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We examine the one-particle inclusive electroproduction process p(q) +h(P)- h'(p')
+anything in the scaling limit t(: =—q, v =—q .p, v ' =q p' - , with =—-z/2v, g = v'/v, u =—p 'P'
fixed, using the slant singularity formalism we have recently developed. The exponent of
the short-distance singularity on the light cone (which we call slant singularity) is calculated
in canonical ~Q and quark-gluon theories by combining generalized dimensional analysis and
multi-Regge analysis. Experimental consequences are discussed, in particular, multiplicities
are evaluated for the various models. A comparison with our predictions in the case of e+e
annihilation is made.

I. INTRODUCTION

The process of one-particle inclusive electro-
production

y(q) + h(P) -h'(P') + anything

constitutes the next logical step, after the SLAC-
MIT experiments, ' in the experimental investiga-
tion of lepton-hadron interactions. Thus the
methods developed in treating electroproduction
have been utilized to handle this process. ' '

An important feature of (1.1) is the presence of
a detected single particle in the final state. We
have developed an operator analysis'o appropriate
to this class of processes. We considered the
(luadrilocal operator [J(x) and S(y) are local oper-

atorss]

8(x, 0; y, z) =—A [J(x)S(y)]R[J(0)St(z)] (1.2)

8(x, 0;P ' }= f dy dx x ' " ' *'(}(x,0; y, x }

as X'=—x P'-0. These short-distance singular-
ities are referred to as slant singularities. The
power 0 of the slant singularity A,

' was called
the slant, and was shown in Ref. 10 for asymp-
totically scale-invariant theories to be a linear
function of dime, the scale dimension" of the op-
erator S(y). The analysis assumed that infrared
contributions were nondominant.

This formalism enabled us" to treat the inter-
esting electron-positron annihilation process

on the light cone (LC) x'=0. The presence of four
operators enables Q(x, 0;y, z) to develop singular-
ities as x"-0 in addition to those present as x'-0.
This is reflected in the presence of singularities
in the Fourier transform

(Wic )"' ', d+ 5 —5 & 0

N„(»)- ln», d+ f}—5 =0

const, d+ 6 —5& 0

and the scalar H -particle multiplicity satisfies

(~»)D+6-11/2 D+5 11 ~0

N„(»)- 1n», D+5 ——", =0

const, D+ 6 —~2& 0

(1.7)

where d and D are the dimensions of the spinor
and scalar sources, respectively.

It is the purpose of this paper to perform the
slant analysis on the process (1.1). The greater
complexity of one-particle inclusive electropro-
duction necessitates a less straightforward anal-
ysis, and further dynamical issues come into play.
More theoretical ingredients are used in arriving
at the prediction of experimental quantities, which
should make the process that much more interest-
ing.

We summarize the kinematics and the LC anal-
ysis of the process in Sec. II. In Sec. III the slant
singularities are investigated, and the analysis is

y(q) -h(P') + anything .

The main result was a connection between the h-
particle multiplicity and the scale dimension of the
source operator corresponding to A, . For the par-
ticular example of the quark-gluon model with
electric current J('=: (Qy" P:,

5=dim(,

the sPinoth-parti'cle multiplicity N„(» =q ) satis-
fies
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648 BRANDT AND NG

completed with the aid of the Regge formalism.
The experimental conseqiuenees are deduced in
Sec. IV, and the various issues raised are dis-
cussed in Sec. V.

II. SCALING IN ONE-PARTICLE INCLUSIVE
ELECTROPRODUCTION

The invariant variables in the process (1.1) are

(2.1)

and we shall also use the ratios

that occurs in e'e annihilation, in which case the
hadronic tensor is simply the Fourier transform
of & 01 ev'(x, 0;P)10&.

In the sealing limit z, v, v'- ~, ~, g, u fixed, LC
operator-product expansions (OPE's) determine
the behavior of (2.6). We shall consider two re-
normalizable field-theoretic models: the XQ'

model with current j" -=i: (Pt S "(f)): constructed from
charged spin-0 constituent fields, and the guark-
gluon model with current Zv—:: (T)Qy" ft): constructed
from charged spin- —,

' constituent fields. " The
canonical LC OPE's are'

j"(x)j'(x') ~ —b., (x x') S „"S—„'.B(x, x'), (2.8)
(x-x')2 ~0

with

~=- -«/2v,
(o'—:—K/2 v'

']):—V / V = (()/(d

(2.2)

B(x,x') =:y'(x) y(x') + y'(x') y(x):,

Z]'(x)g"(0), i@-v' 'S„a,(x)b, (x, 0),

(2.9)

(2.10)

The variables satisfy the kinematical constraints with

or

(q +p)' &M',

(V+p -p')'&0,

K+2v&0
~

(2.3)

(2 4)

and

t) „(x,0) —=,'-: []T'(x)Y Q'$(0) —(T)(0)y„Q'p(x)]:,

(2.11)

(2. 12)

and

w+2v —2v' —2u+M +M" & 0, (2 6)

For our purposes it is sufficient to consider only
the coefficient of P"p' in 'N~:

where M' =P' M" =P"
The inclusive reaction is specified by the had-

ronic tensor

cue"(e, d, (e) Jd«" '*-=(dl ()u(e, t);d')Id), .„
(2.6)

where 8"'(x, 0;p') is the same operator

u""(e, 0;d')= Jdedee' '
[ u( )dS( e)]e

~"'((f P P') =%' (v &u q u)P"P'+ ~ (2.13)

dn dn' 5n( (dn)—n'q) B(n, n', u),

If an average is taken over the angles of P', then
W"' can be expanded in the usual way in terms of
the two scalar functions ~, and'VP, .' Inserting the
expressions (2.8), (2.10), valid near the LC, into
(2.6), we obtain for the boson model (A. ==x P)

&B[J'(0)S~(z)] (2.7) with

(u', ud)=uJdlde'e '" e '" B( , e, e), u (2.15)

d(e, e', u)= J ded e"" 'ldlzfd'(e)d(e)]ufd(())d'(e)]+zfd'(o)d(e)leefd(e)d'(e)]Id),
i„2-()

and for the fermion model

(2.16)

VP, - dndn'6((u —n —n'q)nb(n, n', u), (2.17)

with

r(uu , u)= J dede e-'", ''e '""b(e,e', u), (2.18)
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J dydz e'~ '~ 'l 2(p—
~ B[(J((x)S(y)]yeQ'R[p(0)S~(z)] -A[/(0)S(y)]yBQ'A[((x)S~(z)]

~ p) =psb(X, l(. ', u) .
X 0

(2.19)

Thus, provided B(A., A.', u) and b(A. , A. ', I) exist, in
both cases v~, scales just as in usual electro-
production. The scaling law is

6:,((u, q, u).=-,'{d6:,((o, q, u)

in the fermion model, and

(2.22)

v~, ( v, &u, q, u) - 6', (m, q, u),

and similarly,

(2.20)
6', (&o(, g, u) =0 (2.23)

%,(v, &u, q, u) - 6', ({o(,q, u) .
The form of the LC OPE's gives' "

(2.21)
in the boson model.

From (2.14)-(2.15) and (2.17)-(2.18), we easily
find the representations

and

2 2

o (&, ll, +) J dl« '
ld (o(ok, u)+i, o '' {i,oi, u) —,B il ,ouo)i (boson case) (2.24)

o,(~, o, u) J o&& "
(o (x, bio(+ mio' ,"{z,ol, a)

CO

(fermion case) .

The notation f '"~(X, X', u) means

(9/BA. ) (8/BA. ')"f(A, y', I).
Finally, the multiplicity is given asymptotically

by

iio(x)s(i)-g(x —oo 'o '

( )
(3 1)

(3.2)

N(v, {d)-+ {f'P'5(P" —M")6:,(v, ~, q, u),
1

(2.26)

where F,(u) is the usual electroproduction struc-
ture function.

where 6=dim/, d=dimS, d, =dim8~", and 8 indi-
cates the retarded i e prescription. Their product
is in turn expanded as

6(&) + + ~ el(m)

III. SLANT ANALYSIS

We shall apply slant analysis to the quantities
B(A., A.', u) and b(A. , X', u) in (2.16) and (2.19), re-
spectively. We recapitulate the method. " The
8-products are first expanded in an infinite series
of operators:

where d, „=dim(P ' ", and Wdenotes the Wightman
i e prescription.

Substituting (3.1)-(3.3) into (2.16), say, we have

(3.4)

This expansion is symbolic in that the Lorentz
structure has not been made explicit. A sum over
all possible contractions among the spacetime
variables and (P, consistent with the dimensions,
should be understood. The integrals have been
explicitly evaluated in Ref. 10, and B(A. , A', u) ex-
hibits slant singularities as X'-0. The slant
singularity would still be the same even if the

region of integration in (3.4) were restricted to
only some compact neighborhood of the origin.
This would mean that we need only assume a finite
radius of convergence in the short-distance ex-
pansions (3.1)—(3.3). Because only the connected
part of the matrix element (2.6) is relevant, we

shall seek here only those (P ' " that are oper-
ators. In the treatment of e'e annihilation of Ref.
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10, by contrast, only 6' ' " = c, „I contribute to the
vacuum expectation value.

In the present analysis, the I orentz indices
understood to be present in the OPE's (3.1)-(3.3)
become crucial. Suppose that spin 6' ' " =k, so

that

(pl6'.",.".', (0)Ip& =~',™)
p " p +" (3 5)

We write the c-number factor in (3.4) as

d) m~-dl dm

(x —y)' ' '( (-e)' ' '=g;; (x, y, e)x" x"'y""' y""e""
$,i'

(3.6)

where e;, , (x, y, z) is a scalar function, and

dime;;, (x, y, z) = 2d+ 25 —d,„„+k .

Thus (3.4) becomes

d(X, X', x), P f dyde~" "'gg e;;, (x, y, e)l'(y 3)' '(e 3)' ' e,"""'e". .
rmn k i,i'

(3 7)

(3.8)

B(),)(.', u),, )).
'- ~ g r„—,

k=O

(3 9)

We showed in Ref. 10 that the insertion of one
factor of either (y P) or (z P) increases the slant
of the integral by unity; more specifically, as
A. '-0, it is equivalent to multiplying the integral
by constx (A/)('). Thus the most singular possible
behavior of (3.8) as A.'-0 is given by

g, =d+O--,' Lev6'" "'-3. (3.10}

Thus the leading possible term in B()(., )(.', u) as
A. '-0 is u-independent. More generally, we can
write

where OJ. is the slant corresponding to the set of
(P

' "' with a, particular level L (—= dim —spin) (see
Ref. 15)

damn dt-d~
dydee'e '3 'l(x —y)' '( ( — )

' p, ,(l')x"' x"'3'"' 3'", (3.(lx)
2 V o j, k

where

F»()).') ~ const&&()(. ') (3.11b)

so that a more complete expression for B()(., )(.', u)
ls

To fix the dynamicaLLy determined slant singu-
larities we incorporate further dynamical infor-
mation supplied by Regge theory. In the usual
way, it follows from (3.5), (3.8), and (3.9) that the
sum

B())., )).', u),~ gg a',™)5',„()).')du'-'. (3.12)
Emn jk

Q I', A'=—(R(A)
k=0

(3.13)

Equation (3.12) exhibits a double expansion of
B(A., )).', u) in )(. and u valid near )).' =0. These ex-
pressions are, of course, only valid if cr~ ~ 0.
This restriction unfortunately rules out any com-
parison with perturbation theory. "

A remarkable feature of (3.9) is the separation
between the slanted factor A,

' L and the infinite
sum over k. The former depends only on the
level of the operator 6' ' "~; thus the maximum
slant is carried by the fields (P of the los@est level
that can contribute to the matrix element (2.6).
In contrast the rest of (3.9) is an infinite series
in the variable ())/)).'), whose sum ca,n contain fur-
ther slant singularities as A.'-0 not determined by
dimensional analysis as applied to the slanted
piece A,

'

defines a function which satisfies

(R(A) ~~ B~ A", (3.14)

B())(.',)u) ~ B„()).') (3.15)

Note that the dependence of this leading possible
singularity in A.

' on the other variables A. and u is
completely specified. Note also that we have
implicitly assumed that the leading singularity in
B can be obtained by the summation of the leading
singularity of each term in (3.12}. This is rea. -
sonable since nonleading contributions are less

where a is the t = 0 intercept of the leading Regge
pole which can contribute. " Because of the occur-
rence of )(. in the series (3.9) in the ratio ())/)). '),
we immediately deduce that
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singular by integer powers.
The fermion analog of (3.9) is

k

b (X, A.', u) ~,
k=0

(3.16)

for a scalar source S, and

b(X, X', u) „, , b„&'

0' 0'2+ Q —1 r

o'2=/+ 5 —4

(3.27)

(3.28)

(3.29)
and here Regge theory gives

Q y«A» ~ b„A" ',
k=0

(3.17)

so that

b(z X' ) ~ b~(X')-~~-"+'z"-' (3.18)

Thus the infinitely complicated slant behavior in
the dynamical piece is parametrized for us in
nature in the form of n, the leading Regge inter-
cept. We then conclude that the slants o~ are
given by

boson case: o~ =o L, + n,
fermi on ease: 0& = cr ~ + n —1.

(3.19)

(3.20)

B(X, A.', u) ~ B~ A.
'

A.

Z=Z, +n,
Z2=D+6 —4,

(3.21)

(3.22)

(3.23)

with D = dimS (scalar source), and 6 = dim/. In
the fermion theory,

b(~, ~', u) „~,b. r '

Z =Z2+ (y —1,
Z2=D+ 5 —~2

(3.24)

(3.25)

(3.26)

The lowest level of the operators that can con-
tribute to this process is two, ' as in electropro-
duction. Thus, for scalar sources in the boson
theory,

(y') ~ g' ~L ~J«7. ( 'r» (3.30)

can be treated in a similar way. The case in
which v» ———0 is especially interesting. This would
amount to the vanishing of the first j leading
possible singularities for each j. Although it at
first appears otherwise, this contingency need not
rest on a remarkable accident. The singularities
X' ~ in (3.11a) arise from a large-distance mech-
anism in (3.11a). Although this does not represent
a strict infrared effect in the sense discussed in
Ref. 10

I
e.g. , it remains even if the large distance

contributions in the integrations in (3.11a) are cut
off], there is the suggestion that the resulting
singularities (A. ') ~, (A') ~ ', . . . lack the physical
significance held by the (X') ~ singularity.

These extra singularities are, in fact, absent
in the parton model. ' The methods employed in
Ref. 22 and 23 can be easily used to show that in
the parton model"

for a spinor source s of dims=d, and 6=dim(.
Thus for u = 1 (Pomeron), the slant is actually
determined purely by dimensional analysis (or =a~)
in the fermion quark-gluon model, while it is
increased by one above that value (oz, =a ~+ 1) in
the boson A.P' model. All this assumes the absence
of dominant infrared effects.

In the above discussions, we have assumed that
the leading possible singularity (3.11b) actually
accurs in (3.11a). This, of course, need not be
the case. The most general possibility,

dydee'~ ~'R JxSy R J, OS

dydee' '' 0 R xSy y&R QS z 0: xy„Q:+ ~ ~ ~

(const)p&(X') ':p(x)y„p(0):+ ~ =p (A.') 'og x"& ~ ~ ~ x "8 .. . (0)+ ~ ~ ~, (3.31)

where k

B(A., A. ', u)„~ A.
' ~gg c «A~u» '=A. ' ~IB(X,u).

d+5 —2 (spinor source)

D+ 6 —
& (scalar source)

(3.32)

k=0/=0

(3.33)

is the level zero slant appropriate to deep inelas-
tic annihilation. Comparison with (3.11) reveals
that P»(A. ') ~ 6»X' o in the parton model.

In the general r»=0 case, (3.12) becomes B(k, u) ~ B g", (3.34)

Now the coefficient B(A, u), defined by the above
power series, is not determined. As before,
Regge theory gives
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b{X,X', u), (A, ')- ~ b(&, u),

with

(3.35)

so that the large-A. behavior is independent of u.
In the fermion case,

6:,((u, q, u) „~,H((u, u)q i~'~ 'i,

H(&u, u) ~, constxmD'

and that in the fermion theory

(4.6a)

(4.6b)

b(Z, u), b„X"-'.

Comparison of (3.15) and (3.33) reveals that in
the boson case with Pomeron (n= 1) dominance,
the leading possible slant singularity (3.15) is a
power greater than that given by (3.33). On the
other hand, in the fermionic case with Pomeron
dominance, the leading possible singularity (3.18)
is the same as that given by (3.35). Note also that
(3.35) agrees with (3.18) for large X.

IV. EXPERIMENTAL CONSEQUENCES

The slant singularities we have discussed corre-
spond in momentum space to the singularities in
F, as g-0 with cuc0 and u fixed. This statement
follows simply by rewriting (2.14) and (2. 17) a,s

6',((u, q, u) „~,H((u, u)q 'D" '"',
H (&u, u) ~, const && &u

D" " '"
for a scalar source, and

F2(a, q, u) ~ h(&u, u)q

h(&u, u) ~, const&& u&" " '

(4.7a)

(4.7b)

(4.8a)

(4.8b)

p' = o.q+ pp+w~, (4.9)

for a spinor source. The behaviors (4.3)-(4.5)
are easily distinguishable experimentally from
the partonlike behaviors (4.6)-(4.8).

Given these formulas, it is a simple matter to
evaluate the more easily measured multiplicities
with (2.20). The calculation is best done with the
Sudakov" parametriz ation

6:2(&u, q, u)- — dXe ' B ' ~(A. , qh. , u) d P = v ct (2 dP cP 1', (4.10)

(boson ca,se), (4.1)

F,((u, q, u)- —i d&e '" bI'"(Z, qA. , u)

(fermion ca.se) . (4.2)

and m~ is spacelike, with w~'= -P~". The integra-
tion variables are related to the variables we use
by

(4.11)

An immediate consequence of the form of (3.9),
(3.16) is that at the point q =0, F,(v, q, u) has no
dependence on u at all. This should be an experi-
mentally meaningful statement.

Another interesting consequence is that the be-
havior of F,(&u, q, u) in e and q is also completely
specified at that point. Substituting the slant sin-
gularities (3.21), (3.24), (3.27) into (4. 1) or (4.2),
we get, in the boson theory,

-m~' =no.'+P'+2nPv -M",
which become in the scaling limit

1P-q+ —2(u(u —q)+8
V V

(4.12)

(4. 13)

(4.15)

6',(e, q, u) ~ const&& &uD'

and in the fermion theory,

(4.3)
1—w~'- 2qu —q -M' + —[2&@(u —q) —4~]
V

+(8l/ v). (4.16)

7 (e q u) ~ const&& &u
" '"q

2 ) P 7)~P

for a scalar source, and

(4.4)

Thus the contribution to (2.26) in the scaling limit
is evaluated by changing variables to be

Ã(v, (u)- dq du 8(2qu -q' -M")
&,(~)

6',(~, q, u) ~ const&«u~" 'q i~"'" '~ (4.5) 6'a(» q~u) ~ (4.17)

for a spinor source. These behaviors are in prin-
ciple verifiable experimentally.

In the case of partonlike behavior (v;, =0), on
the other hand, we would obtain from (3.33)-(3.36)
that in the boson theory

MM' &u & v(1 —v —q) =u (4.18)

The range of the q integration is determined by

where the 8 function expresses P~" &0. It is easy
to see from (2.5) that
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M' I' M'

2u 2u ~ 2v(1 —(1))
'

Equation (4.17}then becomes

(4.20)

1 2 max V(1-&- 'g)

N(v, (u}-~ d)} du 6:2(&u, q, u).
2 + d'd2/v2(1- (v) /r//d'

(4.21)

the 8 function, which gives

qv=u —(u —M' )' &q&u+ (u —M' )'/ . (4.19)

For q-0,

Our framework gives no information on the be-
havior of P, as u- ~. We shall assume that the u
integration is convergent. This is suggested by
(4.16), where large u corresponds to large trans-
verse momentum, and P~ integrations are gener-
ally taken to converge. If the assumption is vio-
lated, our results for multiplicities would be
modified by factors from the u integration. " Using
the behaviors (3.21), (3.24), (3.27), we have in
the boson theory

[(1—~}v] ' '" ', D+a+(2 —5&0

N(v, &) &u ln[(1 —e)v], D+6+ o. —5 =0

const, D+~+ a-5&0

(4.22)

and in the fermion theory

!

' [(1—(u)v]D"'" "", D+5+ n —~12 &0

N(v, (u)- (uD' "' ( ln[(1 —(u)v], D+5+a —~2=0

!, const, D + 5 + c( —~2 & 0

(4.23)

for a scalar source, and

[(1 —(u)v]""" ', d+ 5+ n —6&0

1
N(v, (u)- (u

" '
& ln[(l —(u)v], d+5+n —6=0

!
const, d+ 6+ n —6&0

(4.24)

for a spinor source. On the other hand, taking the
behaviors (4.6)-(4.8), we have in the boson theory

[(1—(u)v]
' ', D+b, —5&0

N(v, (1))- ln[(1 —(d))v], D+b —5=0H((u)
+2(~)

const, a+4- 5&0

[(1—(u) v]2" ', d+ 5 —5 & 0

N(v, (d))- ln[(1 —(d))v], d+5 —5=0Il ((d))

&2(~)
!
i const, d+ 5 —5 &0

(4.27)

for a spinor source. Here

and in the fermion theory

(4.25)
B(v) =f dMH( ~rr), ,

[(1 )v]
D 6-11/2+D~ 5 11& 0

N(v, (o)- H((u) 11

&2(~)
ln[ (1 —&u) v], D + 5 ——, = 0

!
~ const, a+5 ——,&011

(4.26)

for a scalar source, and

li(rr)= j (ru, d)rr. (r

Experimental determinations of these multiplic-
ities for large v and fixed co can clearly distin-
guish among the various models and assumptions
we have dealt with. ' (We again recall our as-
sumption of nondominant infrared effects. )
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V. DISCUSSION

It is particularly interesting to compare these
operator predictions with those made for e'e
annihilation. In the latter case, in the boson the-
ory

N(x)-(v~)o'~ ',
and in the fermion theory

N(x)-(&i& )
" '"'

for a scalar source, and

N(x)- (v~x)"" '

(5.1)

(5 2)

(5.3)

for a spinor source. If we take the behaviors
(4.22)—(4.24), then for the fermion theory, with
n= 1, the 'exponents are identica/ for the scalar
and spinor multiplicities in both annihilation and
electroproduction. On the other hand, for the
boson theory, they differ by one. In reality, en-
ergy-momentum conservation requires that the
exponents be &-,' for (4.22)-(4.27), and &1 for
(5.1)-(5.3). Thus, if the same slant singularity
contributes to both processes, we have these
interesting correlations of the multiplicities in
the two processes in these two models. For ex-
ample, in the fermion theory, logarithmic multi-

plicities in one process implies the same for the
other. On the other hand, for the boson theory,
for any multiplicity in electroproduction, the
multiplicity in annihilation is necessarily finite.
Qf course this need not be the case; presumably
if a given singularity in the boson theory gives
rise to logarithmic multiplicities in annihilation,
that singularity is automatically decoupled from
electroproduction, thus conserving energy -mo-
mentum. It must be said that in this respect the
fermi on theory is more pleasant.

By contrast, if we take the partonlike behaviors
(4.25)—(4.27), then the exponents are identical in
all cases for annihilation and electroproduction
(for fixed &u). In this case, electroproduction
would be strictly similar to annihilation as a probe
of source dimensions.

The one-particle inclusive electroproduction
process thus provides another measuring device
for the minimal dimensions of hadronic sources.
The greater complexity of the process is seen to
reveal more of the underlying theory in terms of
the different occurrences of n in different thea-
ries. Experimental data on this process, as on
annihilation, should thus illuminate many aspects
of the dynamics of lepton-hadron interactions.
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