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In the quark model, a large SU(3)(3 SU(3) configuration mixing appears at P, = 00 as a relativistic
effect due to the high internal velocities for quarks inside hadrons. This mixing describes the relative

alignment between the nucleon helicity and the helicities of the quarks. Since the quark-parton model is

understood in a frame where the nucleon has a large momentum, we propose to take into account this

large mixing in the calculation of the spin-dependent effects in deep-inelastic scattering of a polarized
lepton (electron or muon) by a polarized nucleon. The scaling of the spatial wave function is ensured

by the I.orentz contraction. Unlike a previous quark-parton model calculation by Gourdin, we take into
account the configuration mixing in the estimation of the singlet contribution to the asymmetries. We
express our results in terms of the SU(3) SSU(3) mixing parameters. Assuming that the nucleon is a
superposition of irreducible SU(3) (3 SU(3) representations allowed by the quark model, we can express
the singlet contribution in terms of the F, D couplings of the low-lying octet axial-vector matrix ele-

ments. The neutron asymmetry appears to be proportional to the deviation of F/D from the SU(6)
value 2/3. As expected, the Bjorken sum rule for the difference between the proton and neutron
asymmetries is satisfied. In our specific model, where the spin part of the wave function at rest is ex-

pressed in terms of free Dirac spinors, we have F/D = 2/3, so that we predict a large positive proton
asymmetry and a null asymmetry for the neutron, A~ = 3IG~/G~ l, A" = 0.

I. INTRODUCTION

Electron or muon polarized beams together with
polarized targets will be available in the foresee-
able future. Therefore, it may be interesting to
investigate the predictions of the quark model for
the structure functions g(q', v), d(q', v), and the
resulting asymmetries in deep-inelastic scatter-
ing of a polarized lepton by a polarized nucleon.

In the frame of the quark-parton model, various
authors' ' have investigated the scaling properties
of the structure functions and have deduced sum
rules previously obtained from current algebra by
Bjorken. ' In these papers the absolute value of
the structure functions and asymmetries is com-
puted by assuming the nucleon as composite of
three quarks in the usual (56, L = 0') representa-
tion of SU(6). In this way, they obtain a null asym-
metry for the neutron and a large, positive asym-
metry for the proton, proportional to the SU(6)
value of the nucleon axial-vector coupling, ~G&/
G

~

= —', . Qourdin has made also a more complete
quark-parton model calculation, relating the octet
contribution to the asymmetries to the low-lying
octet axial-vector matrix elements. His calcula-
tion satisfies the Bjorken sum rule and, in this
way, he takes into account phenomenologically the
configuration mixing for the octet part. As we
will show, however, this estimation is not fully
consistent since he does not take into account the
configuration mixing in the calculation of the sin-

glet contribution.
The quark-parton model is formulated in a

frame in which the nucleon has a very large mo-
mentum, for instance, the center-of-mass frame of
the reaction e P-e X.' It is assumed that, in
such a frame, the electromagnetic current inter-
acts with the quarks as if they were pointlike.
The structure functions can then be written in
terms of the absorptive part of the pointlike for-
ward photon-quark elastic amplitude and the nu-
cleon wave functions at large momentum. Since
the interaction is pointlike, the quark structure
functions present trivially the scaling property.
We will show that the nucleon wave function at
P, =~ also presents this feature. We will see
that, by boosting the hadron wave function at rest
to a frame in which it has a momentum P, = ~,
the I orentz contraction of the wave function en-
sures that it depends only on the transverse mo-
menta and on fractions of the longitudinal total mo-
mentum, i.e. , it presents the scaling. This point
has been emphasized by Feynman using intuitive

arguments. '
The structure functions and asymmetries which

are involved in scattering of polarized beams by
polarized targets will be determined by the spin
structure of the nucleon wave function at P, = ~.
As has been emphasized by current algebraists,
the nucleon wave function at P, =~ does not belong
to a pure representation (56, L =0') of SU(6) [or,
for a definite helicity k =+ ~, to the representation
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(6, 3) of SV(3)(2) SU(3)], but it has a, more compli-
cated structure in terms of a linear combination
of SU(3)(3 SU(3) irreducible representations. This
phenomenon has been called configuration mixing. '
The configuration mixing lowers the static SU(6)
value ~G„/G~~ = ~ in the direction suggested by
experiment.

We have shown elsewhere' that such a compli-
cated structure at P, =~ comes from the simple
hypothesis that, even in the hadron center-of -mass
frame, quarks are endowed with highly relativis-
tic velocities. This hypothesis is suggested by
the harmonic oscillator quark model and the mean
level spacing of the hadron spectrum. More pre-
cisely, we have assumed that the hadrons can be
described by weakly bound states of quarks of ef-
fective mass m, ~ -', M„animated by a relativistic
motion. Consequently, we have proposed to re-
place, in the (56, I = 0') wave function, Pauli
spinors by free Dirac spinors. By boosting at
P, = ~, the Wigner rotations of quark spins pro-
vide the complicated structure in terms of SU(3)
(3SU(3) representations. Moreover, we have ob-
tained a semiquantitative agreement with a pheno-
menological determination of the mixing param-
eters by Buccella, De Maria, and Lusignoli. ' For
the nucleon of helicity + 2, the dominant repre-
sentations are found to be

~ (6, 3)„I,=0),
~ (3, 3 )» L, =+ 1), and

~ (8, 1),L, = —1).
Independently, and following an algebraic ap-

proach based on the free-quark current algebra,
Melosh" has also established the general con-
nection between the configuration mixing and the

Wigner rotations of quark spins and its conse-
quences for axial-vector matrix elements, as al-
ready suggested in earlier papers of Gell-Mann. "

Since we are confident in the spin structure of
the nucleon wave function which we have proposed,
we think it interesting to predict its consequences
for the structure functions and asymmetries for
deep-inelastic scattering of a polarized lepton by
a polarized nucleon. We will express the pre-
dictions in terms of the mixing parameters.

The plan of this paper is as follows. In Sec. II
we recall the nucleon wave function at rest, and

we show how the Lorentz contraction ensures the
scaling as we boost it to P, = ~. In Sec. III we pay
attention to the spin structure of the wave func-
tion, and we show how configuration mixing ap-
pears as a consequence of the Wigner rotations of

quark spins. In Sec. IV we calculate the structure
functions and the asymmetries assuming the nu-

cleon to be composed simply of three valence
quarks. Section V is devoted to the comparison
of the model with previous works.

II. LORENTZ CONTRACTION AND SCALING

On the basis of the harmonic oscillator quark
model of hadrons, "we adopt the following SU(6)
spatial wave function for the nucleon at vest (in
configuration space):

3

xexp -i~„3 t p 0 r;
i,= 1

(2.1)

In (2. 1,), y'and y", and (t)' and Q" are, respective-
ly, spin and isospin wave functions" in such a way

that the whole wave function is fully symmetric,
corresponding to the (56, I =0') supermultiplet.
We will come again to the spin structure of this
wave function in Sec. III. (p,((r;)) is the spatial
internal wave function for the nucleon at rest,
which we assume to be independent of the internal
relative time,

Z (r; -r, )'

yp, (Pr,) ) = N, exp —"' (2 2)

We assume that the time dependence of the wave

function at zest comes only from the over-all
factor

exp(-iM„T), T = g g t;, (2.3)

M~ being the nucleon mass.
In the quark-parton model, the nucleon structure

functions are calculated by adding the structure
functions for each constituent (incoherent scatter-
ing), which depend on 5(x —x, ), since it is assumed
to be pointlike, and by taking the mean value of
this sum over the nucleon wave functions at P, =~.
x; is the fraction of the longitudinal momentum
P = ~P, ~

= ~ carried by the interacting quark.
Let us now see that if we build up the nucleon

wave function at P, = ~ by applying a pure Lorentz
transformation to the nucleon wave function at
rest (2.1), the wave function in momentum space
depends on longitudinal variables only through the
fractions x, of longitudinal momentum.

The wave function at large momentum has the

form

3-
il,=-((7i, 4) ) =& ]., [ &;(()) Pq-(x'(" + x"('")() , '*u —~

"I (' ') ('i= "
j "& I )

(2 4)
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where P is the nucleon center-of-mass velocity, and S&(P} are boost matrices which act on quark spinors.
We will discuss the effect of these boost matrices on quark spins in the following section.

Now, to take the mean value of an operator we integrate over a surface t;=const= T S.ince Pp, depends
only on the relative coordinates, we get, for t; = T,

i) = ((r;, r tT))=Xt tS t(()t) Xp (X P +X P')
p t llxp( XRT)sxp(IP R)tip —

(( )
t, , r; I).f=l

(2.5)

In (2.5), R= —,'Z;=) r, and T are the center-of-
mass position and time, and P and E are the
center-of-mass momentum and energy of the
nucleon. N is a normalization constant fixed by
the condition that the charge of the bound state is
the same independently of the state of motion.

Now, performing a Fourier transform of the
Lorentz -contracted internal wave function

(2.6)

g((p, )) being the Fourier transform of the internal
spatial wave function in configuration space P((r)),
it is normalized according to

(2.10)

Let us now discuss the effect of the Lorentz
boosts on the quark spins.

(2.8)

We see that the internal wave function (2.7) de-
pends only on the transverse momenta p,~ and on
fractions x& =p; /P of the longitudinal momentum"

Pi= IPt, P O' I) =Pi ((M~rt P; ))= (2.8)

we get, in momentum space (since the internal
wave function depends only on relative momenta),

(2 7)

where (p,) are the momenta of the quarks in the
infinite-momentum frame(P', , p,. = P). Now, since
P,-~, we can write

III. WIGNER ROTATIONS OF QUARK SPINS
AND CONFIGURATION MIXING

In this section we will describe the spin struc-
ture of the nucleon wave function at P, =~ which
is involved in the determination of the asymmetries
which occur with polarized targets.

If the nucleon is assigned to the usual represen-
tation (56, L =0') of SU(6), this means that, for
instance, the nucleon of helicity +-,' belongs to the
representation (6, 3), of SU(3)(8)SU(3}, i.e., two
quarks have the helicity aligned to the nucleon
helicity, and one quark has the opposite helicity.
As emphasized by many authors on phenomenolog-
ical grounds, the nucleon wave function is in fact
a superposition of various SU(3)(3SU(3) irreducible
representations (configuration mixing), "

I&r&=+R) =
~o( ,6)3„L=O)yc( (3), )6, RL=+1)

+Pl(3 3)R, L =+1) + p')(3, 3)„I,=0) +y~(8P 1),L, =-1) +y'~(1, 8), L, =+2),

o" + &"+ p'+ p" +y'+y" =1. (3.1)

If configuration mixing is sizable, it will have con-
sequences for the asymmetries, because the vari-
ous representations in (3.1}indicate the relative
alignment between the nucleon and quark helicities.
For instance, if (3, 3), is present, it means that
there is a definite probability of having two quarks
with opposite helicity to the nucleon helicity and one
quark with the same helicity as the nucleon. Of
course, there is an orbital angular momentum
between quarks which ensures a resulting helicity
+-,' for the nucleon.

Configuration mixing is indeed important. Buc-
cella, De Maria, and Lusignoli have written sum
rules which relate the mixing parameters to the
baryon-baryon-pseudosc alar -meson coupling
constants. ' We reproduce in Table I the results
of their phenomenological analysis.

In Ref. 8 we have given a simple interpretation
of this configuration mixing at P, =~ as a direct
effect of the presence of relativistic quark veloci-
ties inside hadrons. A number of features of the
hadron spectrum lead in a natural way to the as-
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(u l, l X (l)) ' (3 2)

where p, , = 3/2M„ is the normal quark magnetic
moment; we adopt this simple form in order to

sumption that the quarks inside hadrons are ani-
mated by a relativistic motion, even if the hadron
is at rest.

As emphasized by Bogoliubov" and Gell-Mann, '
relativistic corrections reduce the static SU(6)
value of the nucleon axial-vector coupling to a
value —', (1 —26), where 6 is a positive quantity re-
lated to the norm of the small components in the
quark Dirac spinors. On the other hand, in the
harmonic oscillator quark model, the mean level
spacing of the hadron spectrum as well as the mean
value of the convective term of the quark electro-
magnetic current" suggest also a relativistic in-
ternal motion for quarks.

Then, the quarks seem to behave like light quasi-
free particles in a smooth potential, endowed with
large relativistic velocities. Consequently, we
have proposed in Ref. 8 to modify the spin part of
the nucleon wave function by replacing the Pauli
spinors y, (i}used in the usual formalism, with

free Dirac spinors, p,. being now the quark mo-
menta in the rest frame,

TABLE I. Prediction of the naive quark model for the
mixing parameters (see Ref. 8) and phenomenological
bounds obtained from Adler-Weisberger-type sum rules
by Buccella, De Maria, and Lusignoli (Ref. 9).

Mixing
parameters

Prediction of the
naive quark model

Phenomenological
analysis

n (6, 3)8

n»(3, 6),

0.57

0.02

n~+n' =0.59 n~ + n' = 0.59

P'(3, 3),

P'(3 3)8

0.21

0.03
P +P' =0.24 0.26~P +P' ~ 0.41

~2(8 1)

V'(1, 8)

0.14

0.02

~2+~» —0 16 +y' ~ 0.15

reproduce the right order of magnitude for the
nucleon total magnetic moment.

The spin wave functions y' and y" written in (2.1)
are then understood in terms of the Dirac spinors
(3.2)." Let us now see what is the spin structure
of the wave function at I', =~. The effect of the
matrix boost S, (P) on the Dirac spinor (3.2) can be
written as a product of a Wigner rotation and a
boost which takes the Pauli quark spinor to the
helicity spinor at I', =,

cosh
2 [1+g,P), (1 —P')' +p, P)Z)"P, 3

'+V,, P, ZI 'Pf"j
0'gg X]

(3.3)

where tanh& =P. The operators P, ZI" and P,. ZI '

reverse the quark helicity. If the internal quark
momenta were negligible compared with its mass,
i.e., g, (p,2)'~2 =0, the Wigner rotation in (3.3)
would be very small and the nucleon of helicity
+—,
' would belong to the representation (6, 3),. But

since the internal velocities are important, the
terms which reverse the helicity in (3.3) are of
the same order as the first term. Then, the spin
structure is more complex. In fact, by taking the
product of the Wigner rotations for the three quarks
and resolving the resulting nucleon state in definite
SU(3) CI SU(3) representations, we have shown in
Ref. 8 that all the representations in the expansion
(3.1}are present. The dominant representations
are in fact ~(6, 3)»L,,=O), ~(3, 3), L, =+1), and

i(8, 1),I,, = -1).
Taking p, , =3/2M„and ft2 =11 GeV ' we have ob-

tained the values of Table I for the mixing param-
eters, in semiquantitative agreement with the
values determined by Buccella, De Maria, and
Lusignoli.

With these values we get, for the axial-vector
coupling of the nucleon,

GA 2 (Ol2 ZI2) + ( p2 p/2) + (y2 yl2)
G

= 1.20. (3.4)

Let us recall that in our model we have for the D
and I" axial couplings in —,

'' baryon semileptonic
decays

D 3
E+D 5

(3.6)

in good agreement with experiment.

IV. ASYMMETRIES

In calculating the asymmetries we will assume
the nucleon to be simply composed of three valence
quarks. We know that this scheme is too simple,
since for x-0 the qq pairs have an important dif-
fractive contribution and that the gluons carry an
important part of the nucleon longitudinal momen-
tum. However, in order to make simple predic-
tions for the polarization effects we think it better
to keep the simplest model for the moment.

Assuming that the particles are polarized along
the direction of motion, the asymmetry is defined by'
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do"-do"
do»+do" ' (4.1)

where do is the cross section when the spins of

the lepton (electron or muon) and the nucleon are
parallel, and de ~ when the polarizations are anti-
parallel. The spin dependence of the differential
cross section is given by'

dOdE, dQ dE, , [(E, +E,cos 8) d(q', v) + (E, —E,cos 0) g(q2, v)].
M~E1 Q2

(4.2)

In (4.2), the lepton mass is neglected, E, and E,
are the initial and final lepton energies in the labo-
ratory system, and 6l is the lepton scattering angle.

The structure functions d(q', v) and g(q', v) are
defined from the decomposition of the current com-
mutator between polarized proton states of covar-
iant spin $&,

ix'"„„(p,x)=-', lx'xx" ((pg[*(„(x,), )„(0)]la,()

2(«; -«) =242'P 'e '(M„Q'v} '5(x-x. )d3k, .
(4.3)

Then, to calculate the structure function d(q', v)
we must simply assume incoherent scattering and
take into account the relative alignment between
the quarks and nucleon helicities given by the de-
composition (3.1).

In the Bjorken limit, we get, in our model, "
(4.3)

1
[vd(q', v)]2 „=42~ "G(x) (4.9)

into covariants,

II'", =e . q'5'd(q2, v)+($ q)e„,p.q'P'g(q', v)

Let us see that we get, in our model,

(4.4)

g(q', v) =0. (4.5)

2v4

2m,
(4.5)

where P, and P,'- are the initial and final quark
momenta. For a quark we find then a structure
function of the type d(q', v). The polynomials in
the transverse momenta do not change this form.
Therefore we get g(q', v) =0.

The asymptotic form of the spin-dependent cross
section in the lepton-proton center-of-mass sys-
tem is given by'

(«t t dot t) ~ (22I1-1(t(M Q2)-1

x [d(q', v) +M„vg(q', v)] d'k,

(4 7)

and the spin-dependent cross section for the
lepton-point -quark s ystem,

The nucleon wave function at I', = is given by a
combination of free-quark helicity spinors, as
indicated in (3.3). The polynomials indicate the
relative alignment between the nucleon and the
quark helicities. Computing the commutator (4.4)
for a free-quark Dirac spinor, we get (assuming a
minimal electromagnetic coupling, i.e., no anoma-
lous magnetic moment)

where G(x) is the probability for a quark to have
a fraction x of the longitudinal momentum. We
find, for the proton and the neutron,

&'= -'. (n'-(2") —", (O' P")+(-r'-r"), (4 1o)

(4.11)

In the calculation of these relations we have used
Table II and the matrix elements

123 1e3 I 't~ 123& 2 & (t 123 I e3 I 0 123& 3

(4.12)

=4&01'23le3 I4'1'23&+4&01 3le3 I%123&

(4.13)

=4&e1~23I 3 ill"23&+4&41231 3 I4123& .
In Table II we have expressed the SU(3) SU(3)
representations in terms of quark helicity spinors
and the SU(3} quark wave functions P' and Q".
Q,";„and (((),',, are, respectively, symmetric and
antisymmetric with regard to i, j. (ij, k) means
that quarks i and j have helicity +-, and quark k
has helicity -2. Note that relations (4.10) and
(4.11) are quite general and depend only on the
hypothesis that the nucleon wave function can be
written as a superposition of the SU(3)(3) SU(3) ir-
reducible representations allowed by the quark
model.

If configuration mixing were absent, we would
obtain the following proton and neutron asym-
metric s:
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TABLE II. SU(3) (3 SU(3) representations for the nu-
cleon of helicity +-,',

terms of free Dirac spinors, we preserve the
static SU(6) result E/D = —„'so that we predict

Q p&'23(12 3) IL g =o&
1

A = ——,A"=0.p

~v
(4.19)

(3, 6)8

(3, 3)8

3, 3)8

(S, 1)

Q j2g (3, 12) ~I, =+ 1&
1

P

1
~ g Ab3(3 12)l+, =+1)

—Q yb3(u, 3)li., =0&
1

vS
P

1
f4'6311., =-» +4ns~~s =-1&)(123 o)

V. COMPARISON WITH PREVIOUS WORKS

As we have pointed out, Kuti and Weisskopf, '
Gourdin, ' and Close, Gilman, and Karliner' have
estimated the asymmetry for proton and neutron
targets assuming that the nucleon is assigned to
the (56, I,=O') representation of the static SU(6).
In this way they get the results (4.14). We have
shown that the presence of configuration mixing
changes the situation significantly.

Our work differs from a quark-parton model
calculation by Gourdin. ' He obtains the relations

A'=-,'f, + —.'E+ ', D,
(1, S)

1
(lf~sl&g = 2&+4"bs I&I =+2&l&o. 123)

va A"= —',f, —a, D,
(5.1)

A~= 9, A"=0 . (4.14)

Let us now see that we can write, from (4.10)
and (4.11), the asymmetries in terms of the E, D
couplings of the low-lying octet axial-vector ma-
trix elements.

In terms of the mixing parameters, I' and D
read"

E = 3(n' —o'")+ (r' r"), -
(4.15)

From (4.15) we get

3D -E = 3(P' —P") (r' -r")— (4.16)

The neutron asymmetry is then proportional to
the deviation of E/D from the SU(6) result E/D

Since t"(x) in (4.9) is normalized to one, the
difference A~-A" satisfies, as expected, the
Bjorken sum rule,

AP An A 0 40
3 Gv

(4.18)

We obtain a large positive asymmetry for the pro-
ton and a small asymmetry for the neutron. Taking
u = D/(E+D) = 0.6'l, we get a small negative neu-
tron asymmetry.

In our specific model, where the spin part of
the nucleon wave function at rest is written in

so that A~ and A" can be written in terms of Il and
D (Ref. 20):

A = -, (E+D) —,(-,D-E), A = -.(-,D E) . -
(4.17)

f, = -'(o" —n") 3(P' - P")+ (y' —r")-
and in terms of E and D, f, is given by

1f, =-aD+E .

(5.4)

(5.5)

where E and D are the octet contributions and f,
is a singlet part. Gourdin takes into account con-
figuration mixing phenomenologically in the esti-
mation of the octet contributions, since he takes
I' and D from experiment, satisfying in this way
the Bjorken sum rule.

The singlet contribution f, is given by

f~ —g g EgoD g, (5.2)
ja

where 3 stands for the quark baryonic number, e&

is equal to a1 according to whether the parton is
a quark or an antiquark. D,. is the mean value,
in the hadron, of the number of quarks of type j
having a spin parallel (@=+1) or antiparallel
(o = -1) to the hadron spin. Gourdin estimates f,
by assuming the spin of the gluons to be uncor-
related with the nucleon spin, but he makes also
an implicit assumption which is no longer valid
when configuration mixing is present. The hypoth-
esis is that the probability to have a quark polar-
ized along the nucleon helicity is twice the proba-
bility of having a quark with helicity opposite to
that of the nucleon. This means that he assumes,
in evaluating the singlet part, that the nucleon of
helicity + —,

' belongs to the (6, 3), representation of
SU(3) ISSU(3). In this way he obtains

(5.3)

However, when configuration mixing is present,
f, is no longer equal to 3. We obtain, from (5.2)
and Table II
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With the values of the mixing angles of Table I, we

get

f, =0.24 . (5.6)

—+9
& A~ + + +9, A" = 0 . (5.8)

If, more generally, we do not adopt the constraint
(y' -y") = —', (P' —P"), we get the larger following
bounds:

(5.9)

On the other hand, if we use the bounds on the
mixing parameters obtained by Buccella et al. '
from Adler-Vfeisberger-type sum rules, we get

In conclusion, our method, starting from a
definite spin wave function at I', =~, takes into
account automatically the complications of the con-
figuration mixing for both the singlet and octet
parts.

After this work was finished, J. Weyers pointed
out to us a recent work by Close, Osborn, and
Thomson ' on the Melosh transformation. They
examine, in particular, its consequences for the
asymmetries. They find for the proton and neu-
tron asymmetries,

a»= X (-1 X +1), a&"=0. (5.7)

Note that the result A.""=0 is the same one that we
find and, as we have pointed out, it is related to
the result E/D = —',, which holds also in the Melosh
approach (for the relation between our work and
the one of Melosh, see Ref. 8). We can understand
also the bounds for the proton asymmetry on the
basis of our formulas. From expression (4.17) if
we take the constraint (y~ —y' ) = —',(p —p' ) which
comes from E/D= —',, and we leave the mixing Pa-
rameters completely free, we get indeed

-0.50&2~&+0.50, -0.21 &A."&+0.21 . (5.10)

However, the relation between the mixing param-
eters and the axial-vector matrix elements of the
low-lying octet restricts much more the asym-
metries, as given by (4.17), a result very close to
our theoretical prediction

AP
3 Gy

A"=0 . (5.11)

Concerning the work of Close et gl. , we think
that the parameter X cannot be considered as free.
On the basis of our work, we think that it must be
equal to the quantity q of Melosh, ~G„/Gv~ = ~7),

g =1/v 2. Then, the Bjorken sum rule is satisfied.
Note addedin proof. Some recent works have

reached conclusions similar to ours. J. Ellis and
R. Jaffe [Phys. Rev. D 9 1444 (1974)] have de-
duced our results (4.17) under the weaker form of
sum rules for the scaling limit of vd(q', v), using
the free-quark current algebra, the quark parton
model, and the assumption that the A.X contribution
to the qq sea is not polarized. L. M. Sehgal [Phys.
Rev. D 10, 1668 (1974)], using the sum rules of the
quark parton model, has related the mean values
of the total quark spin S, and the total quark
orbital angular momentum L, (for a given nucleon
helicity J,= S,+L, ) to the E and D axial couplings
of the low-lying —,

'' octet. In a very complete work
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