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Instability of intermetjiate singn&arities in general relativity
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It has been shown that "intermediate" singularities, where all Riemann tensor invariants are finite,
occur in certain cosmological models. Associated with the singularities are Cauchy horizons, across
which the matter flows into a stationary region of space-time. We investigate scalar-wave propagation in

these spaces. Our results suggest that the intermediate singularities become localized curvature
singularities while the Cauchy horizons are a stable feature of the models.

I. INTRODUCTION

In a recent paper' it was shown that the spatial
homogeneity of certain perfect-fluid relativistic
cosmological models comes to an end in a region
where the hypersurfaces of homogeneity are tend-
ing to become null. An intermediate singularity
and associated Cauchy horizon result, the matter
flowing across the horizon in a nonsingular way
into a stationary inhomogeneous region of space-
time. At the intermediate singularity all Riemann
tensor components are finite in an orthonormal
frame intrinsically defined by the fluid, but any
orthonormal frame parallel propagated along a
curve leading into the singularity suffers an infinite
Lorentz rotation relative to this fluid frame, so
Riemann tensor components in this basis diverge.
In Ref. 1 it was conjectured that intermediate sin-
gularities are unstable against developing into
curvature singularities when small perturbations
of the gravitational field are applied. This is be-
cause a photon projected along a null generator of
the horizon into the intermediate singularity gets
infinitely blue-shifted as it approaches the singu-
larity; thus it arrives with infinite energy and
would tend to cause a curvature singularity. One
would also like to know if the horizon is stable
against perturbations.

To investigate these problems further we shall
consider perturbations of the type-V LRS (locally
rotationally symmetric) spacetimes, the simplest
members of our class. A complete calculation
might use electromagnetic or gravitational per-
turbations, but as is often done (e.g. , Ref. 2) we
shall use the massless scalar field as a model.
This will give essentially the same results while
reducing irrelevant technical details. We shall
assume that the field amplitude y(x') is so small
that it does not couple to the gravitational field
through the Einstein field equations. Of course
if at any point cp is tending to become infinite,
this assumption breaks down and we would need to
to perform the complete self-consistent calcula-
tion, allowing y to couple to the gravitational field

in order to see what is really happening. This is
a formidable task, and it seems reasonable to con-
jecture instead that y-~ implies a curvature sin-
gularity. On the other hand, where y remains
bounded this would seem to indicate the stability
of that region against developing into a curvature
singular ity.

+X'e "(dx'+dy'), (2.1)

where X and Z are positive functions of t only,
and a is a nonzero constant. The matter density
p &0 is equal to poX 'Z ', where p, &0 is a con-
stant. p, X, and Z satisfy the "constraint equa-
tions"

2X 1 2Z 2p= 1 ——
a X Z' aZ a'Z' ' (2.2)

(2.3)

with X=dX/dt, etc. , while X and Z obey (with m

a constant)

+ nl
3X

(2.4)

X+—

Equations (2.4) and (2.5) may be integrated exact-
ly, ' but the general solution is rather unwieldy
and we shall not use it here. In the metric (2.1)
the surfaces tLt = constantj are the surfaces of
transitivity of a four-parameter group of motions,
the coordinates x and y being ignorable and the

II. THE SPACETIME GEOMETRY AND THE SCALAR

WAVE EQUATION

We shall consider for simplicity only dust-filled
type-V LRS spacetimes. Using a tetrad system
intrinsically defined by the matter, associated
global coordinates can be found so that the metric
takes the form

ds' = —(dt + ad@ )' + a'Z 'dz'
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spacetime having rotational symmetry at each
point about an axis parallel to the z axis. We
choose I, so that as t -~, X and Z . Here the
surfaces ft =constant} are spacelike. If a&0, it
can be shown' that the dust encounters a curva-
ture singularity at a finite value of t where the
surfaces ~~t = constant} are still spacelike. How-

ever, if

a&0, (2.6)

it can be shown' that these surfaces become null

and then timelike before the curvature singularity
is reached. We can take t =0 to be the value of t
at which the surfaces become null, so Z&1 for
t&0, Z=1 at t=0 and Z&1 for t&0. (At the cur-
vature singularity we have X=O, but 1&ZcO.)
We shall henceforth assume that (2.6) holds. The
fluid flow vector u has a 8/8 z component which
is negative, ' so that the dust moves in the —z di-
rection across the homogeneous surfaces
JLf = constant}. The null surface t = 0 has two parts,
one being the Cauchy horizon across which the
matter flows into a stationary inhomogeneous re-
gion, the other being the intermediate singularity
(cf. Fig. 1). (Note that our arrow of time is the
opposite of the more usual one. )

The field amplitude y(x') satisfies the massless
scalar wave equation

X ~x
(2.7)

~ surface t=constant

1 cN;, . 8 (p

g-g 9x' ~x'

where g&, is the metric tensor and g =detg&, . The
x, y part of this equation for the metric (2.1) is

Hence because of the LRS symmetry we can sep-
arate variables, the ignorable coordinates x and y
contributing only multiplicative components of the
form

and

sin(bx + x,) sin(cy + y, )

s inh(b x + x,) s inh(cy + y, )

to y. Thus the eigenvalues of (2. 1) are of the
form EX 'e", where E & 0 for the hyperbolic
functions and E & 0 for the circular functions of
x, y, and y has the form

1 ~
~ gg ~p Ee —

0
&

a +

where A and B label t and g. Since v'-g=aX'Ze "
is a function of t, ~ only, this is a second-order
hyperbolic equation in two variables only. As is
usual in dealing with such equations, it is conven-
ient to choose characteristic coordinates, which
are here simply double null coordinates in the
t, ~ surface. We set

g yb, (t, z) sin(bx+x, ) sin(cy+y, )
b, c

+ g pb, (t, &) sinh(bx+x, ) sinh(cy+ y,),
&, c

(2.8)

where the values of b, e, x„y, and the choice of
circular or hyperbolic functions are determined
by the x, y boundary conditions on y. We shall
return to the question of circular versus hyper-
bolic functions later, but the values of b, c, x„
and y, are of no interest in the situation we are
considering, and without any essential loss of
generality we shall simply consider one term
only of this series. Then y satisfies the equa-
tion

inte

surface u =

~ surface v=constant

—Curvature $ingular i ty

~ Cauchy hor)zon
v=oo, or t=O
(Z=1)

dt'
Z(t')+ I '

dt'
Z(t') —1

'

Then metric is then

(2.8)

face v=constant
ds' = (1 —Z') ciu dv+X'e "(dx'+ dy') . (2.10)

surfaces

surfaces z=constant

To determine the run of the null coordinates u, v

we need the behavior of Z(t) near t =0. From
(2.4) and (2.5) it follows straightforwardly that

Z=1-Z, t+O(t'), (2.113
FIG. 1. A conformally rescaled diagram of a 2-surface

x =constant, y =constant showing the global structure of
the solutions and the {t,~} and (u, ~) coordinate systems.

where Z, is a strictly positive constant, so as
t-0
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1
v
- —az ——ln~ t ( + const. (2.12)

Thus for bounded z (or equivalently, bounded u)
v-+~ as t-0. If we keep v bounded as t-0,
(2.12) shows that

1z- — 1 n(t )-+~
aZ~ A -B'e " (2.17)

From (2.2) and (2.3) it follows that B(f) is bounded
except at the curvature singularity and at t = —.
To investigate the behavior of g and y near the
horizon (u =~, u bounded) and the intermediate
singularity (u=~, v bounded) we shall need the
asymptotic forms of A(u, v) there. From (2.11)
and (2.12) we have that as U-~ for bounded u,

as t-0, so (2.9) implies

1
u -az- ——lnl/I ~ as f-0.

ZJ
(2.13)

where B' is a bounded function of I, which may be
taken as constant near t =O. Similarly, from
(2.11) and (2.13) we find that as u -~ with v

bounded,
We assert now that the null surface v = ~ is the

Cauchy horizon while the intermediate singularity
is at u =z =~. [Note that from (2.1) the hypersur-
faces (z =constant) are always timelike for finite
z.j This follows from the fact that the matter
(which crosses the horizon) moves in the direction
of decreasing z when t increases, as does v; put
another way, (2.9) implies

8 8 8——=a
8z 8v 8u

As v decreases from + ~ through positive values
we move away from the horizon on either side.
Figure 1 gives a diagrammatic representation of
this coordinate system in a 2-surface x = constant,
y =constant; we have conformally rescaled so that
infinity appears on the picture.

Transformation (2.9) puts our wave equation
into the form

8+ 1 8Q 8g 8Q 8'+ —+ ——+ —/=0,~ 8u8v ~Q 8u 8v 8v 8u Q

where we have dropped the overbar from y and
written &=Z' —1, Q =X'e ". The substitution

A ~Bll~u

with B"= B"(t) constant near t =0.

(2.18)

III. CAUCHY PROBLEMS

To investigate the stability of the spacetime we
consider various Cauchy problems for y —that is,
we give bounded initial data for it on some non-
characteristic (spacelike) initial surface. What
particularly concerns us is whether y has any
singularities in the Cauchy development of the
initial surface. From the form of (2.14), (2.15),
and (2.16) it is clear that such singularities could
only occur at either the curvature singularity, the
intermediate singularity, or the horizon v =~.
We must therefore choose initial surfaces whose
Cauchy developments contain these regions. In
the spatially homogeneous region t & 0 an obvious
candidate for an initial surface is a (t = constant)
hypersurface; this, however, has the disadvantage
that its Cauchy development is limited by the null
surface v =~ which is one of the regions of inter-
est. If, however, the initial data for y is only

(2.14)

reduces the equation to the self-adjoint form

+A(u, v)g =0,
8u8v

where

q -3/2s 2 (Ql/2)
A(u, v) = ——

2Q 8u8v

(2.15)

~in) t~al surfaces~ fol (1)

X„„X„~„X„z„(Z' 1)— ""+ + +& „2 X X X

and we have written X„=&X/su, etc. Using (2.9),
a little algebra shows that

rface t = constant

A = (Z —1)e"B(/),
where

Z+1 X'Z X Z
X'Z +

2XZ
'

2aX 4aZ

(2.16)
FIG. 2. Initial surfaces for the Cauchy problem. AC,

BC represent the boundary of the Cauchy development
of the surface AB, while DF, EF show the boundary of
the Cauchy development of DE.
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nonzero for a finite range of values of z, z, &z &z„
on this hypersurface we can obtain a suitable in-
itial surface by choosing a spacelike hypersur-
face which coincides with the (t = constant) surface
for z, & z & z„but crosses the horizon v =& as
shown in Fig. 2. (The author is indebted to
Dr. S. W. Hawking for this suggestion. ) The
Cauchy development ABC of this surface then con-
tains that portion of the horizon where y may be
nonzero.

In the above we have been investigating the situa-
tion when y propagates in the direction of increas-
ing t; we might wish to consider what happens if
if propagates in the direction of decreasing t —in-
deed such a direction of time gives an expanding
rather than contracting spatially homogeneous
region and so corresponds better to the observed
universe. We therefore need an initial surface
in the stationary inhomogeneous region. However,
because of the timelike character of the curva-
ture singularity in this region there are no global
Cauchy surfaces there: "past"-directed timelike
curves (i.e. , those directed in the t -increasing
direction) can avoid any spacelike hypersurface
in this region by hitting the singularity instead.
The best we can do is to choose a partial Cauchy
surface whose Cauchy development includes a
part of the horizon. For initial data of compact
support in z (i.e., which is nonzero only for a
finite range of z) we may choose the surface DE
as shown in Fig. 2. In this case the intermediate
singularity does not even lie on the boundary of
the Cauchy development as in the earlier case.

We have restricted the initial data for y to have
compact support in z on the initial surfaces; if
we do not do the same for the x and y variation of

y, we must choose the circular functions in (2.8)
to ensure that cp is bounded initially, so E& 0. If
we assume also compact x and y support for y on
the initial surfaces, there is no restriction on the
sign of E.

IV. STABILITY

it for y. From (2.17}we know that A(u, v) -0 on
v =~. The question is whether A becomes zero
rapidly enough. To answer this we bring the hori-
zon in to a finite distance in both the spatially
homogeneous and stationary regions by replacing
v by v' = tan 'v. Then the horizon v = ~ is v' = 2 m,

and (2.15) becomes

A(u, v')
8Q~ v cos v

(4 1)

The coefficient of g in this equation can be re-
written as A(u, v)(1+ v'), which by (2.17}becomes
B'e "(1+v'}, which tends to zero as v-~. Thus
(4.1) remains perfectly regular at the finite points
(u bounded, v' =

& v), and by the known regularity
of the Cauchy problem for the hyperbolic equation
in two variables (see e.g. Refs. 6 and 7) g is
bounded there. Thus g and hence cp is bounded
on the horizon.

The situation near the intermediate singularity
is somewhat more complicated as A(u, v) may di-
verge either positively or negatively as u —~.
The sign of this divergence is determined by that
of

E XZ X Z
2 2XZ 2aX 4aZ

'

Using (2.2) and (2.3) it follows easily that

XZ X Z
2xz+ 2ax 4az

—2EO 0 on t=0.

y=g ill, exp kB"e"——
k

Thus for E&E„A(u, v)-~ as u-~, while for
E & E„A(u, v) - —~ as u- ~; hence in (2.18) B"&0

(& 0) accordingly as E &ED (&Eo).
With the asymptotic form (2.18}, Eg. (2.15) for

g becomes

82

~uev
+ B"e"g =0,

which is separable, having a solution of the form

We can now investigate the behavior of y at the
intermediate singularity and at the Cauchy horizon.
We shall do this by considering Eq. (2.15) for p
as u -~ and v-~. Since the initial data for y
has compact support in z, the scaling (2.14) is
finite on those portions of the initial surfaces
where cp t 0. Thus y also has bounded initial data
with compact support in z. We assert now that
given bounded initial data for y &pith comPact suP-
port in z, p remains bounded on the horizon v =~,
regardless of the direction of time assumed.

Because of the scaling (2.14), which is finite on
v=~, the result for (p will follow if we can prove

where the k's are separation constants and the
g, are constants. By (2.13), the scaling (2.14)
gives

—exp kB e" + ———if „Q
X a

The terms of this series tend to zero or infinity a
according as kB" is negative or positive, so we
see that for E&E, the terms uith positive k di-
verge, u)bile for E&E, those saith negative k di-
verge. Since the terms diverge at different rates
there is no possibility of cancellation, so that y
itself must diverge in these cases.
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V. CONCLUSION

We have considered various Cauchy problems
for the massless scalar wave equation where the
initial data were bounded and had compact support
(in z). We may conclude from the work of the pre-
vious section that the picture of the perturbed
situation given in Ref. 1 is broadly correct: That
is, the intermediate singularity becomes a "little
bang" (a localized curvature singularity) which
most of the matter avoids. In fact, some special
types of perturbation (e.g. , those with E(E, and

all k) 0) remain at the intermediate singularity,
but in the generic case the field amplitude di-
verges. The horizon is stable against all scalar-
wave perturbations except possibly those not hav-
ing compact support in z on some initial surface.
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