$\mathrm{SU}(3)$ trace identities and the calculation of effective couplings in a baryon-loop model of weak radiative kaon decays

Ronald Rockmore

Physics Department, Rutgers, The State University, New Brunswick, New Jersey 08903

(Received 30 September 1974)

Abstract

A simple algorithm for the recursive reduction of the trace of a product of any number of the f and d matrices of $\mathrm{SU}(3)$ is given. $\mathrm{SU}(3)$ trace identities (through fourth order) are used to construct effective interaction Lagrangians in the baryon-loop model for $P V V, P V \gamma$, and weak (strangeness-changing) $P V \gamma$ couplings. At the same time it is shown that the effects of baryon-mass breaking on the $P V V$ coupling are negligible in the loop model. The usefulness of this formal compaction is further illustrated in the calculation of the contributions of all vector-meson poles to $K_{2}^{0} \rightarrow \pi^{+} \pi^{-} \gamma$ decay. It is found that the previous neglect of the contribution of K^{*} poles in this case is justified.

I. INTRODUCTION

Recently we explored in a succession of papers ${ }^{1-6}$ some of the predictive consequences of a baryon-loop model for weak radiative kaon decays with $\operatorname{SU}(3)$ symmetry. In the baryon-loop approach to which we allude, one replaces the parity-conserving and parity-violating parts of the weak nonleptonic Hamiltonian density relevant for hyperon decay,

$$
\begin{equation*}
\mathcal{H}_{G}=\sqrt{2} G \cos \theta \sin \theta \frac{1}{2}\left\{J_{\mu}^{(1-i 2)}, J^{\mu(4+i 5)}\right\} \tag{1}
\end{equation*}
$$

by equivalent weak Hamiltonians,

$$
\begin{align*}
\mathcal{H}_{W}^{(\mathrm{p.c.})} & =2 \sqrt{2} \bar{\psi}_{j}\left(-i f_{6 j i} F+d_{6 j i} D\right) \psi_{i} \tag{2}\\
\mathcal{H}_{W}^{(\mathrm{p} . \mathrm{v.})} & =-c d_{6 i l} \bar{\psi}_{j}\left(-i f_{l j k}+\frac{\delta}{\phi} d_{l j k}\right) \gamma^{\mu} \psi_{k} \partial_{\mu} \varphi_{i} \tag{3}
\end{align*}
$$

expressed in terms of physical baryon fields. The parameters F, D, δ, ϕ, and c derive from Gronau's remarkable fit ${ }^{7}$ of a semiphenomenological current-algebraic treatment of nonleptonic hyperon decays to experiment with

$$
\begin{align*}
& F=4.7 \times 10^{-5} \mathrm{MeV} \\
& D / F=-0.85 \tag{4}\\
& \delta / \phi=-0.5 \\
& c=3.2 \times 10^{-9} \mathrm{MeV}^{-1}
\end{align*}
$$

To complete the interaction Lagrangian for this model one next adjoins to the weak Lagrangian \mathcal{L}_{W} determined by Eqs. (2) and (3) the strong and electromagnetic interactions

$$
\begin{align*}
\mathscr{L}_{\text {strong }}= & -\sqrt{2} g f \operatorname{Tr}\left(\left[\bar{B} i \gamma_{5}, B\right] M\right)+\sqrt{2} g d \operatorname{Tr}\left(\left\{\bar{B} i \gamma_{5}, B\right\} M\right) \\
& -\sqrt{2} \phi \operatorname{Tr}\left(\left[\bar{B} \gamma_{\mu}, B\right] V^{\mu}\right)+\sqrt{2} \delta \operatorname{Tr}\left(\left\{\bar{B} \gamma_{\mu}, B\right\} V^{\mu}\right) \\
& -i\left(g_{\rho} / \sqrt{2}\right) \operatorname{Tr}\left(\left[M, \partial_{\mu} M\right] V^{\mu}\right) \tag{5}
\end{align*}
$$

$\mathscr{L}_{\mathrm{em}}=-\frac{1}{2} e A^{\mu} \operatorname{Tr}\left\{\left(\left[\bar{B} \gamma_{\mu}, B\right]+2 i\left[M, \partial_{\mu} M\right]\right) Q\right\}$,
where $B=\lambda_{i} \psi_{i} / \sqrt{2}$ is the traceless baryon matrix, $M=\lambda_{i} \varphi_{i} / \sqrt{2}$ is the traceless pseudoscalar-meson matrix, $V^{\mu}=\lambda_{i} \varphi_{i}^{\mu} / \sqrt{2}$ is the traceless vector-meson matrix, and $Q=\lambda_{3}+\lambda_{8} / \sqrt{3}$. Following Gronau, ${ }^{7}$ we take $d / f=1.8(d+f=1)$ with $g^{2} / 4 \pi=14.6$, and use the Barger-Olsson values, ${ }^{8} g_{\rho}{ }^{2} / 4 \pi \simeq 2.5$ and $2 \phi=(1.25 / 1.03) g_{\rho}=6.7$.

Unfortunately, calculation in this promising model is hampered by the necessity for evaluating traces of products of Gell-Mann's f and d tensors (loops in unitary spin space). Since we are not aware of any simple approach to the expansion of $\mathrm{SU}(3)$ traces ("loops") in SU(3) tensors ("trees"), in spite of the considerable literature ${ }^{9}$ dealing with the algebra of $\operatorname{SU}(3)$ and with the properties of the f and d tensors, ${ }^{9}$ our brief presentation of a recursive solution to this problem in the next section may also be useful in other contexts. In Sec. III $\mathrm{SU}(3)$ trace identities through fourth order are employed to summarize succinctly the effective $P V V$ (with an estimate of the effects of the usually neglected baryon mass-breaking), $P V \gamma$, and weak $P V \gamma$ couplings which emerge in the baryon-loop model. These last effective couplings are used to calculate the (small) contribution of the strange vector-meson poles to $K_{2}^{0} \rightarrow \pi^{+} \pi^{-} \gamma$ decay which is seen to be justifiably omitted in the earlier ${ }^{2}$ loopmodel calculation of this process.

II. RECURSIVE APPROACH TO SU(3) TRACE IDENTITIES

The problem is to express $\operatorname{Tr}\left(f_{i} d_{j} d_{k} \cdots\right)$, the trace of a product of $n f$ and d matrices (a trace of nth order), in terms of traces of $(n-1)$ th order or lower. The f and d matrices, with

$$
\begin{equation*}
\left(f_{k}\right)_{l m} \equiv-i f_{k l m}, \tag{7a}
\end{equation*}
$$

$$
\begin{equation*}
\left(d_{k}\right)_{l m} \equiv d_{k l m}, \tag{7b}
\end{equation*}
$$

obey the commutation relations

$$
\begin{align*}
& {\left[f_{j}, f_{k}\right]=i f_{j k l} f_{l},} \tag{8a}\\
& {\left[f_{j}, d_{k}\right]=i f_{j k l} d_{l},} \tag{8b}\\
& {\left[d_{j}, d_{k}\right]_{\alpha \beta}=} \\
& \quad i f_{j k l}\left(f_{l}\right)_{\alpha B} \tag{8c}\\
& \\
& \quad-\frac{2}{3}\left(\delta_{\alpha j} \delta_{k B}-\delta_{\alpha k} \delta_{j \beta}\right),
\end{align*}
$$

and by virtue of the independent relation, ${ }^{10}$

$$
\begin{align*}
\left(d_{j} d_{k}\right)_{\alpha \beta}-\left(f_{j} f_{k}\right)_{\alpha \beta}= & -2 d_{j k l}\left(d_{l}\right)_{\alpha \beta} \\
& -\frac{1}{3}\left(\delta_{j k} \delta_{\alpha \beta}-\delta_{k \beta} \delta_{j \alpha}\right) \\
& +\delta_{j \beta} \delta_{k \alpha}, \tag{9}
\end{align*}
$$

the anticommutation relations,

$$
\begin{align*}
\left\{f_{j}, f_{k}\right\}_{\alpha \beta}= & 3 d_{j k l}\left(d_{l}\right)_{\alpha \beta}+\delta_{j k} \delta_{\alpha \beta} \\
& -\left(\delta_{\alpha j} \delta_{k \beta}+\delta_{\alpha_{k}} \delta_{j \beta}\right), \tag{10a}\\
\left\{d_{j}, d_{k}\right\}_{\alpha \beta}= & -d_{j k l}\left(d_{l}\right)_{\alpha \beta}+\frac{1}{3}\left(\delta_{\alpha j} \delta_{k \beta}\right. \\
& \left.+\delta_{\alpha k} \delta_{j \beta}+\delta_{j k} \delta_{\alpha \beta}\right) . \tag{10b}
\end{align*}
$$

One has

$$
\begin{equation*}
\operatorname{Tr} f_{r}=\operatorname{Tr} d_{r}=0, \tag{11}
\end{equation*}
$$

and from the trace of the anticommutation relations

$$
\begin{align*}
& \operatorname{Tr}\left(f_{j} f_{k}\right)=3 \delta_{j k}, \tag{12a}\\
& \operatorname{Tr}\left(d_{j} d_{k}\right)=\frac{5}{3} \delta_{j k} . \tag{12b}
\end{align*}
$$

Since we may assign to any such trace a parity determined by its sign under transposition, i.e.,

$$
\begin{align*}
\operatorname{Tr}\left(f_{j} d_{k} d_{l} \cdots\right) & =\operatorname{Tr}\left[\left(f_{j} d_{k} d_{l} \cdots\right)^{T}\right] \\
& =\operatorname{Tr}\left(\cdots d_{l}^{T} d_{k}^{T} f_{j}^{T}\right) \\
& =(-1)^{N_{f}} \operatorname{Tr}\left(\cdots d_{l} d_{k} f_{j}\right), \tag{13}
\end{align*}
$$

where $N_{f}=$ number of f-type matrices in the product $f_{j} d_{k} d_{l} \cdots$, we may write

$$
\begin{align*}
\operatorname{Tr}\left(f_{j} d_{k} d_{l} \cdots\right)=\frac{1}{2}[& \operatorname{Tr}\left(f_{j} d_{k} d_{l} \cdots\right) \\
& \left.+(-1)^{N_{f}} \operatorname{Tr}\left(\cdots d_{l} d_{k} f_{j}\right)\right] \tag{14}
\end{align*}
$$

Thus we have the algorithm that odd-parity traces are reduced one order by the pairwise rearrangement of $\operatorname{Tr}\left(\cdots d_{l} d_{k} f_{j}\right)$ into $\operatorname{Tr}\left(f_{j} d_{k} d_{l} \cdots\right)$ via commutation relations, while even-parity traces are reduced one order by the pairwise rearrangement of $\operatorname{Tr}\left(\cdots d_{l} d_{k} f_{j}\right)$ into $\operatorname{Tr}\left(f_{j} d_{k} d_{l} \cdots\right)$ via commutation relations together with an odd number of anticommutations.

By way of example, one finds for the odd-parity fifth-order trace

$$
\begin{align*}
\operatorname{Tr}\left(f_{j} f_{k} f_{l} f_{m} f_{n}\right)=\frac{1}{2}[& \left.\operatorname{Tr}\left(f_{j} f_{k} f_{l} f_{m} f_{n}\right)-\operatorname{Tr}\left(f_{n} f_{m} f_{l} f_{k} f_{j}\right)\right] \\
=-\frac{1}{2} i & {\left[f_{k j r} \operatorname{Tr}\left(f_{n} f_{m} f_{l} f_{r}\right)+f_{m l r} \operatorname{Tr}\left(f_{n} f_{r} f_{j} f_{k}\right)\right.} \\
& +f_{n l r} \operatorname{Tr}\left(f_{r} f_{m} f_{j} f_{k}\right) \\
& \left.+f_{n m r} \operatorname{Tr}\left(f_{l} f_{r} f_{j} f_{k}\right)\right] ; \tag{15}
\end{align*}
$$

the complete reduction of this trace is then carried out by means of the fourth- and third-order relations,

$$
\begin{align*}
\operatorname{Tr}\left(f_{j} f_{k} f_{l} f_{m}\right)= & \frac{1}{2}\left[\operatorname{Tr}\left(f_{j} f_{k} f_{l} f_{m}\right)+\operatorname{Tr}\left(f_{m} f_{l} f_{k} f_{j}\right)\right] \\
= & \frac{1}{2} i f_{k j r} \operatorname{Tr}\left(f_{m} f_{l} f_{r}\right)+\frac{1}{2} \operatorname{Tr}\left(\left\{f_{m}, f_{l}\right\} f_{j} f_{k}\right) \\
= & \frac{1}{2} i f_{k j r} \operatorname{Tr}\left(f_{m} f_{l} f_{r}\right)+\frac{3}{2} d_{m l r} \operatorname{Tr}\left(d_{r} f_{j} f_{k}\right) \\
& +\frac{1}{2}\left(3 \delta_{m l} \delta_{j k}+f_{j l r} f_{k r m}+f_{k l r} f_{j r m}\right), \tag{16}
\end{align*}
$$

and

$$
\begin{align*}
\operatorname{Tr}\left(f_{m} f_{l} f_{r}\right) & =\frac{1}{2}\left[\operatorname{Tr}\left(f_{m} f_{l} f_{r}\right)-\operatorname{Tr}\left(f_{r} f_{l} f_{m}\right)\right] \\
& =-\frac{1}{2} i f_{l m s} \operatorname{Tr}\left(f_{r} f_{s}\right)=-\frac{3}{2} i f_{l m r}, \tag{17}\\
\operatorname{Tr}\left(d_{r} f_{j} f_{k}\right) & =\frac{1}{2}\left[\operatorname{Tr}\left(d_{r} f_{j} f_{k}\right)+\operatorname{Tr}\left(f_{k} f_{j} d_{r}\right)\right] \\
& =\frac{1}{2} \operatorname{Tr}\left(\left\{f_{k}, f_{j}\right\} d_{r}\right)=\frac{3}{2} d_{k j r} . \tag{18}
\end{align*}
$$

On the other hand, the (independent) even-parity fifth-order trace, $\operatorname{Tr}\left(d_{j} f_{k} f_{l} f_{m} f_{n}\right)$, has as a possible initial reduction

$$
\begin{align*}
\operatorname{Tr}\left(d_{j} f_{k} f_{l} f_{m} f_{n}\right)= & \frac{1}{2}\left[\operatorname{Tr}\left(d_{j} f_{k} f_{l} f_{m} f_{n}\right)+\operatorname{Tr}\left(d_{j} f_{n} f_{m} f_{l} f_{k}\right)\right] \\
= & \frac{1}{2} \operatorname{Tr}\left(d_{j}\left[f_{n}, f_{m}\right] f_{l} f_{k}\right)+\frac{1}{2} \operatorname{Tr}\left(d_{j} f_{m}\left[f_{n}, f_{l}\right] f_{k}\right)+\frac{1}{2} \operatorname{Tr}\left(d_{j} f_{m} f_{l}\left[f_{n}, f_{k}\right]\right)+\frac{1}{2} \operatorname{Tr}\left(d_{j}\left[f_{m}, f_{l}\right] f_{k} f_{n}\right) \\
& +\frac{1}{2} \operatorname{Tr}\left(d_{j} f_{l}\left[f_{m}, f_{k}\right] f_{n}\right)+\frac{1}{2} \operatorname{Tr}\left(d_{j}\left\{f_{l}, f_{k}\right\} f_{m} f_{n}\right) . \tag{19}
\end{align*}
$$

III. SOME EFFECTIVE COUPLINGS IN THE BARYON-LOOP MODEL

SU(3) trace identities find their natural application in the construction of effective interaction Lagrangians for $P V V, P V \gamma$, and weak $P V \gamma$ couplings which are derived couplings in the loop model. We treat these briefly in turn. (This technique may also be applied to the pentagon graphs of Ref. 2 ; in this case one would require the sys-
tematic reduction of the relevant fifth-order traces.)

A. $P V V$ couplings

From the straightforward consideration of loop graphs [see Fig. 1(a)], one finds

$$
\begin{align*}
\mathcal{L}_{P V V}=- & \frac{g}{2 \pi^{2} m}\left[d\left(3 \phi^{2}-\delta^{2}\right)+6 f \delta \phi\right] \\
& \times d_{a b c} \epsilon_{\mu \nu \rho \rho^{\prime}} \partial^{\mu} \varphi_{a}^{\nu} \partial^{\rho} \varphi_{b}^{\sigma} \varphi_{c}, \tag{20}
\end{align*}
$$

with the numerical result

$$
\begin{equation*}
\frac{g}{2 \pi^{2} m}\left[d\left(3 \phi^{2}-\delta^{2}\right)+6 f \delta \phi\right]=\frac{10.7}{m} . \tag{21}
\end{equation*}
$$

It is interesting to compare this result with (a) the author's earlier phenomenological determination of $P V V$ coupling, ${ }^{11}$ which yields $7.2 / m$ for the same quantity, and with (b) the analogous coupling in the octet-broken $\mathrm{SU}(3)$ treatment of Brown, Munczek, and Singer, ${ }^{12}$ where one finds for

$$
\begin{equation*}
2 h=\frac{2}{\left(1+\epsilon_{1}\right)}\left(\frac{m}{m_{\pi}}\right)(0.4 \pi)^{1 / 2} \frac{1}{m} \tag{22}
\end{equation*}
$$

the bounds

$$
\begin{equation*}
\frac{7.3}{m} \leqslant 2 h \leqslant \frac{8.7}{m} \quad\left(1.18 \geqslant \epsilon_{1} \geqslant 0.8\right. \tag{23}
\end{equation*}
$$

for an "average" baryon mass (m) of 1 GeV .
The first-order effects on $\mathscr{L}_{P V V}$ [Eq. (20) above] of baryon mass-breaking are easily accommodated in this formalism. The replacement

$$
\begin{equation*}
\mathcal{L}_{\text {mass }}=-\bar{\psi}_{i} m \delta_{i j} \psi_{j} \rightarrow-\bar{\psi}_{i} M_{i j} \psi_{j}, \tag{24}
\end{equation*}
$$

$$
\begin{align*}
\mathcal{L}_{P V V}^{(1)}= & \frac{2 g}{3 \pi^{2} m_{0}^{2}} \epsilon_{\mu \nu \rho \sigma} \partial^{\mu} \varphi_{b}^{\nu} \partial^{\rho} \varphi_{a}^{\sigma} \varphi_{c} \\
\times & \left\{\left(d_{8 b n} d_{n a c}+d_{8 a n} d_{n b c}\right)\left[\frac{7}{6} d \delta m_{D}\left(2 \phi^{2}-\delta^{2}\right)+\frac{1}{6} f \delta m_{F}\left(9 \phi^{2}+14 \delta^{2}\right)+\frac{8}{3}\left(d \delta m_{F}+f \delta m_{D}\right) \delta \phi\right]\right. \\
& +d_{8 c n} d_{n a b}\left[\frac{1}{6} d \delta m_{D}\left(2 \phi^{2}-7 \delta^{2}\right)+\frac{1}{6} f \delta m_{F}\left(9 \phi^{2}+2 \delta^{2}\right)+\frac{14}{3}\left(d \delta m_{F}+f \delta m_{D}\right) \delta \phi\right] \\
& +\delta_{a b} \delta_{8 c}\left[\frac{1}{36} d \delta m_{D}\left(29 \phi^{2}+31 \delta^{2}\right)+\frac{1}{36} f \delta m_{F}\left(63 \phi^{2}+29 \delta^{2}\right)-\frac{31}{18}\left(d \delta m_{F}+f \delta m_{D}\right) \delta \phi\right] \\
& \left.+\left(\delta_{8 b} \delta_{a c}+\delta_{8 a} \delta_{b c}\right)\left[\frac{1}{36} d \delta m_{D}\left(-31 \phi^{2}+31 \delta^{2}\right)+\frac{1}{36} f \delta m_{F}\left(63 \phi^{2}-31 \delta^{2}\right)-\frac{1}{18}\left(d \delta m_{F}+f \delta m_{D}\right) \delta \phi\right]\right\} . \tag{28}
\end{align*}
$$

(a)

(b)

(c)

FIG. 1. Baryon-loop graphs for (a) $P V V$ coupling, (b) first-order baryon-mass-breaking correction to $P V V$ coupling via $\mathscr{L}_{I}=-\bar{\psi}_{i} \delta m_{i j} \psi_{j}$, (c) $P V \gamma$ coupling. c is the unitary-spin label of the pseudoscalar; b and a are the unitary-spin labels of the vector mesons.

Note that because of the presence of terms proportional to $\left(\delta_{8 b} \delta_{a c}+\delta_{8 a} \delta_{b c}\right)$, the structure of $\mathcal{L}_{P V V}^{(1)}$ is more general than the "most general form" of Ref. 12. However, since the numerically signifi-

(b)

FIG. 2. Contributions of the vector-meson poles to $K_{2}^{0} \rightarrow \pi^{+} \pi^{-} \gamma$ decay. Graphs of types (b) and (c) were justifiably neglected in Ref. 2.
cant terms of $\mathscr{L}_{P V V}^{(1)}$, those proportional to $d_{B b n} d_{n a c}$ $+d_{8 a n} d_{n b c}$ and $\delta_{8 b} \delta_{a c}+\delta_{8 a} \delta_{b c}$, have coefficients only 0.05 and -0.05 , respectively, of the coupling characterizing the zeroth $\AA_{P V V}$ Lagrangian, baryon mass-breaking plays a negligible role in the loop model.

B. $P V \gamma$ couplings

Retaining only the coupling of charged baryons with the electromagnetic field, we find in the same manner as before [see Fig. 1(c).] the effective Lagrangian

$$
\begin{equation*}
\mathscr{L}_{P V \gamma}=-\frac{3 g e}{4 \pi^{2} m}(d \phi+f \delta)\left(d_{a c 3}+\frac{1}{\sqrt{3}} d_{a c 8}\right) \epsilon_{\mu \nu \rho \sigma} \partial^{\mu} \varphi_{a}^{\nu} F^{\rho \sigma} \varphi_{c} . \tag{29}
\end{equation*}
$$

C. Weak $P V \gamma$ couplings and the vector-meson pole contributions to $K_{2}^{0} \rightarrow \pi^{+} \pi^{-\gamma} \gamma$ decay

Proceeding as in subsections (A) and (B), one can construct the effective weak $P V \gamma$ interaction Lagrangian

$$
\begin{equation*}
\mathscr{L}_{P V \gamma}^{(\text {weak })}=\frac{\sqrt{2} g e}{3 \pi^{2} m^{2}} \Gamma(a, c) \epsilon_{\mu \nu \rho \sigma} F^{\mu \nu} \partial^{\rho} \varphi_{a}^{\sigma} \varphi_{c} \tag{30}
\end{equation*}
$$

with

$$
\begin{align*}
\Gamma(a, c)= & D \delta f\left[\frac{7}{3}\left(d_{c a n} d_{n 63}+d_{3 a n} d_{n 6 c}\right)+\frac{1}{3} d_{a 6 n} d_{n 3 c}+\frac{29}{36} \delta_{6 a} \delta_{3 c}-\frac{31}{36} \delta_{3 a} \delta_{c 6}\right] \\
& +D \phi d\left[\frac{7}{3}\left(d_{c a n} d_{n 63}+d_{3 c n} d_{n 6 a}\right)+\frac{1}{3} d_{c 6 n} d_{n 3 a}+\frac{29}{36} \delta_{c 6} \delta_{3 a}-\frac{31}{36} \delta_{3 c} \delta_{a 6}\right] \\
& +F \delta d\left[\frac{7}{3}\left(d_{6 c n} d_{n a 3}+d_{6 a n} d_{n c 3}\right)+\frac{1}{3} d_{c a n} d_{n 63}-\frac{31}{36}\left(\delta_{3 a} \delta_{c 6}+\delta_{3 c} \delta_{a 6}\right)\right] \\
& +F \phi f\left[\frac{3}{2}\left(d_{6 c n} d_{n a 3}+d_{6 a n} d_{n c 3}+d_{c a n} d_{n 63}\right)+\frac{7}{4}\left(\delta_{3 a} \delta_{c 6}+\delta_{3 c} \delta_{a 6}\right)\right]+\frac{1}{\sqrt{3}}(3 \rightarrow 8) . \tag{31}
\end{align*}
$$

Illustrative of the usefulness of this formal compaction is the calculation of the contribution of vectormeson poles to $K_{2}^{0} \rightarrow \pi^{+} \pi^{-} \gamma$ decay. ${ }^{2}$ One has (see Fig. 2)

$$
\begin{align*}
&\left\langle\pi^{+}\left(p_{+}\right) \pi^{-}\left(p_{-}\right) \gamma(q)\right| i^{2} \iint d^{4} x_{1} d^{4} x_{2} T\left(\mathscr{L}_{V P P}\left(x_{1}\right) \mathscr{L}_{P V \gamma}^{(\text {weak })}\left(x_{2}\right)\right)\left|K_{2}^{0}(k)\right\rangle \\
& \simeq-i(2 \pi)^{4} \delta^{4}\left(k-\left(p_{+}+p_{-}+q\right)\right) A^{\left(\rho+K^{*+}+K^{*-)}\right.} \epsilon\left(p_{+} p_{-} k \in(q, \lambda)\right)\left(16 k_{0} p_{0}^{+} p_{0}^{-} q_{0}\right)^{-1 / 2}, \tag{32}
\end{align*}
$$

with

$$
\begin{align*}
& A^{\left(\rho+K^{*+}+K^{*-)}=\frac{\sqrt{2}}{} e g g_{\rho} \phi\right.} \\
& \pi^{2} m^{2}\{
\end{aligned}\left[3(f F+d D)-\frac{\delta}{\phi}(f D+d F)\right] \frac{1}{\left(p_{+}+p_{-}\right)^{2}-m_{\rho}{ }^{2}}, ~ \begin{aligned}
& \tag{33}\\
&\left.+\frac{2}{9}\left[D d+\frac{\delta}{\phi}(f D-2 d F)\right]\left[\frac{1}{\left(p_{+}-k\right)^{2}-m_{K} *^{2}}+\frac{1}{\left(p_{-}-k\right)^{2}-m_{K} *^{2}}\right]\right\} .
\end{align*}
$$

Since one finds the coefficient of the contribution to $A^{\left(\rho+K^{*+}+K^{*-)}\right.}$ from the K^{*} poles only 0.08 of that from the ρ^{0}, our previous omission ${ }^{2}$ of these contributions is seen to be justified.
${ }^{1}$ R. Rockmore and T. F. Wong, Phys. Rev. Lett. 28, 1736 (1972).
${ }^{2}$ R. Rockmore and T. F. Wong, Phys. Rev. D 7, 3425 (1973).
${ }^{3}$ R. Rockmore, J. Smith, and T. F. Wong, Phys. Rev. D 8, 3224 (1973).
${ }^{4}$ R. Rockmore, Phys. Rev. D 8, 3226 (1973).
${ }^{5}$ A. N. Kamal and R. Rockmore, Phys. Rev. D 9, 752 (1974).
${ }^{6}$ R. Rockmore and A. N. Kamal, Phys. Rev. D 10, 2091 (1974).
${ }^{7}$ M. Gronau, Phys. Rev. Lett. 28, 188 (1972); Phys. Rev. D 5, 118 (1972).
${ }^{8} \mathrm{~V}$. Barger and M. Olsson, Phys. Rev. 146, 1080 (1966).
${ }^{9}$ See, for example, the detailed studies of A. J. Macfarlane, A. Sudbery, and P. H. Weisz, Commun. Math. Phys. 11, 77 (1968); and P. Dittner, ibid. 22, 238 (1971), for references to the abundant earlier literature.
${ }^{10}$ This relation follows, for example, from the expansion of the interesting identity

$$
\begin{aligned}
\ln \operatorname{det}\left(1+g_{\alpha} \lambda_{\alpha}\right) & =\ln \left(1-g^{2}+\frac{2}{3} d_{\alpha \beta \gamma} g_{\alpha} g_{\beta} g_{\gamma}\right) \\
& =\operatorname{Tr} \ln \left(1+g_{\alpha} \lambda_{\alpha}\right) .
\end{aligned}
$$

${ }^{11}$ R. Rockmore, Phys. Rev. D 1, 226 (1970). In this work we used the effective $P V V$ coupling given by

$$
\mathcal{J C}_{P V V}=\left(4 \lambda / C_{i}\right) d_{i j k} \epsilon_{\mu \nu \alpha B} \varphi_{i} \partial^{\mu} \phi_{j}^{\nu} \partial^{\alpha} \varphi_{k}^{\beta},
$$

with $4 \lambda=0.348$.
${ }^{12}$ L. M. Brown, H. Munczek, and P. Singer, Phys. Rev. Lett. 21, 707 (1968).
${ }^{13}$ In view of relations (8) and (9), one needs only one of the even-parity trace identities of fourth order, say,

$$
\begin{aligned}
\operatorname{Tr}\left(f_{i} f_{j} f_{k} f_{l}\right)= & d_{i j n} d_{n k l}+d_{j k n} d_{n l i}-\frac{1}{2} d_{i k n} d_{n j l} \\
& +\frac{11}{12}\left(\delta_{i j} \delta_{k l}+\delta_{j k} \delta_{l i}\right)-\frac{1}{12} \delta_{i k} \delta_{j l} .
\end{aligned}
$$

