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SU(3) trace identities and the calculation of effective couplings
in a baryon-loop model of weak radiative kaon decays
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A simple algorithm for the recursive reduction of the trace of a product of any number of
the f' and d matrices of SU(3) is given. SU(3) trace identities (through fourth order) are used
to construct effective interaction Lagrangians in the baryon-loop model for PVV, PVp, and
weak (strangeness-changing) PVy couplings. At the same time it is shown that the effects of
baryon-mass breaking on the PVV coupling are negligible in the loop model. The usefulness
of this formal compaction is further illustrated in the calculation of the contributions of all
vector-meson poles to K& 7i+7t y decay. It is found that the previous neglect of the contribu-
tion of K* poles in this case is justified.

I. INTRODUCTION

by equivalent weak Hamiltonians,

+w~ 2~2t) J( ~fejiP+ dejiD)ki i (2)

expressed in terms of physical baryon fields. The
parameters F, D, &, @, and c derive from
Gronau's remarkable fit' of a semiphenomenologi-
cal current-algebraic treatment of nonleptonic
hyperon decays to experiment with

I'=4.7&&10 ' MeV,

D/F = -0.85,

6/Q = -0.5,
c=3.2x10 MeV '

(4)

To complete the interaction Lagrangian for this
model one next adjoins to the weak Lagrangian
Z~ determined by Eqs. (2) and (3) the strong and
electromagnetic interactions
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r([Big�„B]M

-) + W2 gd Tr(]Biy5, B}M)
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—i(g, /v 2) Tr([M, s„M]V~), (5)

Recently we explored in a succession of pa-
pers' ' some of the predictive consequences of
a baryon-loop model for weak radiative kaon de-
cays with SU(3) symmetry. In the baryon-loop
approach to which we allude, one replaces the
parity-conserving and parity-violating parts of
the weak nonleptonic Hamiltonian density relevant
for hyperon decay,
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II. RECURSIVE APPROACH TO SU(3) TRACE IDENTITIES

The problem is to express Tr(f, d,.d, ~ ~ ), the
trace of a product of n f and d matrices (a trace
of nth order), in terms of traces of (n —1)th order
or lower. The f and d matrices, with

(f.)i~ = if~r-- (7a)

~eA" Tr(([By&, B] +2i[ M&& M])Q} i (6)

where B= X;g; /W2 is the traceless baryon matrix,
M =A,.y,./v 2 is the traceless pseudoscalar-meson
matrix, V"=X,yI'/v 2 is the traceless vector-me-
son ma, trix, and Q =X, +X,/W3. Following Gronau, '
we take d/f = 1.8 (d+f= 1) with g'/4m = 14.6, and
use the Barger-Olsson values, ' g~'/4n = 2.5 and

2Q = (1.25/1. 03)gp ——6.7.
Unfortunately, calculation in this promising

model is hampered by the necessity for evaluating
traces of products of Gell-Mann's f and d tensors
(loops in unitary spin space). Since we are not
aware of any simple approach to the expansion of
SU(3) traces ("loops" ) in SU(3) tensors ("trees"),
in spite of the considerable literature' dealing with
the algebra of SU(3) and with the properties of the
f and d tensors, ' our brief presentation of a recur-
sive solution to this problem in the next section
may also be useful in other contexts. In Sec. III
SU(3) trace identities through fourth order are
employed to summarize succinctly the effective
PVV (with an estimate of the effects of the usually
neglected baryon mass-breaking), PVy, and weak
PVz couplings which emerge in the baryon-loop
model. These last effective couplings are used to
calculate the (small) contribution of the strange
vector-meson poles to K,'- m'm y decay which is
seen to be justifiably omitted in the earlier loop-
model calculation of this process.
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(d«)i =-d«i

obey the commutation relations

[f, f«] =&fg«ifi,

[f,d«) = if, «idi,

[d;, d«] s=&fg«j(fi) s

—«(5 ~b„s —5 „«b,.s),
and by virtue of the independent relation, '

(d,d, ) „s—(f,f,),s = 2d—„,(d, )„,
- «(b, «~ s - ~«sb~ )

+&;8&~

the anticommutation relations,

'Lf, , f«'t s =3d;«i(di) +s~, &«s
—(&,&«s+5 «b, s)

(dj, d«) s = dii«-( d)„s+«(&„, b«s

+~ «~ps+~, «~ s)

(7b)

(8a)

(8b)

(8c)

(loa)

(10b)

+f.„»(f,f.f,f.)

+f„„Tr(f,f„f,f,)];. (15)

the complete reduction of this trace is then carried
out by means of the fourth- and third-order rela-
tions,

Tr(f, d,d, . ) = ,[T—r(f~d«d, ~ ~ ~ )

+ (- 1) ~ Tr( ~ ~ d, d„f, )] . (14)

Thus we have the algorithm that odd-parity traces
are reduced one order by the Pairzoise rearrange-
ment of Tr( .d, d, f, ) into Tr(f d«d, . ) via corn
mutation relations, while even-parity traces are
reduced one order by the Paineise rearrangement
of Tr( d, d«f&) into Tr(f;d„d, .) via commuta
tion relations together with an odd number of anti
corn mutations.

By way of example, one finds for the odd-parity
fifth-order trace

Tr(f, f,f,f f„)=,'[Tr(f, f-, f,f f„)—Tr(f„f f, f,f,))
«i [f»„-Tr(f„f„f,f„)+f,„Tr(f„f„f& f„)

»(f, f,) =»;, ,

Tr(did«) ='—, &i.

(12a)

(12b)

One has

Trf„=Trd„=0,
and from the trace of the anticommutation rela-
tions

Tr(f~ f,f,f ) = &[Tr(f&f,f,f ) +Tr(f f,f,fj)]
= «if«g, »(f fif )+ ~«»(if fi)fjf«)
= 2if«, „Tr(f f, f„)+ «d„,„Tr(d„f~f«)

+ '(» i~~«+fbi. f«. +f«i.f,. )

and

Since we may assign to any such trace a Parity
determined by its sign under transposition, i.e. ,

Tr(f f, f„)= ~[Tr(f f, f„)—Tr(f„f,f )]

«ifim, »(f-rf«) = ~~'fimr, (17)
Tr(f, d,d, ) =Tr[(f,d«d, ) ]

=Tr( d, d f&)
= (—1) ~ Tr( d, d«f, ),

where Nf ——number of -f type matr-ices in the pro-
duct f,d,d, , we may write

Tr(d„f f, ) = &[Tr(d„f&f )+Tr(f«f&d„))

= 2»((f«, fj'Id, ) = 'd«j, . - (18)

On the other hand, the (independent) even-parity
fifth-order trace, Tr(d& f,f, f„f„), has as a possible
initial reduction

Tr(d; f«f, f f„)= &[Tr(d&f„f,f f„)+Tr(d&f f f f,)]
= «T r(d, [f„,f ]f f«) + & Tr (d& f [f„,f ]f«) + & Tr(d& f f [f„,f«)) + «T r(d& [f,f ]f«f )

+ & Tr(d, f, [f, f«) f„)+ —,
'

Tr(d&( f, , f«)f f„) .

III. SOME EFFECTIVE COUPLINGS
IN THE BARYON-LOOP MODEL

tematic reduction of the relevant fifth-order
traces. )

SU(3) trace identities find their natural applica-
tion in the construction of effective interaction
Lagrangians for PVV, PVy, and weak PVy cou-
plings which are derived couplings in the loop
model. We treat these briefly in turn. (This tech-
nique may also be applied to the pentagon graphs
of Ref. 2; in this case one would require the sys-

&~r v = — «[d(3 4 —5 ) + 8f5 itj l

p v p 0
X dl2tlg p p pg Pg pb (20)

A. PVV couplings

From the straightforward consideration of loop
graphs [see Fig. 1(a)], one finds
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with the numerical result where

[d(34'- ~')+6f~4] = (21) M;,. = m, 5;, + 5m~(-if„i) + 5miid„i, (25)

It is interesting to compare this result with (a)
the author's earlier phenomenological determina-
tion of PVV coupling, "which yields 7.2/m for the
same quantity, and with (b) the analogous coupling
in the octet-broken SU(3) treatment of Brown,
Munczek, and Singer, ~ where one finds for

(22)

the bounds

7.3 8.7~2h ~ (1.18 ~ e, & 0.85)
m m

(23)

iTiim -5i, k, 4R (-) 0i (24)

for an "average" baryon mass (m) of 1 GeV.
The first-order effects on Z~«[Eq. (20) above]

of baryon mass-breaking are easily accommodated
in this formalism. The replacement

generates the mass-breaking interaction Lagran-
gian,

~mass-t&reaking
= 4i [ mt( faii) ™ndsi/]4 ~ (26)

with the F- and D-mixing parameters given by
fitting M;& to the observed octet-baryon mass
spectrum:

M ~ -M~ ———&m~ = 77 MeV,
2

E A ~3 D

M-. -M~ = —&35m„=94 MeV,

ma= 2(Mr+Mal) =1155 MeV,

5mB = 67 MeV,

6m~ = -55 MeV .

(27)

The effective Lagrangian of first order in the
breaking parameters &m~, 6mD, constructed from
the loop graphs of Fig. 1(b), is~

~(y) 28
~ p Ij~ p a

~pV& e g 2 p&p& 9 b Vale
I37T 0

&&((d~i,„d„„+da,„d„i )[8 d5m~(2$ —5~)+6 f5mz(9/2+145 )+3—(d5mz+f5mD)5$]

+d„„d„„[,—'d5mD(2$' —75')+6—f&m~(9$'+25')+',~(d 6m~+ f5mn)5$]

+5, 5„[,—'d5m (29$'+315')+,—,f5m (63$'+295') —'
—,'(d6m +f5m )5P]

+ (5„5„+5„6„)[,—,d5mn(-31$'+ 315') +,—',f5m+(63$' —315') —,—,(d5mz +f5m~)5$]j . (28)

Note that because of the presence of terms propor-
tional to (&»&„+&„5„),the structure of Zp'i, v is
move general than the "most general form" of
Ref. 12. However, since the numerically signifi-

(a)
O

Kp

(p.c.)
W

(p.c.) (p.c.)

FIG. 1. Baryon-loop graphs for (a) PVV coupling,
(b) first-order baryon-mass-breaking correction to
P VV coupling via Zl =-g; 6m;;g, , (c) P Vp coupling.
c is the unitary-spin label of the pseudoscalar; b anda
are the unitary-spin labels of the vector mesons.

W7

(b)

FIG. 2. Contributions of the vector-meson poles to
K&-~'~ y decay. Graphs of types {b) and (c) were
justifiably neglected in Ref. 2.
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cant terms of cCpvv those proportional to d, &„d„„
+ lsan~n& and ~8b~ac + ~sa~ t}c&

have coefficients only
0.05 and -0.05, respectively, of the coupling
characterizing the zeroth CP «Lagrangian, baryon
mass-breaking plays a negligible role in the loop
model.

B. PVy couplings

Retaining only the coupling of charged baryons
with the electromagnetic field, we find in the
same manner as before [see Fig. 1(c).] the ef-
fective Lagrangian

C. Weak PVy couplings and the vector-meson pole
contributions to E, ~m'm y decay

Proceeding as in subsections (A) and (8), one
can construct the effective weak I'Vy interaction
Lagrangian

(weak} ~28'e Pv P 0
&pyy =

2 21 (+~ &)&pvpcF S q cqc ~3mm

with

(30)

Sge 1 JI U PO
Spry= Q (d(f) +f6) deca + deep ~pvpc8 0 a F q c ~

4mm 3
'

(29)

I'(a, c) = D6f[;'(d„„d„„+d„„d„„)+ —,'d„„d„„+,—,6„6„-,'—,' 6„6„]

+F6d[', (d~„d„„—+d, d„„)+gd„„d„c,—'—,,' (6„6„+6„6,c)]

+ Fgf [2(dc~d„„+d„„d„„+d„„d„c,) +4—(5„6„+6~,6,c)]+—(3- 6) .
3

Illustrative of the usefulness of this formal compaction is the calculation of the contribution of vector-
meson poles to K2c- m'm y decay. ' One has (see Fig. 2)

~'(p, )& (p )}(q) f'

with

t

=-i(2w)464(k —(P, +P +q))A '~ ' e(P, P ke(q, )})k(16 kP,'P, q )c'", (32)

A p+k' +r* }= gZ 'p 3(fF+dD) ——(fD+dF)w'm' y (p, +p )'-m, '

+
9 Dd+~ (fD —2dF)

( k), , +
( k),

Since one finds the coefficient of the contribution to A ~' ' from the K* poles only 0.08 of that from
the p', our previous omission' of these contributions is seen to be justified.
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