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W'ave equations are derived in the Newman-Penrose formalism for mixed electromagnetic and

gravitational perturbations on both a flat spacetime background and a slightly charged (Q' & GM')
Reissner-Nordstrom background. The physical meaning of these equations is discussed and analytical

results are derived for nonrelativistic sources and for ultrarelativistic particle motions. The relationship

between even-parity (TM) electromagnetic radiation multipoles in the long-wavelength approximation and

static multipoles is shown to be the same as for classical radiation, suggesting a simple picture for
electromagnetic radiation induced by gravitational perturbations.

I' INTRODUCTION

Considerable interest has recently been shown
in the problem of interacting gravitational and
electromagnetic waves. Zerilli' has given equa-
tions in the Regge-Wheeler formalism for mixed
electromagnetic and gravitational perturbations
in a Reissner-Nordstrom background. His equa-
tions have been used to compute the two types of
radiation generated by a particle falling into a
Reissner-Nordstrom black hole. ' Moncrief, ' using
a variational principle, has proved that the
Reissner-Nordstrom geometry is stable against
electromagnetic and gravitational perturbations
and Gerlach4 has used a WKB approach to study
the interconversion of gravitational and electro-
magnetic radiation. in a region of strong electro-
magnetic background fields.

We have previously given equations in the New-
man-Penrose (NP) formalism' for mixed pertur-
bations in both a flat spacetime background and a
background with a slightly charged (Q'«GM')
Reissner-Nordstrom black hole. ' One of us
(D.M.C.}has extended these results to a slightly
charged Kerr-Newman black hole. ' Though the
equations in these papers lack the full generality
of the Zerilli equations (in which Q' can be com-
parable to GM'), they are somewhat easier to
work with, allow a fairly straightforward inter-
pretation, and —perhaps most important —can be
extended to a Kerr background. In the present
paper the details missing from the earlier brief
paper are supplied and the equations are applied
to several interesting physical situations.

Section II sets forth the theoretical framework.
Perturbation equations are derived from the
Bianchi identities and Maxwell's equations, and

gauge transformations are discussed. In Section
III several results are derived for flat spacetime
backgrounds. Multipole radiation fields and static
electric multipole fields are calculated and a

simple physical picture is given to explain the
nature of the radiation. Synchrotronlike electro-
magnetic spectra from uncharged particles in a
Coulomb background are also derived. Section IV
deals with the slightly charged black-hole back-
ground, especially with the mathematical tech-
niques required for dealing with it.

We use here conventions which differ somewhat
from the Newman-Penrose notation but are more
convenient in a spherically symmetric background.
The subscripts on the 4, (Weyl tensor projections)
and 4, (projections of &" '} indicate the spin-weight
of the fields. The notation for the 4„., the Ricci
tensor projections, are the same as those of
Newman and Penrose. (The spin-weight of these
fields is the second subscript minus the first. ) A
caret appearing over a quantity indicates that the
quantity has been "despun, " that is, the appro-
priate number of spin-weight-increasing (-2 '"s)
or -decreasing (-2 "%)operators have been ap-
plied to change the spin-weight to zero. This not
only simplifies the appearance of equations but
helps to distinguish even- and odd-parity parts of
perturbations; even and odd parts of despun quanti-
ties refer respectively to the real and imaginary
parts of despun quantities. ' This notation and
others follow that of Ref. 8. Equations from Ref.
8, many of which are necessary to the present
paper, will be indicated by square brackets, e.g.
[86t]. Equations from the Newman-Penrose pa-
per' will be written, e.g. , as (NP6. 6).

II. WAVE EQUATIONS

A. Black-hole background

Here we consider the effects of gravitational
perturbations in distorting the spherically sym-
metric electric field around a nonrotating black
hole with a charge small enough that it does not
significantly change the geometry. (The gravi-
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tational background then is essentially Schwarz-
schild rather than Reissner -Nordstrom. ) The
sources of stress-energy giving rise to the grav-
itational perturbations are assumed to be un-
charged for simplicity; the modifications of the
Maxwell equations for charged sources are
straightforward.

In the NP formalism' the electromagnetic field
is represented by the three complex fields 4 „
4„4,. By the peeling theorem' 4, and 4, fall off
too fast to represent outgoing radiation and

4 =-y& m*un (2.S}

which falls off as 1/r, contains all the informa-
tion about outgoing radiation.

For the NP null tetrad fields l, n, m, m* we
take a "special system, " i.e., a system in which
the tetrad is parallel propagated in the l direc-
tion. As in Ref. 8 we take the unperturbed tetrad
in the Schwarzschild background to be

1 =f e, + e„, n=2e, -2 fe„,
m=2 "'r '(ee+ le&/sin&), f =1-2M/r,

(2.2)

where e, , e„, e&, e ~ are a coordinate basis in
terms of the usual Schwarzschild coordinates.
The nonvanishing spin coefficients, 4'„and 4,
for this tetrad system in the unperturbed geometry
are

represent effective charge currents due to grav-
itational distortion of the Coulomb field of the
central charge. Equations (2.4) and (2.5) can be
combined to form a single second-order equation
for r4, :

W(4,r) = Q[l (l+ 1)(r 'Ua —pe)+26&ug], (2.7)

where the O'Alembertian-type operator 8' is

W—= 2br'D+ l(l+1)
= (8, fs„)-r'(f 'e, +8„)+l (l+1) . (2.8)

By itself Eq. (2.7) is of little value since the
right-hand side is unknown. It is only when this
result is combined with another similar wave
equation that a useful result emerges. This sec-
ond wave equation results from two of the equa-
tions, [B6c] and [B6g], expressing the Bianchi
identities in NP form'.

D4,r'+ 2rl (1+1g,e = 3~g M/r'+ S&,

~4„r'-r'4, = 3M(p, —U, ,/r) +S„.
(2.9a)

(2.9b)

-2[-,' l(l+1)r '4„+f 'hfdf„] j, (2.10a)

The source terms S&, S» consisting of pro)ections
of the Ricci tensor or equivalently the stress-en-
ergy tensor are

S, =-, r']Lk» r'C„-

p= —1/r, p=-n =cot&/r2v2,

y =M/2r', p, = f/2r, -
4, = -M/r', 4, = -Q/2r' .

(2.3)
S „=-,' r-'[4» r'Dr '4»-+2(br4»-4»)], (2.10b)

where the stress-energy terms appearing here and
in subsequent equations are defined" by

(2.4)

r'Dr4, + —,
'

l (l + 1)4,er' = Qag .

Here D and 4 are the differential operators

(2.5)

Equations in the NP formalism are greatly sim-
plified if perturbation fields are despun and de-
composed into spherical harmonics. (To simplify
the notation, multipole indices will not explicitly
appear on the fields. For example jL(. , not J[L, ,
will be used since the order of the multipole will
always be clear from the context. )

In despun NP form four of the eight Maxwell
equations become the two complex equations

~r'4„r4, = Q-(j,, U, /r), -

400 —4& Tp v
l" l 4„=4~T„,n~ n',

4„=2vT& „(n"l'+ m" m*"),
(2.11)

4„=4~T„„n]'m',

40, = 4m Tq pm "m ',
and by

0„=4mT„„/ "m',

3 ]1 7

Equations (2.9) can be combined to give a single
wave equation, with the wave operator of Eq. (2.8),

W(4,r') = 3M[i (l+1)(r 'Us pe)+2bZug]-

D=f 'e, +a„, ~-=—,'e, -,'fe„. --(2.6)
+ 2bS&r' —l(l+1)S„ (2.12)

The quantities U~ and ~~ are perturbations in
metric functions' and p. ~ is the perturbation in the
spin coefficient p, . The subscript B, indicating a
perturbation, will often be omitted when omission
introduces no ambiguities.

The terms on the right in Eqs. (2.4) and (2.5),
terms which are missing in Maxwell's equations
for an unperturbed Schwarzschild background,

—= (Q/3M)Se,

for a field variable

(2.1.3}

Since the same combination of gravitational per-
turbation terms U~, p, » and ~g appear here as
in Eq. (2.7) the two wave equations can be com-
bined to give a single wave equation:

W(e ) = (Q/3M )[l (l + l)S„26r'S,]-
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e =r4, -(q/SM)~ „ (2.14)

which contains information about both the electro-
magnetic and the Weyl tensors.

With the equations of motion (T„".„=0) in NP
form"

calculations.
In order to extract 4, from 6 we need an in-

dependent may of evaluating O', . In the radiation
zone this can be done with one of the sourceless
{assuming no sources in the radiation zone)
Bianchi identities [B6d]

Dr'4„+ Sr'DA+ r'f 'n f 'r'4« r'4„-r'4„-= 0, DrW,, = --,' (l-1)(l+2)4', +3AM/r' (2.17)

the source in {2.13) can be put in the form

Se = -W( r' 4„)-l(1+1)r'Dr422+2r'Ar420

2fr'L4-»+2[i (l+1)-Sf]r'4». (2.16)

This form is convenient since the r'4» term in the

%operator can be combined with 8 so that the
source terms have no second derivatives. In the

radiation zone the source usually vanishes so that
the r'4„ term can usually be ignored in radiation

{2.15a)

r 'D r'4„+~r 4„+3x'~ -x'4„-r'4„=0, (2.15b)

Dr'C, , +f 'Ar'f4»+ ~r'l(1+1)( „4- SA)-r' 4»= 0,

(2.15c)

once 4, is known. The X term can be ignored in

the radiation zone since 4,-r ' and A, -y '
according to the peeling theorem. ' To find 4, we
can combine the Bianchi identities' [B6d] and [B6h],

Dr@, +-,'(l-l)(1+2)4, —SA M/r'

= --,' (l-1)(l+ 2)4„hr-420, (2.18a)

fAr f '4, r'4, +Sv-Mr

=-,' l(l+1)r'4»+r f&r'f '4», (2.18b)

with the auxiliary equation [B5h]

bgr'f '+2rf '(l —1)(1+2)v= r'f '4'-, , (2.19)

to arrive at the single wave equation

r 4fA[r f 'D(4', r)]+[ r~'(l-1)(l+2)+SMr ']4,
=S~

=--,'(l-1)(l+2)[-,'l(l+1)r '4»+fr 'A(r'f '4»)+r 'fA(r4f '4»))-r 'fb[r'f 'A(r42o)] . (2.20)

The set of equations (2.13), (2.17), (2.20) gives us,
at least in principle, a way of determining 4, and

+, and therefore (as will be shown) all informa-
tion about outgoing radiation. This procedure
fails, however, for the dipole case L=1. Equation
(2.13) remains valid but Eqs. (2.17) and (2.20) are
vacuous for l = 1. In Appendix A it is shown that
for the dipole case 4, has only a stationary odd-

parity part mhich falls off as r ', so that in eval-
uating dipole radiation the 4, can be ignored in 6,
a consequence, of course, of the fact that there
can be no dipole gravitational radiation.

B. Flat spacetime background

Mixed electromagnetic and gravitational waves

can also be considered when no strong background
curvature is present. We investigate here the
generation of electromagnetic waves by small
spacetime distortions near a point charge. The
point charge of course mill be associated with a
mass, but we need not concern ourselves whether

it is a black hole, an electron, or whatever, only

that the gravitational field of the object is not

strong. More precisely, the gravitational radius

of the object must be much smaller than all other
length scales in the configuration.

The emphasis here on a point charge rather than,

say, a dipole as the source of the background elec-
tric field is motivated only partly by simplicity.
If a more complicated source, a source with

"structure, "were considered, the gravitational
perturbations would distort the source generating
real charge currents. For a structureless point
charge, however, a change in the electric field
is more naturally viewed as a consequence of the
interaction of the gravitational perturbations and

the background field.
Formally it would seem that the flat spacetime

background equations correspond to setting M= 0
in the equations of Sec. IIA, but this clearly in-
validates the derivations and gives no useful re-
sults. Rather it is necessary to start with Eq.
(2.7) again. In Appendix B it is shown that with the
Newman-Penrose equations Eq. (2.7) can be put

in the form

WILr4, +[2@/(1-1)(1+2)] [-R-r4', + ~ l (1+1)r4',e J)

= W(S, ) +S, +S . (2.21)
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Here S„which is pure imaginary (odd parity), S„
which is pure real (even parity), and S, are source
terms given in Appendix 8 and TV is the wave op-
erator (with M=0, f=1) given by Eq. (2.8). The S,
term can be moved to the left-hand side of Eq.
(2.21) and, as for the r'4» term in Eq. (2.16), can
usually be ignored for radiation calculations. The
~, M „and r4, terms can be ignored as well for
outgoing radiation according to the peeling the-
orem, since they fall off more quickly at large
radius than r4, . Exact solutions to Eq. (2.21)
via Green's-function techniques are given in Sec.
III.

Equation (2.21) clearly does not apply to dipole
modes, but for odd parity it can be transformed
into the form

W[r4, + —,
' Q(f +p)] =S, , (2.22)

C. Gauge transformations and physical interpretation

which remains valid for dipole modes. No even-
parity (electric) dipole equation can be derived,
but this is to be expected. An even-parity l=1
source in linearized gravitation theory would cor-
respond to motions of the center of mass of the
total source. Since the equations of motion are
incompatible with such a source there can be no
electric dipole induced by gravitational perturba-
tions of a Coulomb field, and hence no wave equa-
tion like Eq. (2.21). For odd parity, dipole motions
correspond to a (stationary) rotation of the stress-
energy source and give rise not to radiation but to
a stationary magnetic moment. In the black-hole
background even-parity dipole motions a~e allowed
[and are described by Eq. (2.13)]. Since the
"source" for the black-hole case does not include
the mass of the black hole itself the center of
mass of the source can move. The electric dipole
radiation generated this way is in fact the clas-
sically expected radiation due to the small motions
of the charged black hole about the center of mass
of the black hole plus source system.

Da=0, (2.24)

and therefore can be a function only of retarded
time. We shall call transformations specified by
Eqs. (2.23) and (2.24), restricted gauge transfor
mations. The parameter a has spin-weight unity
and like other perturbation fields can be despun
and analyzed into spherical harmonics.

The restricted gauge transformations" of great-
est interest in the black-hole background are

4,-4, +2a*4O=4, a*Q/r', -
4,-4', +3a*4,=4,-3a*M/r',

', ~ '(l-1)(l+2)a*,

(2.25a)

(2.25b)

(2.25c)

(2.25d)

(2.25e)

(2.25f)

common in perturbation analysis and is particular-
ly simple here as we are dealing exclusively with
scalar quantities. Such transformations, however,
are of secondary importance since most of these
scalars e—xcept those in Eq. (2.3)—vanish in the
unperturbed geometry and hence are invariant
with respect to coordinate gauge transformations.

The second type of gauge transformation is more
interesting. It gives, in principle, six degrees of
freedom at a point corresponding to the six degrees
of freedom of the Lorentz group. " We cannot,
however, exploit this full gauge group since we
have already constrained the tetrad system by
choosing a geometrically defined "special" tetrad
system. Since 1 is geometrically defined we must
only consider transformations in the little group
of l. If a is an expansion parameter, the trans-
formations, to first order in a, which leave 1 and
the scalar products of 1, n, and m invariant are

1 —1, m- m+al, n- n+am*+ a*m . (2.23)

Since we also demand that the tetrad be parallel
transported in the 1 direction, a is further con-
strained by the relation

In interpreting solutions to our wave equations
we must be sure that any physical conclusions are
not the result of using the wrong coordinate or
tetrad system. We have defined the unperturbed
coordinate system and tetrad system, but in the
presence of perturbations, ambiguity arises in
the meaning of coordinates and tetrads. Because
of this we can make two types of gauge transfor-
mations: (i) small (the order of the perturbations)
changes in the definitions of the coordinates of the
form x" —x"+$", and (ii) small rotations of the
null tetrad.

The first type of gauge transformation is very

As a consequence of Eqs. (2.25a) and (2.25b) the
8 field defined in Eq. (2.14) is invariant with re-
spect to such transformations. Since it vanishes
in the unperturbed geometry it is also invariant
under coordinate gauge transformations. This
complete gauge invariance also holds for the field
(4', ) in the differential wave operator in Eq. (2.2),
for the field in the wave operator in Eq. (2.21) in
the case of a flat background, and for the field in
the wave operator in Eq. (2.22) in the case of a
flat background and odd parity.

This invariance is to be expected. Source terms
as those in Eqs. (2.13), (2.20), (2.21), and (2.22)
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are all invariant and all these equations can, at
least in principle, be solved to give solutions as
integrals over the sources, solutions with no

gauge arbitrariness. This would be incompatible
with any gauge arbitrariness in the fields in the
wave operators.

Of crucial importance to the interpretation of
electromagnetic and gravitational radiation is the
radial dependence of the gauge terms in Eqs.
(2.25a) and (2.25b). By the peeling theorem, for out-
going radiation 4,-r ' and 4, -r ', the radiative
parts of 4, and 4, are therefore gauge invarian-t.
It is physically clear why this is so. For a purely
radial Coulomb E field a slight "tilt" of the tetrad
gives the E field a tangential component as seen
by the tetrad, and therefore a nonzero 4,. Since
the tilt must be independent of r, by Eq. (2.24),
the induced contributions to tangential fields and

4, fall off as a Coulomb field, i.e., as x '. The
same considerations explain the gauge term for
gravitational per turbations.

In an unperturbed Schwarzschitd spacetime (or
in flat spacetime with 3f= 0}4, has the form
[36c],

@I = 2-~&'f »' [E &(]& yft &~& i(E &~& II &(]&)]

-2(-i)'(ore' " at (vr

and their Wronskian is

[8„X,] = -i((]l (l+1) .

(s.sb)

(s.4)

At large r the solution to Eq. (2.21) in terms of
these functions is

e- fat

r'

X, ((vr)fr '(S, +S,)g, {(dr)dr I; (t], (t])
i(dr'l (l + 1)

(3.5)

To calculate 4, we operate on this equation with
2"'8'/1 (l + 1) and find

2'"(-i)' 'exp(i(d(r-t)}
r[l (l+ 1)]"'

x r '(S, +S,)8, ((vr)dr, Y, (&, Q), (3.6)

homogeneous solutions of Eq. (3.1) are

8, -=(i~'r' l(-dr)j, (~rr)+(v'r'j, , ((vr)

-[(l+1)/(2l+1)!!]{u&r)"' at u&r-0, {3.3a)

X, -=(i (v'r'- l (vr)h!,"((vr)+su'r'h'"

in terms of the physical components of E and B.
All the information about the intensity and polar-
ization of outgoing radiation is contained in this
form of 4, . In particular, the time-averaged
power per unit solid angle is

where we have used the limit in Eq. (3.3b}. The
time-averaged power contained in these waves
according to Eq. (2.27) is

2

dP/dg =2m '[l(l+1)] ' r '(S, +S,)S, (((]r)dr

dP/dQ=r'T"

(2.27)

x I,Y.l', (3.7a)

Since the radiative part of 4, is gauge-invariant
we can continue to use Eqs. (2.26) and (2.27} in
the perturbed geometry; perturbations introduce
terms in these equations which we can ignore at
large radii.

III. FLAT SPACETIME BACKGROUND

-yS, , (3.2)

In terms of spherical Bessel and Hankel functions,

In a flat background Eq. (2.21) can be solved
exactly with a Green's-function approach. If we

assume a dependence e ' ' for all fields, then
Eq. (2.21) becomes

d'4/dr'+ [(d' 2i(d/r l(l+-1)/r']C-=-(S,+S,)/r,

(3.1)

4(r)e ' '=r'4, +[2Q/(1 -1)(1+2}]

x[-r&-rW, +& t(l+1}r+~]

(3.7b}

6r'hara =4,r +2''2, , (3.8b)

J4=J m*, J, =J n, (3.8c)

we can form a wave equation

w{r~,) =s,
=-2]t[l(l+1)r'J, +2br'J) . (3.9)

By comparing this with Eq. (2.21) we see that for
gravitationally induced radiation around a point
charge, the charge source S~ is replaced by the
stress-energy sources S2+S3 The stress-energy

It is interesting to compare this electromagnetic
radiation generated by gravitational perturbations
with electromagnetic radiation generated in the
usual way by a charge current J. From two of
the Maxwell equations in NP form

DrC, = --, l (l + l)4, -2vr 8, , (3.8a}
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perturbations coupled to the Coulomb field act as
an effective charge current. If both gravitational
perturbations and charge currents are present, we
need only replace S, +S3 by S2+S3+S~ in Eqs.
(3.3), (3.6}, and (3.7).

As the clearest example of this comparison we
can easily calculate the radiation when the source
is nonrelativistic (T"»T"' and all velocities «c).
In this ease the source is predominately even-
parity (S,«S, ) and

e„=4„=3A =mT"

so that

S, = -Ql (i+1)ztr T",
while

(3.10)

(3.11)

S~ = —l (l+ l)zzr'p . (3.12)

For nonrelativistic sources then, the mass-energy
density times the central charge acts like charge
density times distance to the central charge.

We can exploit this equivalence to calculate the
static multipole moments induced by gravitational
distortions of the Coulomb field of the point
charge. Since the multipole moments" are

q&m= r'+ p)mdr (3.13)

for a classical electrostatic configuration, for a
static gravitationally induced electrostatic multi-
pole they must be

q, =y r'"T,"dr (3.14)

Note that mass-energy perturbations are relative-
ly more effective at small radii in creating multi-
pole moments. This is consistent with the picture
that spacetime distortions closer to the point
char ge ar e in a stronger -fie ld region and should
produce greater distortions of the field.

In the long-wavelength limit (zd '» source di-
mensions) integrals such as those in Eqs. (3.7)
are particularly simple. For radiation due either
to charged sources or to gravitational perturba-
tions

P=2 &u"zz"~q, ~-'(i+1))l[(21+I)!!]' (3.15)

where q, is the appropriate expression from Eq.
(3.13) or Eq. (3.14). This offers an interesting
way of visualizing the manner in which electro-
magnetic radiation is generated by gravitational
perturbations. Consider, e.g., a static quadrupole
stress-energy perturbation and an equivalent clas-
sical electrostatic quadrupole. If both quadrupoles
are now given the same time dependence, the
radiation generated will be the same, at least in
the long-wavelength approximation.

W(r4, ) =2zzs„(r'J m*) . (3.&7)

In solving these equations 4, mould be found in
terms of integrals of the form frS~dr and frS, dr
Since we can integrate the derivatives in the source
by parts, in these integrals S, and S~ are equiv-
alent to

S, =-8vgr'T m*, S~ = —2m'J m* (3.18)

and we see that 4QT/r takes the place of J for a
gravitationally induced magnetic moment.

From the usual expression for magnetic mo-
ment

I rxJdV, {3.19)

it follows that the gravitationally induced moment
1s

p=2Q (rx T)r 'd V. {3.20)

This integral and the integral for the angular mo-
mentum of the stress-energy source,

This can be stated more generally and precisely.
The field in the near zone Iu&r«1 but r» source
dimensions so that the 4, term dominates in Eq.
(2.21)] will be an electrostatic one (i.e., a solution
to Maxwell's equations with v = 0) modified by a
time-varying factor. The radiation in the radiation
zone ((dr» 1) will be related to the near-zone fields
in a manner independent of whether the source is
classical or gravitationally induced. Once one
knoms the static (or near-field) influence of a
stress-energy distribution, one can ignore the
fact that it originates as a spacetime distortion
and can treat the radiation problem as if it were
classical. One can therefore vien~ the radiation
both qualitatively and (in the long-uavelength case)
quantitatively as resulting froni the time dePen-
dence of gravitational distortions of the Couloznb
field.

The similarity between Eqs. (2.22) and (3.9) can
also be exploited in order to calculate the mag-
netic moment and gyromagnetic ratio of a mass-
energy distribution rotating about a point charge.
Since this involves only odd-parity sources we
need only consider the J, term in Eq. (3.9). With
the aid of the equations of motion, Eq. (2.22) for
odd parity stationary sources, and for r» source
dimensions, becomes"

W(r4, ) = Qrs„(rc„)
=4zzQre, (rT m*), (3.16)

where T is the three vector with components T'~.

The analogous equation for the magnetic fields
generated classically by charge currents is
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L= (rx T)d V, (3.21)
32Q'

Pg = ~,",
J Y, (-,'vr, 0)f')8g(mv)f'

a m
(3.27)

give us the gyromagnetic ratio for the point charge
plus stress-energy configuration

g -=2(total mass/total charge) p/L

=4(total mass) {rxT}r 'd (r & T)d V.

(3.22)

The gyromagnetic ratio then depends on the dis-
tribution of the mass-energy sources. In the
simplest case, in which the mass-energy is totally
contained in a shell of radius a, the gyromagnetic
ratio is

g=4(total mass)/a. (3.23)

2

P (2/ )rfr 'S,B,I,=ldr (3.24)

For the two point particles of mass p. moving with

angular velocity co0 and velocity V in a circular
orbit of radius a = V/&u, the stress-energy is

T" "= (U" U"/U'r')b(r-a)b(cos&)

x[b{y ~,t)+o(y ~,t-v}], -
U' = y = (1—V'} '", U~= ~,y . (3.25)

If this expr es sion is used in the def initon of S, and

only the highest-order terms in m are kept, we

find that S, =O for m odd, that

S, = -2Q p, my 'a 'm'
Y, (-,' m, 0}

for m even, and that

(3.26)

(This result was also derived, with a totally dif-
ferent approach by Cohen et aL.") Since the

rotating matter is more efficient in producing p.

at small radii than in producing L, Eq. (3.23) does
not hold for distributed sources, but in fact is a
minimum for sources of radius a provided all the
stress-energy in the source rotates in the same
sense. If the sources contain stress-energy ro-
tating in opposite directions, even negative gyro-
magnetic ratio are possible.

A further interesting application of the equations
in this section is the evaluation of the synchrotron-
like radiation which would be generated by (un-

charged) point particles moving at ultrarelativistic
velocities near a point charge. Assume that two

equally massive particles move in the same circu-
lar orbit 180 out of phase. The radiation coming
out at high frequencies (&u» orbital frequency
=u&o), and hence high mode numbers (I and m» 1),
will be predominate1. y even-parity, so by Eqs.
(3.7) the power at high frequencies will be

c
P„„„,—Q'p'-~, 'y (~/~. )d(~/u. )

0

Q2~2~ 4y4 (3.30)

In the case of ordinary synchrotron radiation —for
which the charge resides on the ultrarelativistic
particles —the spectrum is qualitatively similar,
but

Q2 2 4 (3.31)

The gravitationally induced synchrotron radiation
is then smaller than ordinary synchrotron radia-
tion by tj, '/a', a factor which must be very small
for the assumption of flat spacetime background
to be valid.

(In the above analysis we have ignored the dis-
tortions of spacetime due to whatever forces are
holding the particle in orbit. If the constraining
forces are massless ropes, they generate elec-
tromagnetic power with the same spectrum
[-Q'p, 'u, 'y(u&/u, )] as the point particles, but the
power is expected to be somewhat smaller than
that generated" by the point particles. For real
massive "ropes" the power generated would ex-
ceed that of the particles, but rea/ ropes would

in any case break. )

IV. BLACK-HOLE BACKGROUND

A. Green's-function solution

We have seen that a radiation calculation in the
Schwarzschild background requires a solution of
both Eqs. (2.13) and (2.20). To deal with these
equations we assume a time dependence e ' ' and
define

for a given frequency u = ~m ~u&, » ~, and a given
multipole index l.

Equation (3.27) can be simplified with high-
frequency approximations: (i) For frequencies
much greater than the critical frequency u,
=3y'~„ the Bessel functions in g, (m V) can be
evaluated with the Debye approximation;" and (ii)
Y, (2 v, 0) can be estimated with Stirling's approx-
imation, for /» 1. If the simplified P, is then
summed over I up to I =a/&u„ the result is

P(&u) =2(3/v)"'Q-'p, 'y~ '(~ '(u }"'e ' ' "
for (u» ~, . (3.28)

For u» ~, but &u«u, the expression in Eq. (3.27}
can also be roughly simplified:

P(u))-Q'p, '(u, 'y((u/(o, } for ~,«u) «u), . (3.29)

The total power radiated is therefore of order
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ge -fWt —+8

4,e
—ftalt —r3f -I/2 y

so that the wave equations become

(4.1a)

(4.1b)

2Q( i-)'(u exp[i(u(r t-)]

3M[8„, , 8„„,]

X ——e g,„dr, (4.7a)

d'3 u)'-i(u(2-6M/r)/r l (l+ 1) QSe
dr' f' fr' 3Mfr

(4.2)

d'g ~ 'r'- 4i-~(r- 3M) 4-(l -1)(l+2)-16M/r
so that

2r b~x —f„, ll,„)dr. (4.7b)

To form a Green's-function solution we need the
homogeneous solutions corresponding to ingoing
waves at the event horizon and those correspond-
ing to outgoing waves at spatial infinity:

f3I2& i&or 8 -f& -Iver+
In in

at r-2.V, r~- -~ (4.4a)

4, =e/r +Jr%1,/3M

2Q(u(-i)'exp [i(u(r t)]-

j ( S,/f r)s,„-dr
[3,„,3, , ]

tI 2'&, if"'W,.d-) (4.8)

(4.4b)

Here r*=r—2Mln(r//2M-1), and t+ r* represents
advanced (+) and retarded(-) time. "

As in Sec. III. formal. solutions can be con;
structed from the homogeneous solutions:

Once this solution is known, e.g. , by numerical
integration for g„, and 3,„, the time-averaged
power can be computed from Eq. (2.27).

B. Mathematical methods for approximate solutions

~+-$ttl t
e=

Qe ' ' j ( Se/f r)3,„—dr
3Mr ""' [8„„3„„,]

e-jhow tf j/3

3r

f"'e ' ' f( 2r'S, /f'")-g, „dr

(4.5a)

The solution in Eq. (4.8) requires in general a
numerical computation since the homogeneous
solutions of Eqs. (4.2) and (4.3) are not know in
terms of tabulated functions. %'e can, however,
use a scheme similar to one described by Facker-
ell" to find solutions in the nonrelativistic limit
(specifically in the limit u&M«1) as well as low-
order relativistic corrections.

This method involves splitting the range of r
from event horizon to infinity into three zones:

If M/r is very small, Eq. (4.2) becomes Eq. (3.1)
so in the limit r»M, approximate homogeneous
solutions for 3 are 8, and 3C, . The analogous
r»M solutions for P are g, and K, given in Table I.
Since we are only interested in 3„„,and P„„, in the
radiation zone we can choose the normalization
of these functions so that 3„„,=X, and P„„,=Q, in
Eqs. (4.5), for the radiation zone.

A necessary step toward the solution is the cal-
culation of 4, from 4'

2 according to Eq. (2.17),
for which we will need

D(r--'e-"'X, ) = ~~-'(Z -1){~+2)(-~)'

&& exp [i u(r t)], &ur» I. . (4-.6)

With this and the large-~r approximation for K,
the solutions in the radiation zone are

Region I 1-2M/r «1 no restriction on ar
Region II ~r«1-2M/r no restriction on M/r

Region III M/r«1 no restriction on ur .

Region I is the neighborhood of the even horizon.
If only the dominant terms in f ' are kept, the
homogeneous differential equations for P and 3 are
readily solvable. In Region II the ~-dependent terms
in the differential equations (4.2) and (4.3) can be
ignored so that we have in effect the static equa-
tions. The homogeneous solutions to these static
equations can be written in terms of associated
Legendre functions. In Region III we can ignore
iV/r terms and we are left with the flat spacetime
equations, which can be solved in terms of spher-
ical Bessel functions. Since the three regions
overlap (e.g. , regions I and II overlap for ur
«1 2M/r«1), solut-ions can be matched from one
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TABLE I. Properties of the homogeneous solutions. 'b

Region of
validity

Region I
1 —2M/r «1

Region II
~r && 1 —2M/r

Homogeneous solutions of Eq. (4.2)

(»& f -i(dr*

= (r/M )f P» (r/M —1)

= (r/M)f~ (!)(!')(x/M 1)—

Homogeneous Solution of Eq. (4.3)

w-&12e&~r +f
/3/ 2e !ur!-

1

A (r/My' 1/2P(2) {r/M 1)

g&&= (r/M)f ~ Q{2'j(r/M —1)

Region III
M/r«1

&!!!= ((&u r l~r)j-, (&ur)+~ r j, , (&ur)

(l +1)
=4 {~r)- {~r)'+' as cur- p{2L+1)".

I

ts»tf = (i(d r -Labor)h» ((dr) +co r h» i((dr)

—=&» (~r) - 2 (-i ) ~re as cur

t(I)ftf=t2L (l —1)cur —i(l —1)( r —(osr ]j& (wr)

+(co r +i~ rs)jg f{~r)
(L+ 1) (L+2)

=8» («)-
2(2L + 1)'. '.

(f 'r)»+~ as ~r p

gf»f=[2L (L —1)~r-i(L-1+ r -~ r ]h»' (~r)
+ (&u r +(&a ~ )hI' (&ur)

$Q» (~r) 2( i)» + i~ 2r2e cur

Region I

Region II

Region III

Region I

Region II

Region III

Ingoing and outgoing homogeneous solutions

Ingoing solutions at r = 2M

2(l +1)(l +1)'.
(2L —1)f f (2L + 1)' f

{L +1)(L —1) '.

(2l —1) f- f (2L + 1) f 1

=g» (~r)

Outgoing solutions at r

2il (2L —1)'- '. (2l +1)' '
((uM)» 8f

—i L (2l —1) f. f. (2l + 1) f. f.

(ca)M )

Wronskians

(L 1){L+2)(L+2)'
2(2/ —1)!!(2l + 1)!!
(l + 1)(l + 2) (l —2) ~

»+ 2 A

2(2l 1)f. f. (2L+1)f. ! (" ) 411

l (l —1)(2l —1).''. (2l + 1) ' '
(uM) ' (/

L (l —1)(2 l —1) ' ' (2l + 1) ' '

( M)

= &» (xr)

+k;„,B„I]= —i~l(l +1) &0m, ft,uf]=- (L + 2)1
out

~Here f = 1—2M/r.
r*=r + 2Ãln(r/2M-1).
Wavy signs = indicate that the omitted terms are smaller by a factor of order (mM)", e.g. , in Bm the coefficient of P»»

is of the order (~M)3'+2.

region to another and approximate ingoing and out-
going solutions can be constructed over the full
range of r*. The details of this process are
summarized in Table I.

The approximate ingoing solutions and%ron-
skians can be used in Eq. (4.8) to calculate non-
relativistic radiation. In the approximate so-
lutions higher-order terms can also be kept, e.g. ,

terms of order M/r, M'/r', . . . , in Region III.
If such solutions are used, low-order relativistic
corrections to the radiation can be computed.
Such calculations are very tedious but can be
somewhat simplified by the following observation:
Suppose in the integrands of Eq. (4.8) we keep all
corrections of order &dr, but none of order M/r
[This means setting M=0 in the sources and taking
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3„, =8, (&ur) and tl,„=g,(rur). j The right-hand side
of Eq. (4.8) vanishes in this case, for any source,
to all orders of cur. This, of course, is not sur-
prising. Ignoring M/r corrections is tantamount
to using Eqs. (2.12), (2.17), and (2.20) in the flat
background (M= 0) limit. In this limit they merely
provide tmo equivalent ways of calculating g „and
Eq. (4.8) just represents the difference. No infor-
mation is gained about the perturbations of the
geometry on the right-hand side of Eq. (2.7) and
hence C, cannot be determined. [A slight subtlety
in this is that the result of using M=0 in Eq. (4.8)
need not g priori give a vanishing result without
the use of the equations of motion. The forms of
S& and S~ have carefully been chosen so that in
fact the equations of motion do not have to be intro-
duced; the right-hand side of Eq. (4.8) vanishes
directly once M is set to zero. ]

With this observation it is clear that nonvanish-
ing results come only from terms containing M.
The lowest-order nonvanishing results are those
in which only M/r correction terms are kept, so
that

3,„= (& -1)!(1+1)
(2 l -1)!!(2 l + 1)!!

that of even parity and l=1, the electric dipole
case. In this case 4', vanishes because there is
no gravitational even-parity dipole. (More pre-
cisely, 4, is removable by a restricted gauge
transformation, as demonstrated in the beginning
of Appendix A. ) We can therefore take e= r4

The simplest and most interesting case is that
in which the dipole is nonrelativistic. For this
case

tt

Se = —l(l + 1)r'Dr 422

= -2m's„(r T,", ) .

(4.10)

The electromagnetic fields can be found, of course,
from Eq. (4.7a), but it is more instructive to
compare the source for W(6) in Eq. (2.13) with the
classical source in Eq. (3.9) and to notice the
equivalence of

Since Se is to be used in an integral [Eq. (4.7a)]
with 8,„/r ~r, then by integration by parts it is
equivalent to

(4.11)

x I
Ml"' —" f"'s P —-1)

, M ' M
S~ = -2nr'p,

(Q/3M)Se = 2v(Q/M) r'T" .
(4.12)

((ur)"' 1-(l+1)—(l+1) „, M
(2l+1)!! r

and similarly

(4.9a)

. (4.9b)

Thus (Q/M)T" is-an effective charge density
in the nonrelativistic electric dipole case and we
can immediately conclude that the electromagnetic
fields generated by the gravitational perturbations
are those of an induced electric dipole:

The resulting integrals will be proportional to M
and this M factor mill cancel with the leading M '
factor in Eq. (4.8), so that the result for 4, is
independent of M. This M-independent lowest-order
solution is of course identical to the long-wave-
length (~r- 0) limit of Sec. III, so that the radi-
ation to this order is precisely that described by
Eqs. (3.14}and (3.15).

To get relativistic corrections me can use the
techniques of this section to calculate a correction
factor to the source integrals of order M{1
+M/R . + aM+ ' ) and therefore corrections tosource

the radiation of order 1+M/R, „„„,, + &uM+ ~

These then must be combined with the correction
factors of order (~A„,u, c, ), (cuR,.„„,c„)', . . . from
Sec. III.

P,„„„c„„= rp, . „„„dV

= -(Q/M) rT" d V . (4.13)

Now let us define a "classical" dipole moment
for the black hole plus source system. The center
of mass of the system relative to the center of the
black hole is at

Rc„, = rT" dVM. (4.14)

Since the charge Q, residing on the black hole, is
located at —Rc,„relative to this center of mass,
a classical electric dipole

classical @ c n&.

C. Electric dipole radiation

The one case in mhich the equations in the
Schwarzschild background are simple to use is

(4.15)

is associated with the system and this classical
dipole precisely corresponds to the fields pro-
duced.
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For 1=1 and even parity we have then a simple
picture of the origin of the electromagnetic radi-
ation. The black hole is not stationary for an even-
parity dipole perturbation but rather it moves
about the center of mass of the black hole plus
source system. The radiation emitted, at least
in the nonrelativistic approximation, is just the
classically expected radiation from the resulting
time -dependent dipole. Relativistic corrections,
which can be calculated from Eq. (4.7a) with the
techniques of Sec. IV B, also take into account the
distortion of the Coulomb field of the black hole.
These effects on the dipole are smaller by a factor
of order uM

APPENDIX A: DIPOLE GRAVITATIONAL
PERTURB ATIONS

D=B„, E=s„,'fB„. -- (A1)

Since we are considering only odd parity and l=1
we immediately have several simplifications: (i)
All spin-weight + 2 quantities vanish, thus 4,
=4+, =A. =v=0. (ii) We are dealing only with the
imaginary (odd-parity) parts of all despun quanti-
ties so the perturbations of real variables must
vanish, e.g. , U~ =p~=0. With these simplifica-
tions we have from [85i], [85j], and [84g] that

A simple argument suffices to prove that, in
our formalism, even-parity dipole gravitational
perturbations of a Schwarzschild black hole can be
removed by a restricted gauge transformation of
the type discussed in Sec ~ II C: It is know that
there are no physically real (non-gauge-removable)
even-parity dipole perturbations, "hence some
gauge transformation will remove the perturba-
tion to give the unperturbed Schwarzschild geom-
etry. Since the unperturbed geometry, in our
formalism, is described by the special system of
Eqs. (2.2) and (2.3) and since all physically equiv-
alent special systems are related by restricted
transformations, the gauge transformation which
removes the perturbation must be a restricted
one.

In the remainder of this appendix we consider
odd-parity dipole perturbations. These are known

to correspond physically to a small addition of
angular momentum to the gravitational fields, so
that the geometry is gauge-transformable to a
stationary form. " We show here that in the
special system an appropriate gauge exists in
which 4', is stationary and ignorable in radiation
calculations.

To facilitate the proof we use here a retarded-
time coordinate u-=t -~* so that

r4', = (-T + (u/r),

(d= -rp, ,

so that

4, =-4p~.

(A2a)

(A2b)

(A2c)

(AS)

~yQ~ =y'4, +3M p. ,

Dr'4', = -res- 3M'/r'

can now be combined with (A2c) to give

(A5a)

(A5b)

(Aoa)

or

D X% 1
+VP+r'-r'4'~

= (-,'+M/r)A/r-', (Aob)

and hence

W, = --,' (1+M/r)A/r +F(u}/r', (A7)

where &(u) is an arbitrary function. Finally, with
the special gauge transformation of Eq. (2.25b)
the time-varying part of 4', can be eliminated by
choosing a = -+(u)/3M.

APPENDIX B: WAVE EQUATIONS
FOR A FLAT BACKGROUND

In this appendix the derivations of wave equa-
tions (2.21) and (2.22) are outlined. The starting
point is Eq. (2.7), rewritten as

W (rC', ) = 2@(v--,' Lp +-
&u */r ) (81)

by use of [84h]. [Here L = l (l+ 1) and 8 will de-
note (l-1)(l+2).] The terms on the right-hand
side can be manipulated, using (NP4. 2j) and
(NP4. 2m) (which are [85h], [85k], plus source
terms), to give

m~ Lp+ & ~*/r = 2'(2r '&-r'a-ZX+Zr4„

--, 8 T*-Zr4, +2~4, ) .

A wave equation for ~ is now formed by eliminat-
ing & in (NP4. 2g} and (NP4. 2m) (or [85e] and

The Bianchi identities [86a] and [86f] then give
us

Dr%, =O, (A4a)

f 'hr'fW, +r4,s 3Mr '-(r+~/r)=r 'LrW,

(A4b)

and therefore +,r'=A. =a pure imaginary "constant"
(i.e., a function of e, p only). Two of the re-
maining Bianchi identities [86g] and [86c] or
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[B5m] plus source terms):

8 (&) +2&r~+~- z CT*=2r&rC, o+L& {B3)
When this equation is combined with Eq. (Bl) the
result is

-Zr'4, +2M, =r Dk, Z-M;W(~, )

-Zr4„+2r'Dr '&r 4~,

+ Lrar4„-2r~r4„-Lr4„.

W(r4, —2QZ 'A, ) = -2QZ '(2r&r4, +Zr4„

Zr-i, +2', ) .

(B4)

(B5)

Next, Eqs. (2.9a) and (2.9b) are used to rewrite
the first two terms on the right-hand side of (B5):

r'D4';Sruti, = ~ W(y4~)- ~tZS)

The goal is to have only source terms remaining
on the right-hand side. To achieve this, the last
two terms on the right-hand side in Eq. (B4) are
reexpressed, first by use of Eqs. (2.18a}and
(2.16b), with M = 0:

—-' Lr'Dr 'S (B6)

Finally, Eqs. (B4), (B5), and (B6) are combined
to give a wave equation with only stress-energy
terms on the right-hand side:

W[r4, -2Qg '(A, +r4, ~ Lr4Ioa)] =6

2QZ '(2r'-Dr 'nr'4„+ Lr'DC„,'gS, -~ —Lr—'Dr 'S „). (B7)
The equations of motion, Eqs. (2.15), can be used to effect two simplifications of the source terms: (i}

expressing all second derivatives in terms of the W operator, and (ii} separating the remaining terms as
to parity. Both conveniences are realized when the source is put in the form

S=S, +S, +S, ,

S, =W(2QZ '[-r4„+-,' l(l+1)r(4„+A)]),
S, = -(-,' Q)(2r'D4 &„&+4r'A4L„l+ r4l„l -Sr@i„l),
S, =-Q[r@i»l+ r4(„) -4rC(„)+ ,'l (l+1)r-(C„+SA)] + QZ '[-4r'D4(„)+l(l+1)r'D(-4„+-,'4„+-',A)],

th

Bil=~( 0- ii» (~~) =2( I~' i~)

(B9)

Since real and imaginary parts of despun quanti-
ties correspond to even and odd parity, and since
4,&

=4,*„ it follows that S, contains purely odd-
parity terms and S, purely even-parity terms.

For purely odd-parity perturbations Eq. (B7)
can be put in a more useful form. The odd-parity
parts of (NP4. 2m), (NP4. 2q), and (NP6. 10g) (or
equivalently the imaginary parts of [B5k], [B5n],
and [B4g] plus sources) give

-~-re, +-,' Lee„=-,' g(1 +7)-rC„

so that for pure odd-parity perturbations Eq. (B7)
becomes Eq. (2.22).

Since Eq. (B7) is clearly inapplicable to l=1
modes, the above simple derivation of Eq. (2.22)
is valid only for l&1. It is, however, possible to
start from Eq. (2.7), assuming odd parity at the
outset, and to derive Eq. (B9) without requiring
l& 1 at any step. Equation (B9) is then in fact valid
for magnetic dipoles.
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