) =E'q, (4)

d2 t2
f + ', (E'+144t,'K)gs(P) =0,

(3.13)

(3.14)

which can be readily solved.
In fact it is easy to see that H'(t) is a self-ad-

joint operator on L'(-~, ~) with a purely continuous
spectrum (when I =0) of (-144tiK, ~), which for
K&0 is positive-definite as required. Clearly the
generalized eigenfunctions Ps(P) are

(4) usi x4~5s-t K4 (3.15)

It is clear from the form of Eq. (3.10) that the
quantity in the parentheses will only be a positive
operator for all t if K &0. Thus only in the hyper-
bolic or flat Friedmann cases is this choice of
time immediately appropriate, although for non-
zero mass and suitable ranges of t it can also be
used with K&0. However, it is also clear from
(3.10) that for nonzero mass [H(s), H(s')] 0 0 and

so this leads to the complicated time-evolution
problem outlined above. For this reason we will
set m =0 at this stage and will only return briefly
to the massive case at the end of the paper. Since
classically the system with K &0 does not experi-
ence a turn-around there is no real problem with
the two choices of sign in front of the square root.

Since Eq. (3.5) now holds we can use the time-
evolution technique given by Eqs. (3.6) and (3.9)
(for K&0), provided that we can solve the energy
eigenvalue equation (3.7):

H(t, )~s(4) =Ebs(e)

The obvious Hilbert space for quantization is
L'(-~, ™)with the assignments

(3.11)

with

t2
(E + 144 t iK) ~ 0.

12k 2 0 (3.16)

(s,q)(y)= in „(4), (3.12)
These eigenfunctions are also eigenfunctions of
H(t) with eigenvalue E(t) given by

which of course lead to genuine self-adjoint opera-
tors.

t E (t) =t E —144K(t' —t ), (3.17)

and according to Eq. (3.9) have the time evolution

gs(Q, t) = exp —— E(s) ds gs(P, t, )
to

exp —— —[to'(E'+144Kto ) —144Ks ]' ds gs(Q, to)s

exp ——i[tE( t) —t, E]i

(tE(t) t (E~ /144Kt ~)»~] [E 4. (E~ /144Kt ) ~~]

tE(t) + t~(E + 144Kto ) ] [E —(E



QUANTIZATION OF A FRIEDMANN UNIVERSE FILL ED WITH. . . 773

Note that we could easily use Misner's exponential
time 0 —= -lnR which ranges between (-~, ~) rather
than the (0, ~) range of R. This is advantageous
in superspace-oriented approaches in which 0 is
an actual self-adjoint operator, but in our case,
when it is merely a parameter, there is no great
virtue in this.

Another definition of time which is conjugate to
the one above is t = n„. This is the simplest ex-
ample of an extrinsic time (i.e. , one which is not
expressed in terms of the intrinsic geometry).
This time variable has the advantage of covering
smoothly the point of maximum expansion (when
K&0). Indeed ve ~ (-~, 0) is the expansion phase
and vsE(0, ~) is the contraction phase. The sign
of the Hamiltonian (which is now simply R) is
always positive. The constraint equation (2.13)
must now be solved (as a quartic equation) for
R leading to

22 t ' + ( 2t4K' + 48K ~'v)'

24K
(3.19}

, („',t,'+4 8K@v')P—s

(3.21)

or

, + 2 (to'+144E'K)pe =0.
] 2@2

(3.22)

The spectrum of If' is purely continuous in (0, ~),
and the eigenfunctions gE are of the form

with

(4 ) &el k 82+ ye

E2
( to' + 144E2K) & 0.

(3.23)

(3.24)

As might be expected from the "conjugate" nature
of the two choices of time, Eqs. (3.22}, (3.24)
and (3.14), (3.16) can be obtained from each other
by interchanging E and t, . In particular Eqs. (3.17)
and (3.18) extend to the present case with these

This is evidently most appropriate for the positive-
curvature (K& 0) case, and on choosing the plus
sign leads to a positive self-adjoint operator with
the same assignments for Q and fr@ as in Eqs.
(3.11}and (3.12). Once again the Hamiltonians
commute at different times and we can proceed
essentially as before.

Thus we consider

(3.20)

which gives

(
2 0 2 0

288K * 288K)

II2 =( 'R2w —2+12KR R8t m2—) (3.25)

which has the virtue in the massless case of being
time-independent. In general this time has the
advantage (like n„) of covering both the expansion
and collapse phases. The classical range of R
is (0, ~) and so we would use L'(0, ~}as the Hilbert
space in the quantum theory. However, care is
required at this point as the usual assignments

dR-R n - -ik
dR

(3.26)

will not work since the second one leads to a non-

self-adjoint operator. More precisely the symme-
tric operator id/dR -when defined on an appropri-
ate domain (such as C" functions vanishing at the

end points) has no self-adjoint extensions.
One way out would be to use an L'( ~, ~) space-

and interpret the negative values of R in an ap-
propriate fashion. This would be related to the
notion of extended superspace as advocated, for
example, by DeWitt. '

However, the problem (which can arise even in

ordinary quantum mechanics in a semi-infinite
potential well) can be solved in a more direct way
without changing the Hilbert space. The crucial
observation is that the substitutions in Kq. (3.26)
may lead to a self-adjoint form for the differential
operator H' even if they are not in themselves
self-adjoint. The momentum observable n~ can
then be defined as a true self-adjoint operator
in terms of H'. To be more precise one can prove
that 0=—-(d/dR)R'd/dR is a positive self-ad-
joint operator (on an appropriate domain} in
L'(0, ~) and then define we as

(3.27)

For K&0, H' defined in this way is a positive
self-adjoint operator whose positive square-root
H therefore exists. In writing

substitutions.
The two types of time discussed so far (intrinsic

and extrinsic) have been used in the past by various
authors studying the quantization of matter free
cosmologies. A third type of time which has been
discussed in other models is the "York" time,
which is a very natural choice if the structure of
the initial value equations is considered. The re-
sulting Hamiltonian is rather complicated, and we
prefer to defer discussion of this choice of time
until a later date. " However, there is another
type of time which naturally arises in the present
model and that is one which is expressed in terms
of the matter field itself. The obvious choice is
t = (I) which leads to the Hamiltonian
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8' d, d 4H =
12

R + 12KR (3.28)
The energy eigenfunction equation

H'q, (R}=B'q, (R} (3.29)
a definite choice of factor ordering has been made.
Other choices are of course possible, but the ob-
vious ones, apart from shifting the spectrum of
H around a little [for example, the choice
R"(d/dR) R' '"(d/dR) R" adds 5'v(» —1) to H'], do
not seem to affect anything very much so we will
not consider that particular problem further.

becomes

cPg 2 dg~ 12 E2
dR2 +

R dR
+ + R

—1~R ~s —-0

which has the general solution (K &0)

(3.30)

6)a R'~'» 2 1/2 1 1 48E'
/R) exp + & R &/2 AR (& 48s /0&' /2F I

2 2 8'
4SE2 I. »

2 2 h2

4sz' '»
1 — 1—

4SE' '»
1+ 1—

124K

12&/K

h

(3.31)

where A and B are arbitrary constants and F(
~ ~ )

is the confluent hypergeometric function. A care-
ful examination of the spectral properties of H'
shows that the spectrum is purely continuous and
occupies the interval (—,', II', ~). This enables one
to rewrite Eq. (3.31) in terms of Bessel functions
of purely imaginary order by using the relation

I„(x)=
~ I (-,'x)"e *F(-,'+»~1+2»~2x).

(3.32)

Note that for small R (that is, near the point
R =0 which classically corresponds to the singu-
larity) the eigenfunctions behave as

&I&s(R)-R '/ (AR '"+BR'"), (3.33)

where

(3.34)

I g(R)l'«
0

(3.35)

This shows that it is impossible to impose boundary
conditions of the form gs(0) =0 as suggested by
DeW'itt in his model, at least on these eigenstates.

This is a good stage at which to discuss the in-
vestigation of the effect of quantization on the
gravitational collapse exhibited classically by the
present model. The first question is: Given that
the system is in some state &I&(R), what do we mean
by saying that a measurement leads to the singular
(collapsed) geometry? In the present case since
we have a genuine Hilbert space, ~g(R)~' can cer-
tainly be interpreted as a probability density, so
that

is the probability that if a measurement of R is
made it will lie in the interval [0,e]. It is fre-
quently asserted that the condition g(0) =0 leads
to the absence of a singularity, but this clearly is
an incorrect interpretation in the case when R has
a purely continuous spectrum as it does in the
model above and indeed in most of the models which
other authors have considered. What is important
presumably is rather the manner in which P, —0
as c =0. Evidently the vanishing of tI) at R =0 will
tend to increase the "rate" at which P, tends to
zero, but it is completely unclear as to what sort
of behavior (e, e' ', e ' ', etc. ) would be regarded
as the border line between a collapse and non-
collapse situation. This behavior can be investi-
gated for any self-adjoint operator which corre-
sponds to an observable which classically has a
well-defined value (albeit ~) at the singularity by
using the spectral theorem and writing the state
vector as a function on the spectrum. If the spec-
trum happened to contain an isolated point which
corresponded to the singular value then the van-
ishing of the wave function at that point could rea-
sonably be taken as an indication of the absence of
collapse in that state.

Also one should augment the above discussion
with some statement to the effect that presumably
it is the transition rate (i.e., the transition proba-
bility per unit time) from the initial state into the
various "singular" states which is relevant rather
than just the long term behavior of the state func-
tion.

Because of this uncertainty in what is actually
meant in the quantum case by an evolution into a
singularity, it is difficult for us to say much con-
cerning the implication of the present model for
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gravitational collapse. If one could find a wave
packet which in its time evolution always avoided
some neighborhood of R =0 so that P, =0 for c less
than some finite value, then we could reasonably
claim to have a noncollapse situation. However,
the various wave packets that we have managed
to construct all tail down in time to R =0. An
illustration of this effect will be given within the
context of the simplifications introduced in the
next section, but clearly a proper discussion of
this point must await an elucidation of the signifi-
cance of the behavior of P, near & =0.

IV. THE SIMPLIFIED MODEL

It is clear from the complicated form of the
eigenfunctions in the case t=(ty (or the complicated
time dependence when t = vs) that the investigation
of the behavior in time of a typical wave packet
in a curved K&0 space will be very complicated.
It is useful and interesting to simplify and alter
the model slightly by considering the flat-space
case K=0. This simplifies the calculations since
the energy eigenfunctions (for t = (jy) become

(4.1)

where

—1 +~0

and the actual spectrum of H' is as before. Note
that this is exactly the same as the small-R be-
havior, Eq. (3.32), of the wave functions in the
general case, thus confirming the general im-
pression gained in other models (see, for ex-
ample, Liang in Ref. 14) that the curvature term
affects the large R behavior, but does not play
much role in the behavior of the system near the
singularity.

To investigate this case further it is useful to
map the L'(0, ~) space onto a L'(-~, ~) space by
the unitary map U, defined by (U(t(}(y) =e ' '
x g(e '). This map (which is the analog in our
case of Misner's choice of an exponential time)

has the big advantage that the transformed opera-
tor is simply

H = UH U = —— 2+—k d
12 dy' 4

(4.2)

which is easy to handle. Indeed in the case when
K&0 we get

d' 1UH'U '= —— + — +12Ke ~'
12 dy 4

(4.3)

ge(y)=Ae'"'+Be '"',
where

(4.4)

) 0

[These functions of course are just the images of
those in Eq. (4.1}under the map U. ] Thus the
complete set of generalized (5-function normal-
ized) eigenvectors is [}(q(y)=(I/~2m }e' '~l(. K R)
which can now be used via the spectral theorem
(in the guise of Fourier-transform theory) to dis-
cuss the time evolution of any state. As an ex-
treme example consider a 5-function idealized
state localized at some point yp at a time ~p so
that

~po

5(y -y„ t,) = — dX e' " 'o'
21T

(4.6)

Then

5(y —y„ t) = — exp ——E(t —tp)
1

and so

and this is the easiest form in which to discuss
self-adjointness and the general spectral proper-
ties of H'.

Returning to Eq. (4.2) we see at once that H is
essentially self-adjoint on the domain of all in-
finitely differentiable functions of compact support
and has a purely continuous spectrum of
(mph', ~) with corresponding generalized eigen-
vectors:

1 . e —t(t —t) 1 2 2 V'2llm
~ ( }2 [ ( )pp, K, ~(12(y -yp) +[ — ( —tp)] ) (4.6)

where e -0, is in the sense of distributions. The
distribution at the right is peaked around

1
y —yp =a (t —t,)

2~3

12(y -y ) —(t —t, ) =0,

which is

(4.'I )
or

A 1

0
(4.6)
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but tails down to 8=0 whenever tt t,. Equation
(4.8) is precisely the classical motion of the flat
K=O system as given in Eq. (2.11). Thus a state
which is localized at some initial time splits up
into two wave packets whose peaks move classical-
ly. The appearance of two such packets is to be
expected for the time evolution of an eigenstate
of position by virtue of the uncertainty principle
which in particular makes thesignof the conjugate
momentum equally likely to take either value. The
"contracting" packet eventually hits the A=O singu-
larity although, as discussed above, the signif-
icance of this is not clear.

We would like to complete this section by re-
marking that a possible way (albeit not within the
framework of conventional quantization) of imitat-
ing the maximum expansion of the K&0 model in
the context of the present A'=0 case is to limit
artificiallythe Hilbert space of functions of R to
be I,'(0, R ) (with R„=1 for convenience, say)
rather than L'(0, ~), and to impose some boundary
conditions on the wave function at A = 1 such as
$(1)=0 or $'(1) =0 which mimic the classical
"turn around" behavior by forcing the system to
reflect off the fixed point A =1. The unitary map
U now maps I,'(0, 1) onto I,'(0, ~) and the boundary
conditions are to be imposed at y =0. The choice
of such conditions is related to the different pos-
sible self-adjoint extensions of the formal differ-
ential operator, each one of which can potentially
lead to a different model. " For example, the
choice g(1) = 0 translates in I, (0, ~) to $(0) = 0 and
the resulting operator H' has a purely continuous
spectrum (~48h', ~). However, the choice p'(1) =0
translates into 2g'(0)+$(0) =0, and the resulting
operator now has the remarkable feature of pos-
sessing a single discrete eigenvalue E' =0 as well
as the continuous part (+5', ~).

The fact that the (isolated) discrete point is at
vanishing energy means that it corresponds to a
state in which the matter in some sense does not
contribute so that the space is empty, a situation
which of course cannot occur classically. This
evidently corresponds to Misner's Robertson-
Walker quantum puff" universe, "but with the
advantage that in the present formalism it appears
as an eigenvalue as part of the spectrum of a
genuine self-adjoint operator. However, this dis-
crete part disappears in the full theory (that is
K& 0 without the arbitrary imposition of a boundary
condition at A =R ), and so the status of Misner's
idea is still not entirely clear.

V. CONCLUSIONS

We have discussed the canonical decomposition
of the coupled scalar-field-Robertson-Walker

metric system and have shown that a canonical
quantization based on a normal Hilbert space
(rather than a space equipped with the indefinite
inner product associated with the IQein-Gordon
equation) is possible. ln this approach a reason-
ably careful discussion of the self-adjointness and
positivity of various operators is necessary in
order to ensure the actual existence of the square-
root Hamiltonian. In particular these technical
requirements lead to a choice of time which is to
some extent dictated by the sign of the curvature
constant K A particularly suitable time for K&0
is the choice ~ = P, which leads in the massless
case to a time-independent Hamiltonian. An illus-
tration of the motion of a wave packet was given
for the flat K = 0 case, but we have not exhibited
any more complicated examples because as em-
phasized in the text the criteria which would en-
able one to judge whether a given time-evolving
state leads in some sense to a collapse situation
have not yet been properly formulated. Finally
by imposing an artificial boundary condition in the
K=O case (and by changing the Hilbert space) we
showed that Misner's Robertson-Walker "quantum
puff" universe arises as the single discrete, iso-
lated point of the spectrum of the Hamiltonian.

There are obviously a number of points which
need further discussion. The most pressing one
is an investigation of the case in which the mass
m of the scalar fields is nonzero since one of the
original motivations of the work was to look at the
Parker-Fulling results from a different point of
view. It is clear that this case will be qualitatively
very different from the massless one in many
respects. An inspection of the Hamiltonian in Eq.
(3.10) (choosing t=R, for example) reveals two

points immediately. On the one hand, the noncom-
mutativity of H(t) at different times leads to a com-
plicated time evolution of an initial eigenstate. On
the other hand, it is clear that at any given time
the Hamiltonian is effectively that of a simple har-
monic oscillator and as such will have a discrete
spectrum only, rather than the purely continuous
spectrum of the mass-zero case. Thus one might
reasonably hope to be able to make a better dis-
cussion of the gravitational collapse problem. It
is also possible that the Misner "quantum puff"
will finally reemerge in a genuine way as the low-
est energy eigenstate of the system. A thorough
investigation of this case is now under way and
the results will form the contents of a separate
publication.

It would also be useful to investigate the effect of
adding a cosmological term and perhaps of greater
interest to see what happens when the theory is
rendered conformally invariant by the addition of
the appropriate coupling of the scalar field to the
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contracted curvature scalar. Similarly it would
be worthwhile to replace the Robertson-Walker
metric by one of the other more complicated
Bianchi-type universes so as to introduce some
anisotropic degrees of freedom into the metric
and hence into the scalar field,

At a somewhat deeper conceptual level a question
must be asked concerning the significance of the
possibility of quantizing these types of models using
different choices of time. The role played in the
classical theory of general relativity by different
sets of space-time coordinates and reference
frames is well understood. However, in the
quantized theory the situation is very different,
and it is not always clear in what sense one would
expect such a theory to be invariant under the gen-
e~ al coordinate group. If a genuine canonical
scheme, such as the one in this paper, is adopted
then it is perfectly possible that the canonical
variables corresponding, for example, to two dif-
ferent choices of time could be related classically
by a canonical transformation which is not unitarily
implementable in the Hilbert spaces of either of
the two quantum theories. On the other hand, in
a superspace-based approach the problem is rather
to choose an operator ordering which makes the
Lie algebra generated by the quantized constraint
equations consistent with the classical Poisson-
bracket equivalent (which is a reflection of the gen-
eral coordinate invariance), and then to discuss
the role played by the different possible choices of
time in the interpretation of the Wheeler-DeWitt
Hamiltonian constraint equation. Insofar as the
different choices of time in the genuine canonical
scheme may be related by q numbers it is likely
that the problems in these two different schemes
are closely connected.

This feature of q-number related times can
easily be seen in the cases considered in the
present paper. We have tended to choose these
times for their different technical qualities, such
as, for example, leading to a time-independent
Hamiltonian, or covering both an expansion and
a collapse phase (with respect to proper time) or,
for us rather importantly, leading to a form for
FP which is self-adjoint and positive and hence
enabling the spectral theorem to be used in de-
fining +P~~. The physical significance of our
specific choices or indeed even the more general
technical significance could only be discussed
within the framework of an investigation into the
general problems mentioned above.

Finally it is of great interest both technically
and conceptually to investigate the system in which
fermions rather than bosons form the matter
source for the geometry. Preliminary results in
this direction indicate that the anticommutation
relations and first-order differential equations
obeyed by a massive Fermi field significantly alter
the point of view which one takes to quantization.
In particular the role played by the canonical de-
composition and the Schrodinger equation is di-
minished at the expense of the increase in signif-
icance of the Heisenberg equations of motion for
the spinor fields. A full account of this topic has
appeared elsewhere. "

ACKNOWLEDGMENTS

One of us (C. J. I.) acknowledges with pleasure
a number of interesting conversations on quantum
models with Professor Bryce DeWitt and Profes-
sor Karel Kuchar.

*Present address: School of Mathematical Sciences,
Universiti Sains Malaysia, Penang, Malaysia.

~Three extensive available reviews are the following:
D. R. Brill and R. H. Gowdy, Rep. Px og. Phys. 33,
413 (1970); C. J. Isham, Imperial College Report No.
ICTP/8/72 (unpublished) [a preliminary version
appeared in the Proceedings of the 1973 Finnish Sum-
mer School on High Energy Physics, University of
Helsinki {unpublished)]; A. Asktekar and R. Geroch,
Rev. Mod. Phys. {to be published).

2A forthcoming review is provided in Quantum Gravity-
An Oxford Symposium, edited by C. J. Isham,
R. Penrose, and D. W. Sciama {Oxford Univ. Press,
London, 1975).

B. S. DeWitt, Phys. Rev. 160, 1113 (1967).
4C. W. Misner, Phys. Rev. 186, 1319 (1969).
~Much of this work is reported in M. Ryan, Hamiltonian

Cosmology (Springer, New York, 1972).
6L. Parker and S. A. Fulling, Phys. Rev. D 7, 2357 (1973).
'D. J. Kaup and A. P. Vitello, Phys. Rev. D 9, 1648

(1974).
SSee, for example, S. Deser and J. Higbie, Ann. Phys.

(N.Y.) 58, 56 (1970).
OP. A. M. Dirac, Can. J. Math. 2, 129 (1950); Proc. R.

Soc. A246, 333 (1958); Phys. Rev. 114, 924 (1959).
R. Arnowitt, S. Deser, and C. Misner, Phys. Rev. 113,
745 (1959); 116, 1322 (1959); 117, 1595 (1960).
A very readable introduction to the whole problem of
the canonical quantization of gravity is K. Kuchar",
Canonical Quantisation of Gravity in Relativity Astro-
physics and Cosmology, edited by W. Israel {Dordrecht,
Reidel, 1973).
W. F. Blyth (unpublished).
B. S. DeWitt, in Relativity, edited by M. Carmeli, S. I.



778 W. F. BLYTH AND C. J. ISHAM 11

Fickler, and L. Kitten (Plenum, New York, 1970).
E. P. T. Liang, Phys. Rev. D 5, 2458 f972).

~'A full account of the spectral properties of the opera-
tors used in this paper can be found in N. Dunford and

J. Schwart2, Linear Operators Part II {Interscience,
New York, 1963).

C. W. Misner, in Magic Without Magic: John Archibald
Wheeler, a Collection of Essays in Honor of his 60th
Birthday, edited by John R. Klauder (Freeman, San
Francisco, 1972) ~

C. J. Isham and J. E. Nelson, Phys. Rev. D 10, 3226
(1974).


