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Effect of the gyro's quadrupole moment on the relativity gyroscope experiment
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We show that the quadrupole moment of the gyro affects the drift rate of the presently planned
Stanford gyroscope experiment by (0.0254"/yr)sin2a, where a is the angle between the gyro's spin

axis and the orbit plane. Thus, if the gyro's spin axis is off by more than one degree from being either
in the orbit plane or perpendicular to the orbit plane the drift rate will exceed 0.001"/yr, which is

the expected accuracy of the experiment, and, hence, this predictable drift rate will have to be taken

into account to preserve the expected accuracy of the experiment. We also calculate the precession of
the orbit of the gyro due to the gyro's quadrupole moment and find it two orders of magnitude
smaller than the precession of the orbit due to the gyro's spin.

I. INTRODUCTION

A new test of general relativity, proposed by
Schiff, ' ' is the measurement of the precession
of the spin of a gyroscope in orbit about the earth.
A team of physicists and engineers in the Stanford
physics and aeronautics departments expect to
carry out this experiment' ' in the near future by
launching a satellite containing two pairs of super-
conducting gyros in a polar orbit 500 miles4 above
the earth. The spin of one pair wi1.1 be parallel to
the earth's axis and the spin of the other pair will
be perpendicular to the plane of the orbit. Although
the effect of general relativity on the precession
of the spin of a gyroscope has been thoroughly
discussed in the literature, ' "the Newtonian effect
of the gyro's quadrupole moment on the precession
of the spin has been less thoroughly discussed.

In Sec. II we shall calculate the quadrupole mo-
ment of the gyro assuming that it is a perfect

sphere at rest and becomes distorted when it is
spinning. In Sec. III we find the precession of the
spin axis of the gyro due to the gyro's quadrupole
moment. In Sec. IV we find the precession of the
orbit due to the gyro's quadrupole moment and
compare it to the precession of the orbit due to
the gyro's spin. Finally, we give our conclusions
in Sec. V.

II. CALCULATION OF M, /r„AND 51/I

Let us consider the gyro at rest to be a perfect
sphere of radius r„with mass m and mass den-
sity p. We shall denote the coordinates of the
point occupied by a particle in the unstrained state
of the body by x, y, and Z, and the coordinates of
the point occupied by the same particle in the
strained state by x'=x+u, y'=y+v, and z'=Z+w.
If the gyro rotates with an angular velocity ~ about
the z axis the complete expressions for the dis-
placements are given by"

and
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In the above E is Young's modulus, 0 is Poisson's

ratio, and 0 is the compressibility. "
Using Eqs. (1) and (2) we obtain
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The moment-of-inertia tensor for the spinning gryo
is given by
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dv'(r"6;J- x x~) p(r'}, (5)
cent from one sample of fused quartz to another.
Using the above values in Eqs. (4) and (9}we obtain

where r'=(x" +y" +z'')' ' and the integration is
over the distorted sphere. The quadrupole mo-
ment of the gyro is just a constant times M, where and

dro/r, =6.38x10 '

M/I = 6, 09 x 10 ' .

(14)

(15)

dv' x"—3z" p r' . 6

ln the above integration we can replace p(r')dv'
by pdV since the mass of volume element dV goes
into the volume element dv'. We thus get, after
neglecting u', v', m' terms,

M= p dV(xu+yv —2zw), (7)

where the integration is now over the sphere. We
also have

ln other words, we see that for fused quartz dd/I
is 4.5% smaller than hr, /r, . In fact, for all real
solids, it is clear from Eq. (9) that M/I is less
than &r,/r, . The difference becomes smaller the
larger the value of 0. For an ideal incompressible
solid, for which 0 is 0.5 and thus the compressibil-
ity k of Eq. (3) is infinite, the correction vanishes,
as it should because the density of the medium is
constant and the result has to coincide with the
equality between M/I and dr, /r, in an unstrained
oblate spheroid.

I=-5mso =
5 r~o (8)

III. PRECESSION OF THE SPIN

6r, 1 1 —2o

r, 14 1+o/2 (9)

In the above integration only the integrals of the
type

~ 'x'dV= —'m~ '

r'72dv= 4 ~~'21 0

(10)

Using Eqs. (1) and (2) in (7), and then Eqs. (3) and
(4), we obtain

p&a 'r„' (35K + 26 p.)
I 14 p(19k + 14p, )

Although the precession of the spin of an oblate
spheroid in a Newtonian gravitational field has
been studied in various astronomical" and space
contexts, "we shall derive here the precession
of the spin of a gyro in the gravitational field of
the earth due to the gyro's guadrupole moment,
using a method that extends naturally for calcula-
tions in Sec. IV.

Let R be a vector (with 8' =X'+ 1"+2') from
the center of the earth of mass M to the center
of the gyro and let r' be a vector from the center of
the gyro to some point in the gyro. Also let n~ =Z
be a unit vector in the direction of the earth's spin
and n+' =z' be a unit vector in the direction of the
gyro's spin. The potential energy, V(R), of the
gyro in orbit about the earth is given by

x P dv =
1o5 fl''vo,

x'dv =
35 vxo

V(R) = — dv' p(r ') C (R + r '),

where'

(16)

p=2.2 g/cm',

E = 7x10" dyn/cm',

0 =0.16 .

(11)

(12)

(13)

were needed. Contrary to what is stated in Refs.
3 and 4, it should be noted that M/I does not equal
dr, /r, This is because .the mass density, p(r'),
for the distorted sphere is not uniform. If we had
an oblate spheroid of uniform density then it is
easy to show that M/I would be equal to br, /r,

For the relativity gyroscope experiment4 the
gyro is to be a sphere of fused quartz 4 cm in
diameter spinning 200 rev/sec. At a temperature
of 2 'K fused quartz has the following properties"'":

4(R+r') =C(R)+x, +zx x~, , + ~ ~ ~,

(18)

where the derivatives are evaluated at r'=0. We
also note that

m = dv'p(r'), (19)

GM 1 1
4 (R) = 1-—,Z, P,(ense}-—,&,&,(cos e)-

(17)
and e is the angle between n~' and R. Expanding
C(R+r') we get

The above values can vary slightly by a few per- d —= dv'r' p(r') =0, (20)
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D„-=dv'(r "5;,—3x x,') p(r'),
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Usings Eqs. (18)-(22) in Eq. (16) we obtain

(21)
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(23)

where we have used the space set of axes for ~.
The Euler-Lagrange equations are
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Since n+' is perpendicular to n" we may write
Eq. (35) as

$24
V(H) = —m4(R) + 6D;i-
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(24)
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or in vector form as

(36)

For the gyro spinning along the z' axis we have

D» =D» =D» =0 and D„=D». Then using Eq. (23)
we have

n~' = 0 && n~', 0 =—(n ' ~ v) v4 .Iu (37)

2 M= D =- D33 2D1 j 2D22 (25) We shall now consider the result due to

Thus using Eqs. (22) and (25) in Eq. (24) we have

Q 2@
V(H ) = —m C (R) + 4 D (26)

Xi Qi jXj (27)

Let x, y, z be a set of axes with the origin at the
center of the gyro and parallel to the X, Y, Z axes.
Then we have

fl =—(n~" v) ver'l
I (d

where

4' (R) = GM/8 .

We then have

GMdd 3(n+" R) R
0

(39)

(40)

where ai j can be written in terms of the Euler
angles P, 8, P and

Q 24 82@

aX, eX7 BXQX7 0

In the primed system we have

nial =(0, 0, 1),
while in the unprimed system we have

n =a;n'i ji

= g3i

=(sin8sing, —sin8cosg, cos8) .

(28}

(29)

(30)

It should be noted that Q, has the same form
(though not the same direction} as the Lense-
Thirring term, ' Q,T, and hence the average value
over one period will also be similar. We thus
get

2I ua' 1 —e')'~'

where a, e, and n are the semimajor axis, eccen-
tricity, and unit vector in the direction of the or-
bital angular momentum, respectively.

The secular drift rate of the gyro due to its quad-
rupole moment is given by

We thus obtain

8 @ (1)r (2)& 8

+0.) &0.)"' "j ax, aX,
(31)

The Lagrangian for the gyro in orbit about the
earth is

& = 2m v'+-,' Iu'+ m4 (R)

~)( 3 ~ GMI"-(=
4 f ~us(I P)a&2 s'" o'

~ (42)

where n is the angle between n~" and the plane of
the orbit. Note that ~sin2P

~
=sin2a, where P is

the angle between n+" and n. The result of Eq. (42)
is a factor of 2 smaller than that given in Refs.
3 and 4 but is consistent with the mean secular
torque of Ref. 15.

For an orbit 500 miles above the surface of the
earth we get

2() «)
BX 8Xj

(32) =0.0254" yr . (43)

Then using Eqs. (30) and (32) we get
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It should be emphasized that Eq. (42) is very
general in the sense that the dd refers to a quad-
rupole moment regardless of what caused it. Thus
it could be used to analyze the effect of a quadru-
pole moment due to nonsphericity in the manu-
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IV. DIFFERENTIAL PRECESSION OF THE ORBIT

The potential energy for the gyro in orbit about
the earth is

a'4
V(H) = —mC (R) + —Dn" n'

BX 8Xi f

which can be written as

(44)

factured gyroscope. Here we have concentrated
on the effect due to the in' insi|." quadrupole mo-
ment due solely to the gyro's rotation. Of course,
both these effects will have to be taken into account
to preserve the expected accuracy of the experi-
ment.

ential precession of the orbit of the gyro with
respect to that of the housing would be given by
the term &0, where

&~= ~"+i' "+i" (53)

and

5H„„3;,=(60xR,„„;,) & .

36$"'m
= 8.18 x10 3 cm/yr, (55)

The vector ~B.„b,, gives the displacement of the
orbit of the gyro from the orbit of the housing at
the position R.„,, For a circular orbit 500 miles
above the surface of earth we have

V(R) GmM/R+ V2r(R) + V2(R) + ~ ~

where

GJ2mM 3(n+'r R)'
2R3 A

(45)

(46)
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3GmMj, 3.33x10 "cm/yr .4a'L

(56)

(57)

Gj,mM 3(n~" R)'
2+3 R2 )

and we have used

(47) Thus the effect of the gyro's spin on the precession
of the orbit is two orders of magnitude greater than
that due to the gyro's quadrupole moment.

mj, =~=-'D . (48)

Since V,(R) has the same form as Vo(R) the term
0' for the precession of the orbit due to the gyro's
quadrupole moment will be of the same form as
Q~~~, which is the term for the precession of the
orbit due to the earth's quadrupole moment. ' We
thus have

-«& —3G mMj, /L
4&3(1 &2)3/2

x(2(n n~' ) n+' +[1—5(n n~' )'] nj,
where L is the orbital angular momentum and
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0
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We also note that the terms' for the precession of
the orbit due to the gyro's spin are given by

3G$"'I m [n~' —3(n n~') rT]
2 c 'a3(1 —e2)3/'

—3GS"' S'" /L,
2c2g3 ( 1 e2) 3/2
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+[n' ~n" —5(n n~") (rT n~' )]n), (52)

where $~' is the spin angular momentum of the
gyro and is equal to I~ and $ " is the spin angular
momentum of the earth.

Let us now consider an idealized experiment"'"
of the same gyro at the center of a nonrotating
spherically symmetric housing. Then the differ-

3J GMn(4(1+)27(sin2e (58)

where e=y ——,
' ~ and y is the angle between n and

n ". For a circular orbit 500 miles above the sur-
face of the earth we have

( n,„)= (3.2 87 '/day)
(
sin2 e ) (59)

Thus, if the orbit is off by more than 0.024' from
being a polar orbit, n will precess by more than 1'
in a year. Furthermore in actual practice the
gyros will be aimed at stars" whose locations may
not be exactly in the directions perpendicular to
the plane of the orbit or parallel to the plane of the
orbit. However, even if the drift rate due to the
quadrupole moment of the gyro is greater than
0.001 "/yr the relativistic terms can still be
measured to the required accuracy. 4

V. CONCLUSION

We have analyzed the effect of the quadrupole
moment of the gyro on the relativity gyroscope
experiment and found the effect to be important
if the spin axis of the gyro is off by more than one
degree from its planned orientation. Even if the
gyros whose spins are to be perpendicular to the
plane of the orbit are in perfect alignment initially,
they will not remain that way because the orbit
will precess due to the earth's quadrupole moment.
Initially, let n' be in the n direction where n„.
= Qr rxn and Q(™can be obtained from Eq. (49) by
changing j, and n' into J, and n ', respectively.
We then ha.ve, after use of Eq. (50),
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We have also shown that M/I is about 4. 5/q

smaller than 6r, /r, and not equal to hr, /r, as has
been previously assumed. "We also have an ex-
pression for the drift rate of the gyro which is a
factor of 2 smaller than that given previously. "

Finally, we have shown that the precession of the
orbit of the gyro caused by the spin of the gyro is
two orders of magnitude greater than that caused
by the quadrupole moment of the gyro.
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